1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Simplify comparison with true or false branch of select:
141 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
142 ///  %cmp = icmp sle i32 %sel, %rhs
143 /// Compose new comparison by substituting %sel with either %tv or %fv
144 /// and see if it simplifies.
145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
146                                  Value *RHS, Value *Cond,
147                                  const SimplifyQuery &Q, unsigned MaxRecurse,
148                                  Constant *TrueOrFalse) {
149   Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
150   if (SimplifiedCmp == Cond) {
151     // %cmp simplified to the select condition (%cond).
152     return TrueOrFalse;
153   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
154     // It didn't simplify. However, if composed comparison is equivalent
155     // to the select condition (%cond) then we can replace it.
156     return TrueOrFalse;
157   }
158   return SimplifiedCmp;
159 }
160 
161 /// Simplify comparison with true branch of select
162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
163                                      Value *RHS, Value *Cond,
164                                      const SimplifyQuery &Q,
165                                      unsigned MaxRecurse) {
166   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
167                             getTrue(Cond->getType()));
168 }
169 
170 /// Simplify comparison with false branch of select
171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
172                                       Value *RHS, Value *Cond,
173                                       const SimplifyQuery &Q,
174                                       unsigned MaxRecurse) {
175   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
176                             getFalse(Cond->getType()));
177 }
178 
179 /// We know comparison with both branches of select can be simplified, but they
180 /// are not equal. This routine handles some logical simplifications.
181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
182                                                Value *Cond,
183                                                const SimplifyQuery &Q,
184                                                unsigned MaxRecurse) {
185   // If the false value simplified to false, then the result of the compare
186   // is equal to "Cond && TCmp".  This also catches the case when the false
187   // value simplified to false and the true value to true, returning "Cond".
188   if (match(FCmp, m_Zero()))
189     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
190       return V;
191   // If the true value simplified to true, then the result of the compare
192   // is equal to "Cond || FCmp".
193   if (match(TCmp, m_One()))
194     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
195       return V;
196   // Finally, if the false value simplified to true and the true value to
197   // false, then the result of the compare is equal to "!Cond".
198   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
199     if (Value *V = SimplifyXorInst(
200             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
201       return V;
202   return nullptr;
203 }
204 
205 /// Does the given value dominate the specified phi node?
206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
207   Instruction *I = dyn_cast<Instruction>(V);
208   if (!I)
209     // Arguments and constants dominate all instructions.
210     return true;
211 
212   // If we are processing instructions (and/or basic blocks) that have not been
213   // fully added to a function, the parent nodes may still be null. Simply
214   // return the conservative answer in these cases.
215   if (!I->getParent() || !P->getParent() || !I->getFunction())
216     return false;
217 
218   // If we have a DominatorTree then do a precise test.
219   if (DT)
220     return DT->dominates(I, P);
221 
222   // Otherwise, if the instruction is in the entry block and is not an invoke,
223   // then it obviously dominates all phi nodes.
224   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
225       !isa<InvokeInst>(I) && !isa<CallBrInst>(I))
226     return true;
227 
228   return false;
229 }
230 
231 /// Try to simplify a binary operator of form "V op OtherOp" where V is
232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
233 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
235                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
236                           const SimplifyQuery &Q, unsigned MaxRecurse) {
237   auto *B = dyn_cast<BinaryOperator>(V);
238   if (!B || B->getOpcode() != OpcodeToExpand)
239     return nullptr;
240   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
241   Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(),
242                            MaxRecurse);
243   if (!L)
244     return nullptr;
245   Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(),
246                            MaxRecurse);
247   if (!R)
248     return nullptr;
249 
250   // Does the expanded pair of binops simplify to the existing binop?
251   if ((L == B0 && R == B1) ||
252       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
253     ++NumExpand;
254     return B;
255   }
256 
257   // Otherwise, return "L op' R" if it simplifies.
258   Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
259   if (!S)
260     return nullptr;
261 
262   ++NumExpand;
263   return S;
264 }
265 
266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
267 /// distributing op over op'.
268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode,
269                                      Value *L, Value *R,
270                                      Instruction::BinaryOps OpcodeToExpand,
271                                      const SimplifyQuery &Q,
272                                      unsigned MaxRecurse) {
273   // Recursion is always used, so bail out at once if we already hit the limit.
274   if (!MaxRecurse--)
275     return nullptr;
276 
277   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
278     return V;
279   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
280     return V;
281   return nullptr;
282 }
283 
284 /// Generic simplifications for associative binary operations.
285 /// Returns the simpler value, or null if none was found.
286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
287                                        Value *LHS, Value *RHS,
288                                        const SimplifyQuery &Q,
289                                        unsigned MaxRecurse) {
290   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
291 
292   // Recursion is always used, so bail out at once if we already hit the limit.
293   if (!MaxRecurse--)
294     return nullptr;
295 
296   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
297   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
298 
299   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
300   if (Op0 && Op0->getOpcode() == Opcode) {
301     Value *A = Op0->getOperand(0);
302     Value *B = Op0->getOperand(1);
303     Value *C = RHS;
304 
305     // Does "B op C" simplify?
306     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
307       // It does!  Return "A op V" if it simplifies or is already available.
308       // If V equals B then "A op V" is just the LHS.
309       if (V == B) return LHS;
310       // Otherwise return "A op V" if it simplifies.
311       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
312         ++NumReassoc;
313         return W;
314       }
315     }
316   }
317 
318   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
319   if (Op1 && Op1->getOpcode() == Opcode) {
320     Value *A = LHS;
321     Value *B = Op1->getOperand(0);
322     Value *C = Op1->getOperand(1);
323 
324     // Does "A op B" simplify?
325     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
326       // It does!  Return "V op C" if it simplifies or is already available.
327       // If V equals B then "V op C" is just the RHS.
328       if (V == B) return RHS;
329       // Otherwise return "V op C" if it simplifies.
330       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
331         ++NumReassoc;
332         return W;
333       }
334     }
335   }
336 
337   // The remaining transforms require commutativity as well as associativity.
338   if (!Instruction::isCommutative(Opcode))
339     return nullptr;
340 
341   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
342   if (Op0 && Op0->getOpcode() == Opcode) {
343     Value *A = Op0->getOperand(0);
344     Value *B = Op0->getOperand(1);
345     Value *C = RHS;
346 
347     // Does "C op A" simplify?
348     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
349       // It does!  Return "V op B" if it simplifies or is already available.
350       // If V equals A then "V op B" is just the LHS.
351       if (V == A) return LHS;
352       // Otherwise return "V op B" if it simplifies.
353       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
354         ++NumReassoc;
355         return W;
356       }
357     }
358   }
359 
360   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
361   if (Op1 && Op1->getOpcode() == Opcode) {
362     Value *A = LHS;
363     Value *B = Op1->getOperand(0);
364     Value *C = Op1->getOperand(1);
365 
366     // Does "C op A" simplify?
367     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
368       // It does!  Return "B op V" if it simplifies or is already available.
369       // If V equals C then "B op V" is just the RHS.
370       if (V == C) return RHS;
371       // Otherwise return "B op V" if it simplifies.
372       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
373         ++NumReassoc;
374         return W;
375       }
376     }
377   }
378 
379   return nullptr;
380 }
381 
382 /// In the case of a binary operation with a select instruction as an operand,
383 /// try to simplify the binop by seeing whether evaluating it on both branches
384 /// of the select results in the same value. Returns the common value if so,
385 /// otherwise returns null.
386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
387                                     Value *RHS, const SimplifyQuery &Q,
388                                     unsigned MaxRecurse) {
389   // Recursion is always used, so bail out at once if we already hit the limit.
390   if (!MaxRecurse--)
391     return nullptr;
392 
393   SelectInst *SI;
394   if (isa<SelectInst>(LHS)) {
395     SI = cast<SelectInst>(LHS);
396   } else {
397     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
398     SI = cast<SelectInst>(RHS);
399   }
400 
401   // Evaluate the BinOp on the true and false branches of the select.
402   Value *TV;
403   Value *FV;
404   if (SI == LHS) {
405     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
406     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
407   } else {
408     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
409     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
410   }
411 
412   // If they simplified to the same value, then return the common value.
413   // If they both failed to simplify then return null.
414   if (TV == FV)
415     return TV;
416 
417   // If one branch simplified to undef, return the other one.
418   if (TV && Q.isUndefValue(TV))
419     return FV;
420   if (FV && Q.isUndefValue(FV))
421     return TV;
422 
423   // If applying the operation did not change the true and false select values,
424   // then the result of the binop is the select itself.
425   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
426     return SI;
427 
428   // If one branch simplified and the other did not, and the simplified
429   // value is equal to the unsimplified one, return the simplified value.
430   // For example, select (cond, X, X & Z) & Z -> X & Z.
431   if ((FV && !TV) || (TV && !FV)) {
432     // Check that the simplified value has the form "X op Y" where "op" is the
433     // same as the original operation.
434     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
435     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
436       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
437       // We already know that "op" is the same as for the simplified value.  See
438       // if the operands match too.  If so, return the simplified value.
439       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
440       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
441       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
442       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
443           Simplified->getOperand(1) == UnsimplifiedRHS)
444         return Simplified;
445       if (Simplified->isCommutative() &&
446           Simplified->getOperand(1) == UnsimplifiedLHS &&
447           Simplified->getOperand(0) == UnsimplifiedRHS)
448         return Simplified;
449     }
450   }
451 
452   return nullptr;
453 }
454 
455 /// In the case of a comparison with a select instruction, try to simplify the
456 /// comparison by seeing whether both branches of the select result in the same
457 /// value. Returns the common value if so, otherwise returns null.
458 /// For example, if we have:
459 ///  %tmp = select i1 %cmp, i32 1, i32 2
460 ///  %cmp1 = icmp sle i32 %tmp, 3
461 /// We can simplify %cmp1 to true, because both branches of select are
462 /// less than 3. We compose new comparison by substituting %tmp with both
463 /// branches of select and see if it can be simplified.
464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
465                                   Value *RHS, const SimplifyQuery &Q,
466                                   unsigned MaxRecurse) {
467   // Recursion is always used, so bail out at once if we already hit the limit.
468   if (!MaxRecurse--)
469     return nullptr;
470 
471   // Make sure the select is on the LHS.
472   if (!isa<SelectInst>(LHS)) {
473     std::swap(LHS, RHS);
474     Pred = CmpInst::getSwappedPredicate(Pred);
475   }
476   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
477   SelectInst *SI = cast<SelectInst>(LHS);
478   Value *Cond = SI->getCondition();
479   Value *TV = SI->getTrueValue();
480   Value *FV = SI->getFalseValue();
481 
482   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
483   // Does "cmp TV, RHS" simplify?
484   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
485   if (!TCmp)
486     return nullptr;
487 
488   // Does "cmp FV, RHS" simplify?
489   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
490   if (!FCmp)
491     return nullptr;
492 
493   // If both sides simplified to the same value, then use it as the result of
494   // the original comparison.
495   if (TCmp == FCmp)
496     return TCmp;
497 
498   // The remaining cases only make sense if the select condition has the same
499   // type as the result of the comparison, so bail out if this is not so.
500   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
501     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
502 
503   return nullptr;
504 }
505 
506 /// In the case of a binary operation with an operand that is a PHI instruction,
507 /// try to simplify the binop by seeing whether evaluating it on the incoming
508 /// phi values yields the same result for every value. If so returns the common
509 /// value, otherwise returns null.
510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
511                                  Value *RHS, const SimplifyQuery &Q,
512                                  unsigned MaxRecurse) {
513   // Recursion is always used, so bail out at once if we already hit the limit.
514   if (!MaxRecurse--)
515     return nullptr;
516 
517   PHINode *PI;
518   if (isa<PHINode>(LHS)) {
519     PI = cast<PHINode>(LHS);
520     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
521     if (!valueDominatesPHI(RHS, PI, Q.DT))
522       return nullptr;
523   } else {
524     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
525     PI = cast<PHINode>(RHS);
526     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
527     if (!valueDominatesPHI(LHS, PI, Q.DT))
528       return nullptr;
529   }
530 
531   // Evaluate the BinOp on the incoming phi values.
532   Value *CommonValue = nullptr;
533   for (Value *Incoming : PI->incoming_values()) {
534     // If the incoming value is the phi node itself, it can safely be skipped.
535     if (Incoming == PI) continue;
536     Value *V = PI == LHS ?
537       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
538       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
539     // If the operation failed to simplify, or simplified to a different value
540     // to previously, then give up.
541     if (!V || (CommonValue && V != CommonValue))
542       return nullptr;
543     CommonValue = V;
544   }
545 
546   return CommonValue;
547 }
548 
549 /// In the case of a comparison with a PHI instruction, try to simplify the
550 /// comparison by seeing whether comparing with all of the incoming phi values
551 /// yields the same result every time. If so returns the common result,
552 /// otherwise returns null.
553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
554                                const SimplifyQuery &Q, unsigned MaxRecurse) {
555   // Recursion is always used, so bail out at once if we already hit the limit.
556   if (!MaxRecurse--)
557     return nullptr;
558 
559   // Make sure the phi is on the LHS.
560   if (!isa<PHINode>(LHS)) {
561     std::swap(LHS, RHS);
562     Pred = CmpInst::getSwappedPredicate(Pred);
563   }
564   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
565   PHINode *PI = cast<PHINode>(LHS);
566 
567   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
568   if (!valueDominatesPHI(RHS, PI, Q.DT))
569     return nullptr;
570 
571   // Evaluate the BinOp on the incoming phi values.
572   Value *CommonValue = nullptr;
573   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
574     Value *Incoming = PI->getIncomingValue(u);
575     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
576     // If the incoming value is the phi node itself, it can safely be skipped.
577     if (Incoming == PI) continue;
578     // Change the context instruction to the "edge" that flows into the phi.
579     // This is important because that is where incoming is actually "evaluated"
580     // even though it is used later somewhere else.
581     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
582                                MaxRecurse);
583     // If the operation failed to simplify, or simplified to a different value
584     // to previously, then give up.
585     if (!V || (CommonValue && V != CommonValue))
586       return nullptr;
587     CommonValue = V;
588   }
589 
590   return CommonValue;
591 }
592 
593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
594                                        Value *&Op0, Value *&Op1,
595                                        const SimplifyQuery &Q) {
596   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
597     if (auto *CRHS = dyn_cast<Constant>(Op1))
598       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
599 
600     // Canonicalize the constant to the RHS if this is a commutative operation.
601     if (Instruction::isCommutative(Opcode))
602       std::swap(Op0, Op1);
603   }
604   return nullptr;
605 }
606 
607 /// Given operands for an Add, see if we can fold the result.
608 /// If not, this returns null.
609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
610                               const SimplifyQuery &Q, unsigned MaxRecurse) {
611   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
612     return C;
613 
614   // X + undef -> undef
615   if (Q.isUndefValue(Op1))
616     return Op1;
617 
618   // X + 0 -> X
619   if (match(Op1, m_Zero()))
620     return Op0;
621 
622   // If two operands are negative, return 0.
623   if (isKnownNegation(Op0, Op1))
624     return Constant::getNullValue(Op0->getType());
625 
626   // X + (Y - X) -> Y
627   // (Y - X) + X -> Y
628   // Eg: X + -X -> 0
629   Value *Y = nullptr;
630   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
631       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
632     return Y;
633 
634   // X + ~X -> -1   since   ~X = -X-1
635   Type *Ty = Op0->getType();
636   if (match(Op0, m_Not(m_Specific(Op1))) ||
637       match(Op1, m_Not(m_Specific(Op0))))
638     return Constant::getAllOnesValue(Ty);
639 
640   // add nsw/nuw (xor Y, signmask), signmask --> Y
641   // The no-wrapping add guarantees that the top bit will be set by the add.
642   // Therefore, the xor must be clearing the already set sign bit of Y.
643   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
644       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
645     return Y;
646 
647   // add nuw %x, -1  ->  -1, because %x can only be 0.
648   if (IsNUW && match(Op1, m_AllOnes()))
649     return Op1; // Which is -1.
650 
651   /// i1 add -> xor.
652   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
653     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
654       return V;
655 
656   // Try some generic simplifications for associative operations.
657   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
658                                           MaxRecurse))
659     return V;
660 
661   // Threading Add over selects and phi nodes is pointless, so don't bother.
662   // Threading over the select in "A + select(cond, B, C)" means evaluating
663   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
664   // only if B and C are equal.  If B and C are equal then (since we assume
665   // that operands have already been simplified) "select(cond, B, C)" should
666   // have been simplified to the common value of B and C already.  Analysing
667   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
668   // for threading over phi nodes.
669 
670   return nullptr;
671 }
672 
673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
674                              const SimplifyQuery &Query) {
675   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
676 }
677 
678 /// Compute the base pointer and cumulative constant offsets for V.
679 ///
680 /// This strips all constant offsets off of V, leaving it the base pointer, and
681 /// accumulates the total constant offset applied in the returned constant. It
682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
683 /// no constant offsets applied.
684 ///
685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
687 /// folding.
688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
689                                                 bool AllowNonInbounds = false) {
690   assert(V->getType()->isPtrOrPtrVectorTy());
691 
692   Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
693   APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth());
694 
695   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
696   // As that strip may trace through `addrspacecast`, need to sext or trunc
697   // the offset calculated.
698   IntIdxTy = DL.getIndexType(V->getType())->getScalarType();
699   Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth());
700 
701   Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset);
702   if (VectorType *VecTy = dyn_cast<VectorType>(V->getType()))
703     return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr);
704   return OffsetIntPtr;
705 }
706 
707 /// Compute the constant difference between two pointer values.
708 /// If the difference is not a constant, returns zero.
709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
710                                           Value *RHS) {
711   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
712   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
713 
714   // If LHS and RHS are not related via constant offsets to the same base
715   // value, there is nothing we can do here.
716   if (LHS != RHS)
717     return nullptr;
718 
719   // Otherwise, the difference of LHS - RHS can be computed as:
720   //    LHS - RHS
721   //  = (LHSOffset + Base) - (RHSOffset + Base)
722   //  = LHSOffset - RHSOffset
723   return ConstantExpr::getSub(LHSOffset, RHSOffset);
724 }
725 
726 /// Given operands for a Sub, see if we can fold the result.
727 /// If not, this returns null.
728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
729                               const SimplifyQuery &Q, unsigned MaxRecurse) {
730   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
731     return C;
732 
733   // X - undef -> undef
734   // undef - X -> undef
735   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
736     return UndefValue::get(Op0->getType());
737 
738   // X - 0 -> X
739   if (match(Op1, m_Zero()))
740     return Op0;
741 
742   // X - X -> 0
743   if (Op0 == Op1)
744     return Constant::getNullValue(Op0->getType());
745 
746   // Is this a negation?
747   if (match(Op0, m_Zero())) {
748     // 0 - X -> 0 if the sub is NUW.
749     if (isNUW)
750       return Constant::getNullValue(Op0->getType());
751 
752     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
753     if (Known.Zero.isMaxSignedValue()) {
754       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
755       // Op1 must be 0 because negating the minimum signed value is undefined.
756       if (isNSW)
757         return Constant::getNullValue(Op0->getType());
758 
759       // 0 - X -> X if X is 0 or the minimum signed value.
760       return Op1;
761     }
762   }
763 
764   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
765   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
766   Value *X = nullptr, *Y = nullptr, *Z = Op1;
767   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
768     // See if "V === Y - Z" simplifies.
769     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
770       // It does!  Now see if "X + V" simplifies.
771       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
772         // It does, we successfully reassociated!
773         ++NumReassoc;
774         return W;
775       }
776     // See if "V === X - Z" simplifies.
777     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
778       // It does!  Now see if "Y + V" simplifies.
779       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
780         // It does, we successfully reassociated!
781         ++NumReassoc;
782         return W;
783       }
784   }
785 
786   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
787   // For example, X - (X + 1) -> -1
788   X = Op0;
789   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
790     // See if "V === X - Y" simplifies.
791     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
792       // It does!  Now see if "V - Z" simplifies.
793       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
794         // It does, we successfully reassociated!
795         ++NumReassoc;
796         return W;
797       }
798     // See if "V === X - Z" simplifies.
799     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
800       // It does!  Now see if "V - Y" simplifies.
801       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
802         // It does, we successfully reassociated!
803         ++NumReassoc;
804         return W;
805       }
806   }
807 
808   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
809   // For example, X - (X - Y) -> Y.
810   Z = Op0;
811   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
812     // See if "V === Z - X" simplifies.
813     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
814       // It does!  Now see if "V + Y" simplifies.
815       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
816         // It does, we successfully reassociated!
817         ++NumReassoc;
818         return W;
819       }
820 
821   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
822   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
823       match(Op1, m_Trunc(m_Value(Y))))
824     if (X->getType() == Y->getType())
825       // See if "V === X - Y" simplifies.
826       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
827         // It does!  Now see if "trunc V" simplifies.
828         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
829                                         Q, MaxRecurse - 1))
830           // It does, return the simplified "trunc V".
831           return W;
832 
833   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
834   if (match(Op0, m_PtrToInt(m_Value(X))) &&
835       match(Op1, m_PtrToInt(m_Value(Y))))
836     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
837       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
838 
839   // i1 sub -> xor.
840   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
841     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
842       return V;
843 
844   // Threading Sub over selects and phi nodes is pointless, so don't bother.
845   // Threading over the select in "A - select(cond, B, C)" means evaluating
846   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
847   // only if B and C are equal.  If B and C are equal then (since we assume
848   // that operands have already been simplified) "select(cond, B, C)" should
849   // have been simplified to the common value of B and C already.  Analysing
850   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
851   // for threading over phi nodes.
852 
853   return nullptr;
854 }
855 
856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
857                              const SimplifyQuery &Q) {
858   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
859 }
860 
861 /// Given operands for a Mul, see if we can fold the result.
862 /// If not, this returns null.
863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
864                               unsigned MaxRecurse) {
865   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
866     return C;
867 
868   // X * undef -> 0
869   // X * 0 -> 0
870   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
871     return Constant::getNullValue(Op0->getType());
872 
873   // X * 1 -> X
874   if (match(Op1, m_One()))
875     return Op0;
876 
877   // (X / Y) * Y -> X if the division is exact.
