1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 242 MaxRecurse); 243 if (!L) 244 return nullptr; 245 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!R) 248 return nullptr; 249 250 // Does the expanded pair of binops simplify to the existing binop? 251 if ((L == B0 && R == B1) || 252 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 253 ++NumExpand; 254 return B; 255 } 256 257 // Otherwise, return "L op' R" if it simplifies. 258 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 259 if (!S) 260 return nullptr; 261 262 ++NumExpand; 263 return S; 264 } 265 266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 267 /// distributing op over op'. 268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 269 Value *L, Value *R, 270 Instruction::BinaryOps OpcodeToExpand, 271 const SimplifyQuery &Q, 272 unsigned MaxRecurse) { 273 // Recursion is always used, so bail out at once if we already hit the limit. 274 if (!MaxRecurse--) 275 return nullptr; 276 277 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 return nullptr; 282 } 283 284 /// Generic simplifications for associative binary operations. 285 /// Returns the simpler value, or null if none was found. 286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 287 Value *LHS, Value *RHS, 288 const SimplifyQuery &Q, 289 unsigned MaxRecurse) { 290 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 291 292 // Recursion is always used, so bail out at once if we already hit the limit. 293 if (!MaxRecurse--) 294 return nullptr; 295 296 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 297 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 298 299 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 300 if (Op0 && Op0->getOpcode() == Opcode) { 301 Value *A = Op0->getOperand(0); 302 Value *B = Op0->getOperand(1); 303 Value *C = RHS; 304 305 // Does "B op C" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 307 // It does! Return "A op V" if it simplifies or is already available. 308 // If V equals B then "A op V" is just the LHS. 309 if (V == B) return LHS; 310 // Otherwise return "A op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 319 if (Op1 && Op1->getOpcode() == Opcode) { 320 Value *A = LHS; 321 Value *B = Op1->getOperand(0); 322 Value *C = Op1->getOperand(1); 323 324 // Does "A op B" simplify? 325 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 326 // It does! Return "V op C" if it simplifies or is already available. 327 // If V equals B then "V op C" is just the RHS. 328 if (V == B) return RHS; 329 // Otherwise return "V op C" if it simplifies. 330 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 331 ++NumReassoc; 332 return W; 333 } 334 } 335 } 336 337 // The remaining transforms require commutativity as well as associativity. 338 if (!Instruction::isCommutative(Opcode)) 339 return nullptr; 340 341 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 342 if (Op0 && Op0->getOpcode() == Opcode) { 343 Value *A = Op0->getOperand(0); 344 Value *B = Op0->getOperand(1); 345 Value *C = RHS; 346 347 // Does "C op A" simplify? 348 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 349 // It does! Return "V op B" if it simplifies or is already available. 350 // If V equals A then "V op B" is just the LHS. 351 if (V == A) return LHS; 352 // Otherwise return "V op B" if it simplifies. 353 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 354 ++NumReassoc; 355 return W; 356 } 357 } 358 } 359 360 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 361 if (Op1 && Op1->getOpcode() == Opcode) { 362 Value *A = LHS; 363 Value *B = Op1->getOperand(0); 364 Value *C = Op1->getOperand(1); 365 366 // Does "C op A" simplify? 367 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 368 // It does! Return "B op V" if it simplifies or is already available. 369 // If V equals C then "B op V" is just the RHS. 370 if (V == C) return RHS; 371 // Otherwise return "B op V" if it simplifies. 372 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 373 ++NumReassoc; 374 return W; 375 } 376 } 377 } 378 379 return nullptr; 380 } 381 382 /// In the case of a binary operation with a select instruction as an operand, 383 /// try to simplify the binop by seeing whether evaluating it on both branches 384 /// of the select results in the same value. Returns the common value if so, 385 /// otherwise returns null. 386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 387 Value *RHS, const SimplifyQuery &Q, 388 unsigned MaxRecurse) { 389 // Recursion is always used, so bail out at once if we already hit the limit. 390 if (!MaxRecurse--) 391 return nullptr; 392 393 SelectInst *SI; 394 if (isa<SelectInst>(LHS)) { 395 SI = cast<SelectInst>(LHS); 396 } else { 397 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 398 SI = cast<SelectInst>(RHS); 399 } 400 401 // Evaluate the BinOp on the true and false branches of the select. 402 Value *TV; 403 Value *FV; 404 if (SI == LHS) { 405 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 406 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 407 } else { 408 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 409 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 410 } 411 412 // If they simplified to the same value, then return the common value. 413 // If they both failed to simplify then return null. 414 if (TV == FV) 415 return TV; 416 417 // If one branch simplified to undef, return the other one. 418 if (TV && Q.isUndefValue(TV)) 419 return FV; 420 if (FV && Q.isUndefValue(FV)) 421 return TV; 422 423 // If applying the operation did not change the true and false select values, 424 // then the result of the binop is the select itself. 425 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 426 return SI; 427 428 // If one branch simplified and the other did not, and the simplified 429 // value is equal to the unsimplified one, return the simplified value. 430 // For example, select (cond, X, X & Z) & Z -> X & Z. 431 if ((FV && !TV) || (TV && !FV)) { 432 // Check that the simplified value has the form "X op Y" where "op" is the 433 // same as the original operation. 434 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 435 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 436 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 437 // We already know that "op" is the same as for the simplified value. See 438 // if the operands match too. If so, return the simplified value. 439 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 440 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 441 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 442 if (Simplified->getOperand(0) == UnsimplifiedLHS && 443 Simplified->getOperand(1) == UnsimplifiedRHS) 444 return Simplified; 445 if (Simplified->isCommutative() && 446 Simplified->getOperand(1) == UnsimplifiedLHS && 447 Simplified->getOperand(0) == UnsimplifiedRHS) 448 return Simplified; 449 } 450 } 451 452 return nullptr; 453 } 454 455 /// In the case of a comparison with a select instruction, try to simplify the 456 /// comparison by seeing whether both branches of the select result in the same 457 /// value. Returns the common value if so, otherwise returns null. 458 /// For example, if we have: 459 /// %tmp = select i1 %cmp, i32 1, i32 2 460 /// %cmp1 = icmp sle i32 %tmp, 3 461 /// We can simplify %cmp1 to true, because both branches of select are 462 /// less than 3. We compose new comparison by substituting %tmp with both 463 /// branches of select and see if it can be simplified. 464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 465 Value *RHS, const SimplifyQuery &Q, 466 unsigned MaxRecurse) { 467 // Recursion is always used, so bail out at once if we already hit the limit. 468 if (!MaxRecurse--) 469 return nullptr; 470 471 // Make sure the select is on the LHS. 472 if (!isa<SelectInst>(LHS)) { 473 std::swap(LHS, RHS); 474 Pred = CmpInst::getSwappedPredicate(Pred); 475 } 476 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 477 SelectInst *SI = cast<SelectInst>(LHS); 478 Value *Cond = SI->getCondition(); 479 Value *TV = SI->getTrueValue(); 480 Value *FV = SI->getFalseValue(); 481 482 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 483 // Does "cmp TV, RHS" simplify? 484 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 485 if (!TCmp) 486 return nullptr; 487 488 // Does "cmp FV, RHS" simplify? 489 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 490 if (!FCmp) 491 return nullptr; 492 493 // If both sides simplified to the same value, then use it as the result of 494 // the original comparison. 495 if (TCmp == FCmp) 496 return TCmp; 497 498 // The remaining cases only make sense if the select condition has the same 499 // type as the result of the comparison, so bail out if this is not so. 500 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 501 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 502 503 return nullptr; 504 } 505 506 /// In the case of a binary operation with an operand that is a PHI instruction, 507 /// try to simplify the binop by seeing whether evaluating it on the incoming 508 /// phi values yields the same result for every value. If so returns the common 509 /// value, otherwise returns null. 510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 511 Value *RHS, const SimplifyQuery &Q, 512 unsigned MaxRecurse) { 513 // Recursion is always used, so bail out at once if we already hit the limit. 514 if (!MaxRecurse--) 515 return nullptr; 516 517 PHINode *PI; 518 if (isa<PHINode>(LHS)) { 519 PI = cast<PHINode>(LHS); 520 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 521 if (!valueDominatesPHI(RHS, PI, Q.DT)) 522 return nullptr; 523 } else { 524 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 525 PI = cast<PHINode>(RHS); 526 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(LHS, PI, Q.DT)) 528 return nullptr; 529 } 530 531 // Evaluate the BinOp on the incoming phi values. 532 Value *CommonValue = nullptr; 533 for (Value *Incoming : PI->incoming_values()) { 534 // If the incoming value is the phi node itself, it can safely be skipped. 535 if (Incoming == PI) continue; 536 Value *V = PI == LHS ? 537 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 538 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 539 // If the operation failed to simplify, or simplified to a different value 540 // to previously, then give up. 541 if (!V || (CommonValue && V != CommonValue)) 542 return nullptr; 543 CommonValue = V; 544 } 545 546 return CommonValue; 547 } 548 549 /// In the case of a comparison with a PHI instruction, try to simplify the 550 /// comparison by seeing whether comparing with all of the incoming phi values 551 /// yields the same result every time. If so returns the common result, 552 /// otherwise returns null. 553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 554 const SimplifyQuery &Q, unsigned MaxRecurse) { 555 // Recursion is always used, so bail out at once if we already hit the limit. 556 if (!MaxRecurse--) 557 return nullptr; 558 559 // Make sure the phi is on the LHS. 560 if (!isa<PHINode>(LHS)) { 561 std::swap(LHS, RHS); 562 Pred = CmpInst::getSwappedPredicate(Pred); 563 } 564 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 565 PHINode *PI = cast<PHINode>(LHS); 566 567 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 568 if (!valueDominatesPHI(RHS, PI, Q.DT)) 569 return nullptr; 570 571 // Evaluate the BinOp on the incoming phi values. 572 Value *CommonValue = nullptr; 573 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 574 Value *Incoming = PI->getIncomingValue(u); 575 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 576 // If the incoming value is the phi node itself, it can safely be skipped. 577 if (Incoming == PI) continue; 578 // Change the context instruction to the "edge" that flows into the phi. 579 // This is important because that is where incoming is actually "evaluated" 580 // even though it is used later somewhere else. 581 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 582 MaxRecurse); 583 // If the operation failed to simplify, or simplified to a different value 584 // to previously, then give up. 585 if (!V || (CommonValue && V != CommonValue)) 586 return nullptr; 587 CommonValue = V; 588 } 589 590 return CommonValue; 591 } 592 593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 594 Value *&Op0, Value *&Op1, 595 const SimplifyQuery &Q) { 596 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 597 if (auto *CRHS = dyn_cast<Constant>(Op1)) 598 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 599 600 // Canonicalize the constant to the RHS if this is a commutative operation. 601 if (Instruction::isCommutative(Opcode)) 602 std::swap(Op0, Op1); 603 } 604 return nullptr; 605 } 606 607 /// Given operands for an Add, see if we can fold the result. 608 /// If not, this returns null. 609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 610 const SimplifyQuery &Q, unsigned MaxRecurse) { 611 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 612 return C; 613 614 // X + undef -> undef 615 if (Q.isUndefValue(Op1)) 616 return Op1; 617 618 // X + 0 -> X 619 if (match(Op1, m_Zero())) 620 return Op0; 621 622 // If two operands are negative, return 0. 623 if (isKnownNegation(Op0, Op1)) 624 return Constant::getNullValue(Op0->getType()); 625 626 // X + (Y - X) -> Y 627 // (Y - X) + X -> Y 628 // Eg: X + -X -> 0 629 Value *Y = nullptr; 630 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 631 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 632 return Y; 633 634 // X + ~X -> -1 since ~X = -X-1 635 Type *Ty = Op0->getType(); 636 if (match(Op0, m_Not(m_Specific(Op1))) || 637 match(Op1, m_Not(m_Specific(Op0)))) 638 return Constant::getAllOnesValue(Ty); 639 640 // add nsw/nuw (xor Y, signmask), signmask --> Y 641 // The no-wrapping add guarantees that the top bit will be set by the add. 642 // Therefore, the xor must be clearing the already set sign bit of Y. 643 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 644 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 645 return Y; 646 647 // add nuw %x, -1 -> -1, because %x can only be 0. 648 if (IsNUW && match(Op1, m_AllOnes())) 649 return Op1; // Which is -1. 650 651 /// i1 add -> xor. 652 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 653 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 654 return V; 655 656 // Try some generic simplifications for associative operations. 657 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 658 MaxRecurse)) 659 return V; 660 661 // Threading Add over selects and phi nodes is pointless, so don't bother. 662 // Threading over the select in "A + select(cond, B, C)" means evaluating 663 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 664 // only if B and C are equal. If B and C are equal then (since we assume 665 // that operands have already been simplified) "select(cond, B, C)" should 666 // have been simplified to the common value of B and C already. Analysing 667 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 668 // for threading over phi nodes. 669 670 return nullptr; 671 } 672 673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 674 const SimplifyQuery &Query) { 675 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 676 } 677 678 /// Compute the base pointer and cumulative constant offsets for V. 679 /// 680 /// This strips all constant offsets off of V, leaving it the base pointer, and 681 /// accumulates the total constant offset applied in the returned constant. It 682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 683 /// no constant offsets applied. 684 /// 685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 687 /// folding. 688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 689 bool AllowNonInbounds = false) { 690 assert(V->getType()->isPtrOrPtrVectorTy()); 691 692 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 693 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 694 695 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 696 // As that strip may trace through `addrspacecast`, need to sext or trunc 697 // the offset calculated. 698 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 699 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 700 701 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 702 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 703 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 704 return OffsetIntPtr; 705 } 706 707 /// Compute the constant difference between two pointer values. 708 /// If the difference is not a constant, returns zero. 709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 710 Value *RHS) { 711 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 712 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 713 714 // If LHS and RHS are not related via constant offsets to the same base 715 // value, there is nothing we can do here. 716 if (LHS != RHS) 717 return nullptr; 718 719 // Otherwise, the difference of LHS - RHS can be computed as: 720 // LHS - RHS 721 // = (LHSOffset + Base) - (RHSOffset + Base) 722 // = LHSOffset - RHSOffset 723 return ConstantExpr::getSub(LHSOffset, RHSOffset); 724 } 725 726 /// Given operands for a Sub, see if we can fold the result. 727 /// If not, this returns null. 728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 729 const SimplifyQuery &Q, unsigned MaxRecurse) { 730 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 731 return C; 732 733 // X - undef -> undef 734 // undef - X -> undef 735 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 736 return UndefValue::get(Op0->getType()); 737 738 // X - 0 -> X 739 if (match(Op1, m_Zero())) 740 return Op0; 741 742 // X - X -> 0 743 if (Op0 == Op1) 744 return Constant::getNullValue(Op0->getType()); 745 746 // Is this a negation? 747 if (match(Op0, m_Zero())) { 748 // 0 - X -> 0 if the sub is NUW. 749 if (isNUW) 750 return Constant::getNullValue(Op0->getType()); 751 752 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 753 if (Known.Zero.isMaxSignedValue()) { 754 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 755 // Op1 must be 0 because negating the minimum signed value is undefined. 756 if (isNSW) 757 return Constant::getNullValue(Op0->getType()); 758 759 // 0 - X -> X if X is 0 or the minimum signed value. 760 return Op1; 761 } 762 } 763 764 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 765 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 766 Value *X = nullptr, *Y = nullptr, *Z = Op1; 767 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 768 // See if "V === Y - Z" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 770 // It does! Now see if "X + V" simplifies. 771 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 772 // It does, we successfully reassociated! 773 ++NumReassoc; 774 return W; 775 } 776 // See if "V === X - Z" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 778 // It does! Now see if "Y + V" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 } 785 786 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 787 // For example, X - (X + 1) -> -1 788 X = Op0; 789 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 790 // See if "V === X - Y" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 792 // It does! Now see if "V - Z" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 // See if "V === X - Z" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 800 // It does! Now see if "V - Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 } 807 808 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 809 // For example, X - (X - Y) -> Y. 810 Z = Op0; 811 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 812 // See if "V === Z - X" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 814 // It does! Now see if "V + Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 821 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 822 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 823 match(Op1, m_Trunc(m_Value(Y)))) 824 if (X->getType() == Y->getType()) 825 // See if "V === X - Y" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 827 // It does! Now see if "trunc V" simplifies. 828 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 829 Q, MaxRecurse - 1)) 830 // It does, return the simplified "trunc V". 831 return W; 832 833 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 834 if (match(Op0, m_PtrToInt(m_Value(X))) && 835 match(Op1, m_PtrToInt(m_Value(Y)))) 836 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 837 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 838 839 // i1 sub -> xor. 840 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 841 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 842 return V; 843 844 // Threading Sub over selects and phi nodes is pointless, so don't bother. 845 // Threading over the select in "A - select(cond, B, C)" means evaluating 846 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 847 // only if B and C are equal. If B and C are equal then (since we assume 848 // that operands have already been simplified) "select(cond, B, C)" should 849 // have been simplified to the common value of B and C already. Analysing 850 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 851 // for threading over phi nodes. 852 853 return nullptr; 854 } 855 856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 857 const SimplifyQuery &Q) { 858 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 859 } 860 861 /// Given operands for a Mul, see if we can fold the result. 862 /// If not, this returns null. 863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 864 unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 866 return C; 867 868 // X * undef -> 0 869 // X * 0 -> 0 870 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 871 return Constant::getNullValue(Op0->getType()); 872 873 // X * 1 -> X 874 if (match(Op1, m_One())) 875 return Op0; 876 877 // (X / Y) * Y -> X if the division is exact. 878 Value *X = nullptr; 879 if (Q.IIQ.UseInstrInfo && 880 (match(Op0, 881 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 882 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 883 return X; 884 885 // i1 mul -> and. 886 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 887 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 888 return V; 889 890 // Try some generic simplifications for associative operations. 891 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 892 MaxRecurse)) 893 return V; 894 895 // Mul distributes over Add. Try some generic simplifications based on this. 896 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 897 Instruction::Add, Q, MaxRecurse)) 898 return V; 899 900 // If the operation is with the result of a select instruction, check whether 901 // operating on either branch of the select always yields the same value. 902 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 903 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 904 MaxRecurse)) 905 return V; 906 907 // If the operation is with the result of a phi instruction, check whether 908 // operating on all incoming values of the phi always yields the same value. 909 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 910 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 return nullptr; 915 } 916 917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 918 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 919 } 920 921 /// Check for common or similar folds of integer division or integer remainder. 922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 924 const SimplifyQuery &Q) { 925 Type *Ty = Op0->getType(); 926 927 // X / undef -> poison 928 // X % undef -> poison 929 if (Q.isUndefValue(Op1)) 930 return PoisonValue::get(Ty); 931 932 // X / 0 -> poison 933 // X % 0 -> poison 934 // We don't need to preserve faults! 935 if (match(Op1, m_Zero())) 936 return PoisonValue::get(Ty); 937 938 // If any element of a constant divisor fixed width vector is zero or undef 939 // the behavior is undefined and we can fold the whole op to poison. 940 auto *Op1C = dyn_cast<Constant>(Op1); 941 auto *VTy = dyn_cast<FixedVectorType>(Ty); 942 if (Op1C && VTy) { 943 unsigned NumElts = VTy->getNumElements(); 944 for (unsigned i = 0; i != NumElts; ++i) { 945 Constant *Elt = Op1C->getAggregateElement(i); 946 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 947 return PoisonValue::get(Ty); 948 } 949 } 950 951 // undef / X -> 0 952 // undef % X -> 0 953 if (Q.isUndefValue(Op0)) 954 return Constant::getNullValue(Ty); 955 956 // 0 / X -> 0 957 // 0 % X -> 0 958 if (match(Op0, m_Zero())) 959 return Constant::getNullValue(Op0->getType()); 960 961 // X / X -> 1 962 // X % X -> 0 963 if (Op0 == Op1) 964 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 965 966 // X / 1 -> X 967 // X % 1 -> 0 968 // If this is a boolean op (single-bit element type), we can't have 969 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 970 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 971 Value *X; 972 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 973 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 974 return IsDiv ? Op0 : Constant::getNullValue(Ty); 975 976 return nullptr; 977 } 978 979 /// Given a predicate and two operands, return true if the comparison is true. 980 /// This is a helper for div/rem simplification where we return some other value 981 /// when we can prove a relationship between the operands. 