1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyCastInst(unsigned, Value *, Type *, 73 const Query &, unsigned); 74 75 /// For a boolean type, or a vector of boolean type, return false, or 76 /// a vector with every element false, as appropriate for the type. 77 static Constant *getFalse(Type *Ty) { 78 assert(Ty->getScalarType()->isIntegerTy(1) && 79 "Expected i1 type or a vector of i1!"); 80 return Constant::getNullValue(Ty); 81 } 82 83 /// For a boolean type, or a vector of boolean type, return true, or 84 /// a vector with every element true, as appropriate for the type. 85 static Constant *getTrue(Type *Ty) { 86 assert(Ty->getScalarType()->isIntegerTy(1) && 87 "Expected i1 type or a vector of i1!"); 88 return Constant::getAllOnesValue(Ty); 89 } 90 91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 93 Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Does the given value dominate the specified phi node? 106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 107 Instruction *I = dyn_cast<Instruction>(V); 108 if (!I) 109 // Arguments and constants dominate all instructions. 110 return true; 111 112 // If we are processing instructions (and/or basic blocks) that have not been 113 // fully added to a function, the parent nodes may still be null. Simply 114 // return the conservative answer in these cases. 115 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 116 return false; 117 118 // If we have a DominatorTree then do a precise test. 119 if (DT) { 120 if (!DT->isReachableFromEntry(P->getParent())) 121 return true; 122 if (!DT->isReachableFromEntry(I->getParent())) 123 return false; 124 return DT->dominates(I, P); 125 } 126 127 // Otherwise, if the instruction is in the entry block and is not an invoke, 128 // then it obviously dominates all phi nodes. 129 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 130 !isa<InvokeInst>(I)) 131 return true; 132 133 return false; 134 } 135 136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 137 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 140 /// Returns the simplified value, or null if no simplification was performed. 141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 142 unsigned OpcToExpand, const Query &Q, 143 unsigned MaxRecurse) { 144 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 145 // Recursion is always used, so bail out at once if we already hit the limit. 146 if (!MaxRecurse--) 147 return nullptr; 148 149 // Check whether the expression has the form "(A op' B) op C". 150 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 151 if (Op0->getOpcode() == OpcodeToExpand) { 152 // It does! Try turning it into "(A op C) op' (B op C)". 153 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 154 // Do "A op C" and "B op C" both simplify? 155 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 156 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 157 // They do! Return "L op' R" if it simplifies or is already available. 158 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 159 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 160 && L == B && R == A)) { 161 ++NumExpand; 162 return LHS; 163 } 164 // Otherwise return "L op' R" if it simplifies. 165 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 166 ++NumExpand; 167 return V; 168 } 169 } 170 } 171 172 // Check whether the expression has the form "A op (B op' C)". 173 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 174 if (Op1->getOpcode() == OpcodeToExpand) { 175 // It does! Try turning it into "(A op B) op' (A op C)". 176 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 177 // Do "A op B" and "A op C" both simplify? 178 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 179 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 180 // They do! Return "L op' R" if it simplifies or is already available. 181 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 182 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 183 && L == C && R == B)) { 184 ++NumExpand; 185 return RHS; 186 } 187 // Otherwise return "L op' R" if it simplifies. 188 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 189 ++NumExpand; 190 return V; 191 } 192 } 193 } 194 195 return nullptr; 196 } 197 198 /// Generic simplifications for associative binary operations. 199 /// Returns the simpler value, or null if none was found. 200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 201 const Query &Q, unsigned MaxRecurse) { 202 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 203 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 204 205 // Recursion is always used, so bail out at once if we already hit the limit. 206 if (!MaxRecurse--) 207 return nullptr; 208 209 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 210 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 211 212 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 213 if (Op0 && Op0->getOpcode() == Opcode) { 214 Value *A = Op0->getOperand(0); 215 Value *B = Op0->getOperand(1); 216 Value *C = RHS; 217 218 // Does "B op C" simplify? 219 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 220 // It does! Return "A op V" if it simplifies or is already available. 221 // If V equals B then "A op V" is just the LHS. 222 if (V == B) return LHS; 223 // Otherwise return "A op V" if it simplifies. 224 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 225 ++NumReassoc; 226 return W; 227 } 228 } 229 } 230 231 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 232 if (Op1 && Op1->getOpcode() == Opcode) { 233 Value *A = LHS; 234 Value *B = Op1->getOperand(0); 235 Value *C = Op1->getOperand(1); 236 237 // Does "A op B" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 239 // It does! Return "V op C" if it simplifies or is already available. 240 // If V equals B then "V op C" is just the RHS. 241 if (V == B) return RHS; 242 // Otherwise return "V op C" if it simplifies. 243 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 244 ++NumReassoc; 245 return W; 246 } 247 } 248 } 249 250 // The remaining transforms require commutativity as well as associativity. 251 if (!Instruction::isCommutative(Opcode)) 252 return nullptr; 253 254 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 255 if (Op0 && Op0->getOpcode() == Opcode) { 256 Value *A = Op0->getOperand(0); 257 Value *B = Op0->getOperand(1); 258 Value *C = RHS; 259 260 // Does "C op A" simplify? 261 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 262 // It does! Return "V op B" if it simplifies or is already available. 263 // If V equals A then "V op B" is just the LHS. 264 if (V == A) return LHS; 265 // Otherwise return "V op B" if it simplifies. 266 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 267 ++NumReassoc; 268 return W; 269 } 270 } 271 } 272 273 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 274 if (Op1 && Op1->getOpcode() == Opcode) { 275 Value *A = LHS; 276 Value *B = Op1->getOperand(0); 277 Value *C = Op1->getOperand(1); 278 279 // Does "C op A" simplify? 280 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 281 // It does! Return "B op V" if it simplifies or is already available. 282 // If V equals C then "B op V" is just the RHS. 283 if (V == C) return RHS; 284 // Otherwise return "B op V" if it simplifies. 285 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 286 ++NumReassoc; 287 return W; 288 } 289 } 290 } 291 292 return nullptr; 293 } 294 295 /// In the case of a binary operation with a select instruction as an operand, 296 /// try to simplify the binop by seeing whether evaluating it on both branches 297 /// of the select results in the same value. Returns the common value if so, 298 /// otherwise returns null. 299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 300 const Query &Q, unsigned MaxRecurse) { 301 // Recursion is always used, so bail out at once if we already hit the limit. 302 if (!MaxRecurse--) 303 return nullptr; 304 305 SelectInst *SI; 306 if (isa<SelectInst>(LHS)) { 307 SI = cast<SelectInst>(LHS); 308 } else { 309 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 310 SI = cast<SelectInst>(RHS); 311 } 312 313 // Evaluate the BinOp on the true and false branches of the select. 314 Value *TV; 315 Value *FV; 316 if (SI == LHS) { 317 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 318 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 319 } else { 320 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 321 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 322 } 323 324 // If they simplified to the same value, then return the common value. 325 // If they both failed to simplify then return null. 326 if (TV == FV) 327 return TV; 328 329 // If one branch simplified to undef, return the other one. 330 if (TV && isa<UndefValue>(TV)) 331 return FV; 332 if (FV && isa<UndefValue>(FV)) 333 return TV; 334 335 // If applying the operation did not change the true and false select values, 336 // then the result of the binop is the select itself. 337 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 338 return SI; 339 340 // If one branch simplified and the other did not, and the simplified 341 // value is equal to the unsimplified one, return the simplified value. 342 // For example, select (cond, X, X & Z) & Z -> X & Z. 343 if ((FV && !TV) || (TV && !FV)) { 344 // Check that the simplified value has the form "X op Y" where "op" is the 345 // same as the original operation. 346 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 347 if (Simplified && Simplified->getOpcode() == Opcode) { 348 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 349 // We already know that "op" is the same as for the simplified value. See 350 // if the operands match too. If so, return the simplified value. 351 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 352 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 353 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 354 if (Simplified->getOperand(0) == UnsimplifiedLHS && 355 Simplified->getOperand(1) == UnsimplifiedRHS) 356 return Simplified; 357 if (Simplified->isCommutative() && 358 Simplified->getOperand(1) == UnsimplifiedLHS && 359 Simplified->getOperand(0) == UnsimplifiedRHS) 360 return Simplified; 361 } 362 } 363 364 return nullptr; 365 } 366 367 /// In the case of a comparison with a select instruction, try to simplify the 368 /// comparison by seeing whether both branches of the select result in the same 369 /// value. Returns the common value if so, otherwise returns null. 370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 371 Value *RHS, const Query &Q, 372 unsigned MaxRecurse) { 373 // Recursion is always used, so bail out at once if we already hit the limit. 374 if (!MaxRecurse--) 375 return nullptr; 376 377 // Make sure the select is on the LHS. 378 if (!isa<SelectInst>(LHS)) { 379 std::swap(LHS, RHS); 380 Pred = CmpInst::getSwappedPredicate(Pred); 381 } 382 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 383 SelectInst *SI = cast<SelectInst>(LHS); 384 Value *Cond = SI->getCondition(); 385 Value *TV = SI->getTrueValue(); 386 Value *FV = SI->getFalseValue(); 387 388 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 389 // Does "cmp TV, RHS" simplify? 390 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 391 if (TCmp == Cond) { 392 // It not only simplified, it simplified to the select condition. Replace 393 // it with 'true'. 394 TCmp = getTrue(Cond->getType()); 395 } else if (!TCmp) { 396 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 397 // condition then we can replace it with 'true'. Otherwise give up. 398 if (!isSameCompare(Cond, Pred, TV, RHS)) 399 return nullptr; 400 TCmp = getTrue(Cond->getType()); 401 } 402 403 // Does "cmp FV, RHS" simplify? 404 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 405 if (FCmp == Cond) { 406 // It not only simplified, it simplified to the select condition. Replace 407 // it with 'false'. 408 FCmp = getFalse(Cond->getType()); 409 } else if (!FCmp) { 410 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 411 // condition then we can replace it with 'false'. Otherwise give up. 412 if (!isSameCompare(Cond, Pred, FV, RHS)) 413 return nullptr; 414 FCmp = getFalse(Cond->getType()); 415 } 416 417 // If both sides simplified to the same value, then use it as the result of 418 // the original comparison. 419 if (TCmp == FCmp) 420 return TCmp; 421 422 // The remaining cases only make sense if the select condition has the same 423 // type as the result of the comparison, so bail out if this is not so. 424 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 425 return nullptr; 426 // If the false value simplified to false, then the result of the compare 427 // is equal to "Cond && TCmp". This also catches the case when the false 428 // value simplified to false and the true value to true, returning "Cond". 429 if (match(FCmp, m_Zero())) 430 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 431 return V; 432 // If the true value simplified to true, then the result of the compare 433 // is equal to "Cond || FCmp". 434 if (match(TCmp, m_One())) 435 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 436 return V; 437 // Finally, if the false value simplified to true and the true value to 438 // false, then the result of the compare is equal to "!Cond". 439 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 440 if (Value *V = 441 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 442 Q, MaxRecurse)) 443 return V; 444 445 return nullptr; 446 } 447 448 /// In the case of a binary operation with an operand that is a PHI instruction, 449 /// try to simplify the binop by seeing whether evaluating it on the incoming 450 /// phi values yields the same result for every value. If so returns the common 451 /// value, otherwise returns null. 452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 453 const Query &Q, unsigned MaxRecurse) { 454 // Recursion is always used, so bail out at once if we already hit the limit. 455 if (!MaxRecurse--) 456 return nullptr; 457 458 PHINode *PI; 459 if (isa<PHINode>(LHS)) { 460 PI = cast<PHINode>(LHS); 461 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 462 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 463 return nullptr; 464 } else { 465 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 466 PI = cast<PHINode>(RHS); 467 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 468 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 469 return nullptr; 470 } 471 472 // Evaluate the BinOp on the incoming phi values. 473 Value *CommonValue = nullptr; 474 for (Value *Incoming : PI->incoming_values()) { 475 // If the incoming value is the phi node itself, it can safely be skipped. 476 if (Incoming == PI) continue; 477 Value *V = PI == LHS ? 478 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 479 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 480 // If the operation failed to simplify, or simplified to a different value 481 // to previously, then give up. 482 if (!V || (CommonValue && V != CommonValue)) 483 return nullptr; 484 CommonValue = V; 485 } 486 487 return CommonValue; 488 } 489 490 /// In the case of a comparison with a PHI instruction, try to simplify the 491 /// comparison by seeing whether comparing with all of the incoming phi values 492 /// yields the same result every time. If so returns the common result, 493 /// otherwise returns null. 494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 495 const Query &Q, unsigned MaxRecurse) { 496 // Recursion is always used, so bail out at once if we already hit the limit. 497 if (!MaxRecurse--) 498 return nullptr; 499 500 // Make sure the phi is on the LHS. 501 if (!isa<PHINode>(LHS)) { 502 std::swap(LHS, RHS); 503 Pred = CmpInst::getSwappedPredicate(Pred); 504 } 505 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 506 PHINode *PI = cast<PHINode>(LHS); 507 508 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 509 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 510 return nullptr; 511 512 // Evaluate the BinOp on the incoming phi values. 