878   Value *X = nullptr;
879   if (Q.IIQ.UseInstrInfo &&
880       (match(Op0,
881              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
882        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
883     return X;
884 
885   // i1 mul -> and.
886   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
887     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
888       return V;
889 
890   // Try some generic simplifications for associative operations.
891   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
892                                           MaxRecurse))
893     return V;
894 
895   // Mul distributes over Add. Try some generic simplifications based on this.
896   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
897                                         Instruction::Add, Q, MaxRecurse))
898     return V;
899 
900   // If the operation is with the result of a select instruction, check whether
901   // operating on either branch of the select always yields the same value.
902   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
903     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
904                                          MaxRecurse))
905       return V;
906 
907   // If the operation is with the result of a phi instruction, check whether
908   // operating on all incoming values of the phi always yields the same value.
909   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
910     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
911                                       MaxRecurse))
912       return V;
913 
914   return nullptr;
915 }
916 
917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
918   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
919 }
920 
921 /// Check for common or similar folds of integer division or integer remainder.
922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv,
924                              const SimplifyQuery &Q) {
925   Type *Ty = Op0->getType();
926 
927   // X / undef -> poison
928   // X % undef -> poison
929   if (Q.isUndefValue(Op1))
930     return PoisonValue::get(Ty);
931 
932   // X / 0 -> poison
933   // X % 0 -> poison
934   // We don't need to preserve faults!
935   if (match(Op1, m_Zero()))
936     return PoisonValue::get(Ty);
937 
938   // If any element of a constant divisor fixed width vector is zero or undef
939   // the behavior is undefined and we can fold the whole op to poison.
940   auto *Op1C = dyn_cast<Constant>(Op1);
941   auto *VTy = dyn_cast<FixedVectorType>(Ty);
942   if (Op1C && VTy) {
943     unsigned NumElts = VTy->getNumElements();
944     for (unsigned i = 0; i != NumElts; ++i) {
945       Constant *Elt = Op1C->getAggregateElement(i);
946       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
947         return PoisonValue::get(Ty);
948     }
949   }
950 
951   // undef / X -> 0
952   // undef % X -> 0
953   if (Q.isUndefValue(Op0))
954     return Constant::getNullValue(Ty);
955 
956   // 0 / X -> 0
957   // 0 % X -> 0
958   if (match(Op0, m_Zero()))
959     return Constant::getNullValue(Op0->getType());
960 
961   // X / X -> 1
962   // X % X -> 0
963   if (Op0 == Op1)
964     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
965 
966   // X / 1 -> X
967   // X % 1 -> 0
968   // If this is a boolean op (single-bit element type), we can't have
969   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
970   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
971   Value *X;
972   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
973       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
974     return IsDiv ? Op0 : Constant::getNullValue(Ty);
975 
976   return nullptr;
977 }
978 
979 /// Given a predicate and two operands, return true if the comparison is true.
980 /// This is a helper for div/rem simplification where we return some other value
981 /// when we can prove a relationship between the operands.
982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
983                        const SimplifyQuery &Q, unsigned MaxRecurse) {
984   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
985   Constant *C = dyn_cast_or_null<Constant>(V);
986   return (C && C->isAllOnesValue());
987 }
988 
989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
990 /// to simplify X % Y to X.
991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
992                       unsigned MaxRecurse, bool IsSigned) {
993   // Recursion is always used, so bail out at once if we already hit the limit.
994   if (!MaxRecurse--)
995     return false;
996 
997   if (IsSigned) {
998     // |X| / |Y| --> 0
999     //
1000     // We require that 1 operand is a simple constant. That could be extended to
1001     // 2 variables if we computed the sign bit for each.
1002     //
1003     // Make sure that a constant is not the minimum signed value because taking
1004     // the abs() of that is undefined.
1005     Type *Ty = X->getType();
1006     const APInt *C;
1007     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1008       // Is the variable divisor magnitude always greater than the constant
1009       // dividend magnitude?
1010       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1011       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1012       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1013       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1014           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1015         return true;
1016     }
1017     if (match(Y, m_APInt(C))) {
1018       // Special-case: we can't take the abs() of a minimum signed value. If
1019       // that's the divisor, then all we have to do is prove that the dividend
1020       // is also not the minimum signed value.
1021       if (C->isMinSignedValue())
1022         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1023 
1024       // Is the variable dividend magnitude always less than the constant
1025       // divisor magnitude?
1026       // |X| < |C| --> X > -abs(C) and X < abs(C)
1027       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1028       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1029       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1030           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1031         return true;
1032     }
1033     return false;
1034   }
1035 
1036   // IsSigned == false.
1037   // Is the dividend unsigned less than the divisor?
1038   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1039 }
1040 
1041 /// These are simplifications common to SDiv and UDiv.
1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1043                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1044   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1045     return C;
1046 
1047   if (Value *V = simplifyDivRem(Op0, Op1, true, Q))
1048     return V;
1049 
1050   bool IsSigned = Opcode == Instruction::SDiv;
1051 
1052   // (X * Y) / Y -> X if the multiplication does not overflow.
1053   Value *X;
1054   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1055     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1056     // If the Mul does not overflow, then we are good to go.
1057     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1058         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1059       return X;
1060     // If X has the form X = A / Y, then X * Y cannot overflow.
1061     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1062         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1063       return X;
1064   }
1065 
1066   // (X rem Y) / Y -> 0
1067   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1068       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1069     return Constant::getNullValue(Op0->getType());
1070 
1071   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1072   ConstantInt *C1, *C2;
1073   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1074       match(Op1, m_ConstantInt(C2))) {
1075     bool Overflow;
1076     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1077     if (Overflow)
1078       return Constant::getNullValue(Op0->getType());
1079   }
1080 
1081   // If the operation is with the result of a select instruction, check whether
1082   // operating on either branch of the select always yields the same value.
1083   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1084     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1085       return V;
1086 
1087   // If the operation is with the result of a phi instruction, check whether
1088   // operating on all incoming values of the phi always yields the same value.
1089   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1090     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1091       return V;
1092 
1093   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1094     return Constant::getNullValue(Op0->getType());
1095 
1096   return nullptr;
1097 }
1098 
1099 /// These are simplifications common to SRem and URem.
1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1101                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1102   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1103     return C;
1104 
1105   if (Value *V = simplifyDivRem(Op0, Op1, false, Q))
1106     return V;
1107 
1108   // (X % Y) % Y -> X % Y
1109   if ((Opcode == Instruction::SRem &&
1110        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1111       (Opcode == Instruction::URem &&
1112        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1113     return Op0;
1114 
1115   // (X << Y) % X -> 0
1116   if (Q.IIQ.UseInstrInfo &&
1117       ((Opcode == Instruction::SRem &&
1118         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1119        (Opcode == Instruction::URem &&
1120         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1121     return Constant::getNullValue(Op0->getType());
1122 
1123   // If the operation is with the result of a select instruction, check whether
1124   // operating on either branch of the select always yields the same value.
1125   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1126     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1127       return V;
1128 
1129   // If the operation is with the result of a phi instruction, check whether
1130   // operating on all incoming values of the phi always yields the same value.
1131   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1132     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1133       return V;
1134 
1135   // If X / Y == 0, then X % Y == X.
1136   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1137     return Op0;
1138 
1139   return nullptr;
1140 }
1141 
1142 /// Given operands for an SDiv, see if we can fold the result.
1143 /// If not, this returns null.
1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1145                                unsigned MaxRecurse) {
1146   // If two operands are negated and no signed overflow, return -1.
1147   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1148     return Constant::getAllOnesValue(Op0->getType());
1149 
1150   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1151 }
1152 
1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1154   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1155 }
1156 
1157 /// Given operands for a UDiv, see if we can fold the result.
1158 /// If not, this returns null.
1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1160                                unsigned MaxRecurse) {
1161   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1162 }
1163 
1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1165   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1166 }
1167 
1168 /// Given operands for an SRem, see if we can fold the result.
1169 /// If not, this returns null.
1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1171                                unsigned MaxRecurse) {
1172   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1173   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1174   Value *X;
1175   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1176     return ConstantInt::getNullValue(Op0->getType());
1177 
1178   // If the two operands are negated, return 0.
1179   if (isKnownNegation(Op0, Op1))
1180     return ConstantInt::getNullValue(Op0->getType());
1181 
1182   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1183 }
1184 
1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1186   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1187 }
1188 
1189 /// Given operands for a URem, see if we can fold the result.
1190 /// If not, this returns null.
1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1192                                unsigned MaxRecurse) {
1193   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1194 }
1195 
1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1197   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1198 }
1199 
1200 /// Returns true if a shift by \c Amount always yields undef.
1201 static bool isUndefShift(Value *Amount, const SimplifyQuery &Q) {
1202   Constant *C = dyn_cast<Constant>(Amount);
1203   if (!C)
1204     return false;
1205 
1206   // X shift by undef -> undef because it may shift by the bitwidth.
1207   if (Q.isUndefValue(C))
1208     return true;
1209 
1210   // Shifting by the bitwidth or more is undefined.
1211   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1212     if (CI->getValue().getLimitedValue() >=
1213         CI->getType()->getScalarSizeInBits())
1214       return true;
1215 
1216   // If all lanes of a vector shift are undefined the whole shift is.
1217   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1218     for (unsigned I = 0,
1219                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1220          I != E; ++I)
1221       if (!isUndefShift(C->getAggregateElement(I), Q))
1222         return false;
1223     return true;
1224   }
1225 
1226   return false;
1227 }
1228 
1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1230 /// If not, this returns null.
1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1232                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1233   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1234     return C;
1235 
1236   // 0 shift by X -> 0
1237   if (match(Op0, m_Zero()))
1238     return Constant::getNullValue(Op0->getType());
1239 
1240   // X shift by 0 -> X
1241   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1242   // would be poison.
1243   Value *X;
1244   if (match(Op1, m_Zero()) ||
1245       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1246     return Op0;
1247 
1248   // Fold undefined shifts.
1249   if (isUndefShift(Op1, Q))
1250     return UndefValue::get(Op0->getType());
1251 
1252   // If the operation is with the result of a select instruction, check whether
1253   // operating on either branch of the select always yields the same value.
1254   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1255     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1256       return V;
1257 
1258   // If the operation is with the result of a phi instruction, check whether
1259   // operating on all incoming values of the phi always yields the same value.
1260   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1261     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1262       return V;
1263 
1264   // If any bits in the shift amount make that value greater than or equal to
1265   // the number of bits in the type, the shift is undefined.
1266   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1267   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1268     return UndefValue::get(Op0->getType());
1269 
1270   // If all valid bits in the shift amount are known zero, the first operand is
1271   // unchanged.
1272   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1273   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1274     return Op0;
1275 
1276   return nullptr;
1277 }
1278 
1279 /// Given operands for an Shl, LShr or AShr, see if we can
1280 /// fold the result.  If not, this returns null.
1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1282                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1283                                  unsigned MaxRecurse) {
1284   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1285     return V;
1286 
1287   // X >> X -> 0
1288   if (Op0 == Op1)
1289     return Constant::getNullValue(Op0->getType());
1290 
1291   // undef >> X -> 0
1292   // undef >> X -> undef (if it's exact)
1293   if (Q.isUndefValue(Op0))
1294     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1295 
1296   // The low bit cannot be shifted out of an exact shift if it is set.
1297   if (isExact) {
1298     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1299     if (Op0Known.One[0])
1300       return Op0;
1301   }
1302 
1303   return nullptr;
1304 }
1305 
1306 /// Given operands for an Shl, see if we can fold the result.
1307 /// If not, this returns null.
1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1309                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1310   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1311     return V;
1312 
1313   // undef << X -> 0
1314   // undef << X -> undef if (if it's NSW/NUW)
1315   if (Q.isUndefValue(Op0))
1316     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1317 
1318   // (X >> A) << A -> X
1319   Value *X;
1320   if (Q.IIQ.UseInstrInfo &&
1321       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1322     return X;
1323 
1324   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1325   if (isNUW && match(Op0, m_Negative()))
1326     return Op0;
1327   // NOTE: could use computeKnownBits() / LazyValueInfo,
1328   // but the cost-benefit analysis suggests it isn't worth it.
1329 
1330   return nullptr;
1331 }
1332 
1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1334                              const SimplifyQuery &Q) {
1335   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1336 }
1337 
1338 /// Given operands for an LShr, see if we can fold the result.
1339 /// If not, this returns null.
1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1341                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1342   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1343                                     MaxRecurse))
1344       return V;
1345 
1346   // (X << A) >> A -> X
1347   Value *X;
1348   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1349     return X;
1350 
1351   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1352   // We can return X as we do in the above case since OR alters no bits in X.
1353   // SimplifyDemandedBits in InstCombine can do more general optimization for
1354   // bit manipulation. This pattern aims to provide opportunities for other
1355   // optimizers by supporting a simple but common case in InstSimplify.
1356   Value *Y;
1357   const APInt *ShRAmt, *ShLAmt;
1358   if (match(Op1, m_APInt(ShRAmt)) &&
1359       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1360       *ShRAmt == *ShLAmt) {
1361     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1362     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1363     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1364     if (ShRAmt->uge(EffWidthY))
1365       return X;
1366   }
1367 
1368   return nullptr;
1369 }
1370 
1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1372                               const SimplifyQuery &Q) {
1373   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1374 }
1375 
1376 /// Given operands for an AShr, see if we can fold the result.
1377 /// If not, this returns null.
1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1379                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1380   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1381                                     MaxRecurse))
1382     return V;
1383 
1384   // all ones >>a X -> -1
1385   // Do not return Op0 because it may contain undef elements if it's a vector.
1386   if (match(Op0, m_AllOnes()))
1387     return Constant::getAllOnesValue(Op0->getType());
1388 
1389   // (X << A) >> A -> X
1390   Value *X;
1391   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1392     return X;
1393 
1394   // Arithmetic shifting an all-sign-bit value is a no-op.
1395   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1396   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1397     return Op0;
1398 
1399   return nullptr;
1400 }
1401 
1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1403                               const SimplifyQuery &Q) {
1404   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1405 }
1406 
1407 /// Commuted variants are assumed to be handled by calling this function again
1408 /// with the parameters swapped.
1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1410                                          ICmpInst *UnsignedICmp, bool IsAnd,
1411                                          const SimplifyQuery &Q) {
1412   Value *X, *Y;
1413 
1414   ICmpInst::Predicate EqPred;
1415   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1416       !ICmpInst::isEquality(EqPred))
1417     return nullptr;
1418 
1419   ICmpInst::Predicate UnsignedPred;
1420 
1421   Value *A, *B;
1422   // Y = (A - B);
1423   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1424     if (match(UnsignedICmp,
1425               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1426         ICmpInst::isUnsigned(UnsignedPred)) {
1427       // A >=/<= B || (A - B) != 0  <-->  true
1428       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1429            UnsignedPred == ICmpInst::ICMP_ULE) &&
1430           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1431         return ConstantInt::getTrue(UnsignedICmp->getType());
1432       // A </> B && (A - B) == 0  <-->  false
1433       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1434            UnsignedPred == ICmpInst::ICMP_UGT) &&
1435           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1436         return ConstantInt::getFalse(UnsignedICmp->getType());
1437 
1438       // A </> B && (A - B) != 0  <-->  A </> B
1439       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1440       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1441                                           UnsignedPred == ICmpInst::ICMP_UGT))
1442         return IsAnd ? UnsignedICmp : ZeroICmp;
1443 
1444       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1445       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1446       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1447                                           UnsignedPred == ICmpInst::ICMP_UGE))
1448         return IsAnd ? ZeroICmp : UnsignedICmp;
1449     }
1450 
1451     // Given  Y = (A - B)
1452     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1453     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1454     if (match(UnsignedICmp,
1455               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1456       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1457           EqPred == ICmpInst::ICMP_NE &&
1458           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1459         return UnsignedICmp;
1460       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1461           EqPred == ICmpInst::ICMP_EQ &&
1462           isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1463         return UnsignedICmp;
1464     }
1465   }
1466 
1467   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1468       ICmpInst::isUnsigned(UnsignedPred))
1469     ;
1470   else if (match(UnsignedICmp,
1471                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1472            ICmpInst::isUnsigned(UnsignedPred))
1473     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1474   else
1475     return nullptr;
1476 
1477   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1478   // X > Y || Y == 0  -->  X > Y   iff X != 0
1479   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1480       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1481     return IsAnd ? ZeroICmp : UnsignedICmp;
1482 
1483   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1484   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1485   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1486       isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
1487     return IsAnd ? UnsignedICmp : ZeroICmp;
1488 
1489   // The transforms below here are expected to be handled more generally with
1490   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1491   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1492   // these are candidates for removal.
1493 
1494   // X < Y && Y != 0  -->  X < Y
1495   // X < Y || Y != 0  -->  Y != 0
1496   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1497     return IsAnd ? UnsignedICmp : ZeroICmp;
1498 
1499   // X >= Y && Y == 0  -->  Y == 0
1500   // X >= Y || Y == 0  -->  X >= Y
1501   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1502     return IsAnd ? ZeroICmp : UnsignedICmp;
1503 
1504   // X < Y && Y == 0  -->  false
1505   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1506       IsAnd)
1507     return getFalse(UnsignedICmp->getType());
1508 
1509   // X >= Y || Y != 0  -->  true
1510   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1511       !IsAnd)
1512     return getTrue(UnsignedICmp->getType());
1513 
1514   return nullptr;
1515 }
1516 
1517 /// Commuted variants are assumed to be handled by calling this function again
1518 /// with the parameters swapped.
1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1520   ICmpInst::Predicate Pred0, Pred1;
1521   Value *A ,*B;
1522   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1523       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1524     return nullptr;
1525 
1526   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1527   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1528   // can eliminate Op1 from this 'and'.
1529   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1530     return Op0;
1531 
1532   // Check for any combination of predicates that are guaranteed to be disjoint.
1533   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1534       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1535       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1536       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1537     return getFalse(Op0->getType());
1538 
1539   return nullptr;
1540 }
1541 
1542 /// Commuted variants are assumed to be handled by calling this function again
1543 /// with the parameters swapped.
1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1545   ICmpInst::Predicate Pred0, Pred1;
1546   Value *A ,*B;
1547   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1548       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1549     return nullptr;
1550 
1551   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1552   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1553   // can eliminate Op0 from this 'or'.
1554   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1555     return Op1;
1556 
1557   // Check for any combination of predicates that cover the entire range of
1558   // possibilities.
1559   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1560       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1561       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1562       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1563     return getTrue(Op0->getType());
1564 
1565   return nullptr;
1566 }
1567 
1568 /// Test if a pair of compares with a shared operand and 2 constants has an
1569 /// empty set intersection, full set union, or if one compare is a superset of
1570 /// the other.
1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1572                                                 bool IsAnd) {
1573   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1574   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1575     return nullptr;
1576 
1577   const APInt *C0, *C1;
1578   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1579       !match(Cmp1->getOperand(1), m_APInt(C1)))
1580     return nullptr;
1581 
1582   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1583   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1584 
1585   // For and-of-compares, check if the intersection is empty:
1586   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1587   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1588     return getFalse(Cmp0->getType());
1589 
1590   // For or-of-compares, check if the union is full:
1591   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1592   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1593     return getTrue(Cmp0->getType());
1594 
1595   // Is one range a superset of the other?
1596   // If this is and-of-compares, take the smaller set:
1597   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1598   // If this is or-of-compares, take the larger set:
1599   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1600   if (Range0.contains(Range1))
1601     return IsAnd ? Cmp1 : Cmp0;
1602   if (Range1.contains(Range0))
1603     return IsAnd ? Cmp0 : Cmp1;
1604 
1605   return nullptr;
1606 }
1607 
1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1609                                            bool IsAnd) {
1610   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1611   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1612       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1613     return nullptr;
1614 
1615   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1616     return nullptr;
1617 
1618   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1619   Value *X = Cmp0->getOperand(0);
1620   Value *Y = Cmp1->getOperand(0);
1621 
1622   // If one of the compares is a masked version of a (not) null check, then
1623   // that compare implies the other, so we eliminate the other. Optionally, look
1624   // through a pointer-to-int cast to match a null check of a pointer type.
1625 
1626   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1627   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1628   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1629   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1630   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1631       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1632     return Cmp1;
1633 
1634   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1635   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1636   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1637   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1638   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1639       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1640     return Cmp0;
1641 
1642   return nullptr;
1643 }
1644 
1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1646                                         const InstrInfoQuery &IIQ) {
1647   // (icmp (add V, C0), C1) & (icmp V, C0)
1648   ICmpInst::Predicate Pred0, Pred1;
1649   const APInt *C0, *C1;
1650   Value *V;
1651   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1652     return nullptr;
1653 
1654   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1655     return nullptr;
1656 
1657   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1658   if (AddInst->getOperand(1) != Op1->getOperand(1))
1659     return nullptr;
1660 
1661   Type *ITy = Op0->getType();
1662   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1663   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1664 
1665   const APInt Delta = *C1 - *C0;
1666   if (C0->isStrictlyPositive()) {
1667     if (Delta == 2) {
1668       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1669         return getFalse(ITy);
1670       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1671         return getFalse(ITy);
1672     }
1673     if (Delta == 1) {
1674       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1675         return getFalse(ITy);
1676       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1677         return getFalse(ITy);
1678     }
1679   }
1680   if (C0->getBoolValue() && isNUW) {
1681     if (Delta == 2)
1682       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1683         return getFalse(ITy);
1684     if (Delta == 1)
1685       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1686         return getFalse(ITy);
1687   }
1688 
1689   return nullptr;
1690 }
1691 
1692 /// Try to eliminate compares with signed or unsigned min/max constants.
1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1,
1694                                                  bool IsAnd) {
1695   // Canonicalize an equality compare as Cmp0.
1696   if (Cmp1->isEquality())
1697     std::swap(Cmp0, Cmp1);
1698   if (!Cmp0->isEquality())
1699     return nullptr;
1700 
1701   // The non-equality compare must include a common operand (X). Canonicalize
1702   // the common operand as operand 0 (the predicate is swapped if the common
1703   // operand was operand 1).