982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 983 const SimplifyQuery &Q, unsigned MaxRecurse) { 984 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 985 Constant *C = dyn_cast_or_null<Constant>(V); 986 return (C && C->isAllOnesValue()); 987 } 988 989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 990 /// to simplify X % Y to X. 991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 992 unsigned MaxRecurse, bool IsSigned) { 993 // Recursion is always used, so bail out at once if we already hit the limit. 994 if (!MaxRecurse--) 995 return false; 996 997 if (IsSigned) { 998 // |X| / |Y| --> 0 999 // 1000 // We require that 1 operand is a simple constant. That could be extended to 1001 // 2 variables if we computed the sign bit for each. 1002 // 1003 // Make sure that a constant is not the minimum signed value because taking 1004 // the abs() of that is undefined. 1005 Type *Ty = X->getType(); 1006 const APInt *C; 1007 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1008 // Is the variable divisor magnitude always greater than the constant 1009 // dividend magnitude? 1010 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1011 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1014 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 if (match(Y, m_APInt(C))) { 1018 // Special-case: we can't take the abs() of a minimum signed value. If 1019 // that's the divisor, then all we have to do is prove that the dividend 1020 // is also not the minimum signed value. 1021 if (C->isMinSignedValue()) 1022 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1023 1024 // Is the variable dividend magnitude always less than the constant 1025 // divisor magnitude? 1026 // |X| < |C| --> X > -abs(C) and X < abs(C) 1027 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1028 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1029 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1030 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 // IsSigned == false. 1037 // Is the dividend unsigned less than the divisor? 1038 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1039 } 1040 1041 /// These are simplifications common to SDiv and UDiv. 1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1043 const SimplifyQuery &Q, unsigned MaxRecurse) { 1044 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1045 return C; 1046 1047 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1048 return V; 1049 1050 bool IsSigned = Opcode == Instruction::SDiv; 1051 1052 // (X * Y) / Y -> X if the multiplication does not overflow. 1053 Value *X; 1054 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1055 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1056 // If the Mul does not overflow, then we are good to go. 1057 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1058 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1059 return X; 1060 // If X has the form X = A / Y, then X * Y cannot overflow. 1061 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1062 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1063 return X; 1064 } 1065 1066 // (X rem Y) / Y -> 0 1067 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1068 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1069 return Constant::getNullValue(Op0->getType()); 1070 1071 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1072 ConstantInt *C1, *C2; 1073 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1074 match(Op1, m_ConstantInt(C2))) { 1075 bool Overflow; 1076 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1077 if (Overflow) 1078 return Constant::getNullValue(Op0->getType()); 1079 } 1080 1081 // If the operation is with the result of a select instruction, check whether 1082 // operating on either branch of the select always yields the same value. 1083 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1084 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1085 return V; 1086 1087 // If the operation is with the result of a phi instruction, check whether 1088 // operating on all incoming values of the phi always yields the same value. 1089 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1090 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1091 return V; 1092 1093 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1094 return Constant::getNullValue(Op0->getType()); 1095 1096 return nullptr; 1097 } 1098 1099 /// These are simplifications common to SRem and URem. 1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1101 const SimplifyQuery &Q, unsigned MaxRecurse) { 1102 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1103 return C; 1104 1105 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1106 return V; 1107 1108 // (X % Y) % Y -> X % Y 1109 if ((Opcode == Instruction::SRem && 1110 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1111 (Opcode == Instruction::URem && 1112 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1113 return Op0; 1114 1115 // (X << Y) % X -> 0 1116 if (Q.IIQ.UseInstrInfo && 1117 ((Opcode == Instruction::SRem && 1118 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1119 (Opcode == Instruction::URem && 1120 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 // If the operation is with the result of a select instruction, check whether 1124 // operating on either branch of the select always yields the same value. 1125 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1126 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 // If the operation is with the result of a phi instruction, check whether 1130 // operating on all incoming values of the phi always yields the same value. 1131 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1132 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1133 return V; 1134 1135 // If X / Y == 0, then X % Y == X. 1136 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1137 return Op0; 1138 1139 return nullptr; 1140 } 1141 1142 /// Given operands for an SDiv, see if we can fold the result. 1143 /// If not, this returns null. 1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1145 unsigned MaxRecurse) { 1146 // If two operands are negated and no signed overflow, return -1. 1147 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1148 return Constant::getAllOnesValue(Op0->getType()); 1149 1150 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1151 } 1152 1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1154 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1155 } 1156 1157 /// Given operands for a UDiv, see if we can fold the result. 1158 /// If not, this returns null. 1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1160 unsigned MaxRecurse) { 1161 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1162 } 1163 1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1165 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1166 } 1167 1168 /// Given operands for an SRem, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1173 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1174 Value *X; 1175 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1176 return ConstantInt::getNullValue(Op0->getType()); 1177 1178 // If the two operands are negated, return 0. 1179 if (isKnownNegation(Op0, Op1)) 1180 return ConstantInt::getNullValue(Op0->getType()); 1181 1182 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a URem, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Returns true if a shift by \c Amount always yields undef. 1201 static bool isUndefShift(Value *Amount, const SimplifyQuery &Q) { 1202 Constant *C = dyn_cast<Constant>(Amount); 1203 if (!C) 1204 return false; 1205 1206 // X shift by undef -> undef because it may shift by the bitwidth. 1207 if (Q.isUndefValue(C)) 1208 return true; 1209 1210 // Shifting by the bitwidth or more is undefined. 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1212 if (CI->getValue().getLimitedValue() >= 1213 CI->getType()->getScalarSizeInBits()) 1214 return true; 1215 1216 // If all lanes of a vector shift are undefined the whole shift is. 1217 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1218 for (unsigned I = 0, 1219 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1220 I != E; ++I) 1221 if (!isUndefShift(C->getAggregateElement(I), Q)) 1222 return false; 1223 return true; 1224 } 1225 1226 return false; 1227 } 1228 1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1230 /// If not, this returns null. 1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1232 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1233 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1234 return C; 1235 1236 // 0 shift by X -> 0 1237 if (match(Op0, m_Zero())) 1238 return Constant::getNullValue(Op0->getType()); 1239 1240 // X shift by 0 -> X 1241 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1242 // would be poison. 1243 Value *X; 1244 if (match(Op1, m_Zero()) || 1245 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1246 return Op0; 1247 1248 // Fold undefined shifts. 1249 if (isUndefShift(Op1, Q)) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If the operation is with the result of a select instruction, check whether 1253 // operating on either branch of the select always yields the same value. 1254 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1255 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1256 return V; 1257 1258 // If the operation is with the result of a phi instruction, check whether 1259 // operating on all incoming values of the phi always yields the same value. 1260 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1261 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1262 return V; 1263 1264 // If any bits in the shift amount make that value greater than or equal to 1265 // the number of bits in the type, the shift is undefined. 1266 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1267 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1268 return UndefValue::get(Op0->getType()); 1269 1270 // If all valid bits in the shift amount are known zero, the first operand is 1271 // unchanged. 1272 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1273 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1274 return Op0; 1275 1276 return nullptr; 1277 } 1278 1279 /// Given operands for an Shl, LShr or AShr, see if we can 1280 /// fold the result. If not, this returns null. 1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1282 Value *Op1, bool isExact, const SimplifyQuery &Q, 1283 unsigned MaxRecurse) { 1284 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1285 return V; 1286 1287 // X >> X -> 0 1288 if (Op0 == Op1) 1289 return Constant::getNullValue(Op0->getType()); 1290 1291 // undef >> X -> 0 1292 // undef >> X -> undef (if it's exact) 1293 if (Q.isUndefValue(Op0)) 1294 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1295 1296 // The low bit cannot be shifted out of an exact shift if it is set. 1297 if (isExact) { 1298 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1299 if (Op0Known.One[0]) 1300 return Op0; 1301 } 1302 1303 return nullptr; 1304 } 1305 1306 /// Given operands for an Shl, see if we can fold the result. 1307 /// If not, this returns null. 1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1309 const SimplifyQuery &Q, unsigned MaxRecurse) { 1310 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1311 return V; 1312 1313 // undef << X -> 0 1314 // undef << X -> undef if (if it's NSW/NUW) 1315 if (Q.isUndefValue(Op0)) 1316 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1317 1318 // (X >> A) << A -> X 1319 Value *X; 1320 if (Q.IIQ.UseInstrInfo && 1321 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1322 return X; 1323 1324 // shl nuw i8 C, %x -> C iff C has sign bit set. 1325 if (isNUW && match(Op0, m_Negative())) 1326 return Op0; 1327 // NOTE: could use computeKnownBits() / LazyValueInfo, 1328 // but the cost-benefit analysis suggests it isn't worth it. 1329 1330 return nullptr; 1331 } 1332 1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1334 const SimplifyQuery &Q) { 1335 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1336 } 1337 1338 /// Given operands for an LShr, see if we can fold the result. 1339 /// If not, this returns null. 1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1341 const SimplifyQuery &Q, unsigned MaxRecurse) { 1342 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1343 MaxRecurse)) 1344 return V; 1345 1346 // (X << A) >> A -> X 1347 Value *X; 1348 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1349 return X; 1350 1351 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1352 // We can return X as we do in the above case since OR alters no bits in X. 1353 // SimplifyDemandedBits in InstCombine can do more general optimization for 1354 // bit manipulation. This pattern aims to provide opportunities for other 1355 // optimizers by supporting a simple but common case in InstSimplify. 1356 Value *Y; 1357 const APInt *ShRAmt, *ShLAmt; 1358 if (match(Op1, m_APInt(ShRAmt)) && 1359 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1360 *ShRAmt == *ShLAmt) { 1361 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1362 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1363 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1364 if (ShRAmt->uge(EffWidthY)) 1365 return X; 1366 } 1367 1368 return nullptr; 1369 } 1370 1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1372 const SimplifyQuery &Q) { 1373 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1374 } 1375 1376 /// Given operands for an AShr, see if we can fold the result. 1377 /// If not, this returns null. 1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1379 const SimplifyQuery &Q, unsigned MaxRecurse) { 1380 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1381 MaxRecurse)) 1382 return V; 1383 1384 // all ones >>a X -> -1 1385 // Do not return Op0 because it may contain undef elements if it's a vector. 1386 if (match(Op0, m_AllOnes())) 1387 return Constant::getAllOnesValue(Op0->getType()); 1388 1389 // (X << A) >> A -> X 1390 Value *X; 1391 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1392 return X; 1393 1394 // Arithmetic shifting an all-sign-bit value is a no-op. 1395 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1396 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1397 return Op0; 1398 1399 return nullptr; 1400 } 1401 1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1403 const SimplifyQuery &Q) { 1404 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1405 } 1406 1407 /// Commuted variants are assumed to be handled by calling this function again 1408 /// with the parameters swapped. 1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1410 ICmpInst *UnsignedICmp, bool IsAnd, 1411 const SimplifyQuery &Q) { 1412 Value *X, *Y; 1413 1414 ICmpInst::Predicate EqPred; 1415 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1416 !ICmpInst::isEquality(EqPred)) 1417 return nullptr; 1418 1419 ICmpInst::Predicate UnsignedPred; 1420 1421 Value *A, *B; 1422 // Y = (A - B); 1423 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1424 if (match(UnsignedICmp, 1425 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1426 ICmpInst::isUnsigned(UnsignedPred)) { 1427 // A >=/<= B || (A - B) != 0 <--> true 1428 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1429 UnsignedPred == ICmpInst::ICMP_ULE) && 1430 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1431 return ConstantInt::getTrue(UnsignedICmp->getType()); 1432 // A </> B && (A - B) == 0 <--> false 1433 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1434 UnsignedPred == ICmpInst::ICMP_UGT) && 1435 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1436 return ConstantInt::getFalse(UnsignedICmp->getType()); 1437 1438 // A </> B && (A - B) != 0 <--> A </> B 1439 // A </> B || (A - B) != 0 <--> (A - B) != 0 1440 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1441 UnsignedPred == ICmpInst::ICMP_UGT)) 1442 return IsAnd ? UnsignedICmp : ZeroICmp; 1443 1444 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1445 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1446 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1447 UnsignedPred == ICmpInst::ICMP_UGE)) 1448 return IsAnd ? ZeroICmp : UnsignedICmp; 1449 } 1450 1451 // Given Y = (A - B) 1452 // Y >= A && Y != 0 --> Y >= A iff B != 0 1453 // Y < A || Y == 0 --> Y < A iff B != 0 1454 if (match(UnsignedICmp, 1455 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1456 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1457 EqPred == ICmpInst::ICMP_NE && 1458 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1459 return UnsignedICmp; 1460 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1461 EqPred == ICmpInst::ICMP_EQ && 1462 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1463 return UnsignedICmp; 1464 } 1465 } 1466 1467 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1468 ICmpInst::isUnsigned(UnsignedPred)) 1469 ; 1470 else if (match(UnsignedICmp, 1471 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1474 else 1475 return nullptr; 1476 1477 // X > Y && Y == 0 --> Y == 0 iff X != 0 1478 // X > Y || Y == 0 --> X > Y iff X != 0 1479 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1480 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1481 return IsAnd ? ZeroICmp : UnsignedICmp; 1482 1483 // X <= Y && Y != 0 --> X <= Y iff X != 0 1484 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1485 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1486 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1487 return IsAnd ? UnsignedICmp : ZeroICmp; 1488 1489 // The transforms below here are expected to be handled more generally with 1490 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1491 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1492 // these are candidates for removal. 1493 1494 // X < Y && Y != 0 --> X < Y 1495 // X < Y || Y != 0 --> Y != 0 1496 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1497 return IsAnd ? UnsignedICmp : ZeroICmp; 1498 1499 // X >= Y && Y == 0 --> Y == 0 1500 // X >= Y || Y == 0 --> X >= Y 1501 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 1504 // X < Y && Y == 0 --> false 1505 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1506 IsAnd) 1507 return getFalse(UnsignedICmp->getType()); 1508 1509 // X >= Y || Y != 0 --> true 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1511 !IsAnd) 1512 return getTrue(UnsignedICmp->getType()); 1513 1514 return nullptr; 1515 } 1516 1517 /// Commuted variants are assumed to be handled by calling this function again 1518 /// with the parameters swapped. 1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1520 ICmpInst::Predicate Pred0, Pred1; 1521 Value *A ,*B; 1522 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1523 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1524 return nullptr; 1525 1526 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1527 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1528 // can eliminate Op1 from this 'and'. 1529 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1530 return Op0; 1531 1532 // Check for any combination of predicates that are guaranteed to be disjoint. 1533 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1534 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1535 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1536 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1537 return getFalse(Op0->getType()); 1538 1539 return nullptr; 1540 } 1541 1542 /// Commuted variants are assumed to be handled by calling this function again 1543 /// with the parameters swapped. 1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1545 ICmpInst::Predicate Pred0, Pred1; 1546 Value *A ,*B; 1547 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1548 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1549 return nullptr; 1550 1551 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1552 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1553 // can eliminate Op0 from this 'or'. 1554 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1555 return Op1; 1556 1557 // Check for any combination of predicates that cover the entire range of 1558 // possibilities. 1559 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1560 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1561 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1562 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1563 return getTrue(Op0->getType()); 1564 1565 return nullptr; 1566 } 1567 1568 /// Test if a pair of compares with a shared operand and 2 constants has an 1569 /// empty set intersection, full set union, or if one compare is a superset of 1570 /// the other. 1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1572 bool IsAnd) { 1573 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1574 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1575 return nullptr; 1576 1577 const APInt *C0, *C1; 1578 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1579 !match(Cmp1->getOperand(1), m_APInt(C1))) 1580 return nullptr; 1581 1582 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1583 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1584 1585 // For and-of-compares, check if the intersection is empty: 1586 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1587 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1588 return getFalse(Cmp0->getType()); 1589 1590 // For or-of-compares, check if the union is full: 1591 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1592 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1593 return getTrue(Cmp0->getType()); 1594 1595 // Is one range a superset of the other? 1596 // If this is and-of-compares, take the smaller set: 1597 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1598 // If this is or-of-compares, take the larger set: 1599 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1600 if (Range0.contains(Range1)) 1601 return IsAnd ? Cmp1 : Cmp0; 1602 if (Range1.contains(Range0)) 1603 return IsAnd ? Cmp0 : Cmp1; 1604 1605 return nullptr; 1606 } 1607 1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1609 bool IsAnd) { 1610 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1611 if (!match(Cmp0->getOperand(1), m_Zero()) || 1612 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1613 return nullptr; 1614 1615 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1616 return nullptr; 1617 1618 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1619 Value *X = Cmp0->getOperand(0); 1620 Value *Y = Cmp1->getOperand(0); 1621 1622 // If one of the compares is a masked version of a (not) null check, then 1623 // that compare implies the other, so we eliminate the other. Optionally, look 1624 // through a pointer-to-int cast to match a null check of a pointer type. 1625 1626 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1627 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1628 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1629 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1630 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1631 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1632 return Cmp1; 1633 1634 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1635 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1636 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1637 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1638 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1639 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1640 return Cmp0; 1641 1642 return nullptr; 1643 } 1644 1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1646 const InstrInfoQuery &IIQ) { 1647 // (icmp (add V, C0), C1) & (icmp V, C0) 1648 ICmpInst::Predicate Pred0, Pred1; 1649 const APInt *C0, *C1; 1650 Value *V; 1651 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1652 return nullptr; 1653 1654 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1655 return nullptr; 1656 1657 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1658 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1659 return nullptr; 1660 1661 Type *ITy = Op0->getType(); 1662 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1663 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1664 1665 const APInt Delta = *C1 - *C0; 1666 if (C0->isStrictlyPositive()) { 1667 if (Delta == 2) { 1668 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1669 return getFalse(ITy); 1670 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1671 return getFalse(ITy); 1672 } 1673 if (Delta == 1) { 1674 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1675 return getFalse(ITy); 1676 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1677 return getFalse(ITy); 1678 } 1679 } 1680 if (C0->getBoolValue() && isNUW) { 1681 if (Delta == 2) 1682 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1683 return getFalse(ITy); 1684 if (Delta == 1) 1685 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1686 return getFalse(ITy); 1687 } 1688 1689 return nullptr; 1690 } 1691 1692 /// Try to eliminate compares with signed or unsigned min/max constants. 1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1694 bool IsAnd) { 1695 // Canonicalize an equality compare as Cmp0. 1696 if (Cmp1->isEquality()) 1697 std::swap(Cmp0, Cmp1); 1698 if (!Cmp0->isEquality()) 1699 return nullptr; 1700 1701 // The non-equality compare must include a common operand (X). Canonicalize 1702 // the common operand as operand 0 (the predicate is swapped if the common 1703 // operand was operand 1). 