513 Value *CommonValue = nullptr; 514 for (Value *Incoming : PI->incoming_values()) { 515 // If the incoming value is the phi node itself, it can safely be skipped. 516 if (Incoming == PI) continue; 517 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 518 // If the operation failed to simplify, or simplified to a different value 519 // to previously, then give up. 520 if (!V || (CommonValue && V != CommonValue)) 521 return nullptr; 522 CommonValue = V; 523 } 524 525 return CommonValue; 526 } 527 528 /// Given operands for an Add, see if we can fold the result. 529 /// If not, this returns null. 530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 531 const Query &Q, unsigned MaxRecurse) { 532 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 533 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 534 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 535 536 // Canonicalize the constant to the RHS. 537 std::swap(Op0, Op1); 538 } 539 540 // X + undef -> undef 541 if (match(Op1, m_Undef())) 542 return Op1; 543 544 // X + 0 -> X 545 if (match(Op1, m_Zero())) 546 return Op0; 547 548 // X + (Y - X) -> Y 549 // (Y - X) + X -> Y 550 // Eg: X + -X -> 0 551 Value *Y = nullptr; 552 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 553 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 554 return Y; 555 556 // X + ~X -> -1 since ~X = -X-1 557 if (match(Op0, m_Not(m_Specific(Op1))) || 558 match(Op1, m_Not(m_Specific(Op0)))) 559 return Constant::getAllOnesValue(Op0->getType()); 560 561 /// i1 add -> xor. 562 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 563 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 564 return V; 565 566 // Try some generic simplifications for associative operations. 567 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 568 MaxRecurse)) 569 return V; 570 571 // Threading Add over selects and phi nodes is pointless, so don't bother. 572 // Threading over the select in "A + select(cond, B, C)" means evaluating 573 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 574 // only if B and C are equal. If B and C are equal then (since we assume 575 // that operands have already been simplified) "select(cond, B, C)" should 576 // have been simplified to the common value of B and C already. Analysing 577 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 578 // for threading over phi nodes. 579 580 return nullptr; 581 } 582 583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 584 const DataLayout &DL, const TargetLibraryInfo *TLI, 585 const DominatorTree *DT, AssumptionCache *AC, 586 const Instruction *CxtI) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 588 RecursionLimit); 589 } 590 591 /// \brief Compute the base pointer and cumulative constant offsets for V. 592 /// 593 /// This strips all constant offsets off of V, leaving it the base pointer, and 594 /// accumulates the total constant offset applied in the returned constant. It 595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 596 /// no constant offsets applied. 597 /// 598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 600 /// folding. 601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 602 bool AllowNonInbounds = false) { 603 assert(V->getType()->getScalarType()->isPointerTy()); 604 605 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 606 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 607 608 // Even though we don't look through PHI nodes, we could be called on an 609 // instruction in an unreachable block, which may be on a cycle. 610 SmallPtrSet<Value *, 4> Visited; 611 Visited.insert(V); 612 do { 613 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 614 if ((!AllowNonInbounds && !GEP->isInBounds()) || 615 !GEP->accumulateConstantOffset(DL, Offset)) 616 break; 617 V = GEP->getPointerOperand(); 618 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 619 V = cast<Operator>(V)->getOperand(0); 620 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 621 if (GA->isInterposable()) 622 break; 623 V = GA->getAliasee(); 624 } else { 625 if (auto CS = CallSite(V)) 626 if (Value *RV = CS.getReturnedArgOperand()) { 627 V = RV; 628 continue; 629 } 630 break; 631 } 632 assert(V->getType()->getScalarType()->isPointerTy() && 633 "Unexpected operand type!"); 634 } while (Visited.insert(V).second); 635 636 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 637 if (V->getType()->isVectorTy()) 638 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 639 OffsetIntPtr); 640 return OffsetIntPtr; 641 } 642 643 /// \brief Compute the constant difference between two pointer values. 644 /// If the difference is not a constant, returns zero. 645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 646 Value *RHS) { 647 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 648 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 649 650 // If LHS and RHS are not related via constant offsets to the same base 651 // value, there is nothing we can do here. 652 if (LHS != RHS) 653 return nullptr; 654 655 // Otherwise, the difference of LHS - RHS can be computed as: 656 // LHS - RHS 657 // = (LHSOffset + Base) - (RHSOffset + Base) 658 // = LHSOffset - RHSOffset 659 return ConstantExpr::getSub(LHSOffset, RHSOffset); 660 } 661 662 /// Given operands for a Sub, see if we can fold the result. 663 /// If not, this returns null. 664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 665 const Query &Q, unsigned MaxRecurse) { 666 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 667 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 668 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 669 670 // X - undef -> undef 671 // undef - X -> undef 672 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 673 return UndefValue::get(Op0->getType()); 674 675 // X - 0 -> X 676 if (match(Op1, m_Zero())) 677 return Op0; 678 679 // X - X -> 0 680 if (Op0 == Op1) 681 return Constant::getNullValue(Op0->getType()); 682 683 // 0 - X -> 0 if the sub is NUW. 684 if (isNUW && match(Op0, m_Zero())) 685 return Op0; 686 687 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 688 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 689 Value *X = nullptr, *Y = nullptr, *Z = Op1; 690 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 691 // See if "V === Y - Z" simplifies. 692 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 693 // It does! Now see if "X + V" simplifies. 694 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 695 // It does, we successfully reassociated! 696 ++NumReassoc; 697 return W; 698 } 699 // See if "V === X - Z" simplifies. 700 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 701 // It does! Now see if "Y + V" simplifies. 702 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 703 // It does, we successfully reassociated! 704 ++NumReassoc; 705 return W; 706 } 707 } 708 709 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 710 // For example, X - (X + 1) -> -1 711 X = Op0; 712 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 713 // See if "V === X - Y" simplifies. 714 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 715 // It does! Now see if "V - Z" simplifies. 716 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 717 // It does, we successfully reassociated! 718 ++NumReassoc; 719 return W; 720 } 721 // See if "V === X - Z" simplifies. 722 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 723 // It does! Now see if "V - Y" simplifies. 724 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 725 // It does, we successfully reassociated! 726 ++NumReassoc; 727 return W; 728 } 729 } 730 731 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 732 // For example, X - (X - Y) -> Y. 733 Z = Op0; 734 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 735 // See if "V === Z - X" simplifies. 736 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 737 // It does! Now see if "V + Y" simplifies. 738 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 739 // It does, we successfully reassociated! 740 ++NumReassoc; 741 return W; 742 } 743 744 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 745 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 746 match(Op1, m_Trunc(m_Value(Y)))) 747 if (X->getType() == Y->getType()) 748 // See if "V === X - Y" simplifies. 749 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 750 // It does! Now see if "trunc V" simplifies. 751 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 752 Q, MaxRecurse - 1)) 753 // It does, return the simplified "trunc V". 754 return W; 755 756 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 757 if (match(Op0, m_PtrToInt(m_Value(X))) && 758 match(Op1, m_PtrToInt(m_Value(Y)))) 759 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 760 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 761 762 // i1 sub -> xor. 763 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 764 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 765 return V; 766 767 // Threading Sub over selects and phi nodes is pointless, so don't bother. 768 // Threading over the select in "A - select(cond, B, C)" means evaluating 769 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 770 // only if B and C are equal. If B and C are equal then (since we assume 771 // that operands have already been simplified) "select(cond, B, C)" should 772 // have been simplified to the common value of B and C already. Analysing 773 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 774 // for threading over phi nodes. 775 776 return nullptr; 777 } 778 779 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 780 const DataLayout &DL, const TargetLibraryInfo *TLI, 781 const DominatorTree *DT, AssumptionCache *AC, 782 const Instruction *CxtI) { 783 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 784 RecursionLimit); 785 } 786 787 /// Given operands for an FAdd, see if we can fold the result. If not, this 788 /// returns null. 789 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 790 const Query &Q, unsigned MaxRecurse) { 791 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 792 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 793 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 794 795 // Canonicalize the constant to the RHS. 796 std::swap(Op0, Op1); 797 } 798 799 // fadd X, -0 ==> X 800 if (match(Op1, m_NegZero())) 801 return Op0; 802 803 // fadd X, 0 ==> X, when we know X is not -0 804 if (match(Op1, m_Zero()) && 805 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 806 return Op0; 807 808 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 809 // where nnan and ninf have to occur at least once somewhere in this 810 // expression 811 Value *SubOp = nullptr; 812 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 813 SubOp = Op1; 814 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 815 SubOp = Op0; 816 if (SubOp) { 817 Instruction *FSub = cast<Instruction>(SubOp); 818 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 819 (FMF.noInfs() || FSub->hasNoInfs())) 820 return Constant::getNullValue(Op0->getType()); 821 } 822 823 return nullptr; 824 } 825 826 /// Given operands for an FSub, see if we can fold the result. If not, this 827 /// returns null. 828 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 829 const Query &Q, unsigned MaxRecurse) { 830 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 831 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 832 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 833 } 834 835 // fsub X, 0 ==> X 836 if (match(Op1, m_Zero())) 837 return Op0; 838 839 // fsub X, -0 ==> X, when we know X is not -0 840 if (match(Op1, m_NegZero()) && 841 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 842 return Op0; 843 844 // fsub -0.0, (fsub -0.0, X) ==> X 845 Value *X; 846 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 847 return X; 848 849 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 850 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 851 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 852 return X; 853 854 // fsub nnan x, x ==> 0.0 855 if (FMF.noNaNs() && Op0 == Op1) 856 return Constant::getNullValue(Op0->getType()); 857 858 return nullptr; 859 } 860 861 /// Given the operands for an FMul, see if we can fold the result 862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 863 FastMathFlags FMF, 864 const Query &Q, 865 unsigned MaxRecurse) { 866 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 867 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 868 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 869 870 // Canonicalize the constant to the RHS. 871 std::swap(Op0, Op1); 872 } 873 874 // fmul X, 1.0 ==> X 875 if (match(Op1, m_FPOne())) 876 return Op0; 877 878 // fmul nnan nsz X, 0 ==> 0 879 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 880 return Op1; 881 882 return nullptr; 883 } 884 885 /// Given operands for a Mul, see if we can fold the result. 886 /// If not, this returns null. 887 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 888 unsigned MaxRecurse) { 889 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 890 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 891 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 892 893 // Canonicalize the constant to the RHS. 894 std::swap(Op0, Op1); 895 } 896 897 // X * undef -> 0 898 if (match(Op1, m_Undef())) 899 return Constant::getNullValue(Op0->getType()); 900 901 // X * 0 -> 0 902 if (match(Op1, m_Zero())) 903 return Op1; 904 905 // X * 1 -> X 906 if (match(Op1, m_One())) 907 return Op0; 908 909 // (X / Y) * Y -> X if the division is exact. 910 Value *X = nullptr; 911 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 912 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 913 return X; 914 915 // i1 mul -> and. 916 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 917 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 918 return V; 919 920 // Try some generic simplifications for associative operations. 921 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // Mul distributes over Add. Try some generic simplifications based on this. 926 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 927 Q, MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a select instruction, check whether 931 // operating on either branch of the select always yields the same value. 932 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 933 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 934 MaxRecurse)) 935 return V; 936 937 // If the operation is with the result of a phi instruction, check whether 938 // operating on all incoming values of the phi always yields the same value. 939 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 940 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 941 MaxRecurse)) 942 return V; 943 944 return nullptr; 945 } 946 947 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const DataLayout &DL, 949 const TargetLibraryInfo *TLI, 950 const DominatorTree *DT, AssumptionCache *AC, 951 const Instruction *CxtI) { 952 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 953 RecursionLimit); 954 } 955 956 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 957 const DataLayout &DL, 958 const TargetLibraryInfo *TLI, 959 const DominatorTree *DT, AssumptionCache *AC, 960 const Instruction *CxtI) { 961 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 962 RecursionLimit); 963 } 964 965 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 966 const DataLayout &DL, 967 const TargetLibraryInfo *TLI, 968 const DominatorTree *DT, AssumptionCache *AC, 969 const Instruction *CxtI) { 970 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 971 RecursionLimit); 972 } 973 974 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 975 const TargetLibraryInfo *TLI, 976 const DominatorTree *DT, AssumptionCache *AC, 977 const Instruction *CxtI) { 978 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 979 RecursionLimit); 980 } 981 982 /// Given operands for an SDiv or UDiv, see if we can fold the result. 