1704   ICmpInst::Predicate Pred0 = Cmp0->getPredicate();
1705   Value *X = Cmp0->getOperand(0);
1706   ICmpInst::Predicate Pred1;
1707   bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value()));
1708   if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())))
1709     return nullptr;
1710   if (ICmpInst::isEquality(Pred1))
1711     return nullptr;
1712 
1713   // The equality compare must be against a constant. Flip bits if we matched
1714   // a bitwise not. Convert a null pointer constant to an integer zero value.
1715   APInt MinMaxC;
1716   const APInt *C;
1717   if (match(Cmp0->getOperand(1), m_APInt(C)))
1718     MinMaxC = HasNotOp ? ~*C : *C;
1719   else if (isa<ConstantPointerNull>(Cmp0->getOperand(1)))
1720     MinMaxC = APInt::getNullValue(8);
1721   else
1722     return nullptr;
1723 
1724   // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1725   if (!IsAnd) {
1726     Pred0 = ICmpInst::getInversePredicate(Pred0);
1727     Pred1 = ICmpInst::getInversePredicate(Pred1);
1728   }
1729 
1730   // Normalize to unsigned compare and unsigned min/max value.
1731   // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1732   if (ICmpInst::isSigned(Pred1)) {
1733     Pred1 = ICmpInst::getUnsignedPredicate(Pred1);
1734     MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth());
1735   }
1736 
1737   // (X != MAX) && (X < Y) --> X < Y
1738   // (X == MAX) || (X >= Y) --> X >= Y
1739   if (MinMaxC.isMaxValue())
1740     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT)
1741       return Cmp1;
1742 
1743   // (X != MIN) && (X > Y) -->  X > Y
1744   // (X == MIN) || (X <= Y) --> X <= Y
1745   if (MinMaxC.isMinValue())
1746     if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT)
1747       return Cmp1;
1748 
1749   return nullptr;
1750 }
1751 
1752 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1753                                  const SimplifyQuery &Q) {
1754   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1755     return X;
1756   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1757     return X;
1758 
1759   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1760     return X;
1761   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1762     return X;
1763 
1764   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1765     return X;
1766 
1767   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true))
1768     return X;
1769 
1770   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1771     return X;
1772 
1773   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1774     return X;
1775   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1776     return X;
1777 
1778   return nullptr;
1779 }
1780 
1781 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1782                                        const InstrInfoQuery &IIQ) {
1783   // (icmp (add V, C0), C1) | (icmp V, C0)
1784   ICmpInst::Predicate Pred0, Pred1;
1785   const APInt *C0, *C1;
1786   Value *V;
1787   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1788     return nullptr;
1789 
1790   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1791     return nullptr;
1792 
1793   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1794   if (AddInst->getOperand(1) != Op1->getOperand(1))
1795     return nullptr;
1796 
1797   Type *ITy = Op0->getType();
1798   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1799   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1800 
1801   const APInt Delta = *C1 - *C0;
1802   if (C0->isStrictlyPositive()) {
1803     if (Delta == 2) {
1804       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1805         return getTrue(ITy);
1806       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1807         return getTrue(ITy);
1808     }
1809     if (Delta == 1) {
1810       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1811         return getTrue(ITy);
1812       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1813         return getTrue(ITy);
1814     }
1815   }
1816   if (C0->getBoolValue() && isNUW) {
1817     if (Delta == 2)
1818       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1819         return getTrue(ITy);
1820     if (Delta == 1)
1821       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1822         return getTrue(ITy);
1823   }
1824 
1825   return nullptr;
1826 }
1827 
1828 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1829                                 const SimplifyQuery &Q) {
1830   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1831     return X;
1832   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1833     return X;
1834 
1835   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1836     return X;
1837   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1838     return X;
1839 
1840   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1841     return X;
1842 
1843   if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false))
1844     return X;
1845 
1846   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1847     return X;
1848 
1849   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1850     return X;
1851   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1852     return X;
1853 
1854   return nullptr;
1855 }
1856 
1857 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1858                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1859   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1860   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1861   if (LHS0->getType() != RHS0->getType())
1862     return nullptr;
1863 
1864   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1865   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1866       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1867     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1868     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1869     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1870     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1871     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1872     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1873     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1874     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1875     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1876         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1877       return RHS;
1878 
1879     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1880     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1881     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1882     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1883     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1884     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1885     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1886     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1887     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1888         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1889       return LHS;
1890   }
1891 
1892   return nullptr;
1893 }
1894 
1895 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1896                                   Value *Op0, Value *Op1, bool IsAnd) {
1897   // Look through casts of the 'and' operands to find compares.
1898   auto *Cast0 = dyn_cast<CastInst>(Op0);
1899   auto *Cast1 = dyn_cast<CastInst>(Op1);
1900   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1901       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1902     Op0 = Cast0->getOperand(0);
1903     Op1 = Cast1->getOperand(0);
1904   }
1905 
1906   Value *V = nullptr;
1907   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1908   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1909   if (ICmp0 && ICmp1)
1910     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1911               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1912 
1913   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1914   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1915   if (FCmp0 && FCmp1)
1916     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1917 
1918   if (!V)
1919     return nullptr;
1920   if (!Cast0)
1921     return V;
1922 
1923   // If we looked through casts, we can only handle a constant simplification
1924   // because we are not allowed to create a cast instruction here.
1925   if (auto *C = dyn_cast<Constant>(V))
1926     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1927 
1928   return nullptr;
1929 }
1930 
1931 /// Check that the Op1 is in expected form, i.e.:
1932 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1933 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1934 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1,
1935                                                           Value *X) {
1936   auto *Extract = dyn_cast<ExtractValueInst>(Op1);
1937   // We should only be extracting the overflow bit.
1938   if (!Extract || !Extract->getIndices().equals(1))
1939     return false;
1940   Value *Agg = Extract->getAggregateOperand();
1941   // This should be a multiplication-with-overflow intrinsic.
1942   if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(),
1943                               m_Intrinsic<Intrinsic::smul_with_overflow>())))
1944     return false;
1945   // One of its multipliers should be the value we checked for zero before.
1946   if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)),
1947                               m_Argument<1>(m_Specific(X)))))
1948     return false;
1949   return true;
1950 }
1951 
1952 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1953 /// other form of check, e.g. one that was using division; it may have been
1954 /// guarded against division-by-zero. We can drop that check now.
1955 /// Look for:
1956 ///   %Op0 = icmp ne i4 %X, 0
1957 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1958 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1959 ///   %??? = and i1 %Op0, %Op1
1960 /// We can just return  %Op1
1961 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) {
1962   ICmpInst::Predicate Pred;
1963   Value *X;
1964   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1965       Pred != ICmpInst::Predicate::ICMP_NE)
1966     return nullptr;
1967   // Is Op1 in expected form?
1968   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1969     return nullptr;
1970   // Can omit 'and', and just return the overflow bit.
1971   return Op1;
1972 }
1973 
1974 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some
1975 /// other form of check, e.g. one that was using division; it may have been
1976 /// guarded against division-by-zero. We can drop that check now.
1977 /// Look for:
1978 ///   %Op0 = icmp eq i4 %X, 0
1979 ///   %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???)
1980 ///   %Op1 = extractvalue { i4, i1 } %Agg, 1
1981 ///   %NotOp1 = xor i1 %Op1, true
1982 ///   %or = or i1 %Op0, %NotOp1
1983 /// We can just return  %NotOp1
1984 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0,
1985                                                             Value *NotOp1) {
1986   ICmpInst::Predicate Pred;
1987   Value *X;
1988   if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) ||
1989       Pred != ICmpInst::Predicate::ICMP_EQ)
1990     return nullptr;
1991   // We expect the other hand of an 'or' to be a 'not'.
1992   Value *Op1;
1993   if (!match(NotOp1, m_Not(m_Value(Op1))))
1994     return nullptr;
1995   // Is Op1 in expected form?
1996   if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X))
1997     return nullptr;
1998   // Can omit 'and', and just return the inverted overflow bit.
1999   return NotOp1;
2000 }
2001 
2002 /// Given a bitwise logic op, check if the operands are add/sub with a common
2003 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
2004 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
2005                                     Instruction::BinaryOps Opcode) {
2006   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
2007   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
2008   Value *X;
2009   Constant *C1, *C2;
2010   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2011        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2012       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2013        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2014     if (ConstantExpr::getNot(C1) == C2) {
2015       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2016       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2017       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2018       Type *Ty = Op0->getType();
2019       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2020                                         : ConstantInt::getAllOnesValue(Ty);
2021     }
2022   }
2023   return nullptr;
2024 }
2025 
2026 /// Given operands for an And, see if we can fold the result.
2027 /// If not, this returns null.
2028 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2029                               unsigned MaxRecurse) {
2030   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2031     return C;
2032 
2033   // X & undef -> 0
2034   if (Q.isUndefValue(Op1))
2035     return Constant::getNullValue(Op0->getType());
2036 
2037   // X & X = X
2038   if (Op0 == Op1)
2039     return Op0;
2040 
2041   // X & 0 = 0
2042   if (match(Op1, m_Zero()))
2043     return Constant::getNullValue(Op0->getType());
2044 
2045   // X & -1 = X
2046   if (match(Op1, m_AllOnes()))
2047     return Op0;
2048 
2049   // A & ~A  =  ~A & A  =  0
2050   if (match(Op0, m_Not(m_Specific(Op1))) ||
2051       match(Op1, m_Not(m_Specific(Op0))))
2052     return Constant::getNullValue(Op0->getType());
2053 
2054   // (A | ?) & A = A
2055   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2056     return Op1;
2057 
2058   // A & (A | ?) = A
2059   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
2060     return Op0;
2061 
2062   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2063     return V;
2064 
2065   // A mask that only clears known zeros of a shifted value is a no-op.
2066   Value *X;
2067   const APInt *Mask;
2068   const APInt *ShAmt;
2069   if (match(Op1, m_APInt(Mask))) {
2070     // If all bits in the inverted and shifted mask are clear:
2071     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2072     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2073         (~(*Mask)).lshr(*ShAmt).isNullValue())
2074       return Op0;
2075 
2076     // If all bits in the inverted and shifted mask are clear:
2077     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2078     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2079         (~(*Mask)).shl(*ShAmt).isNullValue())
2080       return Op0;
2081   }
2082 
2083   // If we have a multiplication overflow check that is being 'and'ed with a
2084   // check that one of the multipliers is not zero, we can omit the 'and', and
2085   // only keep the overflow check.
2086   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1))
2087     return V;
2088   if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0))
2089     return V;
2090 
2091   // A & (-A) = A if A is a power of two or zero.
2092   if (match(Op0, m_Neg(m_Specific(Op1))) ||
2093       match(Op1, m_Neg(m_Specific(Op0)))) {
2094     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2095                                Q.DT))
2096       return Op0;
2097     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
2098                                Q.DT))
2099       return Op1;
2100   }
2101 
2102   // This is a similar pattern used for checking if a value is a power-of-2:
2103   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2104   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2105   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2106       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2107     return Constant::getNullValue(Op1->getType());
2108   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
2109       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2110     return Constant::getNullValue(Op0->getType());
2111 
2112   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2113     return V;
2114 
2115   // Try some generic simplifications for associative operations.
2116   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
2117                                           MaxRecurse))
2118     return V;
2119 
2120   // And distributes over Or.  Try some generic simplifications based on this.
2121   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2122                                         Instruction::Or, Q, MaxRecurse))
2123     return V;
2124 
2125   // And distributes over Xor.  Try some generic simplifications based on this.
2126   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2127                                         Instruction::Xor, Q, MaxRecurse))
2128     return V;
2129 
2130   // If the operation is with the result of a select instruction, check whether
2131   // operating on either branch of the select always yields the same value.
2132   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2133     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
2134                                          MaxRecurse))
2135       return V;
2136 
2137   // If the operation is with the result of a phi instruction, check whether
2138   // operating on all incoming values of the phi always yields the same value.
2139   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2140     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
2141                                       MaxRecurse))
2142       return V;
2143 
2144   // Assuming the effective width of Y is not larger than A, i.e. all bits
2145   // from X and Y are disjoint in (X << A) | Y,
2146   // if the mask of this AND op covers all bits of X or Y, while it covers
2147   // no bits from the other, we can bypass this AND op. E.g.,
2148   // ((X << A) | Y) & Mask -> Y,
2149   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2150   // ((X << A) | Y) & Mask -> X << A,
2151   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2152   // SimplifyDemandedBits in InstCombine can optimize the general case.
2153   // This pattern aims to help other passes for a common case.
2154   Value *Y, *XShifted;
2155   if (match(Op1, m_APInt(Mask)) &&
2156       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2157                                      m_Value(XShifted)),
2158                         m_Value(Y)))) {
2159     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2160     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2161     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2162     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
2163     if (EffWidthY <= ShftCnt) {
2164       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
2165                                                 Q.DT);
2166       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
2167       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2168       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2169       // If the mask is extracting all bits from X or Y as is, we can skip
2170       // this AND op.
2171       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2172         return Y;
2173       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2174         return XShifted;
2175     }
2176   }
2177 
2178   return nullptr;
2179 }
2180 
2181 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2182   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
2183 }
2184 
2185 /// Given operands for an Or, see if we can fold the result.
2186 /// If not, this returns null.
2187 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2188                              unsigned MaxRecurse) {
2189   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2190     return C;
2191 
2192   // X | undef -> -1
2193   // X | -1 = -1
2194   // Do not return Op1 because it may contain undef elements if it's a vector.
2195   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2196     return Constant::getAllOnesValue(Op0->getType());
2197 
2198   // X | X = X
2199   // X | 0 = X
2200   if (Op0 == Op1 || match(Op1, m_Zero()))
2201     return Op0;
2202 
2203   // A | ~A  =  ~A | A  =  -1
2204   if (match(Op0, m_Not(m_Specific(Op1))) ||
2205       match(Op1, m_Not(m_Specific(Op0))))
2206     return Constant::getAllOnesValue(Op0->getType());
2207 
2208   // (A & ?) | A = A
2209   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
2210     return Op1;
2211 
2212   // A | (A & ?) = A
2213   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
2214     return Op0;
2215 
2216   // ~(A & ?) | A = -1
2217   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
2218     return Constant::getAllOnesValue(Op1->getType());
2219 
2220   // A | ~(A & ?) = -1
2221   if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value()))))
2222     return Constant::getAllOnesValue(Op0->getType());
2223 
2224   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2225     return V;
2226 
2227   Value *A, *B;
2228   // (A & ~B) | (A ^ B) -> (A ^ B)
2229   // (~B & A) | (A ^ B) -> (A ^ B)
2230   // (A & ~B) | (B ^ A) -> (B ^ A)
2231   // (~B & A) | (B ^ A) -> (B ^ A)
2232   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2233       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2234        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2235     return Op1;
2236 
2237   // Commute the 'or' operands.
2238   // (A ^ B) | (A & ~B) -> (A ^ B)
2239   // (A ^ B) | (~B & A) -> (A ^ B)
2240   // (B ^ A) | (A & ~B) -> (B ^ A)
2241   // (B ^ A) | (~B & A) -> (B ^ A)
2242   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
2243       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
2244        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
2245     return Op0;
2246 
2247   // (A & B) | (~A ^ B) -> (~A ^ B)
2248   // (B & A) | (~A ^ B) -> (~A ^ B)
2249   // (A & B) | (B ^ ~A) -> (B ^ ~A)
2250   // (B & A) | (B ^ ~A) -> (B ^ ~A)
2251   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
2252       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2253        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2254     return Op1;
2255 
2256   // (~A ^ B) | (A & B) -> (~A ^ B)
2257   // (~A ^ B) | (B & A) -> (~A ^ B)
2258   // (B ^ ~A) | (A & B) -> (B ^ ~A)
2259   // (B ^ ~A) | (B & A) -> (B ^ ~A)
2260   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
2261       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
2262        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
2263     return Op0;
2264 
2265   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2266     return V;
2267 
2268   // If we have a multiplication overflow check that is being 'and'ed with a
2269   // check that one of the multipliers is not zero, we can omit the 'and', and
2270   // only keep the overflow check.
2271   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1))
2272     return V;
2273   if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0))
2274     return V;
2275 
2276   // Try some generic simplifications for associative operations.
2277   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
2278                                           MaxRecurse))
2279     return V;
2280 
2281   // Or distributes over And.  Try some generic simplifications based on this.
2282   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2283                                         Instruction::And, Q, MaxRecurse))
2284     return V;
2285 
2286   // If the operation is with the result of a select instruction, check whether
2287   // operating on either branch of the select always yields the same value.
2288   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2289     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2290                                          MaxRecurse))
2291       return V;
2292 
2293   // (A & C1)|(B & C2)
2294   const APInt *C1, *C2;
2295   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2296       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2297     if (*C1 == ~*C2) {
2298       // (A & C1)|(B & C2)
2299       // If we have: ((V + N) & C1) | (V & C2)
2300       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2301       // replace with V+N.
2302       Value *N;
2303       if (C2->isMask() && // C2 == 0+1+
2304           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2305         // Add commutes, try both ways.
2306         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2307           return A;
2308       }
2309       // Or commutes, try both ways.
2310       if (C1->isMask() &&
2311           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2312         // Add commutes, try both ways.
2313         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2314           return B;
2315       }
2316     }
2317   }
2318 
2319   // If the operation is with the result of a phi instruction, check whether
2320   // operating on all incoming values of the phi always yields the same value.
2321   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2322     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2323       return V;
2324 
2325   return nullptr;
2326 }
2327 
2328 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2329   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2330 }
2331 
2332 /// Given operands for a Xor, see if we can fold the result.
2333 /// If not, this returns null.
2334 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2335                               unsigned MaxRecurse) {
2336   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2337     return C;
2338 
2339   // A ^ undef -> undef
2340   if (Q.isUndefValue(Op1))
2341     return Op1;
2342 
2343   // A ^ 0 = A
2344   if (match(Op1, m_Zero()))
2345     return Op0;
2346 
2347   // A ^ A = 0
2348   if (Op0 == Op1)
2349     return Constant::getNullValue(Op0->getType());
2350 
2351   // A ^ ~A  =  ~A ^ A  =  -1
2352   if (match(Op0, m_Not(m_Specific(Op1))) ||
2353       match(Op1, m_Not(m_Specific(Op0))))
2354     return Constant::getAllOnesValue(Op0->getType());
2355 
2356   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2357     return V;
2358 
2359   // Try some generic simplifications for associative operations.
2360   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2361                                           MaxRecurse))
2362     return V;
2363 
2364   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2365   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2366   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2367   // only if B and C are equal.  If B and C are equal then (since we assume
2368   // that operands have already been simplified) "select(cond, B, C)" should
2369   // have been simplified to the common value of B and C already.  Analysing
2370   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2371   // for threading over phi nodes.
2372 
2373   return nullptr;
2374 }
2375 
2376 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2377   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2378 }
2379 
2380 
2381 static Type *GetCompareTy(Value *Op) {
2382   return CmpInst::makeCmpResultType(Op->getType());
2383 }
2384 
2385 /// Rummage around inside V looking for something equivalent to the comparison
2386 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2387 /// Helper function for analyzing max/min idioms.
2388 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2389                                          Value *LHS, Value *RHS) {
2390   SelectInst *SI = dyn_cast<SelectInst>(V);
2391   if (!SI)
2392     return nullptr;
2393   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2394   if (!Cmp)
2395     return nullptr;
2396   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2397   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2398     return Cmp;
2399   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2400       LHS == CmpRHS && RHS == CmpLHS)
2401     return Cmp;
2402   return nullptr;
2403 }
2404 
2405 // A significant optimization not implemented here is assuming that alloca
2406 // addresses are not equal to incoming argument values. They don't *alias*,
2407 // as we say, but that doesn't mean they aren't equal, so we take a
2408 // conservative approach.
2409 //
2410 // This is inspired in part by C++11 5.10p1:
2411 //   "Two pointers of the same type compare equal if and only if they are both
2412 //    null, both point to the same function, or both represent the same
2413 //    address."
2414 //
2415 // This is pretty permissive.
2416 //
2417 // It's also partly due to C11 6.5.9p6:
2418 //   "Two pointers compare equal if and only if both are null pointers, both are
2419 //    pointers to the same object (including a pointer to an object and a
2420 //    subobject at its beginning) or function, both are pointers to one past the
2421 //    last element of the same array object, or one is a pointer to one past the
2422 //    end of one array object and the other is a pointer to the start of a
2423 //    different array object that happens to immediately follow the first array
2424 //    object in the address space.)
2425 //
2426 // C11's version is more restrictive, however there's no reason why an argument
2427 // couldn't be a one-past-the-end value for a stack object in the caller and be
2428 // equal to the beginning of a stack object in the callee.
2429 //
2430 // If the C and C++ standards are ever made sufficiently restrictive in this
2431 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2432 // this optimization.
2433 static Constant *
2434 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2435                    const DominatorTree *DT, CmpInst::Predicate Pred,
2436                    AssumptionCache *AC, const Instruction *CxtI,
2437                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2438   // First, skip past any trivial no-ops.
2439   LHS = LHS->stripPointerCasts();
2440   RHS = RHS->stripPointerCasts();
2441 
2442   // A non-null pointer is not equal to a null pointer.
2443   if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) &&
2444       llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2445                            IIQ.UseInstrInfo))
2446     return ConstantInt::get(GetCompareTy(LHS),
2447                             !CmpInst::isTrueWhenEqual(Pred));
2448 
2449   // We can only fold certain predicates on pointer comparisons.
2450   switch (Pred) {
2451   default:
2452     return nullptr;
2453 
2454     // Equality comaprisons are easy to fold.
2455   case CmpInst::ICMP_EQ:
2456   case CmpInst::ICMP_NE:
2457     break;
2458 
2459     // We can only handle unsigned relational comparisons because 'inbounds' on
2460     // a GEP only protects against unsigned wrapping.
2461   case CmpInst::ICMP_UGT:
2462   case CmpInst::ICMP_UGE:
2463   case CmpInst::ICMP_ULT:
2464   case CmpInst::ICMP_ULE:
2465     // However, we have to switch them to their signed variants to handle
2466     // negative indices from the base pointer.