1704 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1705 Value *X = Cmp0->getOperand(0); 1706 ICmpInst::Predicate Pred1; 1707 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1708 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1709 return nullptr; 1710 if (ICmpInst::isEquality(Pred1)) 1711 return nullptr; 1712 1713 // The equality compare must be against a constant. Flip bits if we matched 1714 // a bitwise not. Convert a null pointer constant to an integer zero value. 1715 APInt MinMaxC; 1716 const APInt *C; 1717 if (match(Cmp0->getOperand(1), m_APInt(C))) 1718 MinMaxC = HasNotOp ? ~*C : *C; 1719 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1720 MinMaxC = APInt::getNullValue(8); 1721 else 1722 return nullptr; 1723 1724 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1725 if (!IsAnd) { 1726 Pred0 = ICmpInst::getInversePredicate(Pred0); 1727 Pred1 = ICmpInst::getInversePredicate(Pred1); 1728 } 1729 1730 // Normalize to unsigned compare and unsigned min/max value. 1731 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1732 if (ICmpInst::isSigned(Pred1)) { 1733 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1734 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1735 } 1736 1737 // (X != MAX) && (X < Y) --> X < Y 1738 // (X == MAX) || (X >= Y) --> X >= Y 1739 if (MinMaxC.isMaxValue()) 1740 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1741 return Cmp1; 1742 1743 // (X != MIN) && (X > Y) --> X > Y 1744 // (X == MIN) || (X <= Y) --> X <= Y 1745 if (MinMaxC.isMinValue()) 1746 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1747 return Cmp1; 1748 1749 return nullptr; 1750 } 1751 1752 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1753 const SimplifyQuery &Q) { 1754 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1755 return X; 1756 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1757 return X; 1758 1759 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1760 return X; 1761 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1762 return X; 1763 1764 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1765 return X; 1766 1767 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1768 return X; 1769 1770 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1771 return X; 1772 1773 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1774 return X; 1775 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1776 return X; 1777 1778 return nullptr; 1779 } 1780 1781 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1782 const InstrInfoQuery &IIQ) { 1783 // (icmp (add V, C0), C1) | (icmp V, C0) 1784 ICmpInst::Predicate Pred0, Pred1; 1785 const APInt *C0, *C1; 1786 Value *V; 1787 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1788 return nullptr; 1789 1790 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1791 return nullptr; 1792 1793 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1794 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1795 return nullptr; 1796 1797 Type *ITy = Op0->getType(); 1798 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1799 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1800 1801 const APInt Delta = *C1 - *C0; 1802 if (C0->isStrictlyPositive()) { 1803 if (Delta == 2) { 1804 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1805 return getTrue(ITy); 1806 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1807 return getTrue(ITy); 1808 } 1809 if (Delta == 1) { 1810 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1811 return getTrue(ITy); 1812 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1813 return getTrue(ITy); 1814 } 1815 } 1816 if (C0->getBoolValue() && isNUW) { 1817 if (Delta == 2) 1818 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1819 return getTrue(ITy); 1820 if (Delta == 1) 1821 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1822 return getTrue(ITy); 1823 } 1824 1825 return nullptr; 1826 } 1827 1828 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1829 const SimplifyQuery &Q) { 1830 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1831 return X; 1832 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1833 return X; 1834 1835 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1836 return X; 1837 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1838 return X; 1839 1840 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1841 return X; 1842 1843 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1844 return X; 1845 1846 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1847 return X; 1848 1849 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1850 return X; 1851 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1852 return X; 1853 1854 return nullptr; 1855 } 1856 1857 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1858 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1859 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1860 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1861 if (LHS0->getType() != RHS0->getType()) 1862 return nullptr; 1863 1864 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1865 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1866 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1867 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1868 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1869 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1870 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1871 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1872 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1873 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1874 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1875 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1876 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1877 return RHS; 1878 1879 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1880 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1881 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1882 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1883 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1884 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1885 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1886 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1887 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1888 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1889 return LHS; 1890 } 1891 1892 return nullptr; 1893 } 1894 1895 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1896 Value *Op0, Value *Op1, bool IsAnd) { 1897 // Look through casts of the 'and' operands to find compares. 1898 auto *Cast0 = dyn_cast<CastInst>(Op0); 1899 auto *Cast1 = dyn_cast<CastInst>(Op1); 1900 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1901 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1902 Op0 = Cast0->getOperand(0); 1903 Op1 = Cast1->getOperand(0); 1904 } 1905 1906 Value *V = nullptr; 1907 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1908 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1909 if (ICmp0 && ICmp1) 1910 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1911 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1912 1913 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1914 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1915 if (FCmp0 && FCmp1) 1916 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1917 1918 if (!V) 1919 return nullptr; 1920 if (!Cast0) 1921 return V; 1922 1923 // If we looked through casts, we can only handle a constant simplification 1924 // because we are not allowed to create a cast instruction here. 1925 if (auto *C = dyn_cast<Constant>(V)) 1926 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1927 1928 return nullptr; 1929 } 1930 1931 /// Check that the Op1 is in expected form, i.e.: 1932 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1933 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1934 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1935 Value *X) { 1936 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1937 // We should only be extracting the overflow bit. 1938 if (!Extract || !Extract->getIndices().equals(1)) 1939 return false; 1940 Value *Agg = Extract->getAggregateOperand(); 1941 // This should be a multiplication-with-overflow intrinsic. 1942 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1943 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1944 return false; 1945 // One of its multipliers should be the value we checked for zero before. 1946 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1947 m_Argument<1>(m_Specific(X))))) 1948 return false; 1949 return true; 1950 } 1951 1952 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1953 /// other form of check, e.g. one that was using division; it may have been 1954 /// guarded against division-by-zero. We can drop that check now. 1955 /// Look for: 1956 /// %Op0 = icmp ne i4 %X, 0 1957 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1958 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1959 /// %??? = and i1 %Op0, %Op1 1960 /// We can just return %Op1 1961 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1962 ICmpInst::Predicate Pred; 1963 Value *X; 1964 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1965 Pred != ICmpInst::Predicate::ICMP_NE) 1966 return nullptr; 1967 // Is Op1 in expected form? 1968 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1969 return nullptr; 1970 // Can omit 'and', and just return the overflow bit. 1971 return Op1; 1972 } 1973 1974 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1975 /// other form of check, e.g. one that was using division; it may have been 1976 /// guarded against division-by-zero. We can drop that check now. 1977 /// Look for: 1978 /// %Op0 = icmp eq i4 %X, 0 1979 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1980 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1981 /// %NotOp1 = xor i1 %Op1, true 1982 /// %or = or i1 %Op0, %NotOp1 1983 /// We can just return %NotOp1 1984 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1985 Value *NotOp1) { 1986 ICmpInst::Predicate Pred; 1987 Value *X; 1988 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1989 Pred != ICmpInst::Predicate::ICMP_EQ) 1990 return nullptr; 1991 // We expect the other hand of an 'or' to be a 'not'. 1992 Value *Op1; 1993 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1994 return nullptr; 1995 // Is Op1 in expected form? 1996 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1997 return nullptr; 1998 // Can omit 'and', and just return the inverted overflow bit. 1999 return NotOp1; 2000 } 2001 2002 /// Given a bitwise logic op, check if the operands are add/sub with a common 2003 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2004 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2005 Instruction::BinaryOps Opcode) { 2006 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2007 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2008 Value *X; 2009 Constant *C1, *C2; 2010 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2011 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2012 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2013 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2014 if (ConstantExpr::getNot(C1) == C2) { 2015 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2016 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2017 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2018 Type *Ty = Op0->getType(); 2019 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2020 : ConstantInt::getAllOnesValue(Ty); 2021 } 2022 } 2023 return nullptr; 2024 } 2025 2026 /// Given operands for an And, see if we can fold the result. 2027 /// If not, this returns null. 2028 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2029 unsigned MaxRecurse) { 2030 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2031 return C; 2032 2033 // X & undef -> 0 2034 if (Q.isUndefValue(Op1)) 2035 return Constant::getNullValue(Op0->getType()); 2036 2037 // X & X = X 2038 if (Op0 == Op1) 2039 return Op0; 2040 2041 // X & 0 = 0 2042 if (match(Op1, m_Zero())) 2043 return Constant::getNullValue(Op0->getType()); 2044 2045 // X & -1 = X 2046 if (match(Op1, m_AllOnes())) 2047 return Op0; 2048 2049 // A & ~A = ~A & A = 0 2050 if (match(Op0, m_Not(m_Specific(Op1))) || 2051 match(Op1, m_Not(m_Specific(Op0)))) 2052 return Constant::getNullValue(Op0->getType()); 2053 2054 // (A | ?) & A = A 2055 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2056 return Op1; 2057 2058 // A & (A | ?) = A 2059 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2060 return Op0; 2061 2062 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2063 return V; 2064 2065 // A mask that only clears known zeros of a shifted value is a no-op. 2066 Value *X; 2067 const APInt *Mask; 2068 const APInt *ShAmt; 2069 if (match(Op1, m_APInt(Mask))) { 2070 // If all bits in the inverted and shifted mask are clear: 2071 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2072 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2073 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2074 return Op0; 2075 2076 // If all bits in the inverted and shifted mask are clear: 2077 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2078 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2079 (~(*Mask)).shl(*ShAmt).isNullValue()) 2080 return Op0; 2081 } 2082 2083 // If we have a multiplication overflow check that is being 'and'ed with a 2084 // check that one of the multipliers is not zero, we can omit the 'and', and 2085 // only keep the overflow check. 2086 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2087 return V; 2088 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2089 return V; 2090 2091 // A & (-A) = A if A is a power of two or zero. 2092 if (match(Op0, m_Neg(m_Specific(Op1))) || 2093 match(Op1, m_Neg(m_Specific(Op0)))) { 2094 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2095 Q.DT)) 2096 return Op0; 2097 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2098 Q.DT)) 2099 return Op1; 2100 } 2101 2102 // This is a similar pattern used for checking if a value is a power-of-2: 2103 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2104 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2105 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2106 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2107 return Constant::getNullValue(Op1->getType()); 2108 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2109 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2110 return Constant::getNullValue(Op0->getType()); 2111 2112 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2113 return V; 2114 2115 // Try some generic simplifications for associative operations. 2116 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2117 MaxRecurse)) 2118 return V; 2119 2120 // And distributes over Or. Try some generic simplifications based on this. 2121 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2122 Instruction::Or, Q, MaxRecurse)) 2123 return V; 2124 2125 // And distributes over Xor. Try some generic simplifications based on this. 2126 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2127 Instruction::Xor, Q, MaxRecurse)) 2128 return V; 2129 2130 // If the operation is with the result of a select instruction, check whether 2131 // operating on either branch of the select always yields the same value. 2132 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2133 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2134 MaxRecurse)) 2135 return V; 2136 2137 // If the operation is with the result of a phi instruction, check whether 2138 // operating on all incoming values of the phi always yields the same value. 2139 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2140 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2141 MaxRecurse)) 2142 return V; 2143 2144 // Assuming the effective width of Y is not larger than A, i.e. all bits 2145 // from X and Y are disjoint in (X << A) | Y, 2146 // if the mask of this AND op covers all bits of X or Y, while it covers 2147 // no bits from the other, we can bypass this AND op. E.g., 2148 // ((X << A) | Y) & Mask -> Y, 2149 // if Mask = ((1 << effective_width_of(Y)) - 1) 2150 // ((X << A) | Y) & Mask -> X << A, 2151 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2152 // SimplifyDemandedBits in InstCombine can optimize the general case. 2153 // This pattern aims to help other passes for a common case. 2154 Value *Y, *XShifted; 2155 if (match(Op1, m_APInt(Mask)) && 2156 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2157 m_Value(XShifted)), 2158 m_Value(Y)))) { 2159 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2160 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2161 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2162 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2163 if (EffWidthY <= ShftCnt) { 2164 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2165 Q.DT); 2166 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2167 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2168 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2169 // If the mask is extracting all bits from X or Y as is, we can skip 2170 // this AND op. 2171 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2172 return Y; 2173 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2174 return XShifted; 2175 } 2176 } 2177 2178 return nullptr; 2179 } 2180 2181 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2182 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2183 } 2184 2185 /// Given operands for an Or, see if we can fold the result. 2186 /// If not, this returns null. 2187 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2188 unsigned MaxRecurse) { 2189 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2190 return C; 2191 2192 // X | undef -> -1 2193 // X | -1 = -1 2194 // Do not return Op1 because it may contain undef elements if it's a vector. 2195 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2196 return Constant::getAllOnesValue(Op0->getType()); 2197 2198 // X | X = X 2199 // X | 0 = X 2200 if (Op0 == Op1 || match(Op1, m_Zero())) 2201 return Op0; 2202 2203 // A | ~A = ~A | A = -1 2204 if (match(Op0, m_Not(m_Specific(Op1))) || 2205 match(Op1, m_Not(m_Specific(Op0)))) 2206 return Constant::getAllOnesValue(Op0->getType()); 2207 2208 // (A & ?) | A = A 2209 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2210 return Op1; 2211 2212 // A | (A & ?) = A 2213 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2214 return Op0; 2215 2216 // ~(A & ?) | A = -1 2217 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2218 return Constant::getAllOnesValue(Op1->getType()); 2219 2220 // A | ~(A & ?) = -1 2221 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2222 return Constant::getAllOnesValue(Op0->getType()); 2223 2224 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2225 return V; 2226 2227 Value *A, *B; 2228 // (A & ~B) | (A ^ B) -> (A ^ B) 2229 // (~B & A) | (A ^ B) -> (A ^ B) 2230 // (A & ~B) | (B ^ A) -> (B ^ A) 2231 // (~B & A) | (B ^ A) -> (B ^ A) 2232 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2233 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2234 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2235 return Op1; 2236 2237 // Commute the 'or' operands. 2238 // (A ^ B) | (A & ~B) -> (A ^ B) 2239 // (A ^ B) | (~B & A) -> (A ^ B) 2240 // (B ^ A) | (A & ~B) -> (B ^ A) 2241 // (B ^ A) | (~B & A) -> (B ^ A) 2242 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2243 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2244 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2245 return Op0; 2246 2247 // (A & B) | (~A ^ B) -> (~A ^ B) 2248 // (B & A) | (~A ^ B) -> (~A ^ B) 2249 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2250 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2251 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2252 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2253 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2254 return Op1; 2255 2256 // (~A ^ B) | (A & B) -> (~A ^ B) 2257 // (~A ^ B) | (B & A) -> (~A ^ B) 2258 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2259 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2260 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2261 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2262 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2263 return Op0; 2264 2265 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2266 return V; 2267 2268 // If we have a multiplication overflow check that is being 'and'ed with a 2269 // check that one of the multipliers is not zero, we can omit the 'and', and 2270 // only keep the overflow check. 2271 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2272 return V; 2273 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2274 return V; 2275 2276 // Try some generic simplifications for associative operations. 2277 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2278 MaxRecurse)) 2279 return V; 2280 2281 // Or distributes over And. Try some generic simplifications based on this. 2282 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2283 Instruction::And, Q, MaxRecurse)) 2284 return V; 2285 2286 // If the operation is with the result of a select instruction, check whether 2287 // operating on either branch of the select always yields the same value. 2288 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2289 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2290 MaxRecurse)) 2291 return V; 2292 2293 // (A & C1)|(B & C2) 2294 const APInt *C1, *C2; 2295 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2296 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2297 if (*C1 == ~*C2) { 2298 // (A & C1)|(B & C2) 2299 // If we have: ((V + N) & C1) | (V & C2) 2300 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2301 // replace with V+N. 2302 Value *N; 2303 if (C2->isMask() && // C2 == 0+1+ 2304 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2305 // Add commutes, try both ways. 2306 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2307 return A; 2308 } 2309 // Or commutes, try both ways. 2310 if (C1->isMask() && 2311 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2312 // Add commutes, try both ways. 2313 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2314 return B; 2315 } 2316 } 2317 } 2318 2319 // If the operation is with the result of a phi instruction, check whether 2320 // operating on all incoming values of the phi always yields the same value. 2321 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2322 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2323 return V; 2324 2325 return nullptr; 2326 } 2327 2328 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2329 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2330 } 2331 2332 /// Given operands for a Xor, see if we can fold the result. 2333 /// If not, this returns null. 2334 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2335 unsigned MaxRecurse) { 2336 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2337 return C; 2338 2339 // A ^ undef -> undef 2340 if (Q.isUndefValue(Op1)) 2341 return Op1; 2342 2343 // A ^ 0 = A 2344 if (match(Op1, m_Zero())) 2345 return Op0; 2346 2347 // A ^ A = 0 2348 if (Op0 == Op1) 2349 return Constant::getNullValue(Op0->getType()); 2350 2351 // A ^ ~A = ~A ^ A = -1 2352 if (match(Op0, m_Not(m_Specific(Op1))) || 2353 match(Op1, m_Not(m_Specific(Op0)))) 2354 return Constant::getAllOnesValue(Op0->getType()); 2355 2356 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2357 return V; 2358 2359 // Try some generic simplifications for associative operations. 2360 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2361 MaxRecurse)) 2362 return V; 2363 2364 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2365 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2366 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2367 // only if B and C are equal. If B and C are equal then (since we assume 2368 // that operands have already been simplified) "select(cond, B, C)" should 2369 // have been simplified to the common value of B and C already. Analysing 2370 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2371 // for threading over phi nodes. 2372 2373 return nullptr; 2374 } 2375 2376 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2377 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2378 } 2379 2380 2381 static Type *GetCompareTy(Value *Op) { 2382 return CmpInst::makeCmpResultType(Op->getType()); 2383 } 2384 2385 /// Rummage around inside V looking for something equivalent to the comparison 2386 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2387 /// Helper function for analyzing max/min idioms. 2388 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2389 Value *LHS, Value *RHS) { 2390 SelectInst *SI = dyn_cast<SelectInst>(V); 2391 if (!SI) 2392 return nullptr; 2393 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2394 if (!Cmp) 2395 return nullptr; 2396 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2397 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2398 return Cmp; 2399 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2400 LHS == CmpRHS && RHS == CmpLHS) 2401 return Cmp; 2402 return nullptr; 2403 } 2404 2405 // A significant optimization not implemented here is assuming that alloca 2406 // addresses are not equal to incoming argument values. They don't *alias*, 2407 // as we say, but that doesn't mean they aren't equal, so we take a 2408 // conservative approach. 2409 // 2410 // This is inspired in part by C++11 5.10p1: 2411 // "Two pointers of the same type compare equal if and only if they are both 2412 // null, both point to the same function, or both represent the same 2413 // address." 