983 /// If not, this returns null. 984 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 985 const Query &Q, unsigned MaxRecurse) { 986 if (Constant *C0 = dyn_cast<Constant>(Op0)) 987 if (Constant *C1 = dyn_cast<Constant>(Op1)) 988 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 989 990 bool isSigned = Opcode == Instruction::SDiv; 991 992 // X / undef -> undef 993 if (match(Op1, m_Undef())) 994 return Op1; 995 996 // X / 0 -> undef, we don't need to preserve faults! 997 if (match(Op1, m_Zero())) 998 return UndefValue::get(Op1->getType()); 999 1000 // undef / X -> 0 1001 if (match(Op0, m_Undef())) 1002 return Constant::getNullValue(Op0->getType()); 1003 1004 // 0 / X -> 0, we don't need to preserve faults! 1005 if (match(Op0, m_Zero())) 1006 return Op0; 1007 1008 // X / 1 -> X 1009 if (match(Op1, m_One())) 1010 return Op0; 1011 1012 if (Op0->getType()->isIntegerTy(1)) 1013 // It can't be division by zero, hence it must be division by one. 1014 return Op0; 1015 1016 // X / X -> 1 1017 if (Op0 == Op1) 1018 return ConstantInt::get(Op0->getType(), 1); 1019 1020 // (X * Y) / Y -> X if the multiplication does not overflow. 1021 Value *X = nullptr, *Y = nullptr; 1022 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1023 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1024 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1025 // If the Mul knows it does not overflow, then we are good to go. 1026 if ((isSigned && Mul->hasNoSignedWrap()) || 1027 (!isSigned && Mul->hasNoUnsignedWrap())) 1028 return X; 1029 // If X has the form X = A / Y then X * Y cannot overflow. 1030 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1031 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1032 return X; 1033 } 1034 1035 // (X rem Y) / Y -> 0 1036 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1037 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1038 return Constant::getNullValue(Op0->getType()); 1039 1040 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1041 ConstantInt *C1, *C2; 1042 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1043 match(Op1, m_ConstantInt(C2))) { 1044 bool Overflow; 1045 C1->getValue().umul_ov(C2->getValue(), Overflow); 1046 if (Overflow) 1047 return Constant::getNullValue(Op0->getType()); 1048 } 1049 1050 // If the operation is with the result of a select instruction, check whether 1051 // operating on either branch of the select always yields the same value. 1052 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1053 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1054 return V; 1055 1056 // If the operation is with the result of a phi instruction, check whether 1057 // operating on all incoming values of the phi always yields the same value. 1058 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1059 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1060 return V; 1061 1062 return nullptr; 1063 } 1064 1065 /// Given operands for an SDiv, see if we can fold the result. 1066 /// If not, this returns null. 1067 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1068 unsigned MaxRecurse) { 1069 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1070 return V; 1071 1072 return nullptr; 1073 } 1074 1075 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1076 const TargetLibraryInfo *TLI, 1077 const DominatorTree *DT, AssumptionCache *AC, 1078 const Instruction *CxtI) { 1079 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1080 RecursionLimit); 1081 } 1082 1083 /// Given operands for a UDiv, see if we can fold the result. 1084 /// If not, this returns null. 1085 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1086 unsigned MaxRecurse) { 1087 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1088 return V; 1089 1090 return nullptr; 1091 } 1092 1093 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1094 const TargetLibraryInfo *TLI, 1095 const DominatorTree *DT, AssumptionCache *AC, 1096 const Instruction *CxtI) { 1097 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1098 RecursionLimit); 1099 } 1100 1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1102 const Query &Q, unsigned) { 1103 // undef / X -> undef (the undef could be a snan). 1104 if (match(Op0, m_Undef())) 1105 return Op0; 1106 1107 // X / undef -> undef 1108 if (match(Op1, m_Undef())) 1109 return Op1; 1110 1111 // 0 / X -> 0 1112 // Requires that NaNs are off (X could be zero) and signed zeroes are 1113 // ignored (X could be positive or negative, so the output sign is unknown). 1114 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1115 return Op0; 1116 1117 if (FMF.noNaNs()) { 1118 // X / X -> 1.0 is legal when NaNs are ignored. 1119 if (Op0 == Op1) 1120 return ConstantFP::get(Op0->getType(), 1.0); 1121 1122 // -X / X -> -1.0 and 1123 // X / -X -> -1.0 are legal when NaNs are ignored. 1124 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1125 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1126 BinaryOperator::getFNegArgument(Op0) == Op1) || 1127 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1128 BinaryOperator::getFNegArgument(Op1) == Op0)) 1129 return ConstantFP::get(Op0->getType(), -1.0); 1130 } 1131 1132 return nullptr; 1133 } 1134 1135 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1136 const DataLayout &DL, 1137 const TargetLibraryInfo *TLI, 1138 const DominatorTree *DT, AssumptionCache *AC, 1139 const Instruction *CxtI) { 1140 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1141 RecursionLimit); 1142 } 1143 1144 /// Given operands for an SRem or URem, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1147 const Query &Q, unsigned MaxRecurse) { 1148 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1149 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1150 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1151 1152 // X % undef -> undef 1153 if (match(Op1, m_Undef())) 1154 return Op1; 1155 1156 // undef % X -> 0 1157 if (match(Op0, m_Undef())) 1158 return Constant::getNullValue(Op0->getType()); 1159 1160 // 0 % X -> 0, we don't need to preserve faults! 1161 if (match(Op0, m_Zero())) 1162 return Op0; 1163 1164 // X % 0 -> undef, we don't need to preserve faults! 1165 if (match(Op1, m_Zero())) 1166 return UndefValue::get(Op0->getType()); 1167 1168 // X % 1 -> 0 1169 if (match(Op1, m_One())) 1170 return Constant::getNullValue(Op0->getType()); 1171 1172 if (Op0->getType()->isIntegerTy(1)) 1173 // It can't be remainder by zero, hence it must be remainder by one. 1174 return Constant::getNullValue(Op0->getType()); 1175 1176 // X % X -> 0 1177 if (Op0 == Op1) 1178 return Constant::getNullValue(Op0->getType()); 1179 1180 // (X % Y) % Y -> X % Y 1181 if ((Opcode == Instruction::SRem && 1182 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1183 (Opcode == Instruction::URem && 1184 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1185 return Op0; 1186 1187 // If the operation is with the result of a select instruction, check whether 1188 // operating on either branch of the select always yields the same value. 1189 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1190 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1191 return V; 1192 1193 // If the operation is with the result of a phi instruction, check whether 1194 // operating on all incoming values of the phi always yields the same value. 1195 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1196 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1197 return V; 1198 1199 return nullptr; 1200 } 1201 1202 /// Given operands for an SRem, see if we can fold the result. 1203 /// If not, this returns null. 1204 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1205 unsigned MaxRecurse) { 1206 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1207 return V; 1208 1209 return nullptr; 1210 } 1211 1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1213 const TargetLibraryInfo *TLI, 1214 const DominatorTree *DT, AssumptionCache *AC, 1215 const Instruction *CxtI) { 1216 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1217 RecursionLimit); 1218 } 1219 1220 /// Given operands for a URem, see if we can fold the result. 1221 /// If not, this returns null. 1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1223 unsigned MaxRecurse) { 1224 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1225 return V; 1226 1227 return nullptr; 1228 } 1229 1230 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1231 const TargetLibraryInfo *TLI, 1232 const DominatorTree *DT, AssumptionCache *AC, 1233 const Instruction *CxtI) { 1234 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1235 RecursionLimit); 1236 } 1237 1238 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1239 const Query &, unsigned) { 1240 // undef % X -> undef (the undef could be a snan). 1241 if (match(Op0, m_Undef())) 1242 return Op0; 1243 1244 // X % undef -> undef 1245 if (match(Op1, m_Undef())) 1246 return Op1; 1247 1248 // 0 % X -> 0 1249 // Requires that NaNs are off (X could be zero) and signed zeroes are 1250 // ignored (X could be positive or negative, so the output sign is unknown). 1251 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1252 return Op0; 1253 1254 return nullptr; 1255 } 1256 1257 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1258 const DataLayout &DL, 1259 const TargetLibraryInfo *TLI, 1260 const DominatorTree *DT, AssumptionCache *AC, 1261 const Instruction *CxtI) { 1262 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1263 RecursionLimit); 1264 } 1265 1266 /// Returns true if a shift by \c Amount always yields undef. 1267 static bool isUndefShift(Value *Amount) { 1268 Constant *C = dyn_cast<Constant>(Amount); 1269 if (!C) 1270 return false; 1271 1272 // X shift by undef -> undef because it may shift by the bitwidth. 1273 if (isa<UndefValue>(C)) 1274 return true; 1275 1276 // Shifting by the bitwidth or more is undefined. 1277 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1278 if (CI->getValue().getLimitedValue() >= 1279 CI->getType()->getScalarSizeInBits()) 1280 return true; 1281 1282 // If all lanes of a vector shift are undefined the whole shift is. 1283 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1284 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1285 if (!isUndefShift(C->getAggregateElement(I))) 1286 return false; 1287 return true; 1288 } 1289 1290 return false; 1291 } 1292 1293 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1294 /// If not, this returns null. 1295 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1296 const Query &Q, unsigned MaxRecurse) { 1297 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1298 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1299 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1300 1301 // 0 shift by X -> 0 1302 if (match(Op0, m_Zero())) 1303 return Op0; 1304 1305 // X shift by 0 -> X 1306 if (match(Op1, m_Zero())) 1307 return Op0; 1308 1309 // Fold undefined shifts. 1310 if (isUndefShift(Op1)) 1311 return UndefValue::get(Op0->getType()); 1312 1313 // If the operation is with the result of a select instruction, check whether 1314 // operating on either branch of the select always yields the same value. 1315 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1316 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1317 return V; 1318 1319 // If the operation is with the result of a phi instruction, check whether 1320 // operating on all incoming values of the phi always yields the same value. 1321 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1322 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1323 return V; 1324 1325 // If any bits in the shift amount make that value greater than or equal to 1326 // the number of bits in the type, the shift is undefined. 1327 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1328 APInt KnownZero(BitWidth, 0); 1329 APInt KnownOne(BitWidth, 0); 1330 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1331 if (KnownOne.getLimitedValue() >= BitWidth) 1332 return UndefValue::get(Op0->getType()); 1333 1334 // If all valid bits in the shift amount are known zero, the first operand is 1335 // unchanged. 1336 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1337 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1338 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1339 return Op0; 1340 1341 return nullptr; 1342 } 1343 1344 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1345 /// fold the result. If not, this returns null. 1346 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1347 bool isExact, const Query &Q, 1348 unsigned MaxRecurse) { 1349 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1350 return V; 1351 1352 // X >> X -> 0 1353 if (Op0 == Op1) 1354 return Constant::getNullValue(Op0->getType()); 1355 1356 // undef >> X -> 0 1357 // undef >> X -> undef (if it's exact) 1358 if (match(Op0, m_Undef())) 1359 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1360 1361 // The low bit cannot be shifted out of an exact shift if it is set. 1362 if (isExact) { 1363 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1364 APInt Op0KnownZero(BitWidth, 0); 1365 APInt Op0KnownOne(BitWidth, 0); 1366 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1367 Q.CxtI, Q.DT); 1368 if (Op0KnownOne[0]) 1369 return Op0; 1370 } 1371 1372 return nullptr; 1373 } 1374 1375 /// Given operands for an Shl, see if we can fold the result. 1376 /// If not, this returns null. 1377 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1378 const Query &Q, unsigned MaxRecurse) { 1379 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1380 return V; 1381 1382 // undef << X -> 0 1383 // undef << X -> undef if (if it's NSW/NUW) 1384 if (match(Op0, m_Undef())) 1385 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1386 1387 // (X >> A) << A -> X 1388 Value *X; 1389 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1390 return X; 1391 return nullptr; 1392 } 1393 1394 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1395 const DataLayout &DL, const TargetLibraryInfo *TLI, 1396 const DominatorTree *DT, AssumptionCache *AC, 1397 const Instruction *CxtI) { 1398 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1399 RecursionLimit); 1400 } 1401 1402 /// Given operands for an LShr, see if we can fold the result. 1403 /// If not, this returns null. 1404 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1405 const Query &Q, unsigned MaxRecurse) { 1406 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1407 MaxRecurse)) 1408 return V; 1409 1410 // (X << A) >> A -> X 1411 Value *X; 1412 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1413 return X; 1414 1415 return nullptr; 1416 } 1417 1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1419 const DataLayout &DL, 1420 const TargetLibraryInfo *TLI, 1421 const DominatorTree *DT, AssumptionCache *AC, 1422 const Instruction *CxtI) { 1423 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1424 RecursionLimit); 1425 } 1426 1427 /// Given operands for an AShr, see if we can fold the result. 