2467     Pred = ICmpInst::getSignedPredicate(Pred);
2468     break;
2469   }
2470 
2471   // Strip off any constant offsets so that we can reason about them.
2472   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2473   // here and compare base addresses like AliasAnalysis does, however there are
2474   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2475   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2476   // doesn't need to guarantee pointer inequality when it says NoAlias.
2477   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2478   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2479 
2480   // If LHS and RHS are related via constant offsets to the same base
2481   // value, we can replace it with an icmp which just compares the offsets.
2482   if (LHS == RHS)
2483     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2484 
2485   // Various optimizations for (in)equality comparisons.
2486   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2487     // Different non-empty allocations that exist at the same time have
2488     // different addresses (if the program can tell). Global variables always
2489     // exist, so they always exist during the lifetime of each other and all
2490     // allocas. Two different allocas usually have different addresses...
2491     //
2492     // However, if there's an @llvm.stackrestore dynamically in between two
2493     // allocas, they may have the same address. It's tempting to reduce the
2494     // scope of the problem by only looking at *static* allocas here. That would
2495     // cover the majority of allocas while significantly reducing the likelihood
2496     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2497     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2498     // an entry block. Also, if we have a block that's not attached to a
2499     // function, we can't tell if it's "static" under the current definition.
2500     // Theoretically, this problem could be fixed by creating a new kind of
2501     // instruction kind specifically for static allocas. Such a new instruction
2502     // could be required to be at the top of the entry block, thus preventing it
2503     // from being subject to a @llvm.stackrestore. Instcombine could even
2504     // convert regular allocas into these special allocas. It'd be nifty.
2505     // However, until then, this problem remains open.
2506     //
2507     // So, we'll assume that two non-empty allocas have different addresses
2508     // for now.
2509     //
2510     // With all that, if the offsets are within the bounds of their allocations
2511     // (and not one-past-the-end! so we can't use inbounds!), and their
2512     // allocations aren't the same, the pointers are not equal.
2513     //
2514     // Note that it's not necessary to check for LHS being a global variable
2515     // address, due to canonicalization and constant folding.
2516     if (isa<AllocaInst>(LHS) &&
2517         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2518       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2519       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2520       uint64_t LHSSize, RHSSize;
2521       ObjectSizeOpts Opts;
2522       Opts.NullIsUnknownSize =
2523           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2524       if (LHSOffsetCI && RHSOffsetCI &&
2525           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2526           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2527         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2528         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2529         if (!LHSOffsetValue.isNegative() &&
2530             !RHSOffsetValue.isNegative() &&
2531             LHSOffsetValue.ult(LHSSize) &&
2532             RHSOffsetValue.ult(RHSSize)) {
2533           return ConstantInt::get(GetCompareTy(LHS),
2534                                   !CmpInst::isTrueWhenEqual(Pred));
2535         }
2536       }
2537 
2538       // Repeat the above check but this time without depending on DataLayout
2539       // or being able to compute a precise size.
2540       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2541           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2542           LHSOffset->isNullValue() &&
2543           RHSOffset->isNullValue())
2544         return ConstantInt::get(GetCompareTy(LHS),
2545                                 !CmpInst::isTrueWhenEqual(Pred));
2546     }
2547 
2548     // Even if an non-inbounds GEP occurs along the path we can still optimize
2549     // equality comparisons concerning the result. We avoid walking the whole
2550     // chain again by starting where the last calls to
2551     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2552     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2553     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2554     if (LHS == RHS)
2555       return ConstantExpr::getICmp(Pred,
2556                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2557                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2558 
2559     // If one side of the equality comparison must come from a noalias call
2560     // (meaning a system memory allocation function), and the other side must
2561     // come from a pointer that cannot overlap with dynamically-allocated
2562     // memory within the lifetime of the current function (allocas, byval
2563     // arguments, globals), then determine the comparison result here.
2564     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2565     getUnderlyingObjects(LHS, LHSUObjs);
2566     getUnderlyingObjects(RHS, RHSUObjs);
2567 
2568     // Is the set of underlying objects all noalias calls?
2569     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2570       return all_of(Objects, isNoAliasCall);
2571     };
2572 
2573     // Is the set of underlying objects all things which must be disjoint from
2574     // noalias calls. For allocas, we consider only static ones (dynamic
2575     // allocas might be transformed into calls to malloc not simultaneously
2576     // live with the compared-to allocation). For globals, we exclude symbols
2577     // that might be resolve lazily to symbols in another dynamically-loaded
2578     // library (and, thus, could be malloc'ed by the implementation).
2579     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2580       return all_of(Objects, [](const Value *V) {
2581         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2582           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2583         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2584           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2585                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2586                  !GV->isThreadLocal();
2587         if (const Argument *A = dyn_cast<Argument>(V))
2588           return A->hasByValAttr();
2589         return false;
2590       });
2591     };
2592 
2593     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2594         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2595         return ConstantInt::get(GetCompareTy(LHS),
2596                                 !CmpInst::isTrueWhenEqual(Pred));
2597 
2598     // Fold comparisons for non-escaping pointer even if the allocation call
2599     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2600     // dynamic allocation call could be either of the operands.
2601     Value *MI = nullptr;
2602     if (isAllocLikeFn(LHS, TLI) &&
2603         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2604       MI = LHS;
2605     else if (isAllocLikeFn(RHS, TLI) &&
2606              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2607       MI = RHS;
2608     // FIXME: We should also fold the compare when the pointer escapes, but the
2609     // compare dominates the pointer escape
2610     if (MI && !PointerMayBeCaptured(MI, true, true))
2611       return ConstantInt::get(GetCompareTy(LHS),
2612                               CmpInst::isFalseWhenEqual(Pred));
2613   }
2614 
2615   // Otherwise, fail.
2616   return nullptr;
2617 }
2618 
2619 /// Fold an icmp when its operands have i1 scalar type.
2620 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2621                                   Value *RHS, const SimplifyQuery &Q) {
2622   Type *ITy = GetCompareTy(LHS); // The return type.
2623   Type *OpTy = LHS->getType();   // The operand type.
2624   if (!OpTy->isIntOrIntVectorTy(1))
2625     return nullptr;
2626 
2627   // A boolean compared to true/false can be simplified in 14 out of the 20
2628   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2629   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2630   if (match(RHS, m_Zero())) {
2631     switch (Pred) {
2632     case CmpInst::ICMP_NE:  // X !=  0 -> X
2633     case CmpInst::ICMP_UGT: // X >u  0 -> X
2634     case CmpInst::ICMP_SLT: // X <s  0 -> X
2635       return LHS;
2636 
2637     case CmpInst::ICMP_ULT: // X <u  0 -> false
2638     case CmpInst::ICMP_SGT: // X >s  0 -> false
2639       return getFalse(ITy);
2640 
2641     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2642     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2643       return getTrue(ITy);
2644 
2645     default: break;
2646     }
2647   } else if (match(RHS, m_One())) {
2648     switch (Pred) {
2649     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2650     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2651     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2652       return LHS;
2653 
2654     case CmpInst::ICMP_UGT: // X >u   1 -> false
2655     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2656       return getFalse(ITy);
2657 
2658     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2659     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2660       return getTrue(ITy);
2661 
2662     default: break;
2663     }
2664   }
2665 
2666   switch (Pred) {
2667   default:
2668     break;
2669   case ICmpInst::ICMP_UGE:
2670     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2671       return getTrue(ITy);
2672     break;
2673   case ICmpInst::ICMP_SGE:
2674     /// For signed comparison, the values for an i1 are 0 and -1
2675     /// respectively. This maps into a truth table of:
2676     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2677     ///  0  |  0  |  1 (0 >= 0)   |  1
2678     ///  0  |  1  |  1 (0 >= -1)  |  1
2679     ///  1  |  0  |  0 (-1 >= 0)  |  0
2680     ///  1  |  1  |  1 (-1 >= -1) |  1
2681     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2682       return getTrue(ITy);
2683     break;
2684   case ICmpInst::ICMP_ULE:
2685     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2686       return getTrue(ITy);
2687     break;
2688   }
2689 
2690   return nullptr;
2691 }
2692 
2693 /// Try hard to fold icmp with zero RHS because this is a common case.
2694 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2695                                    Value *RHS, const SimplifyQuery &Q) {
2696   if (!match(RHS, m_Zero()))
2697     return nullptr;
2698 
2699   Type *ITy = GetCompareTy(LHS); // The return type.
2700   switch (Pred) {
2701   default:
2702     llvm_unreachable("Unknown ICmp predicate!");
2703   case ICmpInst::ICMP_ULT:
2704     return getFalse(ITy);
2705   case ICmpInst::ICMP_UGE:
2706     return getTrue(ITy);
2707   case ICmpInst::ICMP_EQ:
2708   case ICmpInst::ICMP_ULE:
2709     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2710       return getFalse(ITy);
2711     break;
2712   case ICmpInst::ICMP_NE:
2713   case ICmpInst::ICMP_UGT:
2714     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2715       return getTrue(ITy);
2716     break;
2717   case ICmpInst::ICMP_SLT: {
2718     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2719     if (LHSKnown.isNegative())
2720       return getTrue(ITy);
2721     if (LHSKnown.isNonNegative())
2722       return getFalse(ITy);
2723     break;
2724   }
2725   case ICmpInst::ICMP_SLE: {
2726     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2727     if (LHSKnown.isNegative())
2728       return getTrue(ITy);
2729     if (LHSKnown.isNonNegative() &&
2730         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2731       return getFalse(ITy);
2732     break;
2733   }
2734   case ICmpInst::ICMP_SGE: {
2735     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2736     if (LHSKnown.isNegative())
2737       return getFalse(ITy);
2738     if (LHSKnown.isNonNegative())
2739       return getTrue(ITy);
2740     break;
2741   }
2742   case ICmpInst::ICMP_SGT: {
2743     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2744     if (LHSKnown.isNegative())
2745       return getFalse(ITy);
2746     if (LHSKnown.isNonNegative() &&
2747         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2748       return getTrue(ITy);
2749     break;
2750   }
2751   }
2752 
2753   return nullptr;
2754 }
2755 
2756 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2757                                        Value *RHS, const InstrInfoQuery &IIQ) {
2758   Type *ITy = GetCompareTy(RHS); // The return type.
2759 
2760   Value *X;
2761   // Sign-bit checks can be optimized to true/false after unsigned
2762   // floating-point casts:
2763   // icmp slt (bitcast (uitofp X)),  0 --> false
2764   // icmp sgt (bitcast (uitofp X)), -1 --> true
2765   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2766     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2767       return ConstantInt::getFalse(ITy);
2768     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2769       return ConstantInt::getTrue(ITy);
2770   }
2771 
2772   const APInt *C;
2773   if (!match(RHS, m_APIntAllowUndef(C)))
2774     return nullptr;
2775 
2776   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2777   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2778   if (RHS_CR.isEmptySet())
2779     return ConstantInt::getFalse(ITy);
2780   if (RHS_CR.isFullSet())
2781     return ConstantInt::getTrue(ITy);
2782 
2783   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2784   if (!LHS_CR.isFullSet()) {
2785     if (RHS_CR.contains(LHS_CR))
2786       return ConstantInt::getTrue(ITy);
2787     if (RHS_CR.inverse().contains(LHS_CR))
2788       return ConstantInt::getFalse(ITy);
2789   }
2790 
2791   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
2792   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
2793   const APInt *MulC;
2794   if (ICmpInst::isEquality(Pred) &&
2795       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2796         *MulC != 0 && C->urem(*MulC) != 0) ||
2797        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) &&
2798         *MulC != 0 && C->srem(*MulC) != 0)))
2799     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
2800 
2801   return nullptr;
2802 }
2803 
2804 static Value *simplifyICmpWithBinOpOnLHS(
2805     CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS,
2806     const SimplifyQuery &Q, unsigned MaxRecurse) {
2807   Type *ITy = GetCompareTy(RHS); // The return type.
2808 
2809   Value *Y = nullptr;
2810   // icmp pred (or X, Y), X
2811   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2812     if (Pred == ICmpInst::ICMP_ULT)
2813       return getFalse(ITy);
2814     if (Pred == ICmpInst::ICMP_UGE)
2815       return getTrue(ITy);
2816 
2817     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2818       KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2819       KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2820       if (RHSKnown.isNonNegative() && YKnown.isNegative())
2821         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2822       if (RHSKnown.isNegative() || YKnown.isNonNegative())
2823         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2824     }
2825   }
2826 
2827   // icmp pred (and X, Y), X
2828   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2829     if (Pred == ICmpInst::ICMP_UGT)
2830       return getFalse(ITy);
2831     if (Pred == ICmpInst::ICMP_ULE)
2832       return getTrue(ITy);
2833   }
2834 
2835   // icmp pred (urem X, Y), Y
2836   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2837     switch (Pred) {
2838     default:
2839       break;
2840     case ICmpInst::ICMP_SGT:
2841     case ICmpInst::ICMP_SGE: {
2842       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2843       if (!Known.isNonNegative())
2844         break;
2845       LLVM_FALLTHROUGH;
2846     }
2847     case ICmpInst::ICMP_EQ:
2848     case ICmpInst::ICMP_UGT:
2849     case ICmpInst::ICMP_UGE:
2850       return getFalse(ITy);
2851     case ICmpInst::ICMP_SLT:
2852     case ICmpInst::ICMP_SLE: {
2853       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2854       if (!Known.isNonNegative())
2855         break;
2856       LLVM_FALLTHROUGH;
2857     }
2858     case ICmpInst::ICMP_NE:
2859     case ICmpInst::ICMP_ULT:
2860     case ICmpInst::ICMP_ULE:
2861       return getTrue(ITy);
2862     }
2863   }
2864 
2865   // icmp pred (urem X, Y), X
2866   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
2867     if (Pred == ICmpInst::ICMP_ULE)
2868       return getTrue(ITy);
2869     if (Pred == ICmpInst::ICMP_UGT)
2870       return getFalse(ITy);
2871   }
2872 
2873   // x >> y <=u x
2874   // x udiv y <=u x.
2875   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2876       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2877     // icmp pred (X op Y), X
2878     if (Pred == ICmpInst::ICMP_UGT)
2879       return getFalse(ITy);
2880     if (Pred == ICmpInst::ICMP_ULE)
2881       return getTrue(ITy);
2882   }
2883 
2884   return nullptr;
2885 }
2886 
2887 
2888 // If only one of the icmp's operands has NSW flags, try to prove that:
2889 //
2890 //   icmp slt (x + C1), (x +nsw C2)
2891 //
2892 // is equivalent to:
2893 //
2894 //   icmp slt C1, C2
2895 //
2896 // which is true if x + C2 has the NSW flags set and:
2897 // *) C1 < C2 && C1 >= 0, or
2898 // *) C2 < C1 && C1 <= 0.
2899 //
2900 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
2901                                     Value *RHS) {
2902   // TODO: only support icmp slt for now.
2903   if (Pred != CmpInst::ICMP_SLT)
2904     return false;
2905 
2906   // Canonicalize nsw add as RHS.
2907   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2908     std::swap(LHS, RHS);
2909   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
2910     return false;
2911 
2912   Value *X;
2913   const APInt *C1, *C2;
2914   if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) ||
2915       !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2))))
2916     return false;
2917 
2918   return (C1->slt(*C2) && C1->isNonNegative()) ||
2919          (C2->slt(*C1) && C1->isNonPositive());
2920 }
2921 
2922 
2923 /// TODO: A large part of this logic is duplicated in InstCombine's
2924 /// foldICmpBinOp(). We should be able to share that and avoid the code
2925 /// duplication.
2926 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2927                                     Value *RHS, const SimplifyQuery &Q,
2928                                     unsigned MaxRecurse) {
2929   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2930   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2931   if (MaxRecurse && (LBO || RBO)) {
2932     // Analyze the case when either LHS or RHS is an add instruction.
2933     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2934     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2935     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2936     if (LBO && LBO->getOpcode() == Instruction::Add) {
2937       A = LBO->getOperand(0);
2938       B = LBO->getOperand(1);
2939       NoLHSWrapProblem =
2940           ICmpInst::isEquality(Pred) ||
2941           (CmpInst::isUnsigned(Pred) &&
2942            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2943           (CmpInst::isSigned(Pred) &&
2944            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2945     }
2946     if (RBO && RBO->getOpcode() == Instruction::Add) {
2947       C = RBO->getOperand(0);
2948       D = RBO->getOperand(1);
2949       NoRHSWrapProblem =
2950           ICmpInst::isEquality(Pred) ||
2951           (CmpInst::isUnsigned(Pred) &&
2952            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2953           (CmpInst::isSigned(Pred) &&
2954            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2955     }
2956 
2957     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2958     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2959       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2960                                       Constant::getNullValue(RHS->getType()), Q,
2961                                       MaxRecurse - 1))
2962         return V;
2963 
2964     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2965     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2966       if (Value *V =
2967               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2968                                C == LHS ? D : C, Q, MaxRecurse - 1))
2969         return V;
2970 
2971     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2972     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
2973                        trySimplifyICmpWithAdds(Pred, LHS, RHS);
2974     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
2975       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2976       Value *Y, *Z;
2977       if (A == C) {
2978         // C + B == C + D  ->  B == D
2979         Y = B;
2980         Z = D;
2981       } else if (A == D) {
2982         // D + B == C + D  ->  B == C
2983         Y = B;
2984         Z = C;
2985       } else if (B == C) {
2986         // A + C == C + D  ->  A == D
2987         Y = A;
2988         Z = D;
2989       } else {
2990         assert(B == D);
2991         // A + D == C + D  ->  A == C
2992         Y = A;
2993         Z = C;
2994       }
2995       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2996         return V;
2997     }
2998   }
2999 
3000   if (LBO)
3001     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3002       return V;
3003 
3004   if (RBO)
3005     if (Value *V = simplifyICmpWithBinOpOnLHS(
3006             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3007       return V;
3008 
3009   // 0 - (zext X) pred C
3010   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3011     const APInt *C;
3012     if (match(RHS, m_APInt(C))) {
3013       if (C->isStrictlyPositive()) {
3014         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3015           return ConstantInt::getTrue(GetCompareTy(RHS));
3016         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3017           return ConstantInt::getFalse(GetCompareTy(RHS));
3018       }
3019       if (C->isNonNegative()) {
3020         if (Pred == ICmpInst::ICMP_SLE)
3021           return ConstantInt::getTrue(GetCompareTy(RHS));
3022         if (Pred == ICmpInst::ICMP_SGT)
3023           return ConstantInt::getFalse(GetCompareTy(RHS));
3024       }
3025     }
3026   }
3027 
3028   //   If C2 is a power-of-2 and C is not:
3029   //   (C2 << X) == C --> false
3030   //   (C2 << X) != C --> true
3031   const APInt *C;
3032   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3033       match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) {
3034     // C2 << X can equal zero in some circumstances.
3035     // This simplification might be unsafe if C is zero.
3036     //
3037     // We know it is safe if:
3038     // - The shift is nsw. We can't shift out the one bit.
3039     // - The shift is nuw. We can't shift out the one bit.
3040     // - C2 is one.
3041     // - C isn't zero.
3042     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3043         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3044         match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) {
3045       if (Pred == ICmpInst::ICMP_EQ)
3046         return ConstantInt::getFalse(GetCompareTy(RHS));
3047       if (Pred == ICmpInst::ICMP_NE)
3048         return ConstantInt::getTrue(GetCompareTy(RHS));
3049     }
3050   }
3051 
3052   // TODO: This is overly constrained. LHS can be any power-of-2.
3053   // (1 << X)  >u 0x8000 --> false
3054   // (1 << X) <=u 0x8000 --> true
3055   if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) {
3056     if (Pred == ICmpInst::ICMP_UGT)
3057       return ConstantInt::getFalse(GetCompareTy(RHS));
3058     if (Pred == ICmpInst::ICMP_ULE)
3059       return ConstantInt::getTrue(GetCompareTy(RHS));
3060   }
3061 
3062   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
3063       LBO->getOperand(1) == RBO->getOperand(1)) {
3064     switch (LBO->getOpcode()) {
3065     default:
3066       break;
3067     case Instruction::UDiv:
3068     case Instruction::LShr:
3069       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3070           !Q.IIQ.isExact(RBO))
3071         break;
3072       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3073                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3074           return V;
3075       break;
3076     case Instruction::SDiv:
3077       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3078           !Q.IIQ.isExact(RBO))
3079         break;
3080       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3081                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3082         return V;
3083       break;
3084     case Instruction::AShr:
3085       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3086         break;
3087       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3088                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3089         return V;
3090       break;
3091     case Instruction::Shl: {
3092       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3093       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3094       if (!NUW && !NSW)
3095         break;
3096       if (!NSW && ICmpInst::isSigned(Pred))
3097         break;
3098       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
3099                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3100         return V;
3101       break;
3102     }
3103     }
3104   }
3105   return nullptr;
3106 }
3107 
3108 /// Simplify integer comparisons where at least one operand of the compare
3109 /// matches an integer min/max idiom.
3110 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3111                                      Value *RHS, const SimplifyQuery &Q,
3112                                      unsigned MaxRecurse) {
3113   Type *ITy = GetCompareTy(LHS); // The return type.
3114   Value *A, *B;
3115   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3116   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3117 
3118   // Signed variants on "max(a,b)>=a -> true".
3119   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3120     if (A != RHS)
3121       std::swap(A, B);       // smax(A, B) pred A.
3122     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3123     // We analyze this as smax(A, B) pred A.
3124     P = Pred;
3125   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3126              (A == LHS || B == LHS)) {
3127     if (A != LHS)
3128       std::swap(A, B);       // A pred smax(A, B).
3129     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3130     // We analyze this as smax(A, B) swapped-pred A.
3131     P = CmpInst::getSwappedPredicate(Pred);
3132   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3133              (A == RHS || B == RHS)) {
3134     if (A != RHS)
3135       std::swap(A, B);       // smin(A, B) pred A.
3136     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3137     // We analyze this as smax(-A, -B) swapped-pred -A.