2414 // 2415 // This is pretty permissive. 2416 // 2417 // It's also partly due to C11 6.5.9p6: 2418 // "Two pointers compare equal if and only if both are null pointers, both are 2419 // pointers to the same object (including a pointer to an object and a 2420 // subobject at its beginning) or function, both are pointers to one past the 2421 // last element of the same array object, or one is a pointer to one past the 2422 // end of one array object and the other is a pointer to the start of a 2423 // different array object that happens to immediately follow the first array 2424 // object in the address space.) 2425 // 2426 // C11's version is more restrictive, however there's no reason why an argument 2427 // couldn't be a one-past-the-end value for a stack object in the caller and be 2428 // equal to the beginning of a stack object in the callee. 2429 // 2430 // If the C and C++ standards are ever made sufficiently restrictive in this 2431 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2432 // this optimization. 2433 static Constant * 2434 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2435 const DominatorTree *DT, CmpInst::Predicate Pred, 2436 AssumptionCache *AC, const Instruction *CxtI, 2437 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2438 // First, skip past any trivial no-ops. 2439 LHS = LHS->stripPointerCasts(); 2440 RHS = RHS->stripPointerCasts(); 2441 2442 // A non-null pointer is not equal to a null pointer. 2443 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2444 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2445 IIQ.UseInstrInfo)) 2446 return ConstantInt::get(GetCompareTy(LHS), 2447 !CmpInst::isTrueWhenEqual(Pred)); 2448 2449 // We can only fold certain predicates on pointer comparisons. 2450 switch (Pred) { 2451 default: 2452 return nullptr; 2453 2454 // Equality comaprisons are easy to fold. 2455 case CmpInst::ICMP_EQ: 2456 case CmpInst::ICMP_NE: 2457 break; 2458 2459 // We can only handle unsigned relational comparisons because 'inbounds' on 2460 // a GEP only protects against unsigned wrapping. 2461 case CmpInst::ICMP_UGT: 2462 case CmpInst::ICMP_UGE: 2463 case CmpInst::ICMP_ULT: 2464 case CmpInst::ICMP_ULE: 2465 // However, we have to switch them to their signed variants to handle 2466 // negative indices from the base pointer. 2467 Pred = ICmpInst::getSignedPredicate(Pred); 2468 break; 2469 } 2470 2471 // Strip off any constant offsets so that we can reason about them. 2472 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2473 // here and compare base addresses like AliasAnalysis does, however there are 2474 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2475 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2476 // doesn't need to guarantee pointer inequality when it says NoAlias. 2477 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2478 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2479 2480 // If LHS and RHS are related via constant offsets to the same base 2481 // value, we can replace it with an icmp which just compares the offsets. 2482 if (LHS == RHS) 2483 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2484 2485 // Various optimizations for (in)equality comparisons. 2486 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2487 // Different non-empty allocations that exist at the same time have 2488 // different addresses (if the program can tell). Global variables always 2489 // exist, so they always exist during the lifetime of each other and all 2490 // allocas. Two different allocas usually have different addresses... 2491 // 2492 // However, if there's an @llvm.stackrestore dynamically in between two 2493 // allocas, they may have the same address. It's tempting to reduce the 2494 // scope of the problem by only looking at *static* allocas here. That would 2495 // cover the majority of allocas while significantly reducing the likelihood 2496 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2497 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2498 // an entry block. Also, if we have a block that's not attached to a 2499 // function, we can't tell if it's "static" under the current definition. 2500 // Theoretically, this problem could be fixed by creating a new kind of 2501 // instruction kind specifically for static allocas. Such a new instruction 2502 // could be required to be at the top of the entry block, thus preventing it 2503 // from being subject to a @llvm.stackrestore. Instcombine could even 2504 // convert regular allocas into these special allocas. It'd be nifty. 2505 // However, until then, this problem remains open. 2506 // 2507 // So, we'll assume that two non-empty allocas have different addresses 2508 // for now. 2509 // 2510 // With all that, if the offsets are within the bounds of their allocations 2511 // (and not one-past-the-end! so we can't use inbounds!), and their 2512 // allocations aren't the same, the pointers are not equal. 2513 // 2514 // Note that it's not necessary to check for LHS being a global variable 2515 // address, due to canonicalization and constant folding. 2516 if (isa<AllocaInst>(LHS) && 2517 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2518 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2519 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2520 uint64_t LHSSize, RHSSize; 2521 ObjectSizeOpts Opts; 2522 Opts.NullIsUnknownSize = 2523 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2524 if (LHSOffsetCI && RHSOffsetCI && 2525 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2526 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2527 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2528 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2529 if (!LHSOffsetValue.isNegative() && 2530 !RHSOffsetValue.isNegative() && 2531 LHSOffsetValue.ult(LHSSize) && 2532 RHSOffsetValue.ult(RHSSize)) { 2533 return ConstantInt::get(GetCompareTy(LHS), 2534 !CmpInst::isTrueWhenEqual(Pred)); 2535 } 2536 } 2537 2538 // Repeat the above check but this time without depending on DataLayout 2539 // or being able to compute a precise size. 2540 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2541 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2542 LHSOffset->isNullValue() && 2543 RHSOffset->isNullValue()) 2544 return ConstantInt::get(GetCompareTy(LHS), 2545 !CmpInst::isTrueWhenEqual(Pred)); 2546 } 2547 2548 // Even if an non-inbounds GEP occurs along the path we can still optimize 2549 // equality comparisons concerning the result. We avoid walking the whole 2550 // chain again by starting where the last calls to 2551 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2552 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2553 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2554 if (LHS == RHS) 2555 return ConstantExpr::getICmp(Pred, 2556 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2557 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2558 2559 // If one side of the equality comparison must come from a noalias call 2560 // (meaning a system memory allocation function), and the other side must 2561 // come from a pointer that cannot overlap with dynamically-allocated 2562 // memory within the lifetime of the current function (allocas, byval 2563 // arguments, globals), then determine the comparison result here. 2564 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2565 getUnderlyingObjects(LHS, LHSUObjs); 2566 getUnderlyingObjects(RHS, RHSUObjs); 2567 2568 // Is the set of underlying objects all noalias calls? 2569 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2570 return all_of(Objects, isNoAliasCall); 2571 }; 2572 2573 // Is the set of underlying objects all things which must be disjoint from 2574 // noalias calls. For allocas, we consider only static ones (dynamic 2575 // allocas might be transformed into calls to malloc not simultaneously 2576 // live with the compared-to allocation). For globals, we exclude symbols 2577 // that might be resolve lazily to symbols in another dynamically-loaded 2578 // library (and, thus, could be malloc'ed by the implementation). 2579 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2580 return all_of(Objects, [](const Value *V) { 2581 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2582 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2583 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2584 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2585 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2586 !GV->isThreadLocal(); 2587 if (const Argument *A = dyn_cast<Argument>(V)) 2588 return A->hasByValAttr(); 2589 return false; 2590 }); 2591 }; 2592 2593 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2594 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2595 return ConstantInt::get(GetCompareTy(LHS), 2596 !CmpInst::isTrueWhenEqual(Pred)); 2597 2598 // Fold comparisons for non-escaping pointer even if the allocation call 2599 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2600 // dynamic allocation call could be either of the operands. 2601 Value *MI = nullptr; 2602 if (isAllocLikeFn(LHS, TLI) && 2603 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2604 MI = LHS; 2605 else if (isAllocLikeFn(RHS, TLI) && 2606 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2607 MI = RHS; 2608 // FIXME: We should also fold the compare when the pointer escapes, but the 2609 // compare dominates the pointer escape 2610 if (MI && !PointerMayBeCaptured(MI, true, true)) 2611 return ConstantInt::get(GetCompareTy(LHS), 2612 CmpInst::isFalseWhenEqual(Pred)); 2613 } 2614 2615 // Otherwise, fail. 2616 return nullptr; 2617 } 2618 2619 /// Fold an icmp when its operands have i1 scalar type. 2620 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2621 Value *RHS, const SimplifyQuery &Q) { 2622 Type *ITy = GetCompareTy(LHS); // The return type. 2623 Type *OpTy = LHS->getType(); // The operand type. 2624 if (!OpTy->isIntOrIntVectorTy(1)) 2625 return nullptr; 2626 2627 // A boolean compared to true/false can be simplified in 14 out of the 20 2628 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2629 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2630 if (match(RHS, m_Zero())) { 2631 switch (Pred) { 2632 case CmpInst::ICMP_NE: // X != 0 -> X 2633 case CmpInst::ICMP_UGT: // X >u 0 -> X 2634 case CmpInst::ICMP_SLT: // X <s 0 -> X 2635 return LHS; 2636 2637 case CmpInst::ICMP_ULT: // X <u 0 -> false 2638 case CmpInst::ICMP_SGT: // X >s 0 -> false 2639 return getFalse(ITy); 2640 2641 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2642 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2643 return getTrue(ITy); 2644 2645 default: break; 2646 } 2647 } else if (match(RHS, m_One())) { 2648 switch (Pred) { 2649 case CmpInst::ICMP_EQ: // X == 1 -> X 2650 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2651 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2652 return LHS; 2653 2654 case CmpInst::ICMP_UGT: // X >u 1 -> false 2655 case CmpInst::ICMP_SLT: // X <s -1 -> false 2656 return getFalse(ITy); 2657 2658 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2659 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2660 return getTrue(ITy); 2661 2662 default: break; 2663 } 2664 } 2665 2666 switch (Pred) { 2667 default: 2668 break; 2669 case ICmpInst::ICMP_UGE: 2670 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2671 return getTrue(ITy); 2672 break; 2673 case ICmpInst::ICMP_SGE: 2674 /// For signed comparison, the values for an i1 are 0 and -1 2675 /// respectively. This maps into a truth table of: 2676 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2677 /// 0 | 0 | 1 (0 >= 0) | 1 2678 /// 0 | 1 | 1 (0 >= -1) | 1 2679 /// 1 | 0 | 0 (-1 >= 0) | 0 2680 /// 1 | 1 | 1 (-1 >= -1) | 1 2681 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2682 return getTrue(ITy); 2683 break; 2684 case ICmpInst::ICMP_ULE: 2685 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2686 return getTrue(ITy); 2687 break; 2688 } 2689 2690 return nullptr; 2691 } 2692 2693 /// Try hard to fold icmp with zero RHS because this is a common case. 2694 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2695 Value *RHS, const SimplifyQuery &Q) { 2696 if (!match(RHS, m_Zero())) 2697 return nullptr; 2698 2699 Type *ITy = GetCompareTy(LHS); // The return type. 2700 switch (Pred) { 2701 default: 2702 llvm_unreachable("Unknown ICmp predicate!"); 2703 case ICmpInst::ICMP_ULT: 2704 return getFalse(ITy); 2705 case ICmpInst::ICMP_UGE: 2706 return getTrue(ITy); 2707 case ICmpInst::ICMP_EQ: 2708 case ICmpInst::ICMP_ULE: 2709 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2710 return getFalse(ITy); 2711 break; 2712 case ICmpInst::ICMP_NE: 2713 case ICmpInst::ICMP_UGT: 2714 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2715 return getTrue(ITy); 2716 break; 2717 case ICmpInst::ICMP_SLT: { 2718 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2719 if (LHSKnown.isNegative()) 2720 return getTrue(ITy); 2721 if (LHSKnown.isNonNegative()) 2722 return getFalse(ITy); 2723 break; 2724 } 2725 case ICmpInst::ICMP_SLE: { 2726 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2727 if (LHSKnown.isNegative()) 2728 return getTrue(ITy); 2729 if (LHSKnown.isNonNegative() && 2730 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2731 return getFalse(ITy); 2732 break; 2733 } 2734 case ICmpInst::ICMP_SGE: { 2735 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2736 if (LHSKnown.isNegative()) 2737 return getFalse(ITy); 2738 if (LHSKnown.isNonNegative()) 2739 return getTrue(ITy); 2740 break; 2741 } 2742 case ICmpInst::ICMP_SGT: { 2743 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2744 if (LHSKnown.isNegative()) 2745 return getFalse(ITy); 2746 if (LHSKnown.isNonNegative() && 2747 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2748 return getTrue(ITy); 2749 break; 2750 } 2751 } 2752 2753 return nullptr; 2754 } 2755 2756 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2757 Value *RHS, const InstrInfoQuery &IIQ) { 2758 Type *ITy = GetCompareTy(RHS); // The return type. 2759 2760 Value *X; 2761 // Sign-bit checks can be optimized to true/false after unsigned 2762 // floating-point casts: 2763 // icmp slt (bitcast (uitofp X)), 0 --> false 2764 // icmp sgt (bitcast (uitofp X)), -1 --> true 2765 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2766 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2767 return ConstantInt::getFalse(ITy); 2768 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2769 return ConstantInt::getTrue(ITy); 2770 } 2771 2772 const APInt *C; 2773 if (!match(RHS, m_APIntAllowUndef(C))) 2774 return nullptr; 2775 2776 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2777 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2778 if (RHS_CR.isEmptySet()) 2779 return ConstantInt::getFalse(ITy); 2780 if (RHS_CR.isFullSet()) 2781 return ConstantInt::getTrue(ITy); 2782 2783 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2784 if (!LHS_CR.isFullSet()) { 2785 if (RHS_CR.contains(LHS_CR)) 2786 return ConstantInt::getTrue(ITy); 2787 if (RHS_CR.inverse().contains(LHS_CR)) 2788 return ConstantInt::getFalse(ITy); 2789 } 2790 2791 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2792 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2793 const APInt *MulC; 2794 if (ICmpInst::isEquality(Pred) && 2795 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2796 *MulC != 0 && C->urem(*MulC) != 0) || 2797 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2798 *MulC != 0 && C->srem(*MulC) != 0))) 2799 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2800 2801 return nullptr; 2802 } 2803 2804 static Value *simplifyICmpWithBinOpOnLHS( 2805 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2806 const SimplifyQuery &Q, unsigned MaxRecurse) { 2807 Type *ITy = GetCompareTy(RHS); // The return type. 2808 2809 Value *Y = nullptr; 2810 // icmp pred (or X, Y), X 2811 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2812 if (Pred == ICmpInst::ICMP_ULT) 2813 return getFalse(ITy); 2814 if (Pred == ICmpInst::ICMP_UGE) 2815 return getTrue(ITy); 2816 2817 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2818 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2819 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2820 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2821 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2822 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2823 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2824 } 2825 } 2826 2827 // icmp pred (and X, Y), X 2828 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2829 if (Pred == ICmpInst::ICMP_UGT) 2830 return getFalse(ITy); 2831 if (Pred == ICmpInst::ICMP_ULE) 2832 return getTrue(ITy); 2833 } 2834 2835 // icmp pred (urem X, Y), Y 2836 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2837 switch (Pred) { 2838 default: 2839 break; 2840 case ICmpInst::ICMP_SGT: 2841 case ICmpInst::ICMP_SGE: { 2842 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2843 if (!Known.isNonNegative()) 2844 break; 2845 LLVM_FALLTHROUGH; 2846 } 2847 case ICmpInst::ICMP_EQ: 2848 case ICmpInst::ICMP_UGT: 2849 case ICmpInst::ICMP_UGE: 2850 return getFalse(ITy); 2851 case ICmpInst::ICMP_SLT: 2852 case ICmpInst::ICMP_SLE: { 2853 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2854 if (!Known.isNonNegative()) 2855 break; 2856 LLVM_FALLTHROUGH; 2857 } 2858 case ICmpInst::ICMP_NE: 2859 case ICmpInst::ICMP_ULT: 2860 case ICmpInst::ICMP_ULE: 2861 return getTrue(ITy); 2862 } 2863 } 2864 2865 // icmp pred (urem X, Y), X 2866 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2867 if (Pred == ICmpInst::ICMP_ULE) 2868 return getTrue(ITy); 2869 if (Pred == ICmpInst::ICMP_UGT) 2870 return getFalse(ITy); 2871 } 2872 2873 // x >> y <=u x 2874 // x udiv y <=u x. 2875 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2876 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2877 // icmp pred (X op Y), X 2878 if (Pred == ICmpInst::ICMP_UGT) 2879 return getFalse(ITy); 2880 if (Pred == ICmpInst::ICMP_ULE) 2881 return getTrue(ITy); 2882 } 2883 2884 return nullptr; 2885 } 2886 2887 2888 // If only one of the icmp's operands has NSW flags, try to prove that: 2889 // 2890 // icmp slt (x + C1), (x +nsw C2) 2891 // 2892 // is equivalent to: 2893 // 2894 // icmp slt C1, C2 2895 // 2896 // which is true if x + C2 has the NSW flags set and: 2897 // *) C1 < C2 && C1 >= 0, or 2898 // *) C2 < C1 && C1 <= 0. 2899 // 2900 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2901 Value *RHS) { 2902 // TODO: only support icmp slt for now. 2903 if (Pred != CmpInst::ICMP_SLT) 2904 return false; 2905 2906 // Canonicalize nsw add as RHS. 2907 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2908 std::swap(LHS, RHS); 2909 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2910 return false; 2911 2912 Value *X; 2913 const APInt *C1, *C2; 2914 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2915 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2916 return false; 2917 2918 return (C1->slt(*C2) && C1->isNonNegative()) || 2919 (C2->slt(*C1) && C1->isNonPositive()); 2920 } 2921 2922 2923 /// TODO: A large part of this logic is duplicated in InstCombine's 2924 /// foldICmpBinOp(). We should be able to share that and avoid the code 2925 /// duplication. 2926 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2927 Value *RHS, const SimplifyQuery &Q, 2928 unsigned MaxRecurse) { 2929 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2930 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2931 if (MaxRecurse && (LBO || RBO)) { 2932 // Analyze the case when either LHS or RHS is an add instruction. 2933 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2934 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2935 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2936 if (LBO && LBO->getOpcode() == Instruction::Add) { 2937 A = LBO->getOperand(0); 2938 B = LBO->getOperand(1); 2939 NoLHSWrapProblem = 2940 ICmpInst::isEquality(Pred) || 2941 (CmpInst::isUnsigned(Pred) && 2942 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2943 (CmpInst::isSigned(Pred) && 2944 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2945 } 2946 if (RBO && RBO->getOpcode() == Instruction::Add) { 2947 C = RBO->getOperand(0); 2948 D = RBO->getOperand(1); 2949 NoRHSWrapProblem = 2950 ICmpInst::isEquality(Pred) || 2951 (CmpInst::isUnsigned(Pred) && 2952 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2953 (CmpInst::isSigned(Pred) && 2954 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2955 } 2956 2957 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2958 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2959 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2960 Constant::getNullValue(RHS->getType()), Q, 2961 MaxRecurse - 1)) 2962 return V; 2963 2964 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2965 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2966 if (Value *V = 2967 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2968 C == LHS ? D : C, Q, MaxRecurse - 1)) 2969 return V; 2970 2971 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2972 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 2973 trySimplifyICmpWithAdds(Pred, LHS, RHS); 2974 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 2975 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2976 Value *Y, *Z; 2977 if (A == C) { 2978 // C + B == C + D -> B == D 2979 Y = B; 2980 Z = D; 2981 } else if (A == D) { 2982 // D + B == C + D -> B == C 2983 Y = B; 2984 Z = C; 2985 } else if (B == C) { 2986 // A + C == C + D -> A == D 2987 Y = A; 2988 Z = D; 2989 } else { 2990 assert(B == D); 2991 // A + D == C + D -> A == C 2992 Y = A; 2993 Z = C; 2994 } 2995 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2996 return V; 2997 } 2998 } 2999 3000 if (LBO) 3001 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3002 return V; 3003 3004 if (RBO) 3005 if (Value *V = simplifyICmpWithBinOpOnLHS( 3006 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3007 return V; 3008 3009 // 0 - (zext X) pred C 3010 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3011 const APInt *C; 3012 if (match(RHS, m_APInt(C))) { 3013 if (C->isStrictlyPositive()) { 3014 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3015 return ConstantInt::getTrue(GetCompareTy(RHS)); 3016 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3017 return ConstantInt::getFalse(GetCompareTy(RHS)); 3018 } 3019 if (C->isNonNegative()) { 3020 if (Pred == ICmpInst::ICMP_SLE) 3021 return ConstantInt::getTrue(GetCompareTy(RHS)); 3022 if (Pred == ICmpInst::ICMP_SGT) 3023 return ConstantInt::getFalse(GetCompareTy(RHS)); 3024 } 3025 } 3026 } 3027 3028 // If C2 is a power-of-2 and C is not: 3029 // (C2 << X) == C --> false 3030 // (C2 << X) != C --> true 3031 const APInt *C; 3032 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3033 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3034 // C2 << X can equal zero in some circumstances. 3035 // This simplification might be unsafe if C is zero. 3036 // 3037 // We know it is safe if: 3038 // - The shift is nsw. We can't shift out the one bit. 3039 // - The shift is nuw. We can't shift out the one bit. 3040 // - C2 is one. 3041 // - C isn't zero. 3042 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3043 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3044 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3045 if (Pred == ICmpInst::ICMP_EQ) 3046 return ConstantInt::getFalse(GetCompareTy(RHS)); 3047 if (Pred == ICmpInst::ICMP_NE) 3048 return ConstantInt::getTrue(GetCompareTy(RHS)); 3049 } 3050 } 3051 3052 // TODO: This is overly constrained. LHS can be any power-of-2. 3053 // (1 << X) >u 0x8000 --> false 3054 // (1 << X) <=u 0x8000 --> true 3055 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3056 if (Pred == ICmpInst::ICMP_UGT) 3057 return ConstantInt::getFalse(GetCompareTy(RHS)); 3058 if (Pred == ICmpInst::ICMP_ULE) 3059 return ConstantInt::getTrue(GetCompareTy(RHS)); 3060 } 3061 3062 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3063 LBO->getOperand(1) == RBO->getOperand(1)) { 3064 switch (LBO->getOpcode()) { 3065 default: 3066 break; 3067 case Instruction::UDiv: 3068 case Instruction::LShr: 3069 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3070 !Q.IIQ.isExact(RBO)) 3071 break; 3072 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3073 RBO->getOperand(0), Q, MaxRecurse - 1)) 3074 return V; 3075 break; 3076 case Instruction::SDiv: 3077 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3078 !Q.IIQ.isExact(RBO)) 3079 break; 3080 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3081 RBO->getOperand(0), Q, MaxRecurse - 1)) 3082 return V; 3083 break; 3084 case Instruction::AShr: 3085 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3086 break; 3087 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3088 RBO->getOperand(0), Q, MaxRecurse - 1)) 3089 return V; 3090 break; 3091 case Instruction::Shl: { 3092 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3093 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3094 if (!NUW && !NSW) 3095 break; 3096 if (!NSW && ICmpInst::isSigned(Pred)) 3097 break; 3098 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3099 RBO->getOperand(0), Q, MaxRecurse - 1)) 3100 return V; 3101 break; 3102 } 3103 } 3104 } 3105 return nullptr; 3106 } 3107 3108 /// Simplify integer comparisons where at least one operand of the compare 3109 /// matches an integer min/max idiom. 