1428 /// If not, this returns null. 1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1430 const Query &Q, unsigned MaxRecurse) { 1431 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1432 MaxRecurse)) 1433 return V; 1434 1435 // all ones >>a X -> all ones 1436 if (match(Op0, m_AllOnes())) 1437 return Op0; 1438 1439 // (X << A) >> A -> X 1440 Value *X; 1441 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1442 return X; 1443 1444 // Arithmetic shifting an all-sign-bit value is a no-op. 1445 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1446 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1447 return Op0; 1448 1449 return nullptr; 1450 } 1451 1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1453 const DataLayout &DL, 1454 const TargetLibraryInfo *TLI, 1455 const DominatorTree *DT, AssumptionCache *AC, 1456 const Instruction *CxtI) { 1457 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1458 RecursionLimit); 1459 } 1460 1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1462 ICmpInst *UnsignedICmp, bool IsAnd) { 1463 Value *X, *Y; 1464 1465 ICmpInst::Predicate EqPred; 1466 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1467 !ICmpInst::isEquality(EqPred)) 1468 return nullptr; 1469 1470 ICmpInst::Predicate UnsignedPred; 1471 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 ; 1474 else if (match(UnsignedICmp, 1475 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1476 ICmpInst::isUnsigned(UnsignedPred)) 1477 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1478 else 1479 return nullptr; 1480 1481 // X < Y && Y != 0 --> X < Y 1482 // X < Y || Y != 0 --> Y != 0 1483 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1484 return IsAnd ? UnsignedICmp : ZeroICmp; 1485 1486 // X >= Y || Y != 0 --> true 1487 // X >= Y || Y == 0 --> X >= Y 1488 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1489 if (EqPred == ICmpInst::ICMP_NE) 1490 return getTrue(UnsignedICmp->getType()); 1491 return UnsignedICmp; 1492 } 1493 1494 // X < Y && Y == 0 --> false 1495 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1496 IsAnd) 1497 return getFalse(UnsignedICmp->getType()); 1498 1499 return nullptr; 1500 } 1501 1502 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1503 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1504 return X; 1505 1506 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1507 Type *ITy = Op0->getType(); 1508 ICmpInst::Predicate Pred0, Pred1; 1509 const APInt *C0, *C1; 1510 Value *V; 1511 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1512 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1513 // Make a constant range that's the intersection of the two icmp ranges. 1514 // If the intersection is empty, we know that the result is false. 1515 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1516 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1517 if (Range0.intersectWith(Range1).isEmptySet()) 1518 return getFalse(ITy); 1519 } 1520 1521 // (icmp (add V, C0), C1) & (icmp V, C0) 1522 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1523 return nullptr; 1524 1525 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1526 return nullptr; 1527 1528 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1529 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1530 return nullptr; 1531 1532 bool isNSW = AddInst->hasNoSignedWrap(); 1533 bool isNUW = AddInst->hasNoUnsignedWrap(); 1534 1535 const APInt Delta = *C1 - *C0; 1536 if (C0->isStrictlyPositive()) { 1537 if (Delta == 2) { 1538 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1539 return getFalse(ITy); 1540 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1541 return getFalse(ITy); 1542 } 1543 if (Delta == 1) { 1544 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1545 return getFalse(ITy); 1546 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1547 return getFalse(ITy); 1548 } 1549 } 1550 if (C0->getBoolValue() && isNUW) { 1551 if (Delta == 2) 1552 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1553 return getFalse(ITy); 1554 if (Delta == 1) 1555 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1556 return getFalse(ITy); 1557 } 1558 1559 return nullptr; 1560 } 1561 1562 /// Given operands for an And, see if we can fold the result. 1563 /// If not, this returns null. 1564 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1565 unsigned MaxRecurse) { 1566 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1567 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1568 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1569 1570 // Canonicalize the constant to the RHS. 1571 std::swap(Op0, Op1); 1572 } 1573 1574 // X & undef -> 0 1575 if (match(Op1, m_Undef())) 1576 return Constant::getNullValue(Op0->getType()); 1577 1578 // X & X = X 1579 if (Op0 == Op1) 1580 return Op0; 1581 1582 // X & 0 = 0 1583 if (match(Op1, m_Zero())) 1584 return Op1; 1585 1586 // X & -1 = X 1587 if (match(Op1, m_AllOnes())) 1588 return Op0; 1589 1590 // A & ~A = ~A & A = 0 1591 if (match(Op0, m_Not(m_Specific(Op1))) || 1592 match(Op1, m_Not(m_Specific(Op0)))) 1593 return Constant::getNullValue(Op0->getType()); 1594 1595 // (A | ?) & A = A 1596 Value *A = nullptr, *B = nullptr; 1597 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1598 (A == Op1 || B == Op1)) 1599 return Op1; 1600 1601 // A & (A | ?) = A 1602 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1603 (A == Op0 || B == Op0)) 1604 return Op0; 1605 1606 // A & (-A) = A if A is a power of two or zero. 1607 if (match(Op0, m_Neg(m_Specific(Op1))) || 1608 match(Op1, m_Neg(m_Specific(Op0)))) { 1609 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1610 Q.DT)) 1611 return Op0; 1612 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1613 Q.DT)) 1614 return Op1; 1615 } 1616 1617 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1618 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1619 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1620 return V; 1621 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1622 return V; 1623 } 1624 } 1625 1626 // The compares may be hidden behind casts. Look through those and try the 1627 // same folds as above. 1628 auto *Cast0 = dyn_cast<CastInst>(Op0); 1629 auto *Cast1 = dyn_cast<CastInst>(Op1); 1630 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1631 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1632 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1633 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1634 if (Cmp0 && Cmp1) { 1635 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1636 Type *ResultType = Cast0->getType(); 1637 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1638 return ConstantExpr::getCast(CastOpc, V, ResultType); 1639 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1640 return ConstantExpr::getCast(CastOpc, V, ResultType); 1641 } 1642 } 1643 1644 // Try some generic simplifications for associative operations. 1645 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1646 MaxRecurse)) 1647 return V; 1648 1649 // And distributes over Or. Try some generic simplifications based on this. 1650 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1651 Q, MaxRecurse)) 1652 return V; 1653 1654 // And distributes over Xor. Try some generic simplifications based on this. 1655 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1656 Q, MaxRecurse)) 1657 return V; 1658 1659 // If the operation is with the result of a select instruction, check whether 1660 // operating on either branch of the select always yields the same value. 1661 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1662 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1663 MaxRecurse)) 1664 return V; 1665 1666 // If the operation is with the result of a phi instruction, check whether 1667 // operating on all incoming values of the phi always yields the same value. 1668 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1669 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1670 MaxRecurse)) 1671 return V; 1672 1673 return nullptr; 1674 } 1675 1676 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1677 const TargetLibraryInfo *TLI, 1678 const DominatorTree *DT, AssumptionCache *AC, 1679 const Instruction *CxtI) { 1680 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1681 RecursionLimit); 1682 } 1683 1684 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1685 /// contains all possible values. 1686 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1687 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1688 return X; 1689 1690 // (icmp (add V, C0), C1) | (icmp V, C0) 1691 ICmpInst::Predicate Pred0, Pred1; 1692 const APInt *C0, *C1; 1693 Value *V; 1694 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1695 return nullptr; 1696 1697 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1698 return nullptr; 1699 1700 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1701 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1702 return nullptr; 1703 1704 Type *ITy = Op0->getType(); 1705 bool isNSW = AddInst->hasNoSignedWrap(); 1706 bool isNUW = AddInst->hasNoUnsignedWrap(); 1707 1708 const APInt Delta = *C1 - *C0; 1709 if (C0->isStrictlyPositive()) { 1710 if (Delta == 2) { 1711 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1712 return getTrue(ITy); 1713 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1714 return getTrue(ITy); 1715 } 1716 if (Delta == 1) { 1717 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1718 return getTrue(ITy); 1719 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1720 return getTrue(ITy); 1721 } 1722 } 1723 if (C0->getBoolValue() && isNUW) { 1724 if (Delta == 2) 1725 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1726 return getTrue(ITy); 1727 if (Delta == 1) 1728 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1729 return getTrue(ITy); 1730 } 1731 1732 return nullptr; 1733 } 1734 1735 /// Given operands for an Or, see if we can fold the result. 1736 /// If not, this returns null. 1737 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1738 unsigned MaxRecurse) { 1739 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1740 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1741 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1742 1743 // Canonicalize the constant to the RHS. 1744 std::swap(Op0, Op1); 1745 } 1746 1747 // X | undef -> -1 1748 if (match(Op1, m_Undef())) 1749 return Constant::getAllOnesValue(Op0->getType()); 1750 1751 // X | X = X 1752 if (Op0 == Op1) 1753 return Op0; 1754 1755 // X | 0 = X 1756 if (match(Op1, m_Zero())) 1757 return Op0; 1758 1759 // X | -1 = -1 1760 if (match(Op1, m_AllOnes())) 1761 return Op1; 1762 1763 // A | ~A = ~A | A = -1 1764 if (match(Op0, m_Not(m_Specific(Op1))) || 1765 match(Op1, m_Not(m_Specific(Op0)))) 1766 return Constant::getAllOnesValue(Op0->getType()); 1767 1768 // (A & ?) | A = A 1769 Value *A = nullptr, *B = nullptr; 1770 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1771 (A == Op1 || B == Op1)) 1772 return Op1; 1773 1774 // A | (A & ?) = A 1775 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1776 (A == Op0 || B == Op0)) 1777 return Op0; 1778 1779 // ~(A & ?) | A = -1 1780 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1781 (A == Op1 || B == Op1)) 1782 return Constant::getAllOnesValue(Op1->getType()); 1783 1784 // A | ~(A & ?) = -1 1785 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1786 (A == Op0 || B == Op0)) 1787 return Constant::getAllOnesValue(Op0->getType()); 1788 1789 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1790 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1791 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1792 return V; 1793 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1794 return V; 1795 } 1796 } 1797 1798 // Try some generic simplifications for associative operations. 1799 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1800 MaxRecurse)) 1801 return V; 1802 1803 // Or distributes over And. Try some generic simplifications based on this. 1804 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1805 MaxRecurse)) 1806 return V; 1807 1808 // If the operation is with the result of a select instruction, check whether 1809 // operating on either branch of the select always yields the same value. 1810 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1811 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1812 MaxRecurse)) 1813 return V; 1814 1815 // (A & C)|(B & D) 1816 Value *C = nullptr, *D = nullptr; 1817 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1818 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1819 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1820 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1821 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1822 // (A & C1)|(B & C2) 1823 // If we have: ((V + N) & C1) | (V & C2) 1824 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1825 // replace with V+N. 1826 Value *V1, *V2; 1827 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1828 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1829 // Add commutes, try both ways. 1830 if (V1 == B && 1831 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1832 return A; 1833 if (V2 == B && 1834 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1835 return A; 1836 } 1837 // Or commutes, try both ways. 1838 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1839 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1840 // Add commutes, try both ways. 1841 if (V1 == A && 1842 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1843 return B; 1844 if (V2 == A && 1845 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1846 return B; 1847 } 1848 } 1849 } 1850 1851 // If the operation is with the result of a phi instruction, check whether 1852 // operating on all incoming values of the phi always yields the same value. 1853 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1854 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1855 return V; 1856 1857 return nullptr; 1858 } 1859 1860 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1861 const TargetLibraryInfo *TLI, 1862 const DominatorTree *DT, AssumptionCache *AC, 1863 const Instruction *CxtI) { 1864 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1865 RecursionLimit); 1866 } 1867 1868 /// Given operands for a Xor, see if we can fold the result. 1869 /// If not, this returns null. 1870 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1871 unsigned MaxRecurse) { 1872 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1873 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1874 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1875 1876 // Canonicalize the constant to the RHS. 1877 std::swap(Op0, Op1); 1878 } 1879 1880 // A ^ undef -> undef 1881 if (match(Op1, m_Undef())) 1882 return Op1; 1883 1884 // A ^ 0 = A 1885 if (match(Op1, m_Zero())) 1886 return Op0; 1887 1888 // A ^ A = 0 1889 if (Op0 == Op1) 1890 return Constant::getNullValue(Op0->getType()); 1891 1892 // A ^ ~A = ~A ^ A = -1 1893 if (match(Op0, m_Not(m_Specific(Op1))) || 1894 match(Op1, m_Not(m_Specific(Op0)))) 1895 return Constant::getAllOnesValue(Op0->getType()); 1896 1897 // Try some generic simplifications for associative operations. 1898 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1899 MaxRecurse)) 1900 return V; 1901 1902 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1903 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1904 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1905 // only if B and C are equal. If B and C are equal then (since we assume 1906 // that operands have already been simplified) "select(cond, B, C)" should 1907 // have been simplified to the common value of B and C already. Analysing 1908 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1909 // for threading over phi nodes. 1910 1911 return nullptr; 1912 } 1913 1914 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1915 const TargetLibraryInfo *TLI, 1916 const DominatorTree *DT, AssumptionCache *AC, 1917 const Instruction *CxtI) { 1918 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1919 RecursionLimit); 1920 } 1921 1922 static Type *GetCompareTy(Value *Op) { 1923 return CmpInst::makeCmpResultType(Op->getType()); 1924 } 1925 1926 /// Rummage around inside V looking for something equivalent to the comparison 1927 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1928 /// Helper function for analyzing max/min idioms. 1929 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1930 Value *LHS, Value *RHS) { 1931 SelectInst *SI = dyn_cast<SelectInst>(V); 1932 if (!SI) 1933 return nullptr; 1934 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1935 if (!Cmp) 1936 return nullptr; 1937 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1938 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1939 return Cmp; 1940 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1941 LHS == CmpRHS && RHS == CmpLHS) 1942 return Cmp; 1943 return nullptr; 1944 } 1945 1946 // A significant optimization not implemented here is assuming that alloca 1947 // addresses are not equal to incoming argument values. They don't *alias*, 1948 // as we say, but that doesn't mean they aren't equal, so we take a 1949 // conservative approach. 