3138     // Note that we do not need to actually form -A or -B thanks to EqP.
3139     P = CmpInst::getSwappedPredicate(Pred);
3140   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3141              (A == LHS || B == LHS)) {
3142     if (A != LHS)
3143       std::swap(A, B);       // A pred smin(A, B).
3144     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3145     // We analyze this as smax(-A, -B) pred -A.
3146     // Note that we do not need to actually form -A or -B thanks to EqP.
3147     P = Pred;
3148   }
3149   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3150     // Cases correspond to "max(A, B) p A".
3151     switch (P) {
3152     default:
3153       break;
3154     case CmpInst::ICMP_EQ:
3155     case CmpInst::ICMP_SLE:
3156       // Equivalent to "A EqP B".  This may be the same as the condition tested
3157       // in the max/min; if so, we can just return that.
3158       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3159         return V;
3160       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3161         return V;
3162       // Otherwise, see if "A EqP B" simplifies.
3163       if (MaxRecurse)
3164         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3165           return V;
3166       break;
3167     case CmpInst::ICMP_NE:
3168     case CmpInst::ICMP_SGT: {
3169       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3170       // Equivalent to "A InvEqP B".  This may be the same as the condition
3171       // tested in the max/min; if so, we can just return that.
3172       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3173         return V;
3174       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3175         return V;
3176       // Otherwise, see if "A InvEqP B" simplifies.
3177       if (MaxRecurse)
3178         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3179           return V;
3180       break;
3181     }
3182     case CmpInst::ICMP_SGE:
3183       // Always true.
3184       return getTrue(ITy);
3185     case CmpInst::ICMP_SLT:
3186       // Always false.
3187       return getFalse(ITy);
3188     }
3189   }
3190 
3191   // Unsigned variants on "max(a,b)>=a -> true".
3192   P = CmpInst::BAD_ICMP_PREDICATE;
3193   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3194     if (A != RHS)
3195       std::swap(A, B);       // umax(A, B) pred A.
3196     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3197     // We analyze this as umax(A, B) pred A.
3198     P = Pred;
3199   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3200              (A == LHS || B == LHS)) {
3201     if (A != LHS)
3202       std::swap(A, B);       // A pred umax(A, B).
3203     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3204     // We analyze this as umax(A, B) swapped-pred A.
3205     P = CmpInst::getSwappedPredicate(Pred);
3206   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3207              (A == RHS || B == RHS)) {
3208     if (A != RHS)
3209       std::swap(A, B);       // umin(A, B) pred A.
3210     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3211     // We analyze this as umax(-A, -B) swapped-pred -A.
3212     // Note that we do not need to actually form -A or -B thanks to EqP.
3213     P = CmpInst::getSwappedPredicate(Pred);
3214   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3215              (A == LHS || B == LHS)) {
3216     if (A != LHS)
3217       std::swap(A, B);       // A pred umin(A, B).
3218     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3219     // We analyze this as umax(-A, -B) pred -A.
3220     // Note that we do not need to actually form -A or -B thanks to EqP.
3221     P = Pred;
3222   }
3223   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3224     // Cases correspond to "max(A, B) p A".
3225     switch (P) {
3226     default:
3227       break;
3228     case CmpInst::ICMP_EQ:
3229     case CmpInst::ICMP_ULE:
3230       // Equivalent to "A EqP B".  This may be the same as the condition tested
3231       // in the max/min; if so, we can just return that.
3232       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3233         return V;
3234       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3235         return V;
3236       // Otherwise, see if "A EqP B" simplifies.
3237       if (MaxRecurse)
3238         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3239           return V;
3240       break;
3241     case CmpInst::ICMP_NE:
3242     case CmpInst::ICMP_UGT: {
3243       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3244       // Equivalent to "A InvEqP B".  This may be the same as the condition
3245       // tested in the max/min; if so, we can just return that.
3246       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3247         return V;
3248       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3249         return V;
3250       // Otherwise, see if "A InvEqP B" simplifies.
3251       if (MaxRecurse)
3252         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3253           return V;
3254       break;
3255     }
3256     case CmpInst::ICMP_UGE:
3257       return getTrue(ITy);
3258     case CmpInst::ICMP_ULT:
3259       return getFalse(ITy);
3260     }
3261   }
3262 
3263   // Comparing 1 each of min/max with a common operand?
3264   // Canonicalize min operand to RHS.
3265   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3266       match(LHS, m_SMin(m_Value(), m_Value()))) {
3267     std::swap(LHS, RHS);
3268     Pred = ICmpInst::getSwappedPredicate(Pred);
3269   }
3270 
3271   Value *C, *D;
3272   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3273       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3274       (A == C || A == D || B == C || B == D)) {
3275     // smax(A, B) >=s smin(A, D) --> true
3276     if (Pred == CmpInst::ICMP_SGE)
3277       return getTrue(ITy);
3278     // smax(A, B) <s smin(A, D) --> false
3279     if (Pred == CmpInst::ICMP_SLT)
3280       return getFalse(ITy);
3281   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3282              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3283              (A == C || A == D || B == C || B == D)) {
3284     // umax(A, B) >=u umin(A, D) --> true
3285     if (Pred == CmpInst::ICMP_UGE)
3286       return getTrue(ITy);
3287     // umax(A, B) <u umin(A, D) --> false
3288     if (Pred == CmpInst::ICMP_ULT)
3289       return getFalse(ITy);
3290   }
3291 
3292   return nullptr;
3293 }
3294 
3295 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3296                                                Value *LHS, Value *RHS,
3297                                                const SimplifyQuery &Q) {
3298   // Gracefully handle instructions that have not been inserted yet.
3299   if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent())
3300     return nullptr;
3301 
3302   for (Value *AssumeBaseOp : {LHS, RHS}) {
3303     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3304       if (!AssumeVH)
3305         continue;
3306 
3307       CallInst *Assume = cast<CallInst>(AssumeVH);
3308       if (Optional<bool> Imp =
3309               isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS,
3310                                  Q.DL))
3311         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3312           return ConstantInt::get(GetCompareTy(LHS), *Imp);
3313     }
3314   }
3315 
3316   return nullptr;
3317 }
3318 
3319 /// Given operands for an ICmpInst, see if we can fold the result.
3320 /// If not, this returns null.
3321 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3322                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3323   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3324   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3325 
3326   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3327     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3328       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3329 
3330     // If we have a constant, make sure it is on the RHS.
3331     std::swap(LHS, RHS);
3332     Pred = CmpInst::getSwappedPredicate(Pred);
3333   }
3334   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3335 
3336   Type *ITy = GetCompareTy(LHS); // The return type.
3337 
3338   // For EQ and NE, we can always pick a value for the undef to make the
3339   // predicate pass or fail, so we can return undef.
3340   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3341   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3342     return UndefValue::get(ITy);
3343 
3344   // icmp X, X -> true/false
3345   // icmp X, undef -> true/false because undef could be X.
3346   if (LHS == RHS || Q.isUndefValue(RHS))
3347     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3348 
3349   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3350     return V;
3351 
3352   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3353     return V;
3354 
3355   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3356     return V;
3357 
3358   // If both operands have range metadata, use the metadata
3359   // to simplify the comparison.
3360   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3361     auto RHS_Instr = cast<Instruction>(RHS);
3362     auto LHS_Instr = cast<Instruction>(LHS);
3363 
3364     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3365         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3366       auto RHS_CR = getConstantRangeFromMetadata(
3367           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3368       auto LHS_CR = getConstantRangeFromMetadata(
3369           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3370 
3371       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3372       if (Satisfied_CR.contains(LHS_CR))
3373         return ConstantInt::getTrue(RHS->getContext());
3374 
3375       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3376                 CmpInst::getInversePredicate(Pred), RHS_CR);
3377       if (InversedSatisfied_CR.contains(LHS_CR))
3378         return ConstantInt::getFalse(RHS->getContext());
3379     }
3380   }
3381 
3382   // Compare of cast, for example (zext X) != 0 -> X != 0
3383   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3384     Instruction *LI = cast<CastInst>(LHS);
3385     Value *SrcOp = LI->getOperand(0);
3386     Type *SrcTy = SrcOp->getType();
3387     Type *DstTy = LI->getType();
3388 
3389     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3390     // if the integer type is the same size as the pointer type.
3391     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3392         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3393       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3394         // Transfer the cast to the constant.
3395         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3396                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3397                                         Q, MaxRecurse-1))
3398           return V;
3399       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3400         if (RI->getOperand(0)->getType() == SrcTy)
3401           // Compare without the cast.
3402           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3403                                           Q, MaxRecurse-1))
3404             return V;
3405       }
3406     }
3407 
3408     if (isa<ZExtInst>(LHS)) {
3409       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3410       // same type.
3411       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3412         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3413           // Compare X and Y.  Note that signed predicates become unsigned.
3414           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3415                                           SrcOp, RI->getOperand(0), Q,
3416                                           MaxRecurse-1))
3417             return V;
3418       }
3419       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3420       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3421         if (SrcOp == RI->getOperand(0)) {
3422           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3423             return ConstantInt::getTrue(ITy);
3424           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3425             return ConstantInt::getFalse(ITy);
3426         }
3427       }
3428       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3429       // too.  If not, then try to deduce the result of the comparison.
3430       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3431         // Compute the constant that would happen if we truncated to SrcTy then
3432         // reextended to DstTy.
3433         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3434         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3435 
3436         // If the re-extended constant didn't change then this is effectively
3437         // also a case of comparing two zero-extended values.
3438         if (RExt == CI && MaxRecurse)
3439           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3440                                         SrcOp, Trunc, Q, MaxRecurse-1))
3441             return V;
3442 
3443         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3444         // there.  Use this to work out the result of the comparison.
3445         if (RExt != CI) {
3446           switch (Pred) {
3447           default: llvm_unreachable("Unknown ICmp predicate!");
3448           // LHS <u RHS.
3449           case ICmpInst::ICMP_EQ:
3450           case ICmpInst::ICMP_UGT:
3451           case ICmpInst::ICMP_UGE:
3452             return ConstantInt::getFalse(CI->getContext());
3453 
3454           case ICmpInst::ICMP_NE:
3455           case ICmpInst::ICMP_ULT:
3456           case ICmpInst::ICMP_ULE:
3457             return ConstantInt::getTrue(CI->getContext());
3458 
3459           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3460           // is non-negative then LHS <s RHS.
3461           case ICmpInst::ICMP_SGT:
3462           case ICmpInst::ICMP_SGE:
3463             return CI->getValue().isNegative() ?
3464               ConstantInt::getTrue(CI->getContext()) :
3465               ConstantInt::getFalse(CI->getContext());
3466 
3467           case ICmpInst::ICMP_SLT:
3468           case ICmpInst::ICMP_SLE:
3469             return CI->getValue().isNegative() ?
3470               ConstantInt::getFalse(CI->getContext()) :
3471               ConstantInt::getTrue(CI->getContext());
3472           }
3473         }
3474       }
3475     }
3476 
3477     if (isa<SExtInst>(LHS)) {
3478       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3479       // same type.
3480       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3481         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3482           // Compare X and Y.  Note that the predicate does not change.
3483           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3484                                           Q, MaxRecurse-1))
3485             return V;
3486       }
3487       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3488       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3489         if (SrcOp == RI->getOperand(0)) {
3490           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3491             return ConstantInt::getTrue(ITy);
3492           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3493             return ConstantInt::getFalse(ITy);
3494         }
3495       }
3496       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3497       // too.  If not, then try to deduce the result of the comparison.
3498       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3499         // Compute the constant that would happen if we truncated to SrcTy then
3500         // reextended to DstTy.
3501         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3502         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3503 
3504         // If the re-extended constant didn't change then this is effectively
3505         // also a case of comparing two sign-extended values.
3506         if (RExt == CI && MaxRecurse)
3507           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3508             return V;
3509 
3510         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3511         // bits there.  Use this to work out the result of the comparison.
3512         if (RExt != CI) {
3513           switch (Pred) {
3514           default: llvm_unreachable("Unknown ICmp predicate!");
3515           case ICmpInst::ICMP_EQ:
3516             return ConstantInt::getFalse(CI->getContext());
3517           case ICmpInst::ICMP_NE:
3518             return ConstantInt::getTrue(CI->getContext());
3519 
3520           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3521           // LHS >s RHS.
3522           case ICmpInst::ICMP_SGT:
3523           case ICmpInst::ICMP_SGE:
3524             return CI->getValue().isNegative() ?
3525               ConstantInt::getTrue(CI->getContext()) :
3526               ConstantInt::getFalse(CI->getContext());
3527           case ICmpInst::ICMP_SLT:
3528           case ICmpInst::ICMP_SLE:
3529             return CI->getValue().isNegative() ?
3530               ConstantInt::getFalse(CI->getContext()) :
3531               ConstantInt::getTrue(CI->getContext());
3532 
3533           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3534           // LHS >u RHS.
3535           case ICmpInst::ICMP_UGT:
3536           case ICmpInst::ICMP_UGE:
3537             // Comparison is true iff the LHS <s 0.
3538             if (MaxRecurse)
3539               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3540                                               Constant::getNullValue(SrcTy),
3541                                               Q, MaxRecurse-1))
3542                 return V;
3543             break;
3544           case ICmpInst::ICMP_ULT:
3545           case ICmpInst::ICMP_ULE:
3546             // Comparison is true iff the LHS >=s 0.
3547             if (MaxRecurse)
3548               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3549                                               Constant::getNullValue(SrcTy),
3550                                               Q, MaxRecurse-1))
3551                 return V;
3552             break;
3553           }
3554         }
3555       }
3556     }
3557   }
3558 
3559   // icmp eq|ne X, Y -> false|true if X != Y
3560   if (ICmpInst::isEquality(Pred) &&
3561       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3562     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3563   }
3564 
3565   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3566     return V;
3567 
3568   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3569     return V;
3570 
3571   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
3572     return V;
3573 
3574   // Simplify comparisons of related pointers using a powerful, recursive
3575   // GEP-walk when we have target data available..
3576   if (LHS->getType()->isPointerTy())
3577     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3578                                      Q.IIQ, LHS, RHS))
3579       return C;
3580   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3581     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3582       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3583               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3584           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3585               Q.DL.getTypeSizeInBits(CRHS->getType()))
3586         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3587                                          Q.IIQ, CLHS->getPointerOperand(),
3588                                          CRHS->getPointerOperand()))
3589           return C;
3590 
3591   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3592     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3593       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3594           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3595           (ICmpInst::isEquality(Pred) ||
3596            (GLHS->isInBounds() && GRHS->isInBounds() &&
3597             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3598         // The bases are equal and the indices are constant.  Build a constant
3599         // expression GEP with the same indices and a null base pointer to see
3600         // what constant folding can make out of it.
3601         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3602         SmallVector<Value *, 4> IndicesLHS(GLHS->indices());
3603         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3604             GLHS->getSourceElementType(), Null, IndicesLHS);
3605 
3606         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3607         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3608             GLHS->getSourceElementType(), Null, IndicesRHS);
3609         Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3610         return ConstantFoldConstant(NewICmp, Q.DL);
3611       }
3612     }
3613   }
3614 
3615   // If the comparison is with the result of a select instruction, check whether
3616   // comparing with either branch of the select always yields the same value.
3617   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3618     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3619       return V;
3620 
3621   // If the comparison is with the result of a phi instruction, check whether
3622   // doing the compare with each incoming phi value yields a common result.
3623   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3624     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3625       return V;
3626 
3627   return nullptr;
3628 }
3629 
3630 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3631                               const SimplifyQuery &Q) {
3632   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3633 }
3634 
3635 /// Given operands for an FCmpInst, see if we can fold the result.
3636 /// If not, this returns null.
3637 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3638                                FastMathFlags FMF, const SimplifyQuery &Q,
3639                                unsigned MaxRecurse) {
3640   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3641   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3642 
3643   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3644     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3645       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3646 
3647     // If we have a constant, make sure it is on the RHS.
3648     std::swap(LHS, RHS);
3649     Pred = CmpInst::getSwappedPredicate(Pred);
3650   }
3651 
3652   // Fold trivial predicates.
3653   Type *RetTy = GetCompareTy(LHS);
3654   if (Pred == FCmpInst::FCMP_FALSE)
3655     return getFalse(RetTy);
3656   if (Pred == FCmpInst::FCMP_TRUE)
3657     return getTrue(RetTy);
3658 
3659   // Fold (un)ordered comparison if we can determine there are no NaNs.
3660   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3661     if (FMF.noNaNs() ||
3662         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3663       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3664 
3665   // NaN is unordered; NaN is not ordered.
3666   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3667          "Comparison must be either ordered or unordered");
3668   if (match(RHS, m_NaN()))
3669     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3670 
3671   // fcmp pred x, undef  and  fcmp pred undef, x
3672   // fold to true if unordered, false if ordered
3673   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
3674     // Choosing NaN for the undef will always make unordered comparison succeed
3675     // and ordered comparison fail.
3676     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3677   }
3678 
3679   // fcmp x,x -> true/false.  Not all compares are foldable.
3680   if (LHS == RHS) {
3681     if (CmpInst::isTrueWhenEqual(Pred))
3682       return getTrue(RetTy);
3683     if (CmpInst::isFalseWhenEqual(Pred))
3684       return getFalse(RetTy);
3685   }
3686 
3687   // Handle fcmp with constant RHS.
3688   // TODO: Use match with a specific FP value, so these work with vectors with
3689   // undef lanes.
3690   const APFloat *C;
3691   if (match(RHS, m_APFloat(C))) {
3692     // Check whether the constant is an infinity.
3693     if (C->isInfinity()) {
3694       if (C->isNegative()) {
3695         switch (Pred) {
3696         case FCmpInst::FCMP_OLT:
3697           // No value is ordered and less than negative infinity.
3698           return getFalse(RetTy);
3699         case FCmpInst::FCMP_UGE:
3700           // All values are unordered with or at least negative infinity.
3701           return getTrue(RetTy);
3702         default:
3703           break;
3704         }
3705       } else {
3706         switch (Pred) {
3707         case FCmpInst::FCMP_OGT:
3708           // No value is ordered and greater than infinity.
3709           return getFalse(RetTy);
3710         case FCmpInst::FCMP_ULE:
3711           // All values are unordered with and at most infinity.
3712           return getTrue(RetTy);
3713         default:
3714           break;
3715         }
3716       }
3717 
3718       // LHS == Inf
3719       if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI))
3720         return getFalse(RetTy);
3721       // LHS != Inf
3722       if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI))
3723         return getTrue(RetTy);
3724       // LHS == Inf || LHS == NaN
3725       if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) &&
3726           isKnownNeverNaN(LHS, Q.TLI))
3727         return getFalse(RetTy);
3728       // LHS != Inf && LHS != NaN
3729       if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) &&
3730           isKnownNeverNaN(LHS, Q.TLI))
3731         return getTrue(RetTy);
3732     }
3733     if (C->isNegative() && !C->isNegZero()) {
3734       assert(!C->isNaN() && "Unexpected NaN constant!");
3735       // TODO: We can catch more cases by using a range check rather than
3736       //       relying on CannotBeOrderedLessThanZero.
3737       switch (Pred) {
3738       case FCmpInst::FCMP_UGE:
3739       case FCmpInst::FCMP_UGT:
3740       case FCmpInst::FCMP_UNE:
3741         // (X >= 0) implies (X > C) when (C < 0)
3742         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3743           return getTrue(RetTy);
3744         break;
3745       case FCmpInst::FCMP_OEQ:
3746       case FCmpInst::FCMP_OLE:
3747       case FCmpInst::FCMP_OLT:
3748         // (X >= 0) implies !(X < C) when (C < 0)
3749         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3750           return getFalse(RetTy);
3751         break;
3752       default:
3753         break;
3754       }
3755     }
3756 
3757     // Check comparison of [minnum/maxnum with constant] with other constant.
3758     const APFloat *C2;
3759     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3760          *C2 < *C) ||
3761         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3762          *C2 > *C)) {
3763       bool IsMaxNum =
3764           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3765       // The ordered relationship and minnum/maxnum guarantee that we do not
3766       // have NaN constants, so ordered/unordered preds are handled the same.
3767       switch (Pred) {
3768       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3769         // minnum(X, LesserC)  == C --> false
3770         // maxnum(X, GreaterC) == C --> false
3771         return getFalse(RetTy);
3772       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3773         // minnum(X, LesserC)  != C --> true
3774         // maxnum(X, GreaterC) != C --> true
3775         return getTrue(RetTy);
3776       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3777       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3778         // minnum(X, LesserC)  >= C --> false
3779         // minnum(X, LesserC)  >  C --> false
3780         // maxnum(X, GreaterC) >= C --> true
3781         // maxnum(X, GreaterC) >  C --> true
3782         return ConstantInt::get(RetTy, IsMaxNum);
3783       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3784       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3785         // minnum(X, LesserC)  <= C --> true
3786         // minnum(X, LesserC)  <  C --> true
3787         // maxnum(X, GreaterC) <= C --> false
3788         // maxnum(X, GreaterC) <  C --> false
3789         return ConstantInt::get(RetTy, !IsMaxNum);
3790       default:
3791         // TRUE/FALSE/ORD/UNO should be handled before this.
3792         llvm_unreachable("Unexpected fcmp predicate");
3793       }
3794     }
3795   }
3796 
3797   if (match(RHS, m_AnyZeroFP())) {
3798     switch (Pred) {
3799     case FCmpInst::FCMP_OGE:
3800     case FCmpInst::FCMP_ULT:
3801       // Positive or zero X >= 0.0 --> true
3802       // Positive or zero X <  0.0 --> false
3803       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3804           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3805         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3806       break;
3807     case FCmpInst::FCMP_UGE:
3808     case FCmpInst::FCMP_OLT:
3809       // Positive or zero or nan X >= 0.0 --> true
3810       // Positive or zero or nan X <  0.0 --> false
3811       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3812         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3813       break;
3814     default:
3815       break;
3816     }
3817   }
3818 
3819   // If the comparison is with the result of a select instruction, check whether
3820   // comparing with either branch of the select always yields the same value.