3110 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3111 Value *RHS, const SimplifyQuery &Q, 3112 unsigned MaxRecurse) { 3113 Type *ITy = GetCompareTy(LHS); // The return type. 3114 Value *A, *B; 3115 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3116 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3117 3118 // Signed variants on "max(a,b)>=a -> true". 3119 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3120 if (A != RHS) 3121 std::swap(A, B); // smax(A, B) pred A. 3122 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3123 // We analyze this as smax(A, B) pred A. 3124 P = Pred; 3125 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3126 (A == LHS || B == LHS)) { 3127 if (A != LHS) 3128 std::swap(A, B); // A pred smax(A, B). 3129 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3130 // We analyze this as smax(A, B) swapped-pred A. 3131 P = CmpInst::getSwappedPredicate(Pred); 3132 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3133 (A == RHS || B == RHS)) { 3134 if (A != RHS) 3135 std::swap(A, B); // smin(A, B) pred A. 3136 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3137 // We analyze this as smax(-A, -B) swapped-pred -A. 3138 // Note that we do not need to actually form -A or -B thanks to EqP. 3139 P = CmpInst::getSwappedPredicate(Pred); 3140 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3141 (A == LHS || B == LHS)) { 3142 if (A != LHS) 3143 std::swap(A, B); // A pred smin(A, B). 3144 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3145 // We analyze this as smax(-A, -B) pred -A. 3146 // Note that we do not need to actually form -A or -B thanks to EqP. 3147 P = Pred; 3148 } 3149 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3150 // Cases correspond to "max(A, B) p A". 3151 switch (P) { 3152 default: 3153 break; 3154 case CmpInst::ICMP_EQ: 3155 case CmpInst::ICMP_SLE: 3156 // Equivalent to "A EqP B". This may be the same as the condition tested 3157 // in the max/min; if so, we can just return that. 3158 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3159 return V; 3160 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3161 return V; 3162 // Otherwise, see if "A EqP B" simplifies. 3163 if (MaxRecurse) 3164 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3165 return V; 3166 break; 3167 case CmpInst::ICMP_NE: 3168 case CmpInst::ICMP_SGT: { 3169 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3170 // Equivalent to "A InvEqP B". This may be the same as the condition 3171 // tested in the max/min; if so, we can just return that. 3172 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3173 return V; 3174 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3175 return V; 3176 // Otherwise, see if "A InvEqP B" simplifies. 3177 if (MaxRecurse) 3178 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3179 return V; 3180 break; 3181 } 3182 case CmpInst::ICMP_SGE: 3183 // Always true. 3184 return getTrue(ITy); 3185 case CmpInst::ICMP_SLT: 3186 // Always false. 3187 return getFalse(ITy); 3188 } 3189 } 3190 3191 // Unsigned variants on "max(a,b)>=a -> true". 3192 P = CmpInst::BAD_ICMP_PREDICATE; 3193 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3194 if (A != RHS) 3195 std::swap(A, B); // umax(A, B) pred A. 3196 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3197 // We analyze this as umax(A, B) pred A. 3198 P = Pred; 3199 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3200 (A == LHS || B == LHS)) { 3201 if (A != LHS) 3202 std::swap(A, B); // A pred umax(A, B). 3203 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3204 // We analyze this as umax(A, B) swapped-pred A. 3205 P = CmpInst::getSwappedPredicate(Pred); 3206 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3207 (A == RHS || B == RHS)) { 3208 if (A != RHS) 3209 std::swap(A, B); // umin(A, B) pred A. 3210 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3211 // We analyze this as umax(-A, -B) swapped-pred -A. 3212 // Note that we do not need to actually form -A or -B thanks to EqP. 3213 P = CmpInst::getSwappedPredicate(Pred); 3214 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3215 (A == LHS || B == LHS)) { 3216 if (A != LHS) 3217 std::swap(A, B); // A pred umin(A, B). 3218 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3219 // We analyze this as umax(-A, -B) pred -A. 3220 // Note that we do not need to actually form -A or -B thanks to EqP. 3221 P = Pred; 3222 } 3223 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3224 // Cases correspond to "max(A, B) p A". 3225 switch (P) { 3226 default: 3227 break; 3228 case CmpInst::ICMP_EQ: 3229 case CmpInst::ICMP_ULE: 3230 // Equivalent to "A EqP B". This may be the same as the condition tested 3231 // in the max/min; if so, we can just return that. 3232 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3233 return V; 3234 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3235 return V; 3236 // Otherwise, see if "A EqP B" simplifies. 3237 if (MaxRecurse) 3238 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3239 return V; 3240 break; 3241 case CmpInst::ICMP_NE: 3242 case CmpInst::ICMP_UGT: { 3243 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3244 // Equivalent to "A InvEqP B". This may be the same as the condition 3245 // tested in the max/min; if so, we can just return that. 3246 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3247 return V; 3248 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3249 return V; 3250 // Otherwise, see if "A InvEqP B" simplifies. 3251 if (MaxRecurse) 3252 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3253 return V; 3254 break; 3255 } 3256 case CmpInst::ICMP_UGE: 3257 return getTrue(ITy); 3258 case CmpInst::ICMP_ULT: 3259 return getFalse(ITy); 3260 } 3261 } 3262 3263 // Comparing 1 each of min/max with a common operand? 3264 // Canonicalize min operand to RHS. 3265 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3266 match(LHS, m_SMin(m_Value(), m_Value()))) { 3267 std::swap(LHS, RHS); 3268 Pred = ICmpInst::getSwappedPredicate(Pred); 3269 } 3270 3271 Value *C, *D; 3272 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3273 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3274 (A == C || A == D || B == C || B == D)) { 3275 // smax(A, B) >=s smin(A, D) --> true 3276 if (Pred == CmpInst::ICMP_SGE) 3277 return getTrue(ITy); 3278 // smax(A, B) <s smin(A, D) --> false 3279 if (Pred == CmpInst::ICMP_SLT) 3280 return getFalse(ITy); 3281 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3282 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3283 (A == C || A == D || B == C || B == D)) { 3284 // umax(A, B) >=u umin(A, D) --> true 3285 if (Pred == CmpInst::ICMP_UGE) 3286 return getTrue(ITy); 3287 // umax(A, B) <u umin(A, D) --> false 3288 if (Pred == CmpInst::ICMP_ULT) 3289 return getFalse(ITy); 3290 } 3291 3292 return nullptr; 3293 } 3294 3295 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3296 Value *LHS, Value *RHS, 3297 const SimplifyQuery &Q) { 3298 // Gracefully handle instructions that have not been inserted yet. 3299 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3300 return nullptr; 3301 3302 for (Value *AssumeBaseOp : {LHS, RHS}) { 3303 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3304 if (!AssumeVH) 3305 continue; 3306 3307 CallInst *Assume = cast<CallInst>(AssumeVH); 3308 if (Optional<bool> Imp = 3309 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3310 Q.DL)) 3311 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3312 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3313 } 3314 } 3315 3316 return nullptr; 3317 } 3318 3319 /// Given operands for an ICmpInst, see if we can fold the result. 3320 /// If not, this returns null. 3321 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3322 const SimplifyQuery &Q, unsigned MaxRecurse) { 3323 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3324 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3325 3326 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3327 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3328 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3329 3330 // If we have a constant, make sure it is on the RHS. 3331 std::swap(LHS, RHS); 3332 Pred = CmpInst::getSwappedPredicate(Pred); 3333 } 3334 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3335 3336 Type *ITy = GetCompareTy(LHS); // The return type. 3337 3338 // For EQ and NE, we can always pick a value for the undef to make the 3339 // predicate pass or fail, so we can return undef. 3340 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3341 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3342 return UndefValue::get(ITy); 3343 3344 // icmp X, X -> true/false 3345 // icmp X, undef -> true/false because undef could be X. 3346 if (LHS == RHS || Q.isUndefValue(RHS)) 3347 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3348 3349 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3350 return V; 3351 3352 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3353 return V; 3354 3355 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3356 return V; 3357 3358 // If both operands have range metadata, use the metadata 3359 // to simplify the comparison. 3360 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3361 auto RHS_Instr = cast<Instruction>(RHS); 3362 auto LHS_Instr = cast<Instruction>(LHS); 3363 3364 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3365 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3366 auto RHS_CR = getConstantRangeFromMetadata( 3367 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3368 auto LHS_CR = getConstantRangeFromMetadata( 3369 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3370 3371 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3372 if (Satisfied_CR.contains(LHS_CR)) 3373 return ConstantInt::getTrue(RHS->getContext()); 3374 3375 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3376 CmpInst::getInversePredicate(Pred), RHS_CR); 3377 if (InversedSatisfied_CR.contains(LHS_CR)) 3378 return ConstantInt::getFalse(RHS->getContext()); 3379 } 3380 } 3381 3382 // Compare of cast, for example (zext X) != 0 -> X != 0 3383 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3384 Instruction *LI = cast<CastInst>(LHS); 3385 Value *SrcOp = LI->getOperand(0); 3386 Type *SrcTy = SrcOp->getType(); 3387 Type *DstTy = LI->getType(); 3388 3389 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3390 // if the integer type is the same size as the pointer type. 3391 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3392 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3393 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3394 // Transfer the cast to the constant. 3395 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3396 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3397 Q, MaxRecurse-1)) 3398 return V; 3399 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3400 if (RI->getOperand(0)->getType() == SrcTy) 3401 // Compare without the cast. 3402 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3403 Q, MaxRecurse-1)) 3404 return V; 3405 } 3406 } 3407 3408 if (isa<ZExtInst>(LHS)) { 3409 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3410 // same type. 3411 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3412 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3413 // Compare X and Y. Note that signed predicates become unsigned. 3414 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3415 SrcOp, RI->getOperand(0), Q, 3416 MaxRecurse-1)) 3417 return V; 3418 } 3419 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3420 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3421 if (SrcOp == RI->getOperand(0)) { 3422 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3423 return ConstantInt::getTrue(ITy); 3424 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3425 return ConstantInt::getFalse(ITy); 3426 } 3427 } 3428 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3429 // too. If not, then try to deduce the result of the comparison. 3430 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3431 // Compute the constant that would happen if we truncated to SrcTy then 3432 // reextended to DstTy. 3433 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3434 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3435 3436 // If the re-extended constant didn't change then this is effectively 3437 // also a case of comparing two zero-extended values. 3438 if (RExt == CI && MaxRecurse) 3439 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3440 SrcOp, Trunc, Q, MaxRecurse-1)) 3441 return V; 3442 3443 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3444 // there. Use this to work out the result of the comparison. 3445 if (RExt != CI) { 3446 switch (Pred) { 3447 default: llvm_unreachable("Unknown ICmp predicate!"); 3448 // LHS <u RHS. 3449 case ICmpInst::ICMP_EQ: 3450 case ICmpInst::ICMP_UGT: 3451 case ICmpInst::ICMP_UGE: 3452 return ConstantInt::getFalse(CI->getContext()); 3453 3454 case ICmpInst::ICMP_NE: 3455 case ICmpInst::ICMP_ULT: 3456 case ICmpInst::ICMP_ULE: 3457 return ConstantInt::getTrue(CI->getContext()); 3458 3459 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3460 // is non-negative then LHS <s RHS. 3461 case ICmpInst::ICMP_SGT: 3462 case ICmpInst::ICMP_SGE: 3463 return CI->getValue().isNegative() ? 3464 ConstantInt::getTrue(CI->getContext()) : 3465 ConstantInt::getFalse(CI->getContext()); 3466 3467 case ICmpInst::ICMP_SLT: 3468 case ICmpInst::ICMP_SLE: 3469 return CI->getValue().isNegative() ? 3470 ConstantInt::getFalse(CI->getContext()) : 3471 ConstantInt::getTrue(CI->getContext()); 3472 } 3473 } 3474 } 3475 } 3476 3477 if (isa<SExtInst>(LHS)) { 3478 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3479 // same type. 3480 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3481 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3482 // Compare X and Y. Note that the predicate does not change. 3483 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3484 Q, MaxRecurse-1)) 3485 return V; 3486 } 3487 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3488 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3489 if (SrcOp == RI->getOperand(0)) { 3490 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3491 return ConstantInt::getTrue(ITy); 3492 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3493 return ConstantInt::getFalse(ITy); 3494 } 3495 } 3496 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3497 // too. If not, then try to deduce the result of the comparison. 3498 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3499 // Compute the constant that would happen if we truncated to SrcTy then 3500 // reextended to DstTy. 3501 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3502 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3503 3504 // If the re-extended constant didn't change then this is effectively 3505 // also a case of comparing two sign-extended values. 3506 if (RExt == CI && MaxRecurse) 3507 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3508 return V; 3509 3510 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3511 // bits there. Use this to work out the result of the comparison. 3512 if (RExt != CI) { 3513 switch (Pred) { 3514 default: llvm_unreachable("Unknown ICmp predicate!"); 3515 case ICmpInst::ICMP_EQ: 3516 return ConstantInt::getFalse(CI->getContext()); 3517 case ICmpInst::ICMP_NE: 3518 return ConstantInt::getTrue(CI->getContext()); 3519 3520 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3521 // LHS >s RHS. 3522 case ICmpInst::ICMP_SGT: 3523 case ICmpInst::ICMP_SGE: 3524 return CI->getValue().isNegative() ? 3525 ConstantInt::getTrue(CI->getContext()) : 3526 ConstantInt::getFalse(CI->getContext()); 3527 case ICmpInst::ICMP_SLT: 3528 case ICmpInst::ICMP_SLE: 3529 return CI->getValue().isNegative() ? 3530 ConstantInt::getFalse(CI->getContext()) : 3531 ConstantInt::getTrue(CI->getContext()); 3532 3533 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3534 // LHS >u RHS. 3535 case ICmpInst::ICMP_UGT: 3536 case ICmpInst::ICMP_UGE: 3537 // Comparison is true iff the LHS <s 0. 3538 if (MaxRecurse) 3539 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3540 Constant::getNullValue(SrcTy), 3541 Q, MaxRecurse-1)) 3542 return V; 3543 break; 3544 case ICmpInst::ICMP_ULT: 3545 case ICmpInst::ICMP_ULE: 3546 // Comparison is true iff the LHS >=s 0. 3547 if (MaxRecurse) 3548 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3549 Constant::getNullValue(SrcTy), 3550 Q, MaxRecurse-1)) 3551 return V; 3552 break; 3553 } 3554 } 3555 } 3556 } 3557 } 3558 3559 // icmp eq|ne X, Y -> false|true if X != Y 3560 if (ICmpInst::isEquality(Pred) && 3561 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3562 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3563 } 3564 3565 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3566 return V; 3567 3568 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3569 return V; 3570 3571 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3572 return V; 3573 3574 // Simplify comparisons of related pointers using a powerful, recursive 3575 // GEP-walk when we have target data available.. 3576 if (LHS->getType()->isPointerTy()) 3577 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3578 Q.IIQ, LHS, RHS)) 3579 return C; 3580 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3581 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3582 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3583 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3584 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3585 Q.DL.getTypeSizeInBits(CRHS->getType())) 3586 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3587 Q.IIQ, CLHS->getPointerOperand(), 3588 CRHS->getPointerOperand())) 3589 return C; 3590 3591 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3592 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3593 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3594 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3595 (ICmpInst::isEquality(Pred) || 3596 (GLHS->isInBounds() && GRHS->isInBounds() && 3597 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3598 // The bases are equal and the indices are constant. Build a constant 3599 // expression GEP with the same indices and a null base pointer to see 3600 // what constant folding can make out of it. 3601 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3602 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3603 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3604 GLHS->getSourceElementType(), Null, IndicesLHS); 3605 3606 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3607 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3608 GLHS->getSourceElementType(), Null, IndicesRHS); 3609 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3610 return ConstantFoldConstant(NewICmp, Q.DL); 3611 } 3612 } 3613 } 3614 3615 // If the comparison is with the result of a select instruction, check whether 3616 // comparing with either branch of the select always yields the same value. 3617 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3618 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3619 return V; 3620 3621 // If the comparison is with the result of a phi instruction, check whether 3622 // doing the compare with each incoming phi value yields a common result. 3623 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3624 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3625 return V; 3626 3627 return nullptr; 3628 } 3629 3630 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3631 const SimplifyQuery &Q) { 3632 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3633 } 3634 3635 /// Given operands for an FCmpInst, see if we can fold the result. 3636 /// If not, this returns null. 3637 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3638 FastMathFlags FMF, const SimplifyQuery &Q, 3639 unsigned MaxRecurse) { 3640 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3641 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3642 3643 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3644 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3645 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3646 3647 // If we have a constant, make sure it is on the RHS. 3648 std::swap(LHS, RHS); 3649 Pred = CmpInst::getSwappedPredicate(Pred); 3650 } 3651 3652 // Fold trivial predicates. 3653 Type *RetTy = GetCompareTy(LHS); 3654 if (Pred == FCmpInst::FCMP_FALSE) 3655 return getFalse(RetTy); 3656 if (Pred == FCmpInst::FCMP_TRUE) 3657 return getTrue(RetTy); 3658 3659 // Fold (un)ordered comparison if we can determine there are no NaNs. 3660 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3661 if (FMF.noNaNs() || 3662 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3663 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3664 3665 // NaN is unordered; NaN is not ordered. 3666 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3667 "Comparison must be either ordered or unordered"); 3668 if (match(RHS, m_NaN())) 3669 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3670 3671 // fcmp pred x, undef and fcmp pred undef, x 3672 // fold to true if unordered, false if ordered 3673 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3674 // Choosing NaN for the undef will always make unordered comparison succeed 3675 // and ordered comparison fail. 3676 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3677 } 3678 3679 // fcmp x,x -> true/false. Not all compares are foldable. 3680 if (LHS == RHS) { 3681 if (CmpInst::isTrueWhenEqual(Pred)) 3682 return getTrue(RetTy); 3683 if (CmpInst::isFalseWhenEqual(Pred)) 3684 return getFalse(RetTy); 3685 } 3686 3687 // Handle fcmp with constant RHS. 3688 // TODO: Use match with a specific FP value, so these work with vectors with 3689 // undef lanes. 3690 const APFloat *C; 3691 if (match(RHS, m_APFloat(C))) { 3692 // Check whether the constant is an infinity. 3693 if (C->isInfinity()) { 3694 if (C->isNegative()) { 3695 switch (Pred) { 3696 case FCmpInst::FCMP_OLT: 3697 // No value is ordered and less than negative infinity. 3698 return getFalse(RetTy); 3699 case FCmpInst::FCMP_UGE: 3700 // All values are unordered with or at least negative infinity. 3701 return getTrue(RetTy); 3702 default: 3703 break; 3704 } 3705 } else { 3706 switch (Pred) { 3707 case FCmpInst::FCMP_OGT: 3708 // No value is ordered and greater than infinity. 3709 return getFalse(RetTy); 3710 case FCmpInst::FCMP_ULE: 3711 // All values are unordered with and at most infinity. 3712 return getTrue(RetTy); 3713 default: 3714 break; 3715 } 3716 } 3717 3718 // LHS == Inf 3719 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3720 return getFalse(RetTy); 3721 // LHS != Inf 3722 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3723 return getTrue(RetTy); 3724 // LHS == Inf || LHS == NaN 3725 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3726 isKnownNeverNaN(LHS, Q.TLI)) 3727 return getFalse(RetTy); 3728 // LHS != Inf && LHS != NaN 3729 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3730 isKnownNeverNaN(LHS, Q.TLI)) 3731 return getTrue(RetTy); 3732 } 3733 if (C->isNegative() && !C->isNegZero()) { 3734 assert(!C->isNaN() && "Unexpected NaN constant!"); 3735 // TODO: We can catch more cases by using a range check rather than 3736 // relying on CannotBeOrderedLessThanZero. 3737 switch (Pred) { 3738 case FCmpInst::FCMP_UGE: 3739 case FCmpInst::FCMP_UGT: 3740 case FCmpInst::FCMP_UNE: 3741 // (X >= 0) implies (X > C) when (C < 0) 3742 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3743 return getTrue(RetTy); 3744 break; 3745 case FCmpInst::FCMP_OEQ: 3746 case FCmpInst::FCMP_OLE: 3747 case FCmpInst::FCMP_OLT: 3748 // (X >= 0) implies !(X < C) when (C < 0) 3749 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3750 return getFalse(RetTy); 3751 break; 3752 default: 3753 break; 3754 } 3755 } 3756 3757 // Check comparison of [minnum/maxnum with constant] with other constant. 3758 const APFloat *C2; 3759 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3760 *C2 < *C) || 3761 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3762 *C2 > *C)) { 3763 bool IsMaxNum = 3764 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3765 // The ordered relationship and minnum/maxnum guarantee that we do not 3766 // have NaN constants, so ordered/unordered preds are handled the same. 3767 switch (Pred) { 3768 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3769 // minnum(X, LesserC) == C --> false 3770 // maxnum(X, GreaterC) == C --> false 3771 return getFalse(RetTy); 3772 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3773 // minnum(X, LesserC) != C --> true 3774 // maxnum(X, GreaterC) != C --> true 3775 return getTrue(RetTy); 3776 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3777 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3778 // minnum(X, LesserC) >= C --> false 3779 // minnum(X, LesserC) > C --> false 3780 // maxnum(X, GreaterC) >= C --> true 3781 // maxnum(X, GreaterC) > C --> true 3782 return ConstantInt::get(RetTy, IsMaxNum); 3783 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3784 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3785 // minnum(X, LesserC) <= C --> true 3786 // minnum(X, LesserC) < C --> true 3787 // maxnum(X, GreaterC) <= C --> false 3788 // maxnum(X, GreaterC) < C --> false 3789 return ConstantInt::get(RetTy, !IsMaxNum); 3790 default: 3791 // TRUE/FALSE/ORD/UNO should be handled before this. 3792 llvm_unreachable("Unexpected fcmp predicate"); 3793 } 3794 } 3795 } 3796 3797 if (match(RHS, m_AnyZeroFP())) { 3798 switch (Pred) { 3799 case FCmpInst::FCMP_OGE: 3800 case FCmpInst::FCMP_ULT: 3801 // Positive or zero X >= 0.0 --> true 3802 // Positive or zero X < 0.0 --> false 3803 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3804 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3805 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3806 break; 3807 case FCmpInst::FCMP_UGE: 3808 case FCmpInst::FCMP_OLT: 3809 // Positive or zero or nan X >= 0.0 --> true 3810 // Positive or zero or nan X < 0.0 --> false 3811 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3812 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3813 break; 3814 default: 3815 break; 3816 } 3817 } 3818 3819 // If the comparison is with the result of a select instruction, check whether 3820 // comparing with either branch of the select always yields the same value. 