1950 // 1951 // This is inspired in part by C++11 5.10p1: 1952 // "Two pointers of the same type compare equal if and only if they are both 1953 // null, both point to the same function, or both represent the same 1954 // address." 1955 // 1956 // This is pretty permissive. 1957 // 1958 // It's also partly due to C11 6.5.9p6: 1959 // "Two pointers compare equal if and only if both are null pointers, both are 1960 // pointers to the same object (including a pointer to an object and a 1961 // subobject at its beginning) or function, both are pointers to one past the 1962 // last element of the same array object, or one is a pointer to one past the 1963 // end of one array object and the other is a pointer to the start of a 1964 // different array object that happens to immediately follow the first array 1965 // object in the address space.) 1966 // 1967 // C11's version is more restrictive, however there's no reason why an argument 1968 // couldn't be a one-past-the-end value for a stack object in the caller and be 1969 // equal to the beginning of a stack object in the callee. 1970 // 1971 // If the C and C++ standards are ever made sufficiently restrictive in this 1972 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1973 // this optimization. 1974 static Constant * 1975 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1976 const DominatorTree *DT, CmpInst::Predicate Pred, 1977 const Instruction *CxtI, Value *LHS, Value *RHS) { 1978 // First, skip past any trivial no-ops. 1979 LHS = LHS->stripPointerCasts(); 1980 RHS = RHS->stripPointerCasts(); 1981 1982 // A non-null pointer is not equal to a null pointer. 1983 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 1984 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1985 return ConstantInt::get(GetCompareTy(LHS), 1986 !CmpInst::isTrueWhenEqual(Pred)); 1987 1988 // We can only fold certain predicates on pointer comparisons. 1989 switch (Pred) { 1990 default: 1991 return nullptr; 1992 1993 // Equality comaprisons are easy to fold. 1994 case CmpInst::ICMP_EQ: 1995 case CmpInst::ICMP_NE: 1996 break; 1997 1998 // We can only handle unsigned relational comparisons because 'inbounds' on 1999 // a GEP only protects against unsigned wrapping. 2000 case CmpInst::ICMP_UGT: 2001 case CmpInst::ICMP_UGE: 2002 case CmpInst::ICMP_ULT: 2003 case CmpInst::ICMP_ULE: 2004 // However, we have to switch them to their signed variants to handle 2005 // negative indices from the base pointer. 2006 Pred = ICmpInst::getSignedPredicate(Pred); 2007 break; 2008 } 2009 2010 // Strip off any constant offsets so that we can reason about them. 2011 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2012 // here and compare base addresses like AliasAnalysis does, however there are 2013 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2014 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2015 // doesn't need to guarantee pointer inequality when it says NoAlias. 2016 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2017 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2018 2019 // If LHS and RHS are related via constant offsets to the same base 2020 // value, we can replace it with an icmp which just compares the offsets. 2021 if (LHS == RHS) 2022 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2023 2024 // Various optimizations for (in)equality comparisons. 2025 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2026 // Different non-empty allocations that exist at the same time have 2027 // different addresses (if the program can tell). Global variables always 2028 // exist, so they always exist during the lifetime of each other and all 2029 // allocas. Two different allocas usually have different addresses... 2030 // 2031 // However, if there's an @llvm.stackrestore dynamically in between two 2032 // allocas, they may have the same address. It's tempting to reduce the 2033 // scope of the problem by only looking at *static* allocas here. That would 2034 // cover the majority of allocas while significantly reducing the likelihood 2035 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2036 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2037 // an entry block. Also, if we have a block that's not attached to a 2038 // function, we can't tell if it's "static" under the current definition. 2039 // Theoretically, this problem could be fixed by creating a new kind of 2040 // instruction kind specifically for static allocas. Such a new instruction 2041 // could be required to be at the top of the entry block, thus preventing it 2042 // from being subject to a @llvm.stackrestore. Instcombine could even 2043 // convert regular allocas into these special allocas. It'd be nifty. 2044 // However, until then, this problem remains open. 2045 // 2046 // So, we'll assume that two non-empty allocas have different addresses 2047 // for now. 2048 // 2049 // With all that, if the offsets are within the bounds of their allocations 2050 // (and not one-past-the-end! so we can't use inbounds!), and their 2051 // allocations aren't the same, the pointers are not equal. 2052 // 2053 // Note that it's not necessary to check for LHS being a global variable 2054 // address, due to canonicalization and constant folding. 2055 if (isa<AllocaInst>(LHS) && 2056 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2057 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2058 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2059 uint64_t LHSSize, RHSSize; 2060 if (LHSOffsetCI && RHSOffsetCI && 2061 getObjectSize(LHS, LHSSize, DL, TLI) && 2062 getObjectSize(RHS, RHSSize, DL, TLI)) { 2063 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2064 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2065 if (!LHSOffsetValue.isNegative() && 2066 !RHSOffsetValue.isNegative() && 2067 LHSOffsetValue.ult(LHSSize) && 2068 RHSOffsetValue.ult(RHSSize)) { 2069 return ConstantInt::get(GetCompareTy(LHS), 2070 !CmpInst::isTrueWhenEqual(Pred)); 2071 } 2072 } 2073 2074 // Repeat the above check but this time without depending on DataLayout 2075 // or being able to compute a precise size. 2076 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2077 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2078 LHSOffset->isNullValue() && 2079 RHSOffset->isNullValue()) 2080 return ConstantInt::get(GetCompareTy(LHS), 2081 !CmpInst::isTrueWhenEqual(Pred)); 2082 } 2083 2084 // Even if an non-inbounds GEP occurs along the path we can still optimize 2085 // equality comparisons concerning the result. We avoid walking the whole 2086 // chain again by starting where the last calls to 2087 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2088 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2089 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2090 if (LHS == RHS) 2091 return ConstantExpr::getICmp(Pred, 2092 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2093 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2094 2095 // If one side of the equality comparison must come from a noalias call 2096 // (meaning a system memory allocation function), and the other side must 2097 // come from a pointer that cannot overlap with dynamically-allocated 2098 // memory within the lifetime of the current function (allocas, byval 2099 // arguments, globals), then determine the comparison result here. 2100 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2101 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2102 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2103 2104 // Is the set of underlying objects all noalias calls? 2105 auto IsNAC = [](ArrayRef<Value *> Objects) { 2106 return all_of(Objects, isNoAliasCall); 2107 }; 2108 2109 // Is the set of underlying objects all things which must be disjoint from 2110 // noalias calls. For allocas, we consider only static ones (dynamic 2111 // allocas might be transformed into calls to malloc not simultaneously 2112 // live with the compared-to allocation). For globals, we exclude symbols 2113 // that might be resolve lazily to symbols in another dynamically-loaded 2114 // library (and, thus, could be malloc'ed by the implementation). 2115 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2116 return all_of(Objects, [](Value *V) { 2117 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2118 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2119 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2120 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2121 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2122 !GV->isThreadLocal(); 2123 if (const Argument *A = dyn_cast<Argument>(V)) 2124 return A->hasByValAttr(); 2125 return false; 2126 }); 2127 }; 2128 2129 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2130 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2131 return ConstantInt::get(GetCompareTy(LHS), 2132 !CmpInst::isTrueWhenEqual(Pred)); 2133 2134 // Fold comparisons for non-escaping pointer even if the allocation call 2135 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2136 // dynamic allocation call could be either of the operands. 2137 Value *MI = nullptr; 2138 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2139 MI = LHS; 2140 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2141 MI = RHS; 2142 // FIXME: We should also fold the compare when the pointer escapes, but the 2143 // compare dominates the pointer escape 2144 if (MI && !PointerMayBeCaptured(MI, true, true)) 2145 return ConstantInt::get(GetCompareTy(LHS), 2146 CmpInst::isFalseWhenEqual(Pred)); 2147 } 2148 2149 // Otherwise, fail. 2150 return nullptr; 2151 } 2152 2153 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2154 Value *RHS) { 2155 const APInt *C; 2156 if (!match(RHS, m_APInt(C))) 2157 return nullptr; 2158 2159 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2160 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2161 if (RHS_CR.isEmptySet()) 2162 return ConstantInt::getFalse(GetCompareTy(RHS)); 2163 if (RHS_CR.isFullSet()) 2164 return ConstantInt::getTrue(GetCompareTy(RHS)); 2165 2166 // Many binary operators with constant RHS have easy to compute constant 2167 // range. Use them to check whether the comparison is a tautology. 2168 unsigned Width = C->getBitWidth(); 2169 APInt Lower = APInt(Width, 0); 2170 APInt Upper = APInt(Width, 0); 2171 const APInt *C2; 2172 if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) { 2173 // 'urem x, C2' produces [0, C2). 2174 Upper = *C2; 2175 } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) { 2176 // 'srem x, C2' produces (-|C2|, |C2|). 2177 Upper = C2->abs(); 2178 Lower = (-Upper) + 1; 2179 } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) { 2180 // 'udiv C2, x' produces [0, C2]. 2181 Upper = *C2 + 1; 2182 } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) { 2183 // 'udiv x, C2' produces [0, UINT_MAX / C2]. 2184 APInt NegOne = APInt::getAllOnesValue(Width); 2185 if (*C2 != 0) 2186 Upper = NegOne.udiv(*C2) + 1; 2187 } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) { 2188 if (C2->isMinSignedValue()) { 2189 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2190 Lower = *C2; 2191 Upper = Lower.lshr(1) + 1; 2192 } else { 2193 // 'sdiv C2, x' produces [-|C2|, |C2|]. 2194 Upper = C2->abs() + 1; 2195 Lower = (-Upper) + 1; 2196 } 2197 } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) { 2198 APInt IntMin = APInt::getSignedMinValue(Width); 2199 APInt IntMax = APInt::getSignedMaxValue(Width); 2200 if (C2->isAllOnesValue()) { 2201 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2202 // where C2 != -1 and C2 != 0 and C2 != 1 2203 Lower = IntMin + 1; 2204 Upper = IntMax + 1; 2205 } else if (C2->countLeadingZeros() < Width - 1) { 2206 // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2] 2207 // where C2 != -1 and C2 != 0 and C2 != 1 2208 Lower = IntMin.sdiv(*C2); 2209 Upper = IntMax.sdiv(*C2); 2210 if (Lower.sgt(Upper)) 2211 std::swap(Lower, Upper); 2212 Upper = Upper + 1; 2213 assert(Upper != Lower && "Upper part of range has wrapped!"); 2214 } 2215 } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) { 2216 // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)] 2217 Lower = *C2; 2218 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2219 } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) { 2220 if (C2->isNegative()) { 2221 // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2] 2222 unsigned ShiftAmount = C2->countLeadingOnes() - 1; 2223 Lower = C2->shl(ShiftAmount); 2224 Upper = *C2 + 1; 2225 } else { 2226 // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1] 2227 unsigned ShiftAmount = C2->countLeadingZeros() - 1; 2228 Lower = *C2; 2229 Upper = C2->shl(ShiftAmount) + 1; 2230 } 2231 } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) { 2232 // 'lshr x, C2' produces [0, UINT_MAX >> C2]. 2233 APInt NegOne = APInt::getAllOnesValue(Width); 2234 if (C2->ult(Width)) 2235 Upper = NegOne.lshr(*C2) + 1; 2236 } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) { 2237 // 'lshr C2, x' produces [C2 >> (Width-1), C2]. 2238 unsigned ShiftAmount = Width - 1; 2239 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2240 ShiftAmount = C2->countTrailingZeros(); 2241 Lower = C2->lshr(ShiftAmount); 2242 Upper = *C2 + 1; 2243 } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) { 2244 // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2]. 2245 APInt IntMin = APInt::getSignedMinValue(Width); 2246 APInt IntMax = APInt::getSignedMaxValue(Width); 2247 if (C2->ult(Width)) { 2248 Lower = IntMin.ashr(*C2); 2249 Upper = IntMax.ashr(*C2) + 1; 2250 } 2251 } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) { 2252 unsigned ShiftAmount = Width - 1; 2253 if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact()) 2254 ShiftAmount = C2->countTrailingZeros(); 2255 if (C2->isNegative()) { 2256 // 'ashr C2, x' produces [C2, C2 >> (Width-1)] 2257 Lower = *C2; 2258 Upper = C2->ashr(ShiftAmount) + 1; 2259 } else { 2260 // 'ashr C2, x' produces [C2 >> (Width-1), C2] 2261 Lower = C2->ashr(ShiftAmount); 2262 Upper = *C2 + 1; 2263 } 2264 } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) { 2265 // 'or x, C2' produces [C2, UINT_MAX]. 2266 Lower = *C2; 2267 } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) { 2268 // 'and x, C2' produces [0, C2]. 2269 Upper = *C2 + 1; 2270 } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) { 2271 // 'add nuw x, C2' produces [C2, UINT_MAX]. 2272 Lower = *C2; 2273 } 2274 2275 ConstantRange LHS_CR = 2276 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2277 2278 if (auto *I = dyn_cast<Instruction>(LHS)) 2279 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2280 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2281 2282 if (!LHS_CR.isFullSet()) { 2283 if (RHS_CR.contains(LHS_CR)) 2284 return ConstantInt::getTrue(GetCompareTy(RHS)); 2285 if (RHS_CR.inverse().contains(LHS_CR)) 2286 return ConstantInt::getFalse(GetCompareTy(RHS)); 2287 } 2288 2289 return nullptr; 2290 } 2291 2292 /// Given operands for an ICmpInst, see if we can fold the result. 2293 /// If not, this returns null. 2294 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2295 const Query &Q, unsigned MaxRecurse) { 2296 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2297 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2298 2299 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2300 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2301 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2302 2303 // If we have a constant, make sure it is on the RHS. 2304 std::swap(LHS, RHS); 2305 Pred = CmpInst::getSwappedPredicate(Pred); 2306 } 2307 2308 Type *ITy = GetCompareTy(LHS); // The return type. 2309 Type *OpTy = LHS->getType(); // The operand type. 2310 2311 // icmp X, X -> true/false 2312 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2313 // because X could be 0. 