3821   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3822     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3823       return V;
3824 
3825   // If the comparison is with the result of a phi instruction, check whether
3826   // doing the compare with each incoming phi value yields a common result.
3827   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3828     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3829       return V;
3830 
3831   return nullptr;
3832 }
3833 
3834 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3835                               FastMathFlags FMF, const SimplifyQuery &Q) {
3836   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3837 }
3838 
3839 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3840                                      const SimplifyQuery &Q,
3841                                      bool AllowRefinement,
3842                                      unsigned MaxRecurse) {
3843   // Trivial replacement.
3844   if (V == Op)
3845     return RepOp;
3846 
3847   // We cannot replace a constant, and shouldn't even try.
3848   if (isa<Constant>(Op))
3849     return nullptr;
3850 
3851   auto *I = dyn_cast<Instruction>(V);
3852   if (!I)
3853     return nullptr;
3854 
3855   // Consider:
3856   //   %cmp = icmp eq i32 %x, 2147483647
3857   //   %add = add nsw i32 %x, 1
3858   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3859   //
3860   // We can't replace %sel with %add unless we strip away the flags (which will
3861   // be done in InstCombine).
3862   // TODO: This is unsound, because it only catches some forms of refinement.
3863   if (!AllowRefinement && canCreatePoison(cast<Operator>(I)))
3864     return nullptr;
3865 
3866   // The simplification queries below may return the original value. Consider:
3867   //   %div = udiv i32 %arg, %arg2
3868   //   %mul = mul nsw i32 %div, %arg2
3869   //   %cmp = icmp eq i32 %mul, %arg
3870   //   %sel = select i1 %cmp, i32 %div, i32 undef
3871   // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
3872   // simplifies back to %arg. This can only happen because %mul does not
3873   // dominate %div. To ensure a consistent return value contract, we make sure
3874   // that this case returns nullptr as well.
3875   auto PreventSelfSimplify = [V](Value *Simplified) {
3876     return Simplified != V ? Simplified : nullptr;
3877   };
3878 
3879   // If this is a binary operator, try to simplify it with the replaced op.
3880   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3881     if (MaxRecurse) {
3882       if (B->getOperand(0) == Op)
3883         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp,
3884                                                  B->getOperand(1), Q,
3885                                                  MaxRecurse - 1));
3886       if (B->getOperand(1) == Op)
3887         return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(),
3888                                                  B->getOperand(0), RepOp, Q,
3889                                                  MaxRecurse - 1));
3890     }
3891   }
3892 
3893   // Same for CmpInsts.
3894   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3895     if (MaxRecurse) {
3896       if (C->getOperand(0) == Op)
3897         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp,
3898                                                    C->getOperand(1), Q,
3899                                                    MaxRecurse - 1));
3900       if (C->getOperand(1) == Op)
3901         return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(),
3902                                                    C->getOperand(0), RepOp, Q,
3903                                                    MaxRecurse - 1));
3904     }
3905   }
3906 
3907   // Same for GEPs.
3908   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3909     if (MaxRecurse) {
3910       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3911       transform(GEP->operands(), NewOps.begin(),
3912                 [&](Value *V) { return V == Op ? RepOp : V; });
3913       return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(),
3914                                                  NewOps, Q, MaxRecurse - 1));
3915     }
3916   }
3917 
3918   // TODO: We could hand off more cases to instsimplify here.
3919 
3920   // If all operands are constant after substituting Op for RepOp then we can
3921   // constant fold the instruction.
3922   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3923     // Build a list of all constant operands.
3924     SmallVector<Constant *, 8> ConstOps;
3925     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3926       if (I->getOperand(i) == Op)
3927         ConstOps.push_back(CRepOp);
3928       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3929         ConstOps.push_back(COp);
3930       else
3931         break;
3932     }
3933 
3934     // All operands were constants, fold it.
3935     if (ConstOps.size() == I->getNumOperands()) {
3936       if (CmpInst *C = dyn_cast<CmpInst>(I))
3937         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3938                                                ConstOps[1], Q.DL, Q.TLI);
3939 
3940       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3941         if (!LI->isVolatile())
3942           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3943 
3944       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3945     }
3946   }
3947 
3948   return nullptr;
3949 }
3950 
3951 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3952                                     const SimplifyQuery &Q,
3953                                     bool AllowRefinement) {
3954   return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement,
3955                                   RecursionLimit);
3956 }
3957 
3958 /// Try to simplify a select instruction when its condition operand is an
3959 /// integer comparison where one operand of the compare is a constant.
3960 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3961                                     const APInt *Y, bool TrueWhenUnset) {
3962   const APInt *C;
3963 
3964   // (X & Y) == 0 ? X & ~Y : X  --> X
3965   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3966   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3967       *Y == ~*C)
3968     return TrueWhenUnset ? FalseVal : TrueVal;
3969 
3970   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3971   // (X & Y) != 0 ? X : X & ~Y  --> X
3972   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3973       *Y == ~*C)
3974     return TrueWhenUnset ? FalseVal : TrueVal;
3975 
3976   if (Y->isPowerOf2()) {
3977     // (X & Y) == 0 ? X | Y : X  --> X | Y
3978     // (X & Y) != 0 ? X | Y : X  --> X
3979     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3980         *Y == *C)
3981       return TrueWhenUnset ? TrueVal : FalseVal;
3982 
3983     // (X & Y) == 0 ? X : X | Y  --> X
3984     // (X & Y) != 0 ? X : X | Y  --> X | Y
3985     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3986         *Y == *C)
3987       return TrueWhenUnset ? TrueVal : FalseVal;
3988   }
3989 
3990   return nullptr;
3991 }
3992 
3993 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3994 /// eq/ne.
3995 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3996                                            ICmpInst::Predicate Pred,
3997                                            Value *TrueVal, Value *FalseVal) {
3998   Value *X;
3999   APInt Mask;
4000   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4001     return nullptr;
4002 
4003   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4004                                Pred == ICmpInst::ICMP_EQ);
4005 }
4006 
4007 /// Try to simplify a select instruction when its condition operand is an
4008 /// integer comparison.
4009 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4010                                          Value *FalseVal, const SimplifyQuery &Q,
4011                                          unsigned MaxRecurse) {
4012   ICmpInst::Predicate Pred;
4013   Value *CmpLHS, *CmpRHS;
4014   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4015     return nullptr;
4016 
4017   // Canonicalize ne to eq predicate.
4018   if (Pred == ICmpInst::ICMP_NE) {
4019     Pred = ICmpInst::ICMP_EQ;
4020     std::swap(TrueVal, FalseVal);
4021   }
4022 
4023   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4024     Value *X;
4025     const APInt *Y;
4026     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4027       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4028                                            /*TrueWhenUnset=*/true))
4029         return V;
4030 
4031     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4032     Value *ShAmt;
4033     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4034                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4035     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4036     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4037     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4038       return X;
4039 
4040     // Test for a zero-shift-guard-op around rotates. These are used to
4041     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4042     // intrinsics do not have that problem.
4043     // We do not allow this transform for the general funnel shift case because
4044     // that would not preserve the poison safety of the original code.
4045     auto isRotate =
4046         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4047                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4048     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4049     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4050     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4051         Pred == ICmpInst::ICMP_EQ)
4052       return FalseVal;
4053 
4054     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4055     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4056     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4057         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4058       return FalseVal;
4059     if (match(TrueVal,
4060               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4061         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4062       return FalseVal;
4063   }
4064 
4065   // Check for other compares that behave like bit test.
4066   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
4067                                               TrueVal, FalseVal))
4068     return V;
4069 
4070   // If we have an equality comparison, then we know the value in one of the
4071   // arms of the select. See if substituting this value into the arm and
4072   // simplifying the result yields the same value as the other arm.
4073   if (Pred == ICmpInst::ICMP_EQ) {
4074     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q,
4075                                /* AllowRefinement */ false, MaxRecurse) ==
4076             TrueVal ||
4077         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q,
4078                                /* AllowRefinement */ false, MaxRecurse) ==
4079             TrueVal)
4080       return FalseVal;
4081     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4082                                /* AllowRefinement */ true, MaxRecurse) ==
4083             FalseVal ||
4084         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q,
4085                                /* AllowRefinement */ true, MaxRecurse) ==
4086             FalseVal)
4087       return FalseVal;
4088   }
4089 
4090   return nullptr;
4091 }
4092 
4093 /// Try to simplify a select instruction when its condition operand is a
4094 /// floating-point comparison.
4095 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4096                                      const SimplifyQuery &Q) {
4097   FCmpInst::Predicate Pred;
4098   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4099       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4100     return nullptr;
4101 
4102   // This transform is safe if we do not have (do not care about) -0.0 or if
4103   // at least one operand is known to not be -0.0. Otherwise, the select can
4104   // change the sign of a zero operand.
4105   bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) &&
4106                           Q.CxtI->hasNoSignedZeros();
4107   const APFloat *C;
4108   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4109                           (match(F, m_APFloat(C)) && C->isNonZero())) {
4110     // (T == F) ? T : F --> F
4111     // (F == T) ? T : F --> F
4112     if (Pred == FCmpInst::FCMP_OEQ)
4113       return F;
4114 
4115     // (T != F) ? T : F --> T
4116     // (F != T) ? T : F --> T
4117     if (Pred == FCmpInst::FCMP_UNE)
4118       return T;
4119   }
4120 
4121   return nullptr;
4122 }
4123 
4124 /// Given operands for a SelectInst, see if we can fold the result.
4125 /// If not, this returns null.
4126 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4127                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4128   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4129     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4130       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4131         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
4132 
4133     // select undef, X, Y -> X or Y
4134     if (Q.isUndefValue(CondC))
4135       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4136 
4137     // TODO: Vector constants with undef elements don't simplify.
4138 
4139     // select true, X, Y  -> X
4140     if (CondC->isAllOnesValue())
4141       return TrueVal;
4142     // select false, X, Y -> Y
4143     if (CondC->isNullValue())
4144       return FalseVal;
4145   }
4146 
4147   // select i1 Cond, i1 true, i1 false --> i1 Cond
4148   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4149          "Select must have bool or bool vector condition");
4150   assert(TrueVal->getType() == FalseVal->getType() &&
4151          "Select must have same types for true/false ops");
4152   if (Cond->getType() == TrueVal->getType() &&
4153       match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4154     return Cond;
4155 
4156   // select ?, X, X -> X
4157   if (TrueVal == FalseVal)
4158     return TrueVal;
4159 
4160   // If the true or false value is undef, we can fold to the other value as
4161   // long as the other value isn't poison.
4162   // select ?, undef, X -> X
4163   if (Q.isUndefValue(TrueVal) &&
4164       isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT))
4165     return FalseVal;
4166   // select ?, X, undef -> X
4167   if (Q.isUndefValue(FalseVal) &&
4168       isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT))
4169     return TrueVal;
4170 
4171   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4172   Constant *TrueC, *FalseC;
4173   if (isa<FixedVectorType>(TrueVal->getType()) &&
4174       match(TrueVal, m_Constant(TrueC)) &&
4175       match(FalseVal, m_Constant(FalseC))) {
4176     unsigned NumElts =
4177         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4178     SmallVector<Constant *, 16> NewC;
4179     for (unsigned i = 0; i != NumElts; ++i) {
4180       // Bail out on incomplete vector constants.
4181       Constant *TEltC = TrueC->getAggregateElement(i);
4182       Constant *FEltC = FalseC->getAggregateElement(i);
4183       if (!TEltC || !FEltC)
4184         break;
4185 
4186       // If the elements match (undef or not), that value is the result. If only
4187       // one element is undef, choose the defined element as the safe result.
4188       if (TEltC == FEltC)
4189         NewC.push_back(TEltC);
4190       else if (Q.isUndefValue(TEltC) &&
4191                isGuaranteedNotToBeUndefOrPoison(FEltC))
4192         NewC.push_back(FEltC);
4193       else if (Q.isUndefValue(FEltC) &&
4194                isGuaranteedNotToBeUndefOrPoison(TEltC))
4195         NewC.push_back(TEltC);
4196       else
4197         break;
4198     }
4199     if (NewC.size() == NumElts)
4200       return ConstantVector::get(NewC);
4201   }
4202 
4203   if (Value *V =
4204           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4205     return V;
4206 
4207   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4208     return V;
4209 
4210   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4211     return V;
4212 
4213   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4214   if (Imp)
4215     return *Imp ? TrueVal : FalseVal;
4216 
4217   return nullptr;
4218 }
4219 
4220 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4221                                 const SimplifyQuery &Q) {
4222   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4223 }
4224 
4225 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4226 /// If not, this returns null.
4227 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4228                               const SimplifyQuery &Q, unsigned) {
4229   // The type of the GEP pointer operand.
4230   unsigned AS =
4231       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
4232 
4233   // getelementptr P -> P.
4234   if (Ops.size() == 1)
4235     return Ops[0];
4236 
4237   // Compute the (pointer) type returned by the GEP instruction.
4238   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
4239   Type *GEPTy = PointerType::get(LastType, AS);
4240   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
4241     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4242   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
4243     GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4244 
4245   // getelementptr poison, idx -> poison
4246   // getelementptr baseptr, poison -> poison
4247   if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); }))
4248     return PoisonValue::get(GEPTy);
4249 
4250   if (Q.isUndefValue(Ops[0]))
4251     return UndefValue::get(GEPTy);
4252 
4253   bool IsScalableVec = isa<ScalableVectorType>(SrcTy);
4254 
4255   if (Ops.size() == 2) {
4256     // getelementptr P, 0 -> P.
4257     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
4258       return Ops[0];
4259 
4260     Type *Ty = SrcTy;
4261     if (!IsScalableVec && Ty->isSized()) {
4262       Value *P;
4263       uint64_t C;
4264       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
4265       // getelementptr P, N -> P if P points to a type of zero size.
4266       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
4267         return Ops[0];
4268 
4269       // The following transforms are only safe if the ptrtoint cast
4270       // doesn't truncate the pointers.
4271       if (Ops[1]->getType()->getScalarSizeInBits() ==
4272           Q.DL.getPointerSizeInBits(AS)) {
4273         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
4274           if (match(P, m_Zero()))
4275             return Constant::getNullValue(GEPTy);
4276           Value *Temp;
4277           if (match(P, m_PtrToInt(m_Value(Temp))))
4278             if (Temp->getType() == GEPTy)
4279               return Temp;
4280           return nullptr;
4281         };
4282 
4283         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
4284         if (TyAllocSize == 1 &&
4285             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
4286           if (Value *R = PtrToIntOrZero(P))
4287             return R;
4288 
4289         // getelementptr V, (ashr (sub P, V), C) -> Q
4290         // if P points to a type of size 1 << C.
4291         if (match(Ops[1],
4292                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4293                          m_ConstantInt(C))) &&
4294             TyAllocSize == 1ULL << C)
4295           if (Value *R = PtrToIntOrZero(P))
4296             return R;
4297 
4298         // getelementptr V, (sdiv (sub P, V), C) -> Q
4299         // if P points to a type of size C.
4300         if (match(Ops[1],
4301                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
4302                          m_SpecificInt(TyAllocSize))))
4303           if (Value *R = PtrToIntOrZero(P))
4304             return R;
4305       }
4306     }
4307   }
4308 
4309   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
4310       all_of(Ops.slice(1).drop_back(1),
4311              [](Value *Idx) { return match(Idx, m_Zero()); })) {
4312     unsigned IdxWidth =
4313         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
4314     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
4315       APInt BasePtrOffset(IdxWidth, 0);
4316       Value *StrippedBasePtr =
4317           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
4318                                                             BasePtrOffset);
4319 
4320       // gep (gep V, C), (sub 0, V) -> C
4321       if (match(Ops.back(),
4322                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
4323         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
4324         return ConstantExpr::getIntToPtr(CI, GEPTy);
4325       }
4326       // gep (gep V, C), (xor V, -1) -> C-1
4327       if (match(Ops.back(),
4328                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
4329         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
4330         return ConstantExpr::getIntToPtr(CI, GEPTy);
4331       }
4332     }
4333   }
4334 
4335   // Check to see if this is constant foldable.
4336   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
4337     return nullptr;
4338 
4339   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
4340                                             Ops.slice(1));
4341   return ConstantFoldConstant(CE, Q.DL);
4342 }
4343 
4344 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
4345                              const SimplifyQuery &Q) {
4346   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
4347 }
4348 
4349 /// Given operands for an InsertValueInst, see if we can fold the result.
4350 /// If not, this returns null.
4351 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
4352                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
4353                                       unsigned) {
4354   if (Constant *CAgg = dyn_cast<Constant>(Agg))
4355     if (Constant *CVal = dyn_cast<Constant>(Val))
4356       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
4357 
4358   // insertvalue x, undef, n -> x
4359   if (Q.isUndefValue(Val))
4360     return Agg;
4361 
4362   // insertvalue x, (extractvalue y, n), n
4363   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
4364     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
4365         EV->getIndices() == Idxs) {
4366       // insertvalue undef, (extractvalue y, n), n -> y
4367       if (Q.isUndefValue(Agg))
4368         return EV->getAggregateOperand();
4369 
4370       // insertvalue y, (extractvalue y, n), n -> y
4371       if (Agg == EV->getAggregateOperand())
4372         return Agg;
4373     }
4374 
4375   return nullptr;
4376 }
4377 
4378 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
4379                                      ArrayRef<unsigned> Idxs,
4380                                      const SimplifyQuery &Q) {
4381   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
4382 }
4383 
4384 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
4385                                        const SimplifyQuery &Q) {
4386   // Try to constant fold.
4387   auto *VecC = dyn_cast<Constant>(Vec);
4388   auto *ValC = dyn_cast<Constant>(Val);
4389   auto *IdxC = dyn_cast<Constant>(Idx);
4390   if (VecC && ValC && IdxC)
4391     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
4392 
4393   // For fixed-length vector, fold into poison if index is out of bounds.
4394   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
4395     if (isa<FixedVectorType>(Vec->getType()) &&
4396         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
4397       return PoisonValue::get(Vec->getType());
4398   }
4399 
4400   // If index is undef, it might be out of bounds (see above case)
4401   if (Q.isUndefValue(Idx))
4402     return PoisonValue::get(Vec->getType());
4403 
4404   // If the scalar is undef, and there is no risk of propagating poison from the
4405   // vector value, simplify to the vector value.
4406   if (Q.isUndefValue(Val) &&
4407       isGuaranteedNotToBeUndefOrPoison(Vec))
4408     return Vec;
4409 
4410   // If we are extracting a value from a vector, then inserting it into the same
4411   // place, that's the input vector:
4412   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4413   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
4414     return Vec;
4415 
4416   return nullptr;
4417 }
4418 
4419 /// Given operands for an ExtractValueInst, see if we can fold the result.
4420 /// If not, this returns null.
4421 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4422                                        const SimplifyQuery &, unsigned) {
4423   if (auto *CAgg = dyn_cast<Constant>(Agg))
4424     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4425 
4426   // extractvalue x, (insertvalue y, elt, n), n -> elt
4427   unsigned NumIdxs = Idxs.size();
4428   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4429        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4430     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4431     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4432     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4433     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4434         Idxs.slice(0, NumCommonIdxs)) {
4435       if (NumIdxs == NumInsertValueIdxs)
4436         return IVI->getInsertedValueOperand();
4437       break;
4438     }
4439   }
4440 
4441   return nullptr;
4442 }
4443 
4444 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4445                                       const SimplifyQuery &Q) {
4446   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4447 }
4448 
4449 /// Given operands for an ExtractElementInst, see if we can fold the result.
4450 /// If not, this returns null.
4451 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx,
4452                                          const SimplifyQuery &Q, unsigned) {
4453   auto *VecVTy = cast<VectorType>(Vec->getType());
4454   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4455     if (auto *CIdx = dyn_cast<Constant>(Idx))
4456       return ConstantExpr::getExtractElement(CVec, CIdx);
4457 
4458     // The index is not relevant if our vector is a splat.
4459     if (auto *Splat = CVec->getSplatValue())
4460       return Splat;
4461 
4462     if (Q.isUndefValue(Vec))
4463       return UndefValue::get(VecVTy->getElementType());
4464   }
4465 
4466   // If extracting a specified index from the vector, see if we can recursively
4467   // find a previously computed scalar that was inserted into the vector.
4468   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4469     // For fixed-length vector, fold into undef if index is out of bounds.
4470     if (isa<FixedVectorType>(VecVTy) &&
4471         IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements()))
4472       return PoisonValue::get(VecVTy->getElementType());
4473     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4474       return Elt;
4475   }
4476 
4477   // An undef extract index can be arbitrarily chosen to be an out-of-range
4478   // index value, which would result in the instruction being poison.
4479   if (Q.isUndefValue(Idx))
4480     return PoisonValue::get(VecVTy->getElementType());
4481 
4482   return nullptr;
4483 }
4484 
4485 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4486                                         const SimplifyQuery &Q) {
4487   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4488 }
4489 
4490 /// See if we can fold the given phi. If not, returns null.
4491 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4492   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
4493   //          here, because the PHI we may succeed simplifying to was not
4494   //          def-reachable from the original PHI!
4495 
4496   // If all of the PHI's incoming values are the same then replace the PHI node
4497   // with the common value.
4498   Value *CommonValue = nullptr;
4499   bool HasUndefInput = false;
4500   for (Value *Incoming : PN->incoming_values()) {
4501     // If the incoming value is the phi node itself, it can safely be skipped.
4502     if (Incoming == PN) continue;
4503     if (Q.isUndefValue(Incoming)) {
4504       // Remember that we saw an undef value, but otherwise ignore them.
4505       HasUndefInput = true;
4506       continue;
4507     }
4508     if (CommonValue && Incoming != CommonValue)
4509       return nullptr;  // Not the same, bail out.
4510     CommonValue = Incoming;
4511   }
4512 
4513   // If CommonValue is null then all of the incoming values were either undef or
4514   // equal to the phi node itself.
4515   if (!CommonValue)
4516     return UndefValue::get(PN->getType());
4517 
4518   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4519   // instruction, we cannot return X as the result of the PHI node unless it
4520   // dominates the PHI block.