3821 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3822 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3823 return V; 3824 3825 // If the comparison is with the result of a phi instruction, check whether 3826 // doing the compare with each incoming phi value yields a common result. 3827 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3828 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3829 return V; 3830 3831 return nullptr; 3832 } 3833 3834 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3835 FastMathFlags FMF, const SimplifyQuery &Q) { 3836 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3837 } 3838 3839 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3840 const SimplifyQuery &Q, 3841 bool AllowRefinement, 3842 unsigned MaxRecurse) { 3843 // Trivial replacement. 3844 if (V == Op) 3845 return RepOp; 3846 3847 // We cannot replace a constant, and shouldn't even try. 3848 if (isa<Constant>(Op)) 3849 return nullptr; 3850 3851 auto *I = dyn_cast<Instruction>(V); 3852 if (!I) 3853 return nullptr; 3854 3855 // Consider: 3856 // %cmp = icmp eq i32 %x, 2147483647 3857 // %add = add nsw i32 %x, 1 3858 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3859 // 3860 // We can't replace %sel with %add unless we strip away the flags (which will 3861 // be done in InstCombine). 3862 // TODO: This is unsound, because it only catches some forms of refinement. 3863 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3864 return nullptr; 3865 3866 // The simplification queries below may return the original value. Consider: 3867 // %div = udiv i32 %arg, %arg2 3868 // %mul = mul nsw i32 %div, %arg2 3869 // %cmp = icmp eq i32 %mul, %arg 3870 // %sel = select i1 %cmp, i32 %div, i32 undef 3871 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3872 // simplifies back to %arg. This can only happen because %mul does not 3873 // dominate %div. To ensure a consistent return value contract, we make sure 3874 // that this case returns nullptr as well. 3875 auto PreventSelfSimplify = [V](Value *Simplified) { 3876 return Simplified != V ? Simplified : nullptr; 3877 }; 3878 3879 // If this is a binary operator, try to simplify it with the replaced op. 3880 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3881 if (MaxRecurse) { 3882 if (B->getOperand(0) == Op) 3883 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp, 3884 B->getOperand(1), Q, 3885 MaxRecurse - 1)); 3886 if (B->getOperand(1) == Op) 3887 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), 3888 B->getOperand(0), RepOp, Q, 3889 MaxRecurse - 1)); 3890 } 3891 } 3892 3893 // Same for CmpInsts. 3894 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3895 if (MaxRecurse) { 3896 if (C->getOperand(0) == Op) 3897 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp, 3898 C->getOperand(1), Q, 3899 MaxRecurse - 1)); 3900 if (C->getOperand(1) == Op) 3901 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), 3902 C->getOperand(0), RepOp, Q, 3903 MaxRecurse - 1)); 3904 } 3905 } 3906 3907 // Same for GEPs. 3908 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3909 if (MaxRecurse) { 3910 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3911 transform(GEP->operands(), NewOps.begin(), 3912 [&](Value *V) { return V == Op ? RepOp : V; }); 3913 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3914 NewOps, Q, MaxRecurse - 1)); 3915 } 3916 } 3917 3918 // TODO: We could hand off more cases to instsimplify here. 3919 3920 // If all operands are constant after substituting Op for RepOp then we can 3921 // constant fold the instruction. 3922 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3923 // Build a list of all constant operands. 3924 SmallVector<Constant *, 8> ConstOps; 3925 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3926 if (I->getOperand(i) == Op) 3927 ConstOps.push_back(CRepOp); 3928 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3929 ConstOps.push_back(COp); 3930 else 3931 break; 3932 } 3933 3934 // All operands were constants, fold it. 3935 if (ConstOps.size() == I->getNumOperands()) { 3936 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3937 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3938 ConstOps[1], Q.DL, Q.TLI); 3939 3940 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3941 if (!LI->isVolatile()) 3942 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3943 3944 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3945 } 3946 } 3947 3948 return nullptr; 3949 } 3950 3951 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3952 const SimplifyQuery &Q, 3953 bool AllowRefinement) { 3954 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 3955 RecursionLimit); 3956 } 3957 3958 /// Try to simplify a select instruction when its condition operand is an 3959 /// integer comparison where one operand of the compare is a constant. 3960 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3961 const APInt *Y, bool TrueWhenUnset) { 3962 const APInt *C; 3963 3964 // (X & Y) == 0 ? X & ~Y : X --> X 3965 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3966 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3967 *Y == ~*C) 3968 return TrueWhenUnset ? FalseVal : TrueVal; 3969 3970 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3971 // (X & Y) != 0 ? X : X & ~Y --> X 3972 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3973 *Y == ~*C) 3974 return TrueWhenUnset ? FalseVal : TrueVal; 3975 3976 if (Y->isPowerOf2()) { 3977 // (X & Y) == 0 ? X | Y : X --> X | Y 3978 // (X & Y) != 0 ? X | Y : X --> X 3979 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3980 *Y == *C) 3981 return TrueWhenUnset ? TrueVal : FalseVal; 3982 3983 // (X & Y) == 0 ? X : X | Y --> X 3984 // (X & Y) != 0 ? X : X | Y --> X | Y 3985 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3986 *Y == *C) 3987 return TrueWhenUnset ? TrueVal : FalseVal; 3988 } 3989 3990 return nullptr; 3991 } 3992 3993 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3994 /// eq/ne. 3995 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3996 ICmpInst::Predicate Pred, 3997 Value *TrueVal, Value *FalseVal) { 3998 Value *X; 3999 APInt Mask; 4000 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4001 return nullptr; 4002 4003 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4004 Pred == ICmpInst::ICMP_EQ); 4005 } 4006 4007 /// Try to simplify a select instruction when its condition operand is an 4008 /// integer comparison. 4009 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4010 Value *FalseVal, const SimplifyQuery &Q, 4011 unsigned MaxRecurse) { 4012 ICmpInst::Predicate Pred; 4013 Value *CmpLHS, *CmpRHS; 4014 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4015 return nullptr; 4016 4017 // Canonicalize ne to eq predicate. 4018 if (Pred == ICmpInst::ICMP_NE) { 4019 Pred = ICmpInst::ICMP_EQ; 4020 std::swap(TrueVal, FalseVal); 4021 } 4022 4023 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4024 Value *X; 4025 const APInt *Y; 4026 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4027 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4028 /*TrueWhenUnset=*/true)) 4029 return V; 4030 4031 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4032 Value *ShAmt; 4033 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4034 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4035 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4036 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4037 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4038 return X; 4039 4040 // Test for a zero-shift-guard-op around rotates. These are used to 4041 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4042 // intrinsics do not have that problem. 4043 // We do not allow this transform for the general funnel shift case because 4044 // that would not preserve the poison safety of the original code. 4045 auto isRotate = 4046 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4047 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4048 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4049 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4050 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4051 Pred == ICmpInst::ICMP_EQ) 4052 return FalseVal; 4053 4054 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4055 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4056 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4057 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4058 return FalseVal; 4059 if (match(TrueVal, 4060 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4061 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4062 return FalseVal; 4063 } 4064 4065 // Check for other compares that behave like bit test. 4066 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4067 TrueVal, FalseVal)) 4068 return V; 4069 4070 // If we have an equality comparison, then we know the value in one of the 4071 // arms of the select. See if substituting this value into the arm and 4072 // simplifying the result yields the same value as the other arm. 4073 if (Pred == ICmpInst::ICMP_EQ) { 4074 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4075 /* AllowRefinement */ false, MaxRecurse) == 4076 TrueVal || 4077 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4078 /* AllowRefinement */ false, MaxRecurse) == 4079 TrueVal) 4080 return FalseVal; 4081 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4082 /* AllowRefinement */ true, MaxRecurse) == 4083 FalseVal || 4084 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4085 /* AllowRefinement */ true, MaxRecurse) == 4086 FalseVal) 4087 return FalseVal; 4088 } 4089 4090 return nullptr; 4091 } 4092 4093 /// Try to simplify a select instruction when its condition operand is a 4094 /// floating-point comparison. 4095 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4096 const SimplifyQuery &Q) { 4097 FCmpInst::Predicate Pred; 4098 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4099 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4100 return nullptr; 4101 4102 // This transform is safe if we do not have (do not care about) -0.0 or if 4103 // at least one operand is known to not be -0.0. Otherwise, the select can 4104 // change the sign of a zero operand. 4105 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4106 Q.CxtI->hasNoSignedZeros(); 4107 const APFloat *C; 4108 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4109 (match(F, m_APFloat(C)) && C->isNonZero())) { 4110 // (T == F) ? T : F --> F 4111 // (F == T) ? T : F --> F 4112 if (Pred == FCmpInst::FCMP_OEQ) 4113 return F; 4114 4115 // (T != F) ? T : F --> T 4116 // (F != T) ? T : F --> T 4117 if (Pred == FCmpInst::FCMP_UNE) 4118 return T; 4119 } 4120 4121 return nullptr; 4122 } 4123 4124 /// Given operands for a SelectInst, see if we can fold the result. 4125 /// If not, this returns null. 4126 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4127 const SimplifyQuery &Q, unsigned MaxRecurse) { 4128 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4129 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4130 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4131 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4132 4133 // select undef, X, Y -> X or Y 4134 if (Q.isUndefValue(CondC)) 4135 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4136 4137 // TODO: Vector constants with undef elements don't simplify. 4138 4139 // select true, X, Y -> X 4140 if (CondC->isAllOnesValue()) 4141 return TrueVal; 4142 // select false, X, Y -> Y 4143 if (CondC->isNullValue()) 4144 return FalseVal; 4145 } 4146 4147 // select i1 Cond, i1 true, i1 false --> i1 Cond 4148 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4149 "Select must have bool or bool vector condition"); 4150 assert(TrueVal->getType() == FalseVal->getType() && 4151 "Select must have same types for true/false ops"); 4152 if (Cond->getType() == TrueVal->getType() && 4153 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4154 return Cond; 4155 4156 // select ?, X, X -> X 4157 if (TrueVal == FalseVal) 4158 return TrueVal; 4159 4160 // If the true or false value is undef, we can fold to the other value as 4161 // long as the other value isn't poison. 4162 // select ?, undef, X -> X 4163 if (Q.isUndefValue(TrueVal) && 4164 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4165 return FalseVal; 4166 // select ?, X, undef -> X 4167 if (Q.isUndefValue(FalseVal) && 4168 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4169 return TrueVal; 4170 4171 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4172 Constant *TrueC, *FalseC; 4173 if (isa<FixedVectorType>(TrueVal->getType()) && 4174 match(TrueVal, m_Constant(TrueC)) && 4175 match(FalseVal, m_Constant(FalseC))) { 4176 unsigned NumElts = 4177 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4178 SmallVector<Constant *, 16> NewC; 4179 for (unsigned i = 0; i != NumElts; ++i) { 4180 // Bail out on incomplete vector constants. 4181 Constant *TEltC = TrueC->getAggregateElement(i); 4182 Constant *FEltC = FalseC->getAggregateElement(i); 4183 if (!TEltC || !FEltC) 4184 break; 4185 4186 // If the elements match (undef or not), that value is the result. If only 4187 // one element is undef, choose the defined element as the safe result. 4188 if (TEltC == FEltC) 4189 NewC.push_back(TEltC); 4190 else if (Q.isUndefValue(TEltC) && 4191 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4192 NewC.push_back(FEltC); 4193 else if (Q.isUndefValue(FEltC) && 4194 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4195 NewC.push_back(TEltC); 4196 else 4197 break; 4198 } 4199 if (NewC.size() == NumElts) 4200 return ConstantVector::get(NewC); 4201 } 4202 4203 if (Value *V = 4204 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4205 return V; 4206 4207 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4208 return V; 4209 4210 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4211 return V; 4212 4213 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4214 if (Imp) 4215 return *Imp ? TrueVal : FalseVal; 4216 4217 return nullptr; 4218 } 4219 4220 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4221 const SimplifyQuery &Q) { 4222 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4223 } 4224 4225 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4226 /// If not, this returns null. 4227 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4228 const SimplifyQuery &Q, unsigned) { 4229 // The type of the GEP pointer operand. 4230 unsigned AS = 4231 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4232 4233 // getelementptr P -> P. 4234 if (Ops.size() == 1) 4235 return Ops[0]; 4236 4237 // Compute the (pointer) type returned by the GEP instruction. 4238 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4239 Type *GEPTy = PointerType::get(LastType, AS); 4240 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4241 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4242 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4243 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4244 4245 // getelementptr poison, idx -> poison 4246 // getelementptr baseptr, poison -> poison 4247 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4248 return PoisonValue::get(GEPTy); 4249 4250 if (Q.isUndefValue(Ops[0])) 4251 return UndefValue::get(GEPTy); 4252 4253 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4254 4255 if (Ops.size() == 2) { 4256 // getelementptr P, 0 -> P. 4257 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4258 return Ops[0]; 4259 4260 Type *Ty = SrcTy; 4261 if (!IsScalableVec && Ty->isSized()) { 4262 Value *P; 4263 uint64_t C; 4264 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4265 // getelementptr P, N -> P if P points to a type of zero size. 4266 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4267 return Ops[0]; 4268 4269 // The following transforms are only safe if the ptrtoint cast 4270 // doesn't truncate the pointers. 4271 if (Ops[1]->getType()->getScalarSizeInBits() == 4272 Q.DL.getPointerSizeInBits(AS)) { 4273 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4274 if (match(P, m_Zero())) 4275 return Constant::getNullValue(GEPTy); 4276 Value *Temp; 4277 if (match(P, m_PtrToInt(m_Value(Temp)))) 4278 if (Temp->getType() == GEPTy) 4279 return Temp; 4280 return nullptr; 4281 }; 4282 4283 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4284 if (TyAllocSize == 1 && 4285 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4286 if (Value *R = PtrToIntOrZero(P)) 4287 return R; 4288 4289 // getelementptr V, (ashr (sub P, V), C) -> Q 4290 // if P points to a type of size 1 << C. 4291 if (match(Ops[1], 4292 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4293 m_ConstantInt(C))) && 4294 TyAllocSize == 1ULL << C) 4295 if (Value *R = PtrToIntOrZero(P)) 4296 return R; 4297 4298 // getelementptr V, (sdiv (sub P, V), C) -> Q 4299 // if P points to a type of size C. 4300 if (match(Ops[1], 4301 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4302 m_SpecificInt(TyAllocSize)))) 4303 if (Value *R = PtrToIntOrZero(P)) 4304 return R; 4305 } 4306 } 4307 } 4308 4309 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4310 all_of(Ops.slice(1).drop_back(1), 4311 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4312 unsigned IdxWidth = 4313 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4314 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4315 APInt BasePtrOffset(IdxWidth, 0); 4316 Value *StrippedBasePtr = 4317 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4318 BasePtrOffset); 4319 4320 // gep (gep V, C), (sub 0, V) -> C 4321 if (match(Ops.back(), 4322 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4323 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4324 return ConstantExpr::getIntToPtr(CI, GEPTy); 4325 } 4326 // gep (gep V, C), (xor V, -1) -> C-1 4327 if (match(Ops.back(), 4328 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4329 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4330 return ConstantExpr::getIntToPtr(CI, GEPTy); 4331 } 4332 } 4333 } 4334 4335 // Check to see if this is constant foldable. 4336 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4337 return nullptr; 4338 4339 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4340 Ops.slice(1)); 4341 return ConstantFoldConstant(CE, Q.DL); 4342 } 4343 4344 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4345 const SimplifyQuery &Q) { 4346 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4347 } 4348 4349 /// Given operands for an InsertValueInst, see if we can fold the result. 4350 /// If not, this returns null. 4351 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4352 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4353 unsigned) { 4354 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4355 if (Constant *CVal = dyn_cast<Constant>(Val)) 4356 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4357 4358 // insertvalue x, undef, n -> x 4359 if (Q.isUndefValue(Val)) 4360 return Agg; 4361 4362 // insertvalue x, (extractvalue y, n), n 4363 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4364 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4365 EV->getIndices() == Idxs) { 4366 // insertvalue undef, (extractvalue y, n), n -> y 4367 if (Q.isUndefValue(Agg)) 4368 return EV->getAggregateOperand(); 4369 4370 // insertvalue y, (extractvalue y, n), n -> y 4371 if (Agg == EV->getAggregateOperand()) 4372 return Agg; 4373 } 4374 4375 return nullptr; 4376 } 4377 4378 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4379 ArrayRef<unsigned> Idxs, 4380 const SimplifyQuery &Q) { 4381 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4382 } 4383 4384 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4385 const SimplifyQuery &Q) { 4386 // Try to constant fold. 4387 auto *VecC = dyn_cast<Constant>(Vec); 4388 auto *ValC = dyn_cast<Constant>(Val); 4389 auto *IdxC = dyn_cast<Constant>(Idx); 4390 if (VecC && ValC && IdxC) 4391 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4392 4393 // For fixed-length vector, fold into poison if index is out of bounds. 4394 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4395 if (isa<FixedVectorType>(Vec->getType()) && 4396 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4397 return PoisonValue::get(Vec->getType()); 4398 } 4399 4400 // If index is undef, it might be out of bounds (see above case) 4401 if (Q.isUndefValue(Idx)) 4402 return PoisonValue::get(Vec->getType()); 4403 4404 // If the scalar is undef, and there is no risk of propagating poison from the 4405 // vector value, simplify to the vector value. 4406 if (Q.isUndefValue(Val) && 4407 isGuaranteedNotToBeUndefOrPoison(Vec)) 4408 return Vec; 4409 4410 // If we are extracting a value from a vector, then inserting it into the same 4411 // place, that's the input vector: 4412 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4413 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4414 return Vec; 4415 4416 return nullptr; 4417 } 4418 4419 /// Given operands for an ExtractValueInst, see if we can fold the result. 4420 /// If not, this returns null. 4421 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4422 const SimplifyQuery &, unsigned) { 4423 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4424 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4425 4426 // extractvalue x, (insertvalue y, elt, n), n -> elt 4427 unsigned NumIdxs = Idxs.size(); 4428 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4429 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4430 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4431 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4432 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4433 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4434 Idxs.slice(0, NumCommonIdxs)) { 4435 if (NumIdxs == NumInsertValueIdxs) 4436 return IVI->getInsertedValueOperand(); 4437 break; 4438 } 4439 } 4440 4441 return nullptr; 4442 } 4443 4444 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4445 const SimplifyQuery &Q) { 4446 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4447 } 4448 4449 /// Given operands for an ExtractElementInst, see if we can fold the result. 4450 /// If not, this returns null. 4451 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4452 const SimplifyQuery &Q, unsigned) { 4453 auto *VecVTy = cast<VectorType>(Vec->getType()); 4454 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4455 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4456 return ConstantExpr::getExtractElement(CVec, CIdx); 4457 4458 // The index is not relevant if our vector is a splat. 4459 if (auto *Splat = CVec->getSplatValue()) 4460 return Splat; 4461 4462 if (Q.isUndefValue(Vec)) 4463 return UndefValue::get(VecVTy->getElementType()); 4464 } 4465 4466 // If extracting a specified index from the vector, see if we can recursively 4467 // find a previously computed scalar that was inserted into the vector. 4468 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4469 // For fixed-length vector, fold into undef if index is out of bounds. 4470 if (isa<FixedVectorType>(VecVTy) && 4471 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4472 return PoisonValue::get(VecVTy->getElementType()); 4473 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4474 return Elt; 4475 } 4476 4477 // An undef extract index can be arbitrarily chosen to be an out-of-range 4478 // index value, which would result in the instruction being poison. 4479 if (Q.isUndefValue(Idx)) 4480 return PoisonValue::get(VecVTy->getElementType()); 4481 4482 return nullptr; 4483 } 4484 4485 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4486 const SimplifyQuery &Q) { 4487 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4488 } 4489 4490 /// See if we can fold the given phi. If not, returns null. 4491 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4492 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4493 // here, because the PHI we may succeed simplifying to was not 4494 // def-reachable from the original PHI! 4495 4496 // If all of the PHI's incoming values are the same then replace the PHI node 4497 // with the common value. 4498 Value *CommonValue = nullptr; 4499 bool HasUndefInput = false; 4500 for (Value *Incoming : PN->incoming_values()) { 4501 // If the incoming value is the phi node itself, it can safely be skipped. 4502 if (Incoming == PN) continue; 4503 if (Q.isUndefValue(Incoming)) { 4504 // Remember that we saw an undef value, but otherwise ignore them. 4505 HasUndefInput = true; 4506 continue; 4507 } 4508 if (CommonValue && Incoming != CommonValue) 4509 return nullptr; // Not the same, bail out. 4510 CommonValue = Incoming; 4511 } 4512 4513 // If CommonValue is null then all of the incoming values were either undef or 4514 // equal to the phi node itself. 4515 if (!CommonValue) 4516 return UndefValue::get(PN->getType()); 4517 4518 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4519 // instruction, we cannot return X as the result of the PHI node unless it 4520 // dominates the PHI block. 