2314 if (LHS == RHS || isa<UndefValue>(RHS)) 2315 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2316 2317 // Special case logic when the operands have i1 type. 2318 if (OpTy->getScalarType()->isIntegerTy(1)) { 2319 switch (Pred) { 2320 default: break; 2321 case ICmpInst::ICMP_EQ: 2322 // X == 1 -> X 2323 if (match(RHS, m_One())) 2324 return LHS; 2325 break; 2326 case ICmpInst::ICMP_NE: 2327 // X != 0 -> X 2328 if (match(RHS, m_Zero())) 2329 return LHS; 2330 break; 2331 case ICmpInst::ICMP_UGT: 2332 // X >u 0 -> X 2333 if (match(RHS, m_Zero())) 2334 return LHS; 2335 break; 2336 case ICmpInst::ICMP_UGE: { 2337 // X >=u 1 -> X 2338 if (match(RHS, m_One())) 2339 return LHS; 2340 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2341 return getTrue(ITy); 2342 break; 2343 } 2344 case ICmpInst::ICMP_SGE: { 2345 /// For signed comparison, the values for an i1 are 0 and -1 2346 /// respectively. This maps into a truth table of: 2347 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2348 /// 0 | 0 | 1 (0 >= 0) | 1 2349 /// 0 | 1 | 1 (0 >= -1) | 1 2350 /// 1 | 0 | 0 (-1 >= 0) | 0 2351 /// 1 | 1 | 1 (-1 >= -1) | 1 2352 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2353 return getTrue(ITy); 2354 break; 2355 } 2356 case ICmpInst::ICMP_SLT: 2357 // X <s 0 -> X 2358 if (match(RHS, m_Zero())) 2359 return LHS; 2360 break; 2361 case ICmpInst::ICMP_SLE: 2362 // X <=s -1 -> X 2363 if (match(RHS, m_One())) 2364 return LHS; 2365 break; 2366 case ICmpInst::ICMP_ULE: { 2367 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2368 return getTrue(ITy); 2369 break; 2370 } 2371 } 2372 } 2373 2374 // If we are comparing with zero then try hard since this is a common case. 2375 if (match(RHS, m_Zero())) { 2376 bool LHSKnownNonNegative, LHSKnownNegative; 2377 switch (Pred) { 2378 default: llvm_unreachable("Unknown ICmp predicate!"); 2379 case ICmpInst::ICMP_ULT: 2380 return getFalse(ITy); 2381 case ICmpInst::ICMP_UGE: 2382 return getTrue(ITy); 2383 case ICmpInst::ICMP_EQ: 2384 case ICmpInst::ICMP_ULE: 2385 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2386 return getFalse(ITy); 2387 break; 2388 case ICmpInst::ICMP_NE: 2389 case ICmpInst::ICMP_UGT: 2390 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2391 return getTrue(ITy); 2392 break; 2393 case ICmpInst::ICMP_SLT: 2394 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2395 Q.CxtI, Q.DT); 2396 if (LHSKnownNegative) 2397 return getTrue(ITy); 2398 if (LHSKnownNonNegative) 2399 return getFalse(ITy); 2400 break; 2401 case ICmpInst::ICMP_SLE: 2402 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2403 Q.CxtI, Q.DT); 2404 if (LHSKnownNegative) 2405 return getTrue(ITy); 2406 if (LHSKnownNonNegative && 2407 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2408 return getFalse(ITy); 2409 break; 2410 case ICmpInst::ICMP_SGE: 2411 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2412 Q.CxtI, Q.DT); 2413 if (LHSKnownNegative) 2414 return getFalse(ITy); 2415 if (LHSKnownNonNegative) 2416 return getTrue(ITy); 2417 break; 2418 case ICmpInst::ICMP_SGT: 2419 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2420 Q.CxtI, Q.DT); 2421 if (LHSKnownNegative) 2422 return getFalse(ITy); 2423 if (LHSKnownNonNegative && 2424 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2425 return getTrue(ITy); 2426 break; 2427 } 2428 } 2429 2430 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 2431 return V; 2432 2433 // If both operands have range metadata, use the metadata 2434 // to simplify the comparison. 2435 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2436 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2437 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2438 2439 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2440 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2441 auto RHS_CR = getConstantRangeFromMetadata( 2442 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2443 auto LHS_CR = getConstantRangeFromMetadata( 2444 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2445 2446 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2447 if (Satisfied_CR.contains(LHS_CR)) 2448 return ConstantInt::getTrue(RHS->getContext()); 2449 2450 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2451 CmpInst::getInversePredicate(Pred), RHS_CR); 2452 if (InversedSatisfied_CR.contains(LHS_CR)) 2453 return ConstantInt::getFalse(RHS->getContext()); 2454 } 2455 } 2456 2457 // Compare of cast, for example (zext X) != 0 -> X != 0 2458 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2459 Instruction *LI = cast<CastInst>(LHS); 2460 Value *SrcOp = LI->getOperand(0); 2461 Type *SrcTy = SrcOp->getType(); 2462 Type *DstTy = LI->getType(); 2463 2464 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2465 // if the integer type is the same size as the pointer type. 2466 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2467 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2468 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2469 // Transfer the cast to the constant. 2470 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2471 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2472 Q, MaxRecurse-1)) 2473 return V; 2474 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2475 if (RI->getOperand(0)->getType() == SrcTy) 2476 // Compare without the cast. 2477 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2478 Q, MaxRecurse-1)) 2479 return V; 2480 } 2481 } 2482 2483 if (isa<ZExtInst>(LHS)) { 2484 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2485 // same type. 2486 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2487 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2488 // Compare X and Y. Note that signed predicates become unsigned. 2489 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2490 SrcOp, RI->getOperand(0), Q, 2491 MaxRecurse-1)) 2492 return V; 2493 } 2494 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2495 // too. If not, then try to deduce the result of the comparison. 2496 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2497 // Compute the constant that would happen if we truncated to SrcTy then 2498 // reextended to DstTy. 2499 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2500 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2501 2502 // If the re-extended constant didn't change then this is effectively 2503 // also a case of comparing two zero-extended values. 2504 if (RExt == CI && MaxRecurse) 2505 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2506 SrcOp, Trunc, Q, MaxRecurse-1)) 2507 return V; 2508 2509 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2510 // there. Use this to work out the result of the comparison. 2511 if (RExt != CI) { 2512 switch (Pred) { 2513 default: llvm_unreachable("Unknown ICmp predicate!"); 2514 // LHS <u RHS. 2515 case ICmpInst::ICMP_EQ: 2516 case ICmpInst::ICMP_UGT: 2517 case ICmpInst::ICMP_UGE: 2518 return ConstantInt::getFalse(CI->getContext()); 2519 2520 case ICmpInst::ICMP_NE: 2521 case ICmpInst::ICMP_ULT: 2522 case ICmpInst::ICMP_ULE: 2523 return ConstantInt::getTrue(CI->getContext()); 2524 2525 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2526 // is non-negative then LHS <s RHS. 2527 case ICmpInst::ICMP_SGT: 2528 case ICmpInst::ICMP_SGE: 2529 return CI->getValue().isNegative() ? 2530 ConstantInt::getTrue(CI->getContext()) : 2531 ConstantInt::getFalse(CI->getContext()); 2532 2533 case ICmpInst::ICMP_SLT: 2534 case ICmpInst::ICMP_SLE: 2535 return CI->getValue().isNegative() ? 2536 ConstantInt::getFalse(CI->getContext()) : 2537 ConstantInt::getTrue(CI->getContext()); 2538 } 2539 } 2540 } 2541 } 2542 2543 if (isa<SExtInst>(LHS)) { 2544 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2545 // same type. 2546 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2547 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2548 // Compare X and Y. Note that the predicate does not change. 2549 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2550 Q, MaxRecurse-1)) 2551 return V; 2552 } 2553 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2554 // too. If not, then try to deduce the result of the comparison. 2555 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2556 // Compute the constant that would happen if we truncated to SrcTy then 2557 // reextended to DstTy. 2558 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2559 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2560 2561 // If the re-extended constant didn't change then this is effectively 2562 // also a case of comparing two sign-extended values. 2563 if (RExt == CI && MaxRecurse) 2564 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2565 return V; 2566 2567 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2568 // bits there. Use this to work out the result of the comparison. 2569 if (RExt != CI) { 2570 switch (Pred) { 2571 default: llvm_unreachable("Unknown ICmp predicate!"); 2572 case ICmpInst::ICMP_EQ: 2573 return ConstantInt::getFalse(CI->getContext()); 2574 case ICmpInst::ICMP_NE: 2575 return ConstantInt::getTrue(CI->getContext()); 2576 2577 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2578 // LHS >s RHS. 2579 case ICmpInst::ICMP_SGT: 2580 case ICmpInst::ICMP_SGE: 2581 return CI->getValue().isNegative() ? 2582 ConstantInt::getTrue(CI->getContext()) : 2583 ConstantInt::getFalse(CI->getContext()); 2584 case ICmpInst::ICMP_SLT: 2585 case ICmpInst::ICMP_SLE: 2586 return CI->getValue().isNegative() ? 2587 ConstantInt::getFalse(CI->getContext()) : 2588 ConstantInt::getTrue(CI->getContext()); 2589 2590 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2591 // LHS >u RHS. 2592 case ICmpInst::ICMP_UGT: 2593 case ICmpInst::ICMP_UGE: 2594 // Comparison is true iff the LHS <s 0. 2595 if (MaxRecurse) 2596 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2597 Constant::getNullValue(SrcTy), 2598 Q, MaxRecurse-1)) 2599 return V; 2600 break; 2601 case ICmpInst::ICMP_ULT: 2602 case ICmpInst::ICMP_ULE: 2603 // Comparison is true iff the LHS >=s 0. 2604 if (MaxRecurse) 2605 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2606 Constant::getNullValue(SrcTy), 2607 Q, MaxRecurse-1)) 2608 return V; 2609 break; 2610 } 2611 } 2612 } 2613 } 2614 } 2615 2616 // icmp eq|ne X, Y -> false|true if X != Y 2617 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2618 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2619 LLVMContext &Ctx = LHS->getType()->getContext(); 2620 return Pred == ICmpInst::ICMP_NE ? 2621 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2622 } 2623 2624 // Special logic for binary operators. 2625 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2626 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2627 if (MaxRecurse && (LBO || RBO)) { 2628 // Analyze the case when either LHS or RHS is an add instruction. 2629 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2630 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2631 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2632 if (LBO && LBO->getOpcode() == Instruction::Add) { 2633 A = LBO->getOperand(0); B = LBO->getOperand(1); 2634 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2635 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2636 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2637 } 2638 if (RBO && RBO->getOpcode() == Instruction::Add) { 2639 C = RBO->getOperand(0); D = RBO->getOperand(1); 2640 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2641 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2642 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2643 } 2644 2645 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2646 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2647 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2648 Constant::getNullValue(RHS->getType()), 2649 Q, MaxRecurse-1)) 2650 return V; 2651 2652 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2653 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2654 if (Value *V = SimplifyICmpInst(Pred, 2655 Constant::getNullValue(LHS->getType()), 2656 C == LHS ? D : C, Q, MaxRecurse-1)) 2657 return V; 2658 2659 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2660 if (A && C && (A == C || A == D || B == C || B == D) && 2661 NoLHSWrapProblem && NoRHSWrapProblem) { 2662 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2663 Value *Y, *Z; 2664 if (A == C) { 2665 // C + B == C + D -> B == D 2666 Y = B; 2667 Z = D; 2668 } else if (A == D) { 2669 // D + B == C + D -> B == C 2670 Y = B; 2671 Z = C; 2672 } else if (B == C) { 2673 // A + C == C + D -> A == D 2674 Y = A; 2675 Z = D; 2676 } else { 2677 assert(B == D); 2678 // A + D == C + D -> A == C 2679 Y = A; 2680 Z = C; 2681 } 2682 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2683 return V; 2684 } 2685 } 2686 2687 { 2688 Value *Y = nullptr; 2689 // icmp pred (or X, Y), X 2690 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2691 if (Pred == ICmpInst::ICMP_ULT) 2692 return getFalse(ITy); 2693 if (Pred == ICmpInst::ICMP_UGE) 2694 return getTrue(ITy); 2695 2696 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2697 bool RHSKnownNonNegative, RHSKnownNegative; 2698 bool YKnownNonNegative, YKnownNegative; 2699 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2700 Q.AC, Q.CxtI, Q.DT); 2701 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2702 Q.CxtI, Q.DT); 2703 if (RHSKnownNonNegative && YKnownNegative) 2704 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2705 if (RHSKnownNegative || YKnownNonNegative) 2706 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2707 } 2708 } 2709 // icmp pred X, (or X, Y) 2710 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2711 if (Pred == ICmpInst::ICMP_ULE) 2712 return getTrue(ITy); 2713 if (Pred == ICmpInst::ICMP_UGT) 2714 return getFalse(ITy); 2715 2716 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2717 bool LHSKnownNonNegative, LHSKnownNegative; 2718 bool YKnownNonNegative, YKnownNegative; 2719 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2720 Q.AC, Q.CxtI, Q.DT); 2721 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2722 Q.CxtI, Q.DT); 2723 if (LHSKnownNonNegative && YKnownNegative) 2724 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2725 if (LHSKnownNegative || YKnownNonNegative) 2726 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2727 } 2728 } 2729 } 2730 2731 // icmp pred (and X, Y), X 2732 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2733 m_And(m_Specific(RHS), m_Value())))) { 2734 if (Pred == ICmpInst::ICMP_UGT) 2735 return getFalse(ITy); 2736 if (Pred == ICmpInst::ICMP_ULE) 2737 return getTrue(ITy); 2738 } 2739 // icmp pred X, (and X, Y) 2740 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2741 m_And(m_Specific(LHS), m_Value())))) { 2742 if (Pred == ICmpInst::ICMP_UGE) 2743 return getTrue(ITy); 2744 if (Pred == ICmpInst::ICMP_ULT) 2745 return getFalse(ITy); 2746 } 2747 2748 // 0 - (zext X) pred C 2749 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2750 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2751 if (RHSC->getValue().isStrictlyPositive()) { 2752 if (Pred == ICmpInst::ICMP_SLT) 2753 return ConstantInt::getTrue(RHSC->getContext()); 2754 if (Pred == ICmpInst::ICMP_SGE) 2755 return ConstantInt::getFalse(RHSC->getContext()); 2756 if (Pred == ICmpInst::ICMP_EQ) 2757 return ConstantInt::getFalse(RHSC->getContext()); 2758 if (Pred == ICmpInst::ICMP_NE) 2759 return ConstantInt::getTrue(RHSC->getContext()); 2760 } 2761 if (RHSC->getValue().isNonNegative()) { 2762 if (Pred == ICmpInst::ICMP_SLE) 2763 return ConstantInt::getTrue(RHSC->getContext()); 2764 if (Pred == ICmpInst::ICMP_SGT) 2765 return ConstantInt::getFalse(RHSC->getContext()); 2766 } 2767 } 2768 } 2769 2770 // icmp pred (urem X, Y), Y 2771 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2772 bool KnownNonNegative, KnownNegative; 2773 switch (Pred) { 2774 default: 2775 break; 2776 case ICmpInst::ICMP_SGT: 2777 case ICmpInst::ICMP_SGE: 2778 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2779 Q.CxtI, Q.DT); 2780 if (!KnownNonNegative) 2781 break; 2782 LLVM_FALLTHROUGH; 2783 case ICmpInst::ICMP_EQ: 2784 case ICmpInst::ICMP_UGT: 2785 case ICmpInst::ICMP_UGE: 2786 return getFalse(ITy); 2787 case ICmpInst::ICMP_SLT: 2788 case ICmpInst::ICMP_SLE: 2789 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2790 Q.CxtI, Q.DT); 2791 