4521   if (HasUndefInput)
4522     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4523 
4524   return CommonValue;
4525 }
4526 
4527 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4528                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4529   if (auto *C = dyn_cast<Constant>(Op))
4530     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4531 
4532   if (auto *CI = dyn_cast<CastInst>(Op)) {
4533     auto *Src = CI->getOperand(0);
4534     Type *SrcTy = Src->getType();
4535     Type *MidTy = CI->getType();
4536     Type *DstTy = Ty;
4537     if (Src->getType() == Ty) {
4538       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4539       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4540       Type *SrcIntPtrTy =
4541           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4542       Type *MidIntPtrTy =
4543           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4544       Type *DstIntPtrTy =
4545           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4546       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4547                                          SrcIntPtrTy, MidIntPtrTy,
4548                                          DstIntPtrTy) == Instruction::BitCast)
4549         return Src;
4550     }
4551   }
4552 
4553   // bitcast x -> x
4554   if (CastOpc == Instruction::BitCast)
4555     if (Op->getType() == Ty)
4556       return Op;
4557 
4558   return nullptr;
4559 }
4560 
4561 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4562                               const SimplifyQuery &Q) {
4563   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4564 }
4565 
4566 /// For the given destination element of a shuffle, peek through shuffles to
4567 /// match a root vector source operand that contains that element in the same
4568 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4569 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4570                                    int MaskVal, Value *RootVec,
4571                                    unsigned MaxRecurse) {
4572   if (!MaxRecurse--)
4573     return nullptr;
4574 
4575   // Bail out if any mask value is undefined. That kind of shuffle may be
4576   // simplified further based on demanded bits or other folds.
4577   if (MaskVal == -1)
4578     return nullptr;
4579 
4580   // The mask value chooses which source operand we need to look at next.
4581   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
4582   int RootElt = MaskVal;
4583   Value *SourceOp = Op0;
4584   if (MaskVal >= InVecNumElts) {
4585     RootElt = MaskVal - InVecNumElts;
4586     SourceOp = Op1;
4587   }
4588 
4589   // If the source operand is a shuffle itself, look through it to find the
4590   // matching root vector.
4591   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4592     return foldIdentityShuffles(
4593         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4594         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4595   }
4596 
4597   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4598   // size?
4599 
4600   // The source operand is not a shuffle. Initialize the root vector value for
4601   // this shuffle if that has not been done yet.
4602   if (!RootVec)
4603     RootVec = SourceOp;
4604 
4605   // Give up as soon as a source operand does not match the existing root value.
4606   if (RootVec != SourceOp)
4607     return nullptr;
4608 
4609   // The element must be coming from the same lane in the source vector
4610   // (although it may have crossed lanes in intermediate shuffles).
4611   if (RootElt != DestElt)
4612     return nullptr;
4613 
4614   return RootVec;
4615 }
4616 
4617 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4618                                         ArrayRef<int> Mask, Type *RetTy,
4619                                         const SimplifyQuery &Q,
4620                                         unsigned MaxRecurse) {
4621   if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; }))
4622     return UndefValue::get(RetTy);
4623 
4624   auto *InVecTy = cast<VectorType>(Op0->getType());
4625   unsigned MaskNumElts = Mask.size();
4626   ElementCount InVecEltCount = InVecTy->getElementCount();
4627 
4628   bool Scalable = InVecEltCount.isScalable();
4629 
4630   SmallVector<int, 32> Indices;
4631   Indices.assign(Mask.begin(), Mask.end());
4632 
4633   // Canonicalization: If mask does not select elements from an input vector,
4634   // replace that input vector with undef.
4635   if (!Scalable) {
4636     bool MaskSelects0 = false, MaskSelects1 = false;
4637     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
4638     for (unsigned i = 0; i != MaskNumElts; ++i) {
4639       if (Indices[i] == -1)
4640         continue;
4641       if ((unsigned)Indices[i] < InVecNumElts)
4642         MaskSelects0 = true;
4643       else
4644         MaskSelects1 = true;
4645     }
4646     if (!MaskSelects0)
4647       Op0 = UndefValue::get(InVecTy);
4648     if (!MaskSelects1)
4649       Op1 = UndefValue::get(InVecTy);
4650   }
4651 
4652   auto *Op0Const = dyn_cast<Constant>(Op0);
4653   auto *Op1Const = dyn_cast<Constant>(Op1);
4654 
4655   // If all operands are constant, constant fold the shuffle. This
4656   // transformation depends on the value of the mask which is not known at
4657   // compile time for scalable vectors
4658   if (Op0Const && Op1Const)
4659     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
4660 
4661   // Canonicalization: if only one input vector is constant, it shall be the
4662   // second one. This transformation depends on the value of the mask which
4663   // is not known at compile time for scalable vectors
4664   if (!Scalable && Op0Const && !Op1Const) {
4665     std::swap(Op0, Op1);
4666     ShuffleVectorInst::commuteShuffleMask(Indices,
4667                                           InVecEltCount.getKnownMinValue());
4668   }
4669 
4670   // A splat of an inserted scalar constant becomes a vector constant:
4671   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
4672   // NOTE: We may have commuted above, so analyze the updated Indices, not the
4673   //       original mask constant.
4674   // NOTE: This transformation depends on the value of the mask which is not
4675   // known at compile time for scalable vectors
4676   Constant *C;
4677   ConstantInt *IndexC;
4678   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
4679                                           m_ConstantInt(IndexC)))) {
4680     // Match a splat shuffle mask of the insert index allowing undef elements.
4681     int InsertIndex = IndexC->getZExtValue();
4682     if (all_of(Indices, [InsertIndex](int MaskElt) {
4683           return MaskElt == InsertIndex || MaskElt == -1;
4684         })) {
4685       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
4686 
4687       // Shuffle mask undefs become undefined constant result elements.
4688       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
4689       for (unsigned i = 0; i != MaskNumElts; ++i)
4690         if (Indices[i] == -1)
4691           VecC[i] = UndefValue::get(C->getType());
4692       return ConstantVector::get(VecC);
4693     }
4694   }
4695 
4696   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4697   // value type is same as the input vectors' type.
4698   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4699     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
4700         is_splat(OpShuf->getShuffleMask()))
4701       return Op0;
4702 
4703   // All remaining transformation depend on the value of the mask, which is
4704   // not known at compile time for scalable vectors.
4705   if (Scalable)
4706     return nullptr;
4707 
4708   // Don't fold a shuffle with undef mask elements. This may get folded in a
4709   // better way using demanded bits or other analysis.
4710   // TODO: Should we allow this?
4711   if (is_contained(Indices, -1))
4712     return nullptr;
4713 
4714   // Check if every element of this shuffle can be mapped back to the
4715   // corresponding element of a single root vector. If so, we don't need this
4716   // shuffle. This handles simple identity shuffles as well as chains of
4717   // shuffles that may widen/narrow and/or move elements across lanes and back.
4718   Value *RootVec = nullptr;
4719   for (unsigned i = 0; i != MaskNumElts; ++i) {
4720     // Note that recursion is limited for each vector element, so if any element
4721     // exceeds the limit, this will fail to simplify.
4722     RootVec =
4723         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4724 
4725     // We can't replace a widening/narrowing shuffle with one of its operands.
4726     if (!RootVec || RootVec->getType() != RetTy)
4727       return nullptr;
4728   }
4729   return RootVec;
4730 }
4731 
4732 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4733 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1,
4734                                        ArrayRef<int> Mask, Type *RetTy,
4735                                        const SimplifyQuery &Q) {
4736   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4737 }
4738 
4739 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4740                               Value *&Op, const SimplifyQuery &Q) {
4741   if (auto *C = dyn_cast<Constant>(Op))
4742     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4743   return nullptr;
4744 }
4745 
4746 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4747 /// returns null.
4748 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4749                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4750   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4751     return C;
4752 
4753   Value *X;
4754   // fneg (fneg X) ==> X
4755   if (match(Op, m_FNeg(m_Value(X))))
4756     return X;
4757 
4758   return nullptr;
4759 }
4760 
4761 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4762                               const SimplifyQuery &Q) {
4763   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4764 }
4765 
4766 static Constant *propagateNaN(Constant *In) {
4767   // If the input is a vector with undef elements, just return a default NaN.
4768   if (!In->isNaN())
4769     return ConstantFP::getNaN(In->getType());
4770 
4771   // Propagate the existing NaN constant when possible.
4772   // TODO: Should we quiet a signaling NaN?
4773   return In;
4774 }
4775 
4776 /// Perform folds that are common to any floating-point operation. This implies
4777 /// transforms based on undef/NaN because the operation itself makes no
4778 /// difference to the result.
4779 static Constant *simplifyFPOp(ArrayRef<Value *> Ops,
4780                               FastMathFlags FMF,
4781                               const SimplifyQuery &Q) {
4782   for (Value *V : Ops) {
4783     bool IsNan = match(V, m_NaN());
4784     bool IsInf = match(V, m_Inf());
4785     bool IsUndef = Q.isUndefValue(V);
4786 
4787     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
4788     // (an undef operand can be chosen to be Nan/Inf), then the result of
4789     // this operation is poison.
4790     if (FMF.noNaNs() && (IsNan || IsUndef))
4791       return PoisonValue::get(V->getType());
4792     if (FMF.noInfs() && (IsInf || IsUndef))
4793       return PoisonValue::get(V->getType());
4794 
4795     if (IsUndef || IsNan)
4796       return propagateNaN(cast<Constant>(V));
4797   }
4798   return nullptr;
4799 }
4800 
4801 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4802 /// returns null.
4803 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4804                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4805   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4806     return C;
4807 
4808   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4809     return C;
4810 
4811   // fadd X, -0 ==> X
4812   if (match(Op1, m_NegZeroFP()))
4813     return Op0;
4814 
4815   // fadd X, 0 ==> X, when we know X is not -0
4816   if (match(Op1, m_PosZeroFP()) &&
4817       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4818     return Op0;
4819 
4820   // With nnan: -X + X --> 0.0 (and commuted variant)
4821   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4822   // Negative zeros are allowed because we always end up with positive zero:
4823   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4824   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4825   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4826   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4827   if (FMF.noNaNs()) {
4828     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4829         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4830       return ConstantFP::getNullValue(Op0->getType());
4831 
4832     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4833         match(Op1, m_FNeg(m_Specific(Op0))))
4834       return ConstantFP::getNullValue(Op0->getType());
4835   }
4836 
4837   // (X - Y) + Y --> X
4838   // Y + (X - Y) --> X
4839   Value *X;
4840   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4841       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4842        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4843     return X;
4844 
4845   return nullptr;
4846 }
4847 
4848 /// Given operands for an FSub, see if we can fold the result.  If not, this
4849 /// returns null.
4850 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4851                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4852   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4853     return C;
4854 
4855   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4856     return C;
4857 
4858   // fsub X, +0 ==> X
4859   if (match(Op1, m_PosZeroFP()))
4860     return Op0;
4861 
4862   // fsub X, -0 ==> X, when we know X is not -0
4863   if (match(Op1, m_NegZeroFP()) &&
4864       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4865     return Op0;
4866 
4867   // fsub -0.0, (fsub -0.0, X) ==> X
4868   // fsub -0.0, (fneg X) ==> X
4869   Value *X;
4870   if (match(Op0, m_NegZeroFP()) &&
4871       match(Op1, m_FNeg(m_Value(X))))
4872     return X;
4873 
4874   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4875   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4876   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4877       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4878        match(Op1, m_FNeg(m_Value(X)))))
4879     return X;
4880 
4881   // fsub nnan x, x ==> 0.0
4882   if (FMF.noNaNs() && Op0 == Op1)
4883     return Constant::getNullValue(Op0->getType());
4884 
4885   // Y - (Y - X) --> X
4886   // (X + Y) - Y --> X
4887   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4888       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4889        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4890     return X;
4891 
4892   return nullptr;
4893 }
4894 
4895 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4896                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4897   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4898     return C;
4899 
4900   // fmul X, 1.0 ==> X
4901   if (match(Op1, m_FPOne()))
4902     return Op0;
4903 
4904   // fmul 1.0, X ==> X
4905   if (match(Op0, m_FPOne()))
4906     return Op1;
4907 
4908   // fmul nnan nsz X, 0 ==> 0
4909   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4910     return ConstantFP::getNullValue(Op0->getType());
4911 
4912   // fmul nnan nsz 0, X ==> 0
4913   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4914     return ConstantFP::getNullValue(Op1->getType());
4915 
4916   // sqrt(X) * sqrt(X) --> X, if we can:
4917   // 1. Remove the intermediate rounding (reassociate).
4918   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4919   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4920   Value *X;
4921   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4922       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4923     return X;
4924 
4925   return nullptr;
4926 }
4927 
4928 /// Given the operands for an FMul, see if we can fold the result
4929 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4930                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4931   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4932     return C;
4933 
4934   // Now apply simplifications that do not require rounding.
4935   return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse);
4936 }
4937 
4938 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4939                               const SimplifyQuery &Q) {
4940   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4941 }
4942 
4943 
4944 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4945                               const SimplifyQuery &Q) {
4946   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4947 }
4948 
4949 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4950                               const SimplifyQuery &Q) {
4951   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4952 }
4953 
4954 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
4955                              const SimplifyQuery &Q) {
4956   return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit);
4957 }
4958 
4959 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4960                                const SimplifyQuery &Q, unsigned) {
4961   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4962     return C;
4963 
4964   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
4965     return C;
4966 
4967   // X / 1.0 -> X
4968   if (match(Op1, m_FPOne()))
4969     return Op0;
4970 
4971   // 0 / X -> 0
4972   // Requires that NaNs are off (X could be zero) and signed zeroes are
4973   // ignored (X could be positive or negative, so the output sign is unknown).
4974   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4975     return ConstantFP::getNullValue(Op0->getType());
4976 
4977   if (FMF.noNaNs()) {
4978     // X / X -> 1.0 is legal when NaNs are ignored.
4979     // We can ignore infinities because INF/INF is NaN.
4980     if (Op0 == Op1)
4981       return ConstantFP::get(Op0->getType(), 1.0);
4982 
4983     // (X * Y) / Y --> X if we can reassociate to the above form.
4984     Value *X;
4985     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4986       return X;
4987 
4988     // -X /  X -> -1.0 and
4989     //  X / -X -> -1.0 are legal when NaNs are ignored.
4990     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4991     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4992         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4993       return ConstantFP::get(Op0->getType(), -1.0);
4994   }
4995 
4996   return nullptr;
4997 }
4998 
4999 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5000                               const SimplifyQuery &Q) {
5001   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
5002 }
5003 
5004 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5005                                const SimplifyQuery &Q, unsigned) {
5006   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5007     return C;
5008 
5009   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q))
5010     return C;
5011 
5012   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5013   // The constant match may include undef elements in a vector, so return a full
5014   // zero constant as the result.
5015   if (FMF.noNaNs()) {
5016     // +0 % X -> 0
5017     if (match(Op0, m_PosZeroFP()))
5018       return ConstantFP::getNullValue(Op0->getType());
5019     // -0 % X -> -0
5020     if (match(Op0, m_NegZeroFP()))
5021       return ConstantFP::getNegativeZero(Op0->getType());
5022   }
5023 
5024   return nullptr;
5025 }
5026 
5027 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5028                               const SimplifyQuery &Q) {
5029   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
5030 }
5031 
5032 //=== Helper functions for higher up the class hierarchy.
5033 
5034 /// Given the operand for a UnaryOperator, see if we can fold the result.
5035 /// If not, this returns null.
5036 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5037                            unsigned MaxRecurse) {
5038   switch (Opcode) {
5039   case Instruction::FNeg:
5040     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5041   default:
5042     llvm_unreachable("Unexpected opcode");
5043   }
5044 }
5045 
5046 /// Given the operand for a UnaryOperator, see if we can fold the result.
5047 /// If not, this returns null.
5048 /// Try to use FastMathFlags when folding the result.
5049 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5050                              const FastMathFlags &FMF,
5051                              const SimplifyQuery &Q, unsigned MaxRecurse) {
5052   switch (Opcode) {
5053   case Instruction::FNeg:
5054     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5055   default:
5056     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5057   }
5058 }
5059 
5060 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
5061   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
5062 }
5063 
5064 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
5065                           const SimplifyQuery &Q) {
5066   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
5067 }
5068 
5069 /// Given operands for a BinaryOperator, see if we can fold the result.
5070 /// If not, this returns null.
5071 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5072                             const SimplifyQuery &Q, unsigned MaxRecurse) {
5073   switch (Opcode) {
5074   case Instruction::Add:
5075     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
5076   case Instruction::Sub:
5077     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
5078   case Instruction::Mul:
5079     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
5080   case Instruction::SDiv:
5081     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
5082   case Instruction::UDiv:
5083     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
5084   case Instruction::SRem:
5085     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
5086   case Instruction::URem:
5087     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
5088   case Instruction::Shl:
5089     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
5090   case Instruction::LShr:
5091     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
5092   case Instruction::AShr:
5093     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
5094   case Instruction::And:
5095     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
5096   case Instruction::Or:
5097     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
5098   case Instruction::Xor:
5099     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
5100   case Instruction::FAdd:
5101     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5102   case Instruction::FSub:
5103     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5104   case Instruction::FMul:
5105     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5106   case Instruction::FDiv:
5107     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5108   case Instruction::FRem:
5109     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5110   default:
5111     llvm_unreachable("Unexpected opcode");
5112   }
5113 }
5114 
5115 /// Given operands for a BinaryOperator, see if we can fold the result.
5116 /// If not, this returns null.
5117 /// Try to use FastMathFlags when folding the result.
5118 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5119                             const FastMathFlags &FMF, const SimplifyQuery &Q,
5120                             unsigned MaxRecurse) {
5121   switch (Opcode) {
5122   case Instruction::FAdd:
5123     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
5124   case Instruction::FSub:
5125     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
5126   case Instruction::FMul:
5127     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
5128   case Instruction::FDiv:
5129     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
5130   default:
5131     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
5132   }
5133 }
5134 
5135 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5136                            const SimplifyQuery &Q) {
5137   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
5138 }
5139 
5140 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
5141                            FastMathFlags FMF, const SimplifyQuery &Q) {
5142   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
5143 }
5144 
5145 /// Given operands for a CmpInst, see if we can fold the result.
5146 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5147                               const SimplifyQuery &Q, unsigned MaxRecurse) {
5148   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
5149     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
5150   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
5151 }
5152 
5153 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
5154                              const SimplifyQuery &Q) {
5155   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
5156 }
5157 
5158 static bool IsIdempotent(Intrinsic::ID ID) {
5159   switch (ID) {
5160   default: return false;
5161 
5162   // Unary idempotent: f(f(x)) = f(x)
5163   case Intrinsic::fabs:
5164   case Intrinsic::floor:
5165   case Intrinsic::ceil:
5166   case Intrinsic::trunc:
5167   case Intrinsic::rint:
5168   case Intrinsic::nearbyint:
5169   case Intrinsic::round:
5170   case Intrinsic::roundeven:
5171   case Intrinsic::canonicalize:
5172     return true;
5173   }
5174 }
5175 
5176 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
5177                                    const DataLayout &DL) {
5178   GlobalValue *PtrSym;
5179   APInt PtrOffset;
5180   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
5181     return nullptr;
5182 
5183   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
5184   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
5185   Type *Int32PtrTy = Int32Ty->getPointerTo();
5186   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
5187 
5188   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
5189   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
5190     return nullptr;
5191 
5192   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
5193   if (OffsetInt % 4 != 0)
5194     return nullptr;
5195 
5196   Constant *C = ConstantExpr::getGetElementPtr(
5197       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
5198       ConstantInt::get(Int64Ty, OffsetInt / 4));
5199   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
5200   if (!Loaded)
5201     return nullptr;
5202 
5203   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
5204   if (!LoadedCE)
5205     return nullptr;
5206 
5207   if (LoadedCE->getOpcode() == Instruction::Trunc) {
5208     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5209     if (!LoadedCE)
5210       return nullptr;
5211   }
5212 
5213   if (LoadedCE->getOpcode() != Instruction::Sub)
5214     return nullptr;
5215 
5216   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
5217   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
5218     return nullptr;
5219   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
5220 
5221   Constant *LoadedRHS = LoadedCE->getOperand(1);
5222   GlobalValue *LoadedRHSSym;
5223   APInt LoadedRHSOffset;
5224   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
5225                                   DL) ||
5226       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
5227     return nullptr;
5228 
5229   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
5230 }
5231 
5232 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
5233                                      const SimplifyQuery &Q) {
5234   // Idempotent functions return the same result when called repeatedly.
5235   Intrinsic::ID IID = F->getIntrinsicID();
5236   if (IsIdempotent(IID))
5237     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
5238       if (II->getIntrinsicID() == IID)
5239         return II;
5240 
5241   Value *X;
5242   switch (IID) {
5243   case Intrinsic::fabs:
5244     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
5245     break;
5246   case Intrinsic::bswap:
5247     // bswap(bswap(x)) -> x
5248     if (match(Op0, m_BSwap(m_Value(X)))) return X;
5249     break;
5250   case Intrinsic::bitreverse:
5251     // bitreverse(bitreverse(x)) -> x
5252     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
5253     break;
5254   case Intrinsic::ctpop: {
5255     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
5256     // ctpop(and X, 1) --> and X, 1
5257     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
5258     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
5259                           Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
5260       return Op0;
5261     break;
5262   }
5263   case Intrinsic::exp:
5264     // exp(log(x)) -> x
5265     if (Q.CxtI->hasAllowReassoc() &&
5266         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
5267     break;
5268   case Intrinsic::exp2:
5269     // exp2(log2(x)) -> x
5270     if (Q.CxtI->hasAllowReassoc() &&
5271         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
5272     break;
5273   case Intrinsic::log:
5274     // log(exp(x)) -> x
5275     if (Q.CxtI->hasAllowReassoc() &&
5276         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
5277     break;
5278   case Intrinsic::log2:
5279     // log2(exp2(x)) -> x
5280     if (Q.CxtI->hasAllowReassoc() &&
5281         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
5282          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
5283                                                 m_Value(X))))) return X;
5284     break;
5285   case Intrinsic::log10:
5286     // log10(pow(10.0, x)) -> x
5287     if (Q.CxtI->hasAllowReassoc() &&
5288         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
5289                                                m_Value(X)))) return X;
5290     break;
5291   case Intrinsic::floor:
5292   case Intrinsic::trunc:
5293   case Intrinsic::ceil:
5294   case Intrinsic::round:
5295   case Intrinsic::roundeven:
5296   case Intrinsic::nearbyint:
5297   case Intrinsic::rint: {
5298     // floor (sitofp x) -> sitofp x
5299     // floor (uitofp x) -> uitofp x
5300     //
5301     // Converting from int always results in a finite integral number or
5302     // infinity. For either of those inputs, these rounding functions always
5303     // return the same value, so the rounding can be eliminated.