4521 if (HasUndefInput) 4522 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4523 4524 return CommonValue; 4525 } 4526 4527 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4528 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4529 if (auto *C = dyn_cast<Constant>(Op)) 4530 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4531 4532 if (auto *CI = dyn_cast<CastInst>(Op)) { 4533 auto *Src = CI->getOperand(0); 4534 Type *SrcTy = Src->getType(); 4535 Type *MidTy = CI->getType(); 4536 Type *DstTy = Ty; 4537 if (Src->getType() == Ty) { 4538 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4539 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4540 Type *SrcIntPtrTy = 4541 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4542 Type *MidIntPtrTy = 4543 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4544 Type *DstIntPtrTy = 4545 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4546 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4547 SrcIntPtrTy, MidIntPtrTy, 4548 DstIntPtrTy) == Instruction::BitCast) 4549 return Src; 4550 } 4551 } 4552 4553 // bitcast x -> x 4554 if (CastOpc == Instruction::BitCast) 4555 if (Op->getType() == Ty) 4556 return Op; 4557 4558 return nullptr; 4559 } 4560 4561 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4562 const SimplifyQuery &Q) { 4563 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4564 } 4565 4566 /// For the given destination element of a shuffle, peek through shuffles to 4567 /// match a root vector source operand that contains that element in the same 4568 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4569 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4570 int MaskVal, Value *RootVec, 4571 unsigned MaxRecurse) { 4572 if (!MaxRecurse--) 4573 return nullptr; 4574 4575 // Bail out if any mask value is undefined. That kind of shuffle may be 4576 // simplified further based on demanded bits or other folds. 4577 if (MaskVal == -1) 4578 return nullptr; 4579 4580 // The mask value chooses which source operand we need to look at next. 4581 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4582 int RootElt = MaskVal; 4583 Value *SourceOp = Op0; 4584 if (MaskVal >= InVecNumElts) { 4585 RootElt = MaskVal - InVecNumElts; 4586 SourceOp = Op1; 4587 } 4588 4589 // If the source operand is a shuffle itself, look through it to find the 4590 // matching root vector. 4591 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4592 return foldIdentityShuffles( 4593 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4594 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4595 } 4596 4597 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4598 // size? 4599 4600 // The source operand is not a shuffle. Initialize the root vector value for 4601 // this shuffle if that has not been done yet. 4602 if (!RootVec) 4603 RootVec = SourceOp; 4604 4605 // Give up as soon as a source operand does not match the existing root value. 4606 if (RootVec != SourceOp) 4607 return nullptr; 4608 4609 // The element must be coming from the same lane in the source vector 4610 // (although it may have crossed lanes in intermediate shuffles). 4611 if (RootElt != DestElt) 4612 return nullptr; 4613 4614 return RootVec; 4615 } 4616 4617 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4618 ArrayRef<int> Mask, Type *RetTy, 4619 const SimplifyQuery &Q, 4620 unsigned MaxRecurse) { 4621 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4622 return UndefValue::get(RetTy); 4623 4624 auto *InVecTy = cast<VectorType>(Op0->getType()); 4625 unsigned MaskNumElts = Mask.size(); 4626 ElementCount InVecEltCount = InVecTy->getElementCount(); 4627 4628 bool Scalable = InVecEltCount.isScalable(); 4629 4630 SmallVector<int, 32> Indices; 4631 Indices.assign(Mask.begin(), Mask.end()); 4632 4633 // Canonicalization: If mask does not select elements from an input vector, 4634 // replace that input vector with undef. 4635 if (!Scalable) { 4636 bool MaskSelects0 = false, MaskSelects1 = false; 4637 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4638 for (unsigned i = 0; i != MaskNumElts; ++i) { 4639 if (Indices[i] == -1) 4640 continue; 4641 if ((unsigned)Indices[i] < InVecNumElts) 4642 MaskSelects0 = true; 4643 else 4644 MaskSelects1 = true; 4645 } 4646 if (!MaskSelects0) 4647 Op0 = UndefValue::get(InVecTy); 4648 if (!MaskSelects1) 4649 Op1 = UndefValue::get(InVecTy); 4650 } 4651 4652 auto *Op0Const = dyn_cast<Constant>(Op0); 4653 auto *Op1Const = dyn_cast<Constant>(Op1); 4654 4655 // If all operands are constant, constant fold the shuffle. This 4656 // transformation depends on the value of the mask which is not known at 4657 // compile time for scalable vectors 4658 if (Op0Const && Op1Const) 4659 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4660 4661 // Canonicalization: if only one input vector is constant, it shall be the 4662 // second one. This transformation depends on the value of the mask which 4663 // is not known at compile time for scalable vectors 4664 if (!Scalable && Op0Const && !Op1Const) { 4665 std::swap(Op0, Op1); 4666 ShuffleVectorInst::commuteShuffleMask(Indices, 4667 InVecEltCount.getKnownMinValue()); 4668 } 4669 4670 // A splat of an inserted scalar constant becomes a vector constant: 4671 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4672 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4673 // original mask constant. 4674 // NOTE: This transformation depends on the value of the mask which is not 4675 // known at compile time for scalable vectors 4676 Constant *C; 4677 ConstantInt *IndexC; 4678 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4679 m_ConstantInt(IndexC)))) { 4680 // Match a splat shuffle mask of the insert index allowing undef elements. 4681 int InsertIndex = IndexC->getZExtValue(); 4682 if (all_of(Indices, [InsertIndex](int MaskElt) { 4683 return MaskElt == InsertIndex || MaskElt == -1; 4684 })) { 4685 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4686 4687 // Shuffle mask undefs become undefined constant result elements. 4688 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4689 for (unsigned i = 0; i != MaskNumElts; ++i) 4690 if (Indices[i] == -1) 4691 VecC[i] = UndefValue::get(C->getType()); 4692 return ConstantVector::get(VecC); 4693 } 4694 } 4695 4696 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4697 // value type is same as the input vectors' type. 4698 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4699 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4700 is_splat(OpShuf->getShuffleMask())) 4701 return Op0; 4702 4703 // All remaining transformation depend on the value of the mask, which is 4704 // not known at compile time for scalable vectors. 4705 if (Scalable) 4706 return nullptr; 4707 4708 // Don't fold a shuffle with undef mask elements. This may get folded in a 4709 // better way using demanded bits or other analysis. 4710 // TODO: Should we allow this? 4711 if (is_contained(Indices, -1)) 4712 return nullptr; 4713 4714 // Check if every element of this shuffle can be mapped back to the 4715 // corresponding element of a single root vector. If so, we don't need this 4716 // shuffle. This handles simple identity shuffles as well as chains of 4717 // shuffles that may widen/narrow and/or move elements across lanes and back. 4718 Value *RootVec = nullptr; 4719 for (unsigned i = 0; i != MaskNumElts; ++i) { 4720 // Note that recursion is limited for each vector element, so if any element 4721 // exceeds the limit, this will fail to simplify. 4722 RootVec = 4723 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4724 4725 // We can't replace a widening/narrowing shuffle with one of its operands. 4726 if (!RootVec || RootVec->getType() != RetTy) 4727 return nullptr; 4728 } 4729 return RootVec; 4730 } 4731 4732 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4733 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4734 ArrayRef<int> Mask, Type *RetTy, 4735 const SimplifyQuery &Q) { 4736 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4737 } 4738 4739 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4740 Value *&Op, const SimplifyQuery &Q) { 4741 if (auto *C = dyn_cast<Constant>(Op)) 4742 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4743 return nullptr; 4744 } 4745 4746 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4747 /// returns null. 4748 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4749 const SimplifyQuery &Q, unsigned MaxRecurse) { 4750 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4751 return C; 4752 4753 Value *X; 4754 // fneg (fneg X) ==> X 4755 if (match(Op, m_FNeg(m_Value(X)))) 4756 return X; 4757 4758 return nullptr; 4759 } 4760 4761 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4762 const SimplifyQuery &Q) { 4763 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4764 } 4765 4766 static Constant *propagateNaN(Constant *In) { 4767 // If the input is a vector with undef elements, just return a default NaN. 4768 if (!In->isNaN()) 4769 return ConstantFP::getNaN(In->getType()); 4770 4771 // Propagate the existing NaN constant when possible. 4772 // TODO: Should we quiet a signaling NaN? 4773 return In; 4774 } 4775 4776 /// Perform folds that are common to any floating-point operation. This implies 4777 /// transforms based on undef/NaN because the operation itself makes no 4778 /// difference to the result. 4779 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4780 FastMathFlags FMF, 4781 const SimplifyQuery &Q) { 4782 for (Value *V : Ops) { 4783 bool IsNan = match(V, m_NaN()); 4784 bool IsInf = match(V, m_Inf()); 4785 bool IsUndef = Q.isUndefValue(V); 4786 4787 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4788 // (an undef operand can be chosen to be Nan/Inf), then the result of 4789 // this operation is poison. 4790 if (FMF.noNaNs() && (IsNan || IsUndef)) 4791 return PoisonValue::get(V->getType()); 4792 if (FMF.noInfs() && (IsInf || IsUndef)) 4793 return PoisonValue::get(V->getType()); 4794 4795 if (IsUndef || IsNan) 4796 return propagateNaN(cast<Constant>(V)); 4797 } 4798 return nullptr; 4799 } 4800 4801 /// Given operands for an FAdd, see if we can fold the result. If not, this 4802 /// returns null. 4803 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4804 const SimplifyQuery &Q, unsigned MaxRecurse) { 4805 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4806 return C; 4807 4808 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4809 return C; 4810 4811 // fadd X, -0 ==> X 4812 if (match(Op1, m_NegZeroFP())) 4813 return Op0; 4814 4815 // fadd X, 0 ==> X, when we know X is not -0 4816 if (match(Op1, m_PosZeroFP()) && 4817 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4818 return Op0; 4819 4820 // With nnan: -X + X --> 0.0 (and commuted variant) 4821 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4822 // Negative zeros are allowed because we always end up with positive zero: 4823 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4824 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4825 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4826 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4827 if (FMF.noNaNs()) { 4828 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4829 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4830 return ConstantFP::getNullValue(Op0->getType()); 4831 4832 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4833 match(Op1, m_FNeg(m_Specific(Op0)))) 4834 return ConstantFP::getNullValue(Op0->getType()); 4835 } 4836 4837 // (X - Y) + Y --> X 4838 // Y + (X - Y) --> X 4839 Value *X; 4840 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4841 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4842 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4843 return X; 4844 4845 return nullptr; 4846 } 4847 4848 /// Given operands for an FSub, see if we can fold the result. If not, this 4849 /// returns null. 4850 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4851 const SimplifyQuery &Q, unsigned MaxRecurse) { 4852 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4853 return C; 4854 4855 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4856 return C; 4857 4858 // fsub X, +0 ==> X 4859 if (match(Op1, m_PosZeroFP())) 4860 return Op0; 4861 4862 // fsub X, -0 ==> X, when we know X is not -0 4863 if (match(Op1, m_NegZeroFP()) && 4864 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4865 return Op0; 4866 4867 // fsub -0.0, (fsub -0.0, X) ==> X 4868 // fsub -0.0, (fneg X) ==> X 4869 Value *X; 4870 if (match(Op0, m_NegZeroFP()) && 4871 match(Op1, m_FNeg(m_Value(X)))) 4872 return X; 4873 4874 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4875 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4876 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4877 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4878 match(Op1, m_FNeg(m_Value(X))))) 4879 return X; 4880 4881 // fsub nnan x, x ==> 0.0 4882 if (FMF.noNaNs() && Op0 == Op1) 4883 return Constant::getNullValue(Op0->getType()); 4884 4885 // Y - (Y - X) --> X 4886 // (X + Y) - Y --> X 4887 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4888 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4889 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4890 return X; 4891 4892 return nullptr; 4893 } 4894 4895 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4896 const SimplifyQuery &Q, unsigned MaxRecurse) { 4897 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4898 return C; 4899 4900 // fmul X, 1.0 ==> X 4901 if (match(Op1, m_FPOne())) 4902 return Op0; 4903 4904 // fmul 1.0, X ==> X 4905 if (match(Op0, m_FPOne())) 4906 return Op1; 4907 4908 // fmul nnan nsz X, 0 ==> 0 4909 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4910 return ConstantFP::getNullValue(Op0->getType()); 4911 4912 // fmul nnan nsz 0, X ==> 0 4913 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4914 return ConstantFP::getNullValue(Op1->getType()); 4915 4916 // sqrt(X) * sqrt(X) --> X, if we can: 4917 // 1. Remove the intermediate rounding (reassociate). 4918 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4919 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4920 Value *X; 4921 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4922 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4923 return X; 4924 4925 return nullptr; 4926 } 4927 4928 /// Given the operands for an FMul, see if we can fold the result 4929 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4930 const SimplifyQuery &Q, unsigned MaxRecurse) { 4931 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4932 return C; 4933 4934 // Now apply simplifications that do not require rounding. 4935 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4936 } 4937 4938 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4939 const SimplifyQuery &Q) { 4940 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4941 } 4942 4943 4944 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4945 const SimplifyQuery &Q) { 4946 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4947 } 4948 4949 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4950 const SimplifyQuery &Q) { 4951 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4952 } 4953 4954 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4955 const SimplifyQuery &Q) { 4956 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4957 } 4958 4959 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4960 const SimplifyQuery &Q, unsigned) { 4961 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4962 return C; 4963 4964 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4965 return C; 4966 4967 // X / 1.0 -> X 4968 if (match(Op1, m_FPOne())) 4969 return Op0; 4970 4971 // 0 / X -> 0 4972 // Requires that NaNs are off (X could be zero) and signed zeroes are 4973 // ignored (X could be positive or negative, so the output sign is unknown). 4974 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4975 return ConstantFP::getNullValue(Op0->getType()); 4976 4977 if (FMF.noNaNs()) { 4978 // X / X -> 1.0 is legal when NaNs are ignored. 4979 // We can ignore infinities because INF/INF is NaN. 4980 if (Op0 == Op1) 4981 return ConstantFP::get(Op0->getType(), 1.0); 4982 4983 // (X * Y) / Y --> X if we can reassociate to the above form. 4984 Value *X; 4985 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4986 return X; 4987 4988 // -X / X -> -1.0 and 4989 // X / -X -> -1.0 are legal when NaNs are ignored. 4990 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4991 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4992 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4993 return ConstantFP::get(Op0->getType(), -1.0); 4994 } 4995 4996 return nullptr; 4997 } 4998 4999 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5000 const SimplifyQuery &Q) { 5001 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5002 } 5003 5004 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5005 const SimplifyQuery &Q, unsigned) { 5006 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5007 return C; 5008 5009 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5010 return C; 5011 5012 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5013 // The constant match may include undef elements in a vector, so return a full 5014 // zero constant as the result. 5015 if (FMF.noNaNs()) { 5016 // +0 % X -> 0 5017 if (match(Op0, m_PosZeroFP())) 5018 return ConstantFP::getNullValue(Op0->getType()); 5019 // -0 % X -> -0 5020 if (match(Op0, m_NegZeroFP())) 5021 return ConstantFP::getNegativeZero(Op0->getType()); 5022 } 5023 5024 return nullptr; 5025 } 5026 5027 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5028 const SimplifyQuery &Q) { 5029 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5030 } 5031 5032 //=== Helper functions for higher up the class hierarchy. 5033 5034 /// Given the operand for a UnaryOperator, see if we can fold the result. 5035 /// If not, this returns null. 5036 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5037 unsigned MaxRecurse) { 5038 switch (Opcode) { 5039 case Instruction::FNeg: 5040 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5041 default: 5042 llvm_unreachable("Unexpected opcode"); 5043 } 5044 } 5045 5046 /// Given the operand for a UnaryOperator, see if we can fold the result. 5047 /// If not, this returns null. 5048 /// Try to use FastMathFlags when folding the result. 5049 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5050 const FastMathFlags &FMF, 5051 const SimplifyQuery &Q, unsigned MaxRecurse) { 5052 switch (Opcode) { 5053 case Instruction::FNeg: 5054 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5055 default: 5056 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5057 } 5058 } 5059 5060 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5061 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5062 } 5063 5064 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5065 const SimplifyQuery &Q) { 5066 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5067 } 5068 5069 /// Given operands for a BinaryOperator, see if we can fold the result. 5070 /// If not, this returns null. 5071 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5072 const SimplifyQuery &Q, unsigned MaxRecurse) { 5073 switch (Opcode) { 5074 case Instruction::Add: 5075 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5076 case Instruction::Sub: 5077 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5078 case Instruction::Mul: 5079 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5080 case Instruction::SDiv: 5081 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5082 case Instruction::UDiv: 5083 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5084 case Instruction::SRem: 5085 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5086 case Instruction::URem: 5087 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5088 case Instruction::Shl: 5089 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5090 case Instruction::LShr: 5091 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5092 case Instruction::AShr: 5093 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5094 case Instruction::And: 5095 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5096 case Instruction::Or: 5097 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5098 case Instruction::Xor: 5099 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5100 case Instruction::FAdd: 5101 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5102 case Instruction::FSub: 5103 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5104 case Instruction::FMul: 5105 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5106 case Instruction::FDiv: 5107 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5108 case Instruction::FRem: 5109 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5110 default: 5111 llvm_unreachable("Unexpected opcode"); 5112 } 5113 } 5114 5115 /// Given operands for a BinaryOperator, see if we can fold the result. 5116 /// If not, this returns null. 5117 /// Try to use FastMathFlags when folding the result. 5118 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5119 const FastMathFlags &FMF, const SimplifyQuery &Q, 5120 unsigned MaxRecurse) { 5121 switch (Opcode) { 5122 case Instruction::FAdd: 5123 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5124 case Instruction::FSub: 5125 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5126 case Instruction::FMul: 5127 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5128 case Instruction::FDiv: 5129 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5130 default: 5131 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5132 } 5133 } 5134 5135 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5136 const SimplifyQuery &Q) { 5137 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5138 } 5139 5140 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5141 FastMathFlags FMF, const SimplifyQuery &Q) { 5142 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5143 } 5144 5145 /// Given operands for a CmpInst, see if we can fold the result. 5146 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5147 const SimplifyQuery &Q, unsigned MaxRecurse) { 5148 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5149 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5150 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5151 } 5152 5153 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5154 const SimplifyQuery &Q) { 5155 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5156 } 5157 5158 static bool IsIdempotent(Intrinsic::ID ID) { 5159 switch (ID) { 5160 default: return false; 5161 5162 // Unary idempotent: f(f(x)) = f(x) 5163 case Intrinsic::fabs: 5164 case Intrinsic::floor: 5165 case Intrinsic::ceil: 5166 case Intrinsic::trunc: 5167 case Intrinsic::rint: 5168 case Intrinsic::nearbyint: 5169 case Intrinsic::round: 5170 case Intrinsic::roundeven: 5171 case Intrinsic::canonicalize: 5172 return true; 5173 } 5174 } 5175 5176 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5177 const DataLayout &DL) { 5178 GlobalValue *PtrSym; 5179 APInt PtrOffset; 5180 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5181 return nullptr; 5182 5183 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5184 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5185 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5186 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5187 5188 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5189 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5190 return nullptr; 5191 5192 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5193 if (OffsetInt % 4 != 0) 5194 return nullptr; 5195 5196 Constant *C = ConstantExpr::getGetElementPtr( 5197 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5198 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5199 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5200 if (!Loaded) 5201 return nullptr; 5202 5203 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5204 if (!LoadedCE) 5205 return nullptr; 5206 5207 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5208 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5209 if (!LoadedCE) 5210 return nullptr; 5211 } 5212 5213 if (LoadedCE->getOpcode() != Instruction::Sub) 5214 return nullptr; 5215 5216 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5217 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5218 return nullptr; 5219 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5220 5221 Constant *LoadedRHS = LoadedCE->getOperand(1); 5222 GlobalValue *LoadedRHSSym; 5223 APInt LoadedRHSOffset; 5224 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5225 DL) || 5226 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5227 return nullptr; 5228 5229 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5230 } 5231 5232 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5233 const SimplifyQuery &Q) { 5234 // Idempotent functions return the same result when called repeatedly. 