if (!KnownNonNegative) 2792 break; 2793 LLVM_FALLTHROUGH; 2794 case ICmpInst::ICMP_NE: 2795 case ICmpInst::ICMP_ULT: 2796 case ICmpInst::ICMP_ULE: 2797 return getTrue(ITy); 2798 } 2799 } 2800 2801 // icmp pred X, (urem Y, X) 2802 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2803 bool KnownNonNegative, KnownNegative; 2804 switch (Pred) { 2805 default: 2806 break; 2807 case ICmpInst::ICMP_SGT: 2808 case ICmpInst::ICMP_SGE: 2809 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2810 Q.CxtI, Q.DT); 2811 if (!KnownNonNegative) 2812 break; 2813 LLVM_FALLTHROUGH; 2814 case ICmpInst::ICMP_NE: 2815 case ICmpInst::ICMP_UGT: 2816 case ICmpInst::ICMP_UGE: 2817 return getTrue(ITy); 2818 case ICmpInst::ICMP_SLT: 2819 case ICmpInst::ICMP_SLE: 2820 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2821 Q.CxtI, Q.DT); 2822 if (!KnownNonNegative) 2823 break; 2824 LLVM_FALLTHROUGH; 2825 case ICmpInst::ICMP_EQ: 2826 case ICmpInst::ICMP_ULT: 2827 case ICmpInst::ICMP_ULE: 2828 return getFalse(ITy); 2829 } 2830 } 2831 2832 // x >> y <=u x 2833 // x udiv y <=u x. 2834 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2835 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2836 // icmp pred (X op Y), X 2837 if (Pred == ICmpInst::ICMP_UGT) 2838 return getFalse(ITy); 2839 if (Pred == ICmpInst::ICMP_ULE) 2840 return getTrue(ITy); 2841 } 2842 2843 // handle: 2844 // CI2 << X == CI 2845 // CI2 << X != CI 2846 // 2847 // where CI2 is a power of 2 and CI isn't 2848 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2849 const APInt *CI2Val, *CIVal = &CI->getValue(); 2850 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2851 CI2Val->isPowerOf2()) { 2852 if (!CIVal->isPowerOf2()) { 2853 // CI2 << X can equal zero in some circumstances, 2854 // this simplification is unsafe if CI is zero. 2855 // 2856 // We know it is safe if: 2857 // - The shift is nsw, we can't shift out the one bit. 2858 // - The shift is nuw, we can't shift out the one bit. 2859 // - CI2 is one 2860 // - CI isn't zero 2861 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2862 *CI2Val == 1 || !CI->isZero()) { 2863 if (Pred == ICmpInst::ICMP_EQ) 2864 return ConstantInt::getFalse(RHS->getContext()); 2865 if (Pred == ICmpInst::ICMP_NE) 2866 return ConstantInt::getTrue(RHS->getContext()); 2867 } 2868 } 2869 if (CIVal->isSignBit() && *CI2Val == 1) { 2870 if (Pred == ICmpInst::ICMP_UGT) 2871 return ConstantInt::getFalse(RHS->getContext()); 2872 if (Pred == ICmpInst::ICMP_ULE) 2873 return ConstantInt::getTrue(RHS->getContext()); 2874 } 2875 } 2876 } 2877 2878 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2879 LBO->getOperand(1) == RBO->getOperand(1)) { 2880 switch (LBO->getOpcode()) { 2881 default: break; 2882 case Instruction::UDiv: 2883 case Instruction::LShr: 2884 if (ICmpInst::isSigned(Pred)) 2885 break; 2886 LLVM_FALLTHROUGH; 2887 case Instruction::SDiv: 2888 case Instruction::AShr: 2889 if (!LBO->isExact() || !RBO->isExact()) 2890 break; 2891 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2892 RBO->getOperand(0), Q, MaxRecurse-1)) 2893 return V; 2894 break; 2895 case Instruction::Shl: { 2896 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2897 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2898 if (!NUW && !NSW) 2899 break; 2900 if (!NSW && ICmpInst::isSigned(Pred)) 2901 break; 2902 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2903 RBO->getOperand(0), Q, MaxRecurse-1)) 2904 return V; 2905 break; 2906 } 2907 } 2908 } 2909 2910 // Simplify comparisons involving max/min. 2911 Value *A, *B; 2912 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2913 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2914 2915 // Signed variants on "max(a,b)>=a -> true". 2916 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2917 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2918 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2919 // We analyze this as smax(A, B) pred A. 2920 P = Pred; 2921 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2922 (A == LHS || B == LHS)) { 2923 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2924 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2925 // We analyze this as smax(A, B) swapped-pred A. 2926 P = CmpInst::getSwappedPredicate(Pred); 2927 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2928 (A == RHS || B == RHS)) { 2929 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2930 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2931 // We analyze this as smax(-A, -B) swapped-pred -A. 2932 // Note that we do not need to actually form -A or -B thanks to EqP. 2933 P = CmpInst::getSwappedPredicate(Pred); 2934 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2935 (A == LHS || B == LHS)) { 2936 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2937 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2938 // We analyze this as smax(-A, -B) pred -A. 2939 // Note that we do not need to actually form -A or -B thanks to EqP. 2940 P = Pred; 2941 } 2942 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2943 // Cases correspond to "max(A, B) p A". 2944 switch (P) { 2945 default: 2946 break; 2947 case CmpInst::ICMP_EQ: 2948 case CmpInst::ICMP_SLE: 2949 // Equivalent to "A EqP B". This may be the same as the condition tested 2950 // in the max/min; if so, we can just return that. 2951 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2952 return V; 2953 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2954 return V; 2955 // Otherwise, see if "A EqP B" simplifies. 2956 if (MaxRecurse) 2957 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2958 return V; 2959 break; 2960 case CmpInst::ICMP_NE: 2961 case CmpInst::ICMP_SGT: { 2962 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2963 // Equivalent to "A InvEqP B". This may be the same as the condition 2964 // tested in the max/min; if so, we can just return that. 2965 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2966 return V; 2967 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2968 return V; 2969 // Otherwise, see if "A InvEqP B" simplifies. 2970 if (MaxRecurse) 2971 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2972 return V; 2973 break; 2974 } 2975 case CmpInst::ICMP_SGE: 2976 // Always true. 2977 return getTrue(ITy); 2978 case CmpInst::ICMP_SLT: 2979 // Always false. 2980 return getFalse(ITy); 2981 } 2982 } 2983 2984 // Unsigned variants on "max(a,b)>=a -> true". 2985 P = CmpInst::BAD_ICMP_PREDICATE; 2986 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2987 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2988 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2989 // We analyze this as umax(A, B) pred A. 2990 P = Pred; 2991 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2992 (A == LHS || B == LHS)) { 2993 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2994 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2995 // We analyze this as umax(A, B) swapped-pred A. 2996 P = CmpInst::getSwappedPredicate(Pred); 2997 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2998 (A == RHS || B == RHS)) { 2999 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 3000 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3001 // We analyze this as umax(-A, -B) swapped-pred -A. 3002 // Note that we do not need to actually form -A or -B thanks to EqP. 3003 P = CmpInst::getSwappedPredicate(Pred); 3004 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3005 (A == LHS || B == LHS)) { 3006 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 3007 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3008 // We analyze this as umax(-A, -B) pred -A. 3009 // Note that we do not need to actually form -A or -B thanks to EqP. 3010 P = Pred; 3011 } 3012 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3013 // Cases correspond to "max(A, B) p A". 3014 switch (P) { 3015 default: 3016 break; 3017 case CmpInst::ICMP_EQ: 3018 case CmpInst::ICMP_ULE: 3019 // Equivalent to "A EqP B". This may be the same as the condition tested 3020 // in the max/min; if so, we can just return that. 3021 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3022 return V; 3023 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3024 return V; 3025 // Otherwise, see if "A EqP B" simplifies. 3026 if (MaxRecurse) 3027 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3028 return V; 3029 break; 3030 case CmpInst::ICMP_NE: 3031 case CmpInst::ICMP_UGT: { 3032 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3033 // Equivalent to "A InvEqP B". This may be the same as the condition 3034 // tested in the max/min; if so, we can just return that. 3035 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3036 return V; 3037 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3038 return V; 3039 // Otherwise, see if "A InvEqP B" simplifies. 3040 if (MaxRecurse) 3041 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3042 return V; 3043 break; 3044 } 3045 case CmpInst::ICMP_UGE: 3046 // Always true. 3047 return getTrue(ITy); 3048 case CmpInst::ICMP_ULT: 3049 // Always false. 3050 return getFalse(ITy); 3051 } 3052 } 3053 3054 // Variants on "max(x,y) >= min(x,z)". 3055 Value *C, *D; 3056 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3057 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3058 (A == C || A == D || B == C || B == D)) { 3059 // max(x, ?) pred min(x, ?). 3060 if (Pred == CmpInst::ICMP_SGE) 3061 // Always true. 3062 return getTrue(ITy); 3063 if (Pred == CmpInst::ICMP_SLT) 3064 // Always false. 3065 return getFalse(ITy); 3066 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3067 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3068 (A == C || A == D || B == C || B == D)) { 3069 // min(x, ?) pred max(x, ?). 3070 if (Pred == CmpInst::ICMP_SLE) 3071 // Always true. 3072 return getTrue(ITy); 3073 if (Pred == CmpInst::ICMP_SGT) 3074 // Always false. 3075 return getFalse(ITy); 3076 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3077 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3078 (A == C || A == D || B == C || B == D)) { 3079 // max(x, ?) pred min(x, ?). 3080 if (Pred == CmpInst::ICMP_UGE) 3081 // Always true. 3082 return getTrue(ITy); 3083 if (Pred == CmpInst::ICMP_ULT) 3084 // Always false. 3085 return getFalse(ITy); 3086 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3087 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3088 (A == C || A == D || B == C || B == D)) { 3089 // min(x, ?) pred max(x, ?). 3090 if (Pred == CmpInst::ICMP_ULE) 3091 // Always true. 3092 return getTrue(ITy); 3093 if (Pred == CmpInst::ICMP_UGT) 3094 // Always false. 3095 return getFalse(ITy); 3096 } 3097 3098 // Simplify comparisons of related pointers using a powerful, recursive 3099 // GEP-walk when we have target data available.. 3100 if (LHS->getType()->isPointerTy()) 3101 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3102 return C; 3103 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3104 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3105 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3106 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3107 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3108 Q.DL.getTypeSizeInBits(CRHS->getType())) 3109 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3110 CLHS->getPointerOperand(), 3111 CRHS->getPointerOperand())) 3112 return C; 3113 3114 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3115 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3116 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3117 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3118 (ICmpInst::isEquality(Pred) || 3119 (GLHS->isInBounds() && GRHS->isInBounds() && 3120 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3121 // The bases are equal and the indices are constant. Build a constant 3122 // expression GEP with the same indices and a null base pointer to see 3123 // what constant folding can make out of it. 3124 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3125 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3126 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3127 GLHS->getSourceElementType(), Null, IndicesLHS); 3128 3129 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3130 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3131 GLHS->getSourceElementType(), Null, IndicesRHS); 3132 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3133 } 3134 } 3135 } 3136 3137 // If a bit is known to be zero for A and known to be one for B, 3138 // then A and B cannot be equal. 3139 if (ICmpInst::isEquality(Pred)) { 3140 const APInt *RHSVal; 3141 if (match(RHS, m_APInt(RHSVal))) { 3142 unsigned BitWidth = RHSVal->getBitWidth(); 3143 APInt LHSKnownZero(BitWidth, 0); 3144 APInt LHSKnownOne(BitWidth, 0); 3145 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3146 Q.CxtI, Q.DT); 3147 if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0)) 3148 return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy) 3149 : ConstantInt::getTrue(ITy); 3150 } 3151 } 3152 3153 // If the comparison is with the result of a select instruction, check whether 3154 // comparing with either branch of the select always yields the same value. 3155 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3156 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3157 return V; 3158 3159 // If the comparison is with the result of a phi instruction, check whether 3160 // doing the compare with each incoming phi value yields a common result. 3161 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3162 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3163 return V; 3164 3165 return nullptr; 3166 } 3167 3168 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3169 const DataLayout &DL, 3170 const TargetLibraryInfo *TLI, 3171 const DominatorTree *DT, AssumptionCache *AC, 3172 const Instruction *CxtI) { 3173 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3174 RecursionLimit); 3175 } 3176 3177 /// Given operands for an FCmpInst, see if we can fold the result. 3178 /// If not, this returns null. 3179 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3180 FastMathFlags FMF, const Query &Q, 3181 unsigned MaxRecurse) { 3182 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3183 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3184 3185 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3186 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3187 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3188 3189 // If we have a constant, make sure it is on the RHS. 3190 std::swap(LHS, RHS); 3191 Pred = CmpInst::getSwappedPredicate(Pred); 3192 } 3193 3194 // Fold trivial predicates. 3195 Type *RetTy = GetCompareTy(LHS); 3196 if (Pred == FCmpInst::FCMP_FALSE) 3197 return getFalse(RetTy); 3198 if (Pred == FCmpInst::FCMP_TRUE) 3199 return getTrue(RetTy); 3200 3201 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3202 if (FMF.noNaNs()) { 3203 if (Pred == FCmpInst::FCMP_UNO) 3204 return getFalse(RetTy); 3205 if (Pred == FCmpInst::FCMP_ORD) 3206 return getTrue(RetTy); 3207 } 3208 3209 // fcmp pred x, undef and fcmp pred undef, x 3210 // fold to true if unordered, false if ordered 3211 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3212 // Choosing NaN for the undef will always make unordered comparison succeed 3213 // and ordered comparison fail. 3214 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3215 } 3216 3217 // fcmp x,x -> true/false. Not all compares are foldable. 3218 if (LHS == RHS) { 3219 if (CmpInst::isTrueWhenEqual(Pred)) 3220 return getTrue(RetTy); 3221 if (CmpInst::isFalseWhenEqual(Pred)) 3222 return getFalse(RetTy); 3223 } 3224 3225 // Handle fcmp with constant RHS 3226 const ConstantFP *CFP = nullptr; 3227 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3228 if (RHS->getType()->isVectorTy()) 3229 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3230 else 3231 CFP = dyn_cast<ConstantFP>(RHSC); 3232 } 3233 if (CFP) { 3234 // If the constant is a nan, see if we can fold the comparison based on it. 3235 if (CFP->getValueAPF().isNaN()) { 3236 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3237 return getFalse(RetTy); 3238 assert(FCmpInst::isUnordered(Pred) && 3239 "Comparison must be either ordered or unordered!"); 3240 // True if unordered. 