5304     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
5305       return Op0;
5306     break;
5307   }
5308   default:
5309     break;
5310   }
5311 
5312   return nullptr;
5313 }
5314 
5315 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) {
5316   switch (IID) {
5317   case Intrinsic::smax: return Intrinsic::smin;
5318   case Intrinsic::smin: return Intrinsic::smax;
5319   case Intrinsic::umax: return Intrinsic::umin;
5320   case Intrinsic::umin: return Intrinsic::umax;
5321   default: llvm_unreachable("Unexpected intrinsic");
5322   }
5323 }
5324 
5325 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) {
5326   switch (IID) {
5327   case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth);
5328   case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth);
5329   case Intrinsic::umax: return APInt::getMaxValue(BitWidth);
5330   case Intrinsic::umin: return APInt::getMinValue(BitWidth);
5331   default: llvm_unreachable("Unexpected intrinsic");
5332   }
5333 }
5334 
5335 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) {
5336   switch (IID) {
5337   case Intrinsic::smax: return ICmpInst::ICMP_SGE;
5338   case Intrinsic::smin: return ICmpInst::ICMP_SLE;
5339   case Intrinsic::umax: return ICmpInst::ICMP_UGE;
5340   case Intrinsic::umin: return ICmpInst::ICMP_ULE;
5341   default: llvm_unreachable("Unexpected intrinsic");
5342   }
5343 }
5344 
5345 /// Given a min/max intrinsic, see if it can be removed based on having an
5346 /// operand that is another min/max intrinsic with shared operand(s). The caller
5347 /// is expected to swap the operand arguments to handle commutation.
5348 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
5349   Value *X, *Y;
5350   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
5351     return nullptr;
5352 
5353   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
5354   if (!MM0)
5355     return nullptr;
5356   Intrinsic::ID IID0 = MM0->getIntrinsicID();
5357 
5358   if (Op1 == X || Op1 == Y ||
5359       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
5360     // max (max X, Y), X --> max X, Y
5361     if (IID0 == IID)
5362       return MM0;
5363     // max (min X, Y), X --> X
5364     if (IID0 == getMaxMinOpposite(IID))
5365       return Op1;
5366   }
5367   return nullptr;
5368 }
5369 
5370 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
5371                                       const SimplifyQuery &Q) {
5372   Intrinsic::ID IID = F->getIntrinsicID();
5373   Type *ReturnType = F->getReturnType();
5374   unsigned BitWidth = ReturnType->getScalarSizeInBits();
5375   switch (IID) {
5376   case Intrinsic::abs:
5377     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
5378     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
5379     // on the outer abs.
5380     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
5381       return Op0;
5382     break;
5383 
5384   case Intrinsic::smax:
5385   case Intrinsic::smin:
5386   case Intrinsic::umax:
5387   case Intrinsic::umin: {
5388     // If the arguments are the same, this is a no-op.
5389     if (Op0 == Op1)
5390       return Op0;
5391 
5392     // Canonicalize constant operand as Op1.
5393     if (isa<Constant>(Op0))
5394       std::swap(Op0, Op1);
5395 
5396     // Assume undef is the limit value.
5397     if (Q.isUndefValue(Op1))
5398       return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth));
5399 
5400     const APInt *C;
5401     if (match(Op1, m_APIntAllowUndef(C))) {
5402       // Clamp to limit value. For example:
5403       // umax(i8 %x, i8 255) --> 255
5404       if (*C == getMaxMinLimit(IID, BitWidth))
5405         return ConstantInt::get(ReturnType, *C);
5406 
5407       // If the constant op is the opposite of the limit value, the other must
5408       // be larger/smaller or equal. For example:
5409       // umin(i8 %x, i8 255) --> %x
5410       if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth))
5411         return Op0;
5412 
5413       // Remove nested call if constant operands allow it. Example:
5414       // max (max X, 7), 5 -> max X, 7
5415       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
5416       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
5417         // TODO: loosen undef/splat restrictions for vector constants.
5418         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
5419         const APInt *InnerC;
5420         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
5421             ((IID == Intrinsic::smax && InnerC->sge(*C)) ||
5422              (IID == Intrinsic::smin && InnerC->sle(*C)) ||
5423              (IID == Intrinsic::umax && InnerC->uge(*C)) ||
5424              (IID == Intrinsic::umin && InnerC->ule(*C))))
5425           return Op0;
5426       }
5427     }
5428 
5429     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
5430       return V;
5431     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
5432       return V;
5433 
5434     ICmpInst::Predicate Pred = getMaxMinPredicate(IID);
5435     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
5436       return Op0;
5437     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
5438       return Op1;
5439 
5440     if (Optional<bool> Imp =
5441             isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL))
5442       return *Imp ? Op0 : Op1;
5443     if (Optional<bool> Imp =
5444             isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL))
5445       return *Imp ? Op1 : Op0;
5446 
5447     break;
5448   }
5449   case Intrinsic::usub_with_overflow:
5450   case Intrinsic::ssub_with_overflow:
5451     // X - X -> { 0, false }
5452     // X - undef -> { 0, false }
5453     // undef - X -> { 0, false }
5454     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5455       return Constant::getNullValue(ReturnType);
5456     break;
5457   case Intrinsic::uadd_with_overflow:
5458   case Intrinsic::sadd_with_overflow:
5459     // X + undef -> { -1, false }
5460     // undef + x -> { -1, false }
5461     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
5462       return ConstantStruct::get(
5463           cast<StructType>(ReturnType),
5464           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
5465            Constant::getNullValue(ReturnType->getStructElementType(1))});
5466     }
5467     break;
5468   case Intrinsic::umul_with_overflow:
5469   case Intrinsic::smul_with_overflow:
5470     // 0 * X -> { 0, false }
5471     // X * 0 -> { 0, false }
5472     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
5473       return Constant::getNullValue(ReturnType);
5474     // undef * X -> { 0, false }
5475     // X * undef -> { 0, false }
5476     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5477       return Constant::getNullValue(ReturnType);
5478     break;
5479   case Intrinsic::uadd_sat:
5480     // sat(MAX + X) -> MAX
5481     // sat(X + MAX) -> MAX
5482     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
5483       return Constant::getAllOnesValue(ReturnType);
5484     LLVM_FALLTHROUGH;
5485   case Intrinsic::sadd_sat:
5486     // sat(X + undef) -> -1
5487     // sat(undef + X) -> -1
5488     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
5489     // For signed: Assume undef is ~X, in which case X + ~X = -1.
5490     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5491       return Constant::getAllOnesValue(ReturnType);
5492 
5493     // X + 0 -> X
5494     if (match(Op1, m_Zero()))
5495       return Op0;
5496     // 0 + X -> X
5497     if (match(Op0, m_Zero()))
5498       return Op1;
5499     break;
5500   case Intrinsic::usub_sat:
5501     // sat(0 - X) -> 0, sat(X - MAX) -> 0
5502     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
5503       return Constant::getNullValue(ReturnType);
5504     LLVM_FALLTHROUGH;
5505   case Intrinsic::ssub_sat:
5506     // X - X -> 0, X - undef -> 0, undef - X -> 0
5507     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
5508       return Constant::getNullValue(ReturnType);
5509     // X - 0 -> X
5510     if (match(Op1, m_Zero()))
5511       return Op0;
5512     break;
5513   case Intrinsic::load_relative:
5514     if (auto *C0 = dyn_cast<Constant>(Op0))
5515       if (auto *C1 = dyn_cast<Constant>(Op1))
5516         return SimplifyRelativeLoad(C0, C1, Q.DL);
5517     break;
5518   case Intrinsic::powi:
5519     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
5520       // powi(x, 0) -> 1.0
5521       if (Power->isZero())
5522         return ConstantFP::get(Op0->getType(), 1.0);
5523       // powi(x, 1) -> x
5524       if (Power->isOne())
5525         return Op0;
5526     }
5527     break;
5528   case Intrinsic::copysign:
5529     // copysign X, X --> X
5530     if (Op0 == Op1)
5531       return Op0;
5532     // copysign -X, X --> X
5533     // copysign X, -X --> -X
5534     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5535         match(Op1, m_FNeg(m_Specific(Op0))))
5536       return Op1;
5537     break;
5538   case Intrinsic::maxnum:
5539   case Intrinsic::minnum:
5540   case Intrinsic::maximum:
5541   case Intrinsic::minimum: {
5542     // If the arguments are the same, this is a no-op.
5543     if (Op0 == Op1) return Op0;
5544 
5545     // Canonicalize constant operand as Op1.
5546     if (isa<Constant>(Op0))
5547       std::swap(Op0, Op1);
5548 
5549     // If an argument is undef, return the other argument.
5550     if (Q.isUndefValue(Op1))
5551       return Op0;
5552 
5553     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
5554     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
5555 
5556     // minnum(X, nan) -> X
5557     // maxnum(X, nan) -> X
5558     // minimum(X, nan) -> nan
5559     // maximum(X, nan) -> nan
5560     if (match(Op1, m_NaN()))
5561       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
5562 
5563     // In the following folds, inf can be replaced with the largest finite
5564     // float, if the ninf flag is set.
5565     const APFloat *C;
5566     if (match(Op1, m_APFloat(C)) &&
5567         (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) {
5568       // minnum(X, -inf) -> -inf
5569       // maxnum(X, +inf) -> +inf
5570       // minimum(X, -inf) -> -inf if nnan
5571       // maximum(X, +inf) -> +inf if nnan
5572       if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs()))
5573         return ConstantFP::get(ReturnType, *C);
5574 
5575       // minnum(X, +inf) -> X if nnan
5576       // maxnum(X, -inf) -> X if nnan
5577       // minimum(X, +inf) -> X
5578       // maximum(X, -inf) -> X
5579       if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs()))
5580         return Op0;
5581     }
5582 
5583     // Min/max of the same operation with common operand:
5584     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
5585     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
5586       if (M0->getIntrinsicID() == IID &&
5587           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
5588         return Op0;
5589     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
5590       if (M1->getIntrinsicID() == IID &&
5591           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
5592         return Op1;
5593 
5594     break;
5595   }
5596   default:
5597     break;
5598   }
5599 
5600   return nullptr;
5601 }
5602 
5603 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
5604 
5605   // Intrinsics with no operands have some kind of side effect. Don't simplify.
5606   unsigned NumOperands = Call->getNumArgOperands();
5607   if (!NumOperands)
5608     return nullptr;
5609 
5610   Function *F = cast<Function>(Call->getCalledFunction());
5611   Intrinsic::ID IID = F->getIntrinsicID();
5612   if (NumOperands == 1)
5613     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
5614 
5615   if (NumOperands == 2)
5616     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
5617                                    Call->getArgOperand(1), Q);
5618 
5619   // Handle intrinsics with 3 or more arguments.
5620   switch (IID) {
5621   case Intrinsic::masked_load:
5622   case Intrinsic::masked_gather: {
5623     Value *MaskArg = Call->getArgOperand(2);
5624     Value *PassthruArg = Call->getArgOperand(3);
5625     // If the mask is all zeros or undef, the "passthru" argument is the result.
5626     if (maskIsAllZeroOrUndef(MaskArg))
5627       return PassthruArg;
5628     return nullptr;
5629   }
5630   case Intrinsic::fshl:
5631   case Intrinsic::fshr: {
5632     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
5633           *ShAmtArg = Call->getArgOperand(2);
5634 
5635     // If both operands are undef, the result is undef.
5636     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
5637       return UndefValue::get(F->getReturnType());
5638 
5639     // If shift amount is undef, assume it is zero.
5640     if (Q.isUndefValue(ShAmtArg))
5641       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5642 
5643     const APInt *ShAmtC;
5644     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5645       // If there's effectively no shift, return the 1st arg or 2nd arg.
5646       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5647       if (ShAmtC->urem(BitWidth).isNullValue())
5648         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5649     }
5650     return nullptr;
5651   }
5652   case Intrinsic::fma:
5653   case Intrinsic::fmuladd: {
5654     Value *Op0 = Call->getArgOperand(0);
5655     Value *Op1 = Call->getArgOperand(1);
5656     Value *Op2 = Call->getArgOperand(2);
5657     if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q))
5658       return V;
5659     return nullptr;
5660   }
5661   default:
5662     return nullptr;
5663   }
5664 }
5665 
5666 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) {
5667   auto *F = dyn_cast<Function>(Call->getCalledOperand());
5668   if (!F || !canConstantFoldCallTo(Call, F))
5669     return nullptr;
5670 
5671   SmallVector<Constant *, 4> ConstantArgs;
5672   unsigned NumArgs = Call->getNumArgOperands();
5673   ConstantArgs.reserve(NumArgs);
5674   for (auto &Arg : Call->args()) {
5675     Constant *C = dyn_cast<Constant>(&Arg);
5676     if (!C) {
5677       if (isa<MetadataAsValue>(Arg.get()))
5678         continue;
5679       return nullptr;
5680     }
5681     ConstantArgs.push_back(C);
5682   }
5683 
5684   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5685 }
5686 
5687 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5688   // musttail calls can only be simplified if they are also DCEd.
5689   // As we can't guarantee this here, don't simplify them.
5690   if (Call->isMustTailCall())
5691     return nullptr;
5692 
5693   // call undef -> undef
5694   // call null -> undef
5695   Value *Callee = Call->getCalledOperand();
5696   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5697     return UndefValue::get(Call->getType());
5698 
5699   if (Value *V = tryConstantFoldCall(Call, Q))
5700     return V;
5701 
5702   auto *F = dyn_cast<Function>(Callee);
5703   if (F && F->isIntrinsic())
5704     if (Value *Ret = simplifyIntrinsic(Call, Q))
5705       return Ret;
5706 
5707   return nullptr;
5708 }
5709 
5710 /// Given operands for a Freeze, see if we can fold the result.
5711 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5712   // Use a utility function defined in ValueTracking.
5713   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
5714     return Op0;
5715   // We have room for improvement.
5716   return nullptr;
5717 }
5718 
5719 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
5720   return ::SimplifyFreezeInst(Op0, Q);
5721 }
5722 
5723 /// See if we can compute a simplified version of this instruction.
5724 /// If not, this returns null.
5725 
5726 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5727                                  OptimizationRemarkEmitter *ORE) {
5728   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5729   Value *Result;
5730 
5731   switch (I->getOpcode()) {
5732   default:
5733     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5734     break;
5735   case Instruction::FNeg:
5736     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5737     break;
5738   case Instruction::FAdd:
5739     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5740                               I->getFastMathFlags(), Q);
5741     break;
5742   case Instruction::Add:
5743     Result =
5744         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5745                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5746                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5747     break;
5748   case Instruction::FSub:
5749     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5750                               I->getFastMathFlags(), Q);
5751     break;
5752   case Instruction::Sub:
5753     Result =
5754         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5755                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5756                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5757     break;
5758   case Instruction::FMul:
5759     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5760                               I->getFastMathFlags(), Q);
5761     break;
5762   case Instruction::Mul:
5763     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5764     break;
5765   case Instruction::SDiv:
5766     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5767     break;
5768   case Instruction::UDiv:
5769     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5770     break;
5771   case Instruction::FDiv:
5772     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5773                               I->getFastMathFlags(), Q);
5774     break;
5775   case Instruction::SRem:
5776     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5777     break;
5778   case Instruction::URem:
5779     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5780     break;
5781   case Instruction::FRem:
5782     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5783                               I->getFastMathFlags(), Q);
5784     break;
5785   case Instruction::Shl:
5786     Result =
5787         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5788                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5789                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5790     break;
5791   case Instruction::LShr:
5792     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5793                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5794     break;
5795   case Instruction::AShr:
5796     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5797                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5798     break;
5799   case Instruction::And:
5800     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5801     break;
5802   case Instruction::Or:
5803     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5804     break;
5805   case Instruction::Xor:
5806     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5807     break;
5808   case Instruction::ICmp:
5809     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5810                               I->getOperand(0), I->getOperand(1), Q);
5811     break;
5812   case Instruction::FCmp:
5813     Result =
5814         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5815                          I->getOperand(1), I->getFastMathFlags(), Q);
5816     break;
5817   case Instruction::Select:
5818     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5819                                 I->getOperand(2), Q);
5820     break;
5821   case Instruction::GetElementPtr: {
5822     SmallVector<Value *, 8> Ops(I->operands());
5823     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5824                              Ops, Q);
5825     break;
5826   }
5827   case Instruction::InsertValue: {
5828     InsertValueInst *IV = cast<InsertValueInst>(I);
5829     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5830                                      IV->getInsertedValueOperand(),
5831                                      IV->getIndices(), Q);
5832     break;
5833   }
5834   case Instruction::InsertElement: {
5835     auto *IE = cast<InsertElementInst>(I);
5836     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5837                                        IE->getOperand(2), Q);
5838     break;
5839   }
5840   case Instruction::ExtractValue: {
5841     auto *EVI = cast<ExtractValueInst>(I);
5842     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5843                                       EVI->getIndices(), Q);
5844     break;
5845   }
5846   case Instruction::ExtractElement: {
5847     auto *EEI = cast<ExtractElementInst>(I);
5848     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5849                                         EEI->getIndexOperand(), Q);
5850     break;
5851   }
5852   case Instruction::ShuffleVector: {
5853     auto *SVI = cast<ShuffleVectorInst>(I);
5854     Result =
5855         SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5856                                   SVI->getShuffleMask(), SVI->getType(), Q);
5857     break;
5858   }
5859   case Instruction::PHI:
5860     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5861     break;
5862   case Instruction::Call: {
5863     Result = SimplifyCall(cast<CallInst>(I), Q);
5864     break;
5865   }
5866   case Instruction::Freeze:
5867     Result = SimplifyFreezeInst(I->getOperand(0), Q);
5868     break;
5869 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5870 #include "llvm/IR/Instruction.def"
5871 #undef HANDLE_CAST_INST
5872     Result =
5873         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5874     break;
5875   case Instruction::Alloca:
5876     // No simplifications for Alloca and it can't be constant folded.
5877     Result = nullptr;
5878     break;
5879   }
5880 
5881   /// If called on unreachable code, the above logic may report that the
5882   /// instruction simplified to itself.  Make life easier for users by
5883   /// detecting that case here, returning a safe value instead.
5884   return Result == I ? UndefValue::get(I->getType()) : Result;
5885 }
5886 
5887 /// Implementation of recursive simplification through an instruction's
5888 /// uses.
5889 ///
5890 /// This is the common implementation of the recursive simplification routines.
5891 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5892 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5893 /// instructions to process and attempt to simplify it using
5894 /// InstructionSimplify. Recursively visited users which could not be
5895 /// simplified themselves are to the optional UnsimplifiedUsers set for
5896 /// further processing by the caller.
5897 ///
5898 /// This routine returns 'true' only when *it* simplifies something. The passed
5899 /// in simplified value does not count toward this.
5900 static bool replaceAndRecursivelySimplifyImpl(
5901     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5902     const DominatorTree *DT, AssumptionCache *AC,
5903     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
5904   bool Simplified = false;
5905   SmallSetVector<Instruction *, 8> Worklist;
5906   const DataLayout &DL = I->getModule()->getDataLayout();
5907 
5908   // If we have an explicit value to collapse to, do that round of the
5909   // simplification loop by hand initially.
5910   if (SimpleV) {
5911     for (User *U : I->users())
5912       if (U != I)
5913         Worklist.insert(cast<Instruction>(U));
5914 
5915     // Replace the instruction with its simplified value.
5916     I->replaceAllUsesWith(SimpleV);
5917 
5918     // Gracefully handle edge cases where the instruction is not wired into any
5919     // parent block.
5920     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5921         !I->mayHaveSideEffects())
5922       I->eraseFromParent();
5923   } else {
5924     Worklist.insert(I);
5925   }
5926 
5927   // Note that we must test the size on each iteration, the worklist can grow.
5928   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5929     I = Worklist[Idx];
5930 
5931     // See if this instruction simplifies.
5932     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5933     if (!SimpleV) {
5934       if (UnsimplifiedUsers)
5935         UnsimplifiedUsers->insert(I);
5936       continue;
5937     }
5938 
5939     Simplified = true;
5940 
5941     // Stash away all the uses of the old instruction so we can check them for
5942     // recursive simplifications after a RAUW. This is cheaper than checking all
5943     // uses of To on the recursive step in most cases.
5944     for (User *U : I->users())
5945       Worklist.insert(cast<Instruction>(U));
5946 
5947     // Replace the instruction with its simplified value.
5948     I->replaceAllUsesWith(SimpleV);
5949 
5950     // Gracefully handle edge cases where the instruction is not wired into any
5951     // parent block.
5952     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5953         !I->mayHaveSideEffects())
5954       I->eraseFromParent();
5955   }
5956   return Simplified;
5957 }
5958 
5959 bool llvm::replaceAndRecursivelySimplify(
5960     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
5961     const DominatorTree *DT, AssumptionCache *AC,
5962     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
5963   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5964   assert(SimpleV && "Must provide a simplified value.");
5965   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
5966                                            UnsimplifiedUsers);
5967 }
5968 
5969 namespace llvm {
5970 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5971   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5972   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5973   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5974   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
5975   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5976   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5977   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5978 }
5979 
5980 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5981                                          const DataLayout &DL) {
5982   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5983 }
5984 
5985 template <class T, class... TArgs>
5986 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5987                                          Function &F) {
5988   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5989   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5990   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5991   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5992 }
5993 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5994                                                   Function &);
5995 }
5996