5235 Intrinsic::ID IID = F->getIntrinsicID(); 5236 if (IsIdempotent(IID)) 5237 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5238 if (II->getIntrinsicID() == IID) 5239 return II; 5240 5241 Value *X; 5242 switch (IID) { 5243 case Intrinsic::fabs: 5244 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5245 break; 5246 case Intrinsic::bswap: 5247 // bswap(bswap(x)) -> x 5248 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5249 break; 5250 case Intrinsic::bitreverse: 5251 // bitreverse(bitreverse(x)) -> x 5252 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5253 break; 5254 case Intrinsic::ctpop: { 5255 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5256 // ctpop(and X, 1) --> and X, 1 5257 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5258 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5259 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5260 return Op0; 5261 break; 5262 } 5263 case Intrinsic::exp: 5264 // exp(log(x)) -> x 5265 if (Q.CxtI->hasAllowReassoc() && 5266 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5267 break; 5268 case Intrinsic::exp2: 5269 // exp2(log2(x)) -> x 5270 if (Q.CxtI->hasAllowReassoc() && 5271 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5272 break; 5273 case Intrinsic::log: 5274 // log(exp(x)) -> x 5275 if (Q.CxtI->hasAllowReassoc() && 5276 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5277 break; 5278 case Intrinsic::log2: 5279 // log2(exp2(x)) -> x 5280 if (Q.CxtI->hasAllowReassoc() && 5281 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5282 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5283 m_Value(X))))) return X; 5284 break; 5285 case Intrinsic::log10: 5286 // log10(pow(10.0, x)) -> x 5287 if (Q.CxtI->hasAllowReassoc() && 5288 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5289 m_Value(X)))) return X; 5290 break; 5291 case Intrinsic::floor: 5292 case Intrinsic::trunc: 5293 case Intrinsic::ceil: 5294 case Intrinsic::round: 5295 case Intrinsic::roundeven: 5296 case Intrinsic::nearbyint: 5297 case Intrinsic::rint: { 5298 // floor (sitofp x) -> sitofp x 5299 // floor (uitofp x) -> uitofp x 5300 // 5301 // Converting from int always results in a finite integral number or 5302 // infinity. For either of those inputs, these rounding functions always 5303 // return the same value, so the rounding can be eliminated. 5304 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5305 return Op0; 5306 break; 5307 } 5308 default: 5309 break; 5310 } 5311 5312 return nullptr; 5313 } 5314 5315 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5316 switch (IID) { 5317 case Intrinsic::smax: return Intrinsic::smin; 5318 case Intrinsic::smin: return Intrinsic::smax; 5319 case Intrinsic::umax: return Intrinsic::umin; 5320 case Intrinsic::umin: return Intrinsic::umax; 5321 default: llvm_unreachable("Unexpected intrinsic"); 5322 } 5323 } 5324 5325 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5326 switch (IID) { 5327 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5328 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5329 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5330 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5331 default: llvm_unreachable("Unexpected intrinsic"); 5332 } 5333 } 5334 5335 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5336 switch (IID) { 5337 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5338 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5339 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5340 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5341 default: llvm_unreachable("Unexpected intrinsic"); 5342 } 5343 } 5344 5345 /// Given a min/max intrinsic, see if it can be removed based on having an 5346 /// operand that is another min/max intrinsic with shared operand(s). The caller 5347 /// is expected to swap the operand arguments to handle commutation. 5348 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5349 Value *X, *Y; 5350 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5351 return nullptr; 5352 5353 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5354 if (!MM0) 5355 return nullptr; 5356 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5357 5358 if (Op1 == X || Op1 == Y || 5359 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5360 // max (max X, Y), X --> max X, Y 5361 if (IID0 == IID) 5362 return MM0; 5363 // max (min X, Y), X --> X 5364 if (IID0 == getMaxMinOpposite(IID)) 5365 return Op1; 5366 } 5367 return nullptr; 5368 } 5369 5370 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5371 const SimplifyQuery &Q) { 5372 Intrinsic::ID IID = F->getIntrinsicID(); 5373 Type *ReturnType = F->getReturnType(); 5374 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5375 switch (IID) { 5376 case Intrinsic::abs: 5377 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5378 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5379 // on the outer abs. 5380 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5381 return Op0; 5382 break; 5383 5384 case Intrinsic::smax: 5385 case Intrinsic::smin: 5386 case Intrinsic::umax: 5387 case Intrinsic::umin: { 5388 // If the arguments are the same, this is a no-op. 5389 if (Op0 == Op1) 5390 return Op0; 5391 5392 // Canonicalize constant operand as Op1. 5393 if (isa<Constant>(Op0)) 5394 std::swap(Op0, Op1); 5395 5396 // Assume undef is the limit value. 5397 if (Q.isUndefValue(Op1)) 5398 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5399 5400 const APInt *C; 5401 if (match(Op1, m_APIntAllowUndef(C))) { 5402 // Clamp to limit value. For example: 5403 // umax(i8 %x, i8 255) --> 255 5404 if (*C == getMaxMinLimit(IID, BitWidth)) 5405 return ConstantInt::get(ReturnType, *C); 5406 5407 // If the constant op is the opposite of the limit value, the other must 5408 // be larger/smaller or equal. For example: 5409 // umin(i8 %x, i8 255) --> %x 5410 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5411 return Op0; 5412 5413 // Remove nested call if constant operands allow it. Example: 5414 // max (max X, 7), 5 -> max X, 7 5415 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5416 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5417 // TODO: loosen undef/splat restrictions for vector constants. 5418 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5419 const APInt *InnerC; 5420 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5421 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5422 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5423 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5424 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5425 return Op0; 5426 } 5427 } 5428 5429 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5430 return V; 5431 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5432 return V; 5433 5434 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5435 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5436 return Op0; 5437 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5438 return Op1; 5439 5440 if (Optional<bool> Imp = 5441 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5442 return *Imp ? Op0 : Op1; 5443 if (Optional<bool> Imp = 5444 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5445 return *Imp ? Op1 : Op0; 5446 5447 break; 5448 } 5449 case Intrinsic::usub_with_overflow: 5450 case Intrinsic::ssub_with_overflow: 5451 // X - X -> { 0, false } 5452 // X - undef -> { 0, false } 5453 // undef - X -> { 0, false } 5454 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5455 return Constant::getNullValue(ReturnType); 5456 break; 5457 case Intrinsic::uadd_with_overflow: 5458 case Intrinsic::sadd_with_overflow: 5459 // X + undef -> { -1, false } 5460 // undef + x -> { -1, false } 5461 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5462 return ConstantStruct::get( 5463 cast<StructType>(ReturnType), 5464 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5465 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5466 } 5467 break; 5468 case Intrinsic::umul_with_overflow: 5469 case Intrinsic::smul_with_overflow: 5470 // 0 * X -> { 0, false } 5471 // X * 0 -> { 0, false } 5472 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5473 return Constant::getNullValue(ReturnType); 5474 // undef * X -> { 0, false } 5475 // X * undef -> { 0, false } 5476 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5477 return Constant::getNullValue(ReturnType); 5478 break; 5479 case Intrinsic::uadd_sat: 5480 // sat(MAX + X) -> MAX 5481 // sat(X + MAX) -> MAX 5482 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5483 return Constant::getAllOnesValue(ReturnType); 5484 LLVM_FALLTHROUGH; 5485 case Intrinsic::sadd_sat: 5486 // sat(X + undef) -> -1 5487 // sat(undef + X) -> -1 5488 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5489 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5490 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5491 return Constant::getAllOnesValue(ReturnType); 5492 5493 // X + 0 -> X 5494 if (match(Op1, m_Zero())) 5495 return Op0; 5496 // 0 + X -> X 5497 if (match(Op0, m_Zero())) 5498 return Op1; 5499 break; 5500 case Intrinsic::usub_sat: 5501 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5502 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5503 return Constant::getNullValue(ReturnType); 5504 LLVM_FALLTHROUGH; 5505 case Intrinsic::ssub_sat: 5506 // X - X -> 0, X - undef -> 0, undef - X -> 0 5507 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5508 return Constant::getNullValue(ReturnType); 5509 // X - 0 -> X 5510 if (match(Op1, m_Zero())) 5511 return Op0; 5512 break; 5513 case Intrinsic::load_relative: 5514 if (auto *C0 = dyn_cast<Constant>(Op0)) 5515 if (auto *C1 = dyn_cast<Constant>(Op1)) 5516 return SimplifyRelativeLoad(C0, C1, Q.DL); 5517 break; 5518 case Intrinsic::powi: 5519 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5520 // powi(x, 0) -> 1.0 5521 if (Power->isZero()) 5522 return ConstantFP::get(Op0->getType(), 1.0); 5523 // powi(x, 1) -> x 5524 if (Power->isOne()) 5525 return Op0; 5526 } 5527 break; 5528 case Intrinsic::copysign: 5529 // copysign X, X --> X 5530 if (Op0 == Op1) 5531 return Op0; 5532 // copysign -X, X --> X 5533 // copysign X, -X --> -X 5534 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5535 match(Op1, m_FNeg(m_Specific(Op0)))) 5536 return Op1; 5537 break; 5538 case Intrinsic::maxnum: 5539 case Intrinsic::minnum: 5540 case Intrinsic::maximum: 5541 case Intrinsic::minimum: { 5542 // If the arguments are the same, this is a no-op. 5543 if (Op0 == Op1) return Op0; 5544 5545 // Canonicalize constant operand as Op1. 5546 if (isa<Constant>(Op0)) 5547 std::swap(Op0, Op1); 5548 5549 // If an argument is undef, return the other argument. 5550 if (Q.isUndefValue(Op1)) 5551 return Op0; 5552 5553 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5554 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5555 5556 // minnum(X, nan) -> X 5557 // maxnum(X, nan) -> X 5558 // minimum(X, nan) -> nan 5559 // maximum(X, nan) -> nan 5560 if (match(Op1, m_NaN())) 5561 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5562 5563 // In the following folds, inf can be replaced with the largest finite 5564 // float, if the ninf flag is set. 5565 const APFloat *C; 5566 if (match(Op1, m_APFloat(C)) && 5567 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5568 // minnum(X, -inf) -> -inf 5569 // maxnum(X, +inf) -> +inf 5570 // minimum(X, -inf) -> -inf if nnan 5571 // maximum(X, +inf) -> +inf if nnan 5572 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5573 return ConstantFP::get(ReturnType, *C); 5574 5575 // minnum(X, +inf) -> X if nnan 5576 // maxnum(X, -inf) -> X if nnan 5577 // minimum(X, +inf) -> X 5578 // maximum(X, -inf) -> X 5579 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5580 return Op0; 5581 } 5582 5583 // Min/max of the same operation with common operand: 5584 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5585 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5586 if (M0->getIntrinsicID() == IID && 5587 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5588 return Op0; 5589 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5590 if (M1->getIntrinsicID() == IID && 5591 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5592 return Op1; 5593 5594 break; 5595 } 5596 default: 5597 break; 5598 } 5599 5600 return nullptr; 5601 } 5602 5603 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5604 5605 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5606 unsigned NumOperands = Call->getNumArgOperands(); 5607 if (!NumOperands) 5608 return nullptr; 5609 5610 Function *F = cast<Function>(Call->getCalledFunction()); 5611 Intrinsic::ID IID = F->getIntrinsicID(); 5612 if (NumOperands == 1) 5613 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5614 5615 if (NumOperands == 2) 5616 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5617 Call->getArgOperand(1), Q); 5618 5619 // Handle intrinsics with 3 or more arguments. 5620 switch (IID) { 5621 case Intrinsic::masked_load: 5622 case Intrinsic::masked_gather: { 5623 Value *MaskArg = Call->getArgOperand(2); 5624 Value *PassthruArg = Call->getArgOperand(3); 5625 // If the mask is all zeros or undef, the "passthru" argument is the result. 5626 if (maskIsAllZeroOrUndef(MaskArg)) 5627 return PassthruArg; 5628 return nullptr; 5629 } 5630 case Intrinsic::fshl: 5631 case Intrinsic::fshr: { 5632 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5633 *ShAmtArg = Call->getArgOperand(2); 5634 5635 // If both operands are undef, the result is undef. 5636 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5637 return UndefValue::get(F->getReturnType()); 5638 5639 // If shift amount is undef, assume it is zero. 5640 if (Q.isUndefValue(ShAmtArg)) 5641 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5642 5643 const APInt *ShAmtC; 5644 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5645 // If there's effectively no shift, return the 1st arg or 2nd arg. 5646 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5647 if (ShAmtC->urem(BitWidth).isNullValue()) 5648 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5649 } 5650 return nullptr; 5651 } 5652 case Intrinsic::fma: 5653 case Intrinsic::fmuladd: { 5654 Value *Op0 = Call->getArgOperand(0); 5655 Value *Op1 = Call->getArgOperand(1); 5656 Value *Op2 = Call->getArgOperand(2); 5657 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5658 return V; 5659 return nullptr; 5660 } 5661 default: 5662 return nullptr; 5663 } 5664 } 5665 5666 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5667 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5668 if (!F || !canConstantFoldCallTo(Call, F)) 5669 return nullptr; 5670 5671 SmallVector<Constant *, 4> ConstantArgs; 5672 unsigned NumArgs = Call->getNumArgOperands(); 5673 ConstantArgs.reserve(NumArgs); 5674 for (auto &Arg : Call->args()) { 5675 Constant *C = dyn_cast<Constant>(&Arg); 5676 if (!C) { 5677 if (isa<MetadataAsValue>(Arg.get())) 5678 continue; 5679 return nullptr; 5680 } 5681 ConstantArgs.push_back(C); 5682 } 5683 5684 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5685 } 5686 5687 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5688 // musttail calls can only be simplified if they are also DCEd. 5689 // As we can't guarantee this here, don't simplify them. 5690 if (Call->isMustTailCall()) 5691 return nullptr; 5692 5693 // call undef -> undef 5694 // call null -> undef 5695 Value *Callee = Call->getCalledOperand(); 5696 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5697 return UndefValue::get(Call->getType()); 5698 5699 if (Value *V = tryConstantFoldCall(Call, Q)) 5700 return V; 5701 5702 auto *F = dyn_cast<Function>(Callee); 5703 if (F && F->isIntrinsic()) 5704 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5705 return Ret; 5706 5707 return nullptr; 5708 } 5709 5710 /// Given operands for a Freeze, see if we can fold the result. 5711 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5712 // Use a utility function defined in ValueTracking. 5713 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5714 return Op0; 5715 // We have room for improvement. 5716 return nullptr; 5717 } 5718 5719 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5720 return ::SimplifyFreezeInst(Op0, Q); 5721 } 5722 5723 /// See if we can compute a simplified version of this instruction. 5724 /// If not, this returns null. 5725 5726 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5727 OptimizationRemarkEmitter *ORE) { 5728 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5729 Value *Result; 5730 5731 switch (I->getOpcode()) { 5732 default: 5733 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5734 break; 5735 case Instruction::FNeg: 5736 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5737 break; 5738 case Instruction::FAdd: 5739 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5740 I->getFastMathFlags(), Q); 5741 break; 5742 case Instruction::Add: 5743 Result = 5744 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5745 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5746 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5747 break; 5748 case Instruction::FSub: 5749 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5750 I->getFastMathFlags(), Q); 5751 break; 5752 case Instruction::Sub: 5753 Result = 5754 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5755 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5756 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5757 break; 5758 case Instruction::FMul: 5759 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5760 I->getFastMathFlags(), Q); 5761 break; 5762 case Instruction::Mul: 5763 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5764 break; 5765 case Instruction::SDiv: 5766 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5767 break; 5768 case Instruction::UDiv: 5769 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5770 break; 5771 case Instruction::FDiv: 5772 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5773 I->getFastMathFlags(), Q); 5774 break; 5775 case Instruction::SRem: 5776 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5777 break; 5778 case Instruction::URem: 5779 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5780 break; 5781 case Instruction::FRem: 5782 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5783 I->getFastMathFlags(), Q); 5784 break; 5785 case Instruction::Shl: 5786 Result = 5787 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5788 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5789 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5790 break; 5791 case Instruction::LShr: 5792 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5793 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5794 break; 5795 case Instruction::AShr: 5796 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5797 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5798 break; 5799 case Instruction::And: 5800 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5801 break; 5802 case Instruction::Or: 5803 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5804 break; 5805 case Instruction::Xor: 5806 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5807 break; 5808 case Instruction::ICmp: 5809 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5810 I->getOperand(0), I->getOperand(1), Q); 5811 break; 5812 case Instruction::FCmp: 5813 Result = 5814 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5815 I->getOperand(1), I->getFastMathFlags(), Q); 5816 break; 5817 case Instruction::Select: 5818 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5819 I->getOperand(2), Q); 5820 break; 5821 case Instruction::GetElementPtr: { 5822 SmallVector<Value *, 8> Ops(I->operands()); 5823 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5824 Ops, Q); 5825 break; 5826 } 5827 case Instruction::InsertValue: { 5828 InsertValueInst *IV = cast<InsertValueInst>(I); 5829 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5830 IV->getInsertedValueOperand(), 5831 IV->getIndices(), Q); 5832 break; 5833 } 5834 case Instruction::InsertElement: { 5835 auto *IE = cast<InsertElementInst>(I); 5836 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5837 IE->getOperand(2), Q); 5838 break; 5839 } 5840 case Instruction::ExtractValue: { 5841 auto *EVI = cast<ExtractValueInst>(I); 5842 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5843 EVI->getIndices(), Q); 5844 break; 5845 } 5846 case Instruction::ExtractElement: { 5847 auto *EEI = cast<ExtractElementInst>(I); 5848 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5849 EEI->getIndexOperand(), Q); 5850 break; 5851 } 5852 case Instruction::ShuffleVector: { 5853 auto *SVI = cast<ShuffleVectorInst>(I); 5854 Result = 5855 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5856 SVI->getShuffleMask(), SVI->getType(), Q); 5857 break; 5858 } 5859 case Instruction::PHI: 5860 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5861 break; 5862 case Instruction::Call: { 5863 Result = SimplifyCall(cast<CallInst>(I), Q); 5864 break; 5865 } 5866 case Instruction::Freeze: 5867 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5868 break; 5869 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5870 #include "llvm/IR/Instruction.def" 5871 #undef HANDLE_CAST_INST 5872 Result = 5873 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5874 break; 5875 case Instruction::Alloca: 5876 // No simplifications for Alloca and it can't be constant folded. 5877 Result = nullptr; 5878 break; 5879 } 5880 5881 /// If called on unreachable code, the above logic may report that the 5882 /// instruction simplified to itself. Make life easier for users by 5883 /// detecting that case here, returning a safe value instead. 5884 return Result == I ? UndefValue::get(I->getType()) : Result; 5885 } 5886 5887 /// Implementation of recursive simplification through an instruction's 5888 /// uses. 5889 /// 5890 /// This is the common implementation of the recursive simplification routines. 5891 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5892 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5893 /// instructions to process and attempt to simplify it using 5894 /// InstructionSimplify. Recursively visited users which could not be 5895 /// simplified themselves are to the optional UnsimplifiedUsers set for 5896 /// further processing by the caller. 5897 /// 5898 /// This routine returns 'true' only when *it* simplifies something. The passed 5899 /// in simplified value does not count toward this. 5900 static bool replaceAndRecursivelySimplifyImpl( 5901 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5902 const DominatorTree *DT, AssumptionCache *AC, 5903 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5904 bool Simplified = false; 5905 SmallSetVector<Instruction *, 8> Worklist; 5906 const DataLayout &DL = I->getModule()->getDataLayout(); 5907 5908 // If we have an explicit value to collapse to, do that round of the 5909 // simplification loop by hand initially. 5910 if (SimpleV) { 5911 for (User *U : I->users()) 5912 if (U != I) 5913 Worklist.insert(cast<Instruction>(U)); 5914 5915 // Replace the instruction with its simplified value. 5916 I->replaceAllUsesWith(SimpleV); 5917 5918 // Gracefully handle edge cases where the instruction is not wired into any 5919 // parent block. 5920 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5921 !I->mayHaveSideEffects()) 5922 I->eraseFromParent(); 5923 } else { 5924 Worklist.insert(I); 5925 } 5926 5927 // Note that we must test the size on each iteration, the worklist can grow. 5928 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5929 I = Worklist[Idx]; 5930 5931 // See if this instruction simplifies. 5932 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5933 if (!SimpleV) { 5934 if (UnsimplifiedUsers) 5935 UnsimplifiedUsers->insert(I); 5936 continue; 5937 } 5938 5939 Simplified = true; 5940 5941 // Stash away all the uses of the old instruction so we can check them for 5942 // recursive simplifications after a RAUW. This is cheaper than checking all 5943 // uses of To on the recursive step in most cases. 5944 for (User *U : I->users()) 5945 Worklist.insert(cast<Instruction>(U)); 5946 5947 // Replace the instruction with its simplified value. 5948 I->replaceAllUsesWith(SimpleV); 5949 5950 // Gracefully handle edge cases where the instruction is not wired into any 5951 // parent block. 5952 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5953 !I->mayHaveSideEffects()) 5954 I->eraseFromParent(); 5955 } 5956 return Simplified; 5957 } 5958 5959 bool llvm::replaceAndRecursivelySimplify( 5960 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5961 const DominatorTree *DT, AssumptionCache *AC, 5962 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5963 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5964 assert(SimpleV && "Must provide a simplified value."); 5965 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5966 UnsimplifiedUsers); 5967 } 5968 5969 namespace llvm { 5970 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5971 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5972 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5973 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5974 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5975 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5976 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5977 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5978 } 5979 5980 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5981 const DataLayout &DL) { 5982 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5983 } 5984 5985 template <class T, class... TArgs> 5986 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5987 Function &F) { 5988 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5989 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5990 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5991 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5992 } 5993 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5994 Function &); 5995 } 5996