3241 return getTrue(RetTy); 3242 } 3243 // Check whether the constant is an infinity. 3244 if (CFP->getValueAPF().isInfinity()) { 3245 if (CFP->getValueAPF().isNegative()) { 3246 switch (Pred) { 3247 case FCmpInst::FCMP_OLT: 3248 // No value is ordered and less than negative infinity. 3249 return getFalse(RetTy); 3250 case FCmpInst::FCMP_UGE: 3251 // All values are unordered with or at least negative infinity. 3252 return getTrue(RetTy); 3253 default: 3254 break; 3255 } 3256 } else { 3257 switch (Pred) { 3258 case FCmpInst::FCMP_OGT: 3259 // No value is ordered and greater than infinity. 3260 return getFalse(RetTy); 3261 case FCmpInst::FCMP_ULE: 3262 // All values are unordered with and at most infinity. 3263 return getTrue(RetTy); 3264 default: 3265 break; 3266 } 3267 } 3268 } 3269 if (CFP->getValueAPF().isZero()) { 3270 switch (Pred) { 3271 case FCmpInst::FCMP_UGE: 3272 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3273 return getTrue(RetTy); 3274 break; 3275 case FCmpInst::FCMP_OLT: 3276 // X < 0 3277 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3278 return getFalse(RetTy); 3279 break; 3280 default: 3281 break; 3282 } 3283 } 3284 } 3285 3286 // If the comparison is with the result of a select instruction, check whether 3287 // comparing with either branch of the select always yields the same value. 3288 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3289 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3290 return V; 3291 3292 // If the comparison is with the result of a phi instruction, check whether 3293 // doing the compare with each incoming phi value yields a common result. 3294 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3295 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3296 return V; 3297 3298 return nullptr; 3299 } 3300 3301 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3302 FastMathFlags FMF, const DataLayout &DL, 3303 const TargetLibraryInfo *TLI, 3304 const DominatorTree *DT, AssumptionCache *AC, 3305 const Instruction *CxtI) { 3306 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3307 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3308 } 3309 3310 /// See if V simplifies when its operand Op is replaced with RepOp. 3311 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3312 const Query &Q, 3313 unsigned MaxRecurse) { 3314 // Trivial replacement. 3315 if (V == Op) 3316 return RepOp; 3317 3318 auto *I = dyn_cast<Instruction>(V); 3319 if (!I) 3320 return nullptr; 3321 3322 // If this is a binary operator, try to simplify it with the replaced op. 3323 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3324 // Consider: 3325 // %cmp = icmp eq i32 %x, 2147483647 3326 // %add = add nsw i32 %x, 1 3327 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3328 // 3329 // We can't replace %sel with %add unless we strip away the flags. 3330 if (isa<OverflowingBinaryOperator>(B)) 3331 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3332 return nullptr; 3333 if (isa<PossiblyExactOperator>(B)) 3334 if (B->isExact()) 3335 return nullptr; 3336 3337 if (MaxRecurse) { 3338 if (B->getOperand(0) == Op) 3339 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3340 MaxRecurse - 1); 3341 if (B->getOperand(1) == Op) 3342 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3343 MaxRecurse - 1); 3344 } 3345 } 3346 3347 // Same for CmpInsts. 3348 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3349 if (MaxRecurse) { 3350 if (C->getOperand(0) == Op) 3351 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3352 MaxRecurse - 1); 3353 if (C->getOperand(1) == Op) 3354 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3355 MaxRecurse - 1); 3356 } 3357 } 3358 3359 // TODO: We could hand off more cases to instsimplify here. 3360 3361 // If all operands are constant after substituting Op for RepOp then we can 3362 // constant fold the instruction. 3363 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3364 // Build a list of all constant operands. 3365 SmallVector<Constant *, 8> ConstOps; 3366 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3367 if (I->getOperand(i) == Op) 3368 ConstOps.push_back(CRepOp); 3369 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3370 ConstOps.push_back(COp); 3371 else 3372 break; 3373 } 3374 3375 // All operands were constants, fold it. 3376 if (ConstOps.size() == I->getNumOperands()) { 3377 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3378 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3379 ConstOps[1], Q.DL, Q.TLI); 3380 3381 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3382 if (!LI->isVolatile()) 3383 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3384 3385 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3386 } 3387 } 3388 3389 return nullptr; 3390 } 3391 3392 /// Try to simplify a select instruction when its condition operand is an 3393 /// integer comparison where one operand of the compare is a constant. 3394 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3395 const APInt *Y, bool TrueWhenUnset) { 3396 const APInt *C; 3397 3398 // (X & Y) == 0 ? X & ~Y : X --> X 3399 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3400 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3401 *Y == ~*C) 3402 return TrueWhenUnset ? FalseVal : TrueVal; 3403 3404 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3405 // (X & Y) != 0 ? X : X & ~Y --> X 3406 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3407 *Y == ~*C) 3408 return TrueWhenUnset ? FalseVal : TrueVal; 3409 3410 if (Y->isPowerOf2()) { 3411 // (X & Y) == 0 ? X | Y : X --> X | Y 3412 // (X & Y) != 0 ? X | Y : X --> X 3413 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3414 *Y == *C) 3415 return TrueWhenUnset ? TrueVal : FalseVal; 3416 3417 // (X & Y) == 0 ? X : X | Y --> X 3418 // (X & Y) != 0 ? X : X | Y --> X | Y 3419 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3420 *Y == *C) 3421 return TrueWhenUnset ? TrueVal : FalseVal; 3422 } 3423 3424 return nullptr; 3425 } 3426 3427 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3428 /// eq/ne. 3429 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3430 Value *FalseVal, 3431 bool TrueWhenUnset) { 3432 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3433 if (!BitWidth) 3434 return nullptr; 3435 3436 APInt MinSignedValue; 3437 Value *X; 3438 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3439 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3440 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3441 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3442 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3443 } else { 3444 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3445 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3446 X = CmpLHS; 3447 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3448 } 3449 3450 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3451 TrueWhenUnset)) 3452 return V; 3453 3454 return nullptr; 3455 } 3456 3457 /// Try to simplify a select instruction when its condition operand is an 3458 /// integer comparison. 3459 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3460 Value *FalseVal, const Query &Q, 3461 unsigned MaxRecurse) { 3462 ICmpInst::Predicate Pred; 3463 Value *CmpLHS, *CmpRHS; 3464 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3465 return nullptr; 3466 3467 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3468 // decomposeBitTestICmp() might help. 3469 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3470 Value *X; 3471 const APInt *Y; 3472 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3473 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3474 Pred == ICmpInst::ICMP_EQ)) 3475 return V; 3476 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3477 // Comparing signed-less-than 0 checks if the sign bit is set. 3478 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3479 false)) 3480 return V; 3481 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3482 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3483 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3484 true)) 3485 return V; 3486 } 3487 3488 if (CondVal->hasOneUse()) { 3489 const APInt *C; 3490 if (match(CmpRHS, m_APInt(C))) { 3491 // X < MIN ? T : F --> F 3492 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3493 return FalseVal; 3494 // X < MIN ? T : F --> F 3495 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3496 return FalseVal; 3497 // X > MAX ? T : F --> F 3498 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3499 return FalseVal; 3500 // X > MAX ? T : F --> F 3501 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3502 return FalseVal; 3503 } 3504 } 3505 3506 // If we have an equality comparison, then we know the value in one of the 3507 // arms of the select. See if substituting this value into the arm and 3508 // simplifying the result yields the same value as the other arm. 3509 if (Pred == ICmpInst::ICMP_EQ) { 3510 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3511 TrueVal || 3512 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3513 TrueVal) 3514 return FalseVal; 3515 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3516 FalseVal || 3517 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3518 FalseVal) 3519 return FalseVal; 3520 } else if (Pred == ICmpInst::ICMP_NE) { 3521 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3522 FalseVal || 3523 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3524 FalseVal) 3525 return TrueVal; 3526 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3527 TrueVal || 3528 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3529 TrueVal) 3530 return TrueVal; 3531 } 3532 3533 return nullptr; 3534 } 3535 3536 /// Given operands for a SelectInst, see if we can fold the result. 3537 /// If not, this returns null. 3538 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3539 Value *FalseVal, const Query &Q, 3540 unsigned MaxRecurse) { 3541 // select true, X, Y -> X 3542 // select false, X, Y -> Y 3543 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3544 if (CB->isAllOnesValue()) 3545 return TrueVal; 3546 if (CB->isNullValue()) 3547 return FalseVal; 3548 } 3549 3550 // select C, X, X -> X 3551 if (TrueVal == FalseVal) 3552 return TrueVal; 3553 3554 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3555 if (isa<Constant>(TrueVal)) 3556 return TrueVal; 3557 return FalseVal; 3558 } 3559 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3560 return FalseVal; 3561 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3562 return TrueVal; 3563 3564 if (Value *V = 3565 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3566 return V; 3567 3568 return nullptr; 3569 } 3570 3571 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3572 const DataLayout &DL, 3573 const TargetLibraryInfo *TLI, 3574 const DominatorTree *DT, AssumptionCache *AC, 3575 const Instruction *CxtI) { 3576 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3577 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3578 } 3579 3580 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3581 /// If not, this returns null. 3582 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3583 const Query &Q, unsigned) { 3584 // The type of the GEP pointer operand. 3585 unsigned AS = 3586 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3587 3588 // getelementptr P -> P. 3589 if (Ops.size() == 1) 3590 return Ops[0]; 3591 3592 // Compute the (pointer) type returned by the GEP instruction. 3593 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3594 Type *GEPTy = PointerType::get(LastType, AS); 3595 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3596 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3597 3598 if (isa<UndefValue>(Ops[0])) 3599 return UndefValue::get(GEPTy); 3600 3601 if (Ops.size() == 2) { 3602 // getelementptr P, 0 -> P. 3603 if (match(Ops[1], m_Zero())) 3604 return Ops[0]; 3605 3606 Type *Ty = SrcTy; 3607 if (Ty->isSized()) { 3608 Value *P; 3609 uint64_t C; 3610 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3611 // getelementptr P, N -> P if P points to a type of zero size. 3612 if (TyAllocSize == 0) 3613 return Ops[0]; 3614 3615 // The following transforms are only safe if the ptrtoint cast 3616 // doesn't truncate the pointers. 3617 if (Ops[1]->getType()->getScalarSizeInBits() == 3618 Q.DL.getPointerSizeInBits(AS)) { 3619 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3620 if (match(P, m_Zero())) 3621 return Constant::getNullValue(GEPTy); 3622 Value *Temp; 3623 if (match(P, m_PtrToInt(m_Value(Temp)))) 3624 if (Temp->getType() == GEPTy) 3625 return Temp; 3626 return nullptr; 3627 }; 3628 3629 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3630 if (TyAllocSize == 1 && 3631 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3632 if (Value *R = PtrToIntOrZero(P)) 3633 return R; 3634 3635 // getelementptr V, (ashr (sub P, V), C) -> Q 3636 // if P points to a type of size 1 << C. 3637 if (match(Ops[1], 3638 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3639 m_ConstantInt(C))) && 3640 TyAllocSize == 1ULL << C) 3641 if (Value *R = PtrToIntOrZero(P)) 3642 return R; 3643 3644 // getelementptr V, (sdiv (sub P, V), C) -> Q 3645 // if P points to a type of size C. 3646 if (match(Ops[1], 3647 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3648 m_SpecificInt(TyAllocSize)))) 3649 if (Value *R = PtrToIntOrZero(P)) 3650 return R; 3651 } 3652 } 3653 } 3654 3655 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3656 all_of(Ops.slice(1).drop_back(1), 3657 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3658 unsigned PtrWidth = 3659 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3660 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3661 APInt BasePtrOffset(PtrWidth, 0); 3662 Value *StrippedBasePtr = 3663 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3664 BasePtrOffset); 3665 3666 // gep (gep V, C), (sub 0, V) -> C 3667 if (match(Ops.back(), 3668 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3669 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3670 return ConstantExpr::getIntToPtr(CI, GEPTy); 3671 } 3672 // gep (gep V, C), (xor V, -1) -> C-1 3673 if (match(Ops.back(), 3674 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3675 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3676 return ConstantExpr::getIntToPtr(CI, GEPTy); 3677 } 3678 } 3679 } 3680 3681 // Check to see if this is constant foldable. 3682 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3683 if (!isa<Constant>(Ops[i])) 3684 return nullptr; 3685 3686 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3687 Ops.slice(1)); 3688 } 3689 3690 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3691 const DataLayout &DL, 3692 const TargetLibraryInfo *TLI, 3693 const DominatorTree *DT, AssumptionCache *AC, 3694 const Instruction *CxtI) { 3695 return ::SimplifyGEPInst(SrcTy, Ops, 3696 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3697 } 3698 3699 /// Given operands for an InsertValueInst, see if we can fold the result. 3700 /// If not, this returns null. 3701 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3702 ArrayRef<unsigned> Idxs, const Query &Q, 3703 unsigned) { 3704 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3705 if (Constant *CVal = dyn_cast<Constant>(Val)) 3706 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3707 3708 // insertvalue x, undef, n -> x 3709 if (match(Val, m_Undef())) 3710 return Agg; 3711 3712 // insertvalue x, (extractvalue y, n), n 3713 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3714 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3715 EV->getIndices() == Idxs) { 3716 // insertvalue undef, (extractvalue y, n), n -> y 3717 if (match(Agg, m_Undef())) 3718 return EV->getAggregateOperand(); 3719 3720 // insertvalue y, (extractvalue y, n), n -> y 3721 if (Agg == EV->getAggregateOperand()) 3722 return Agg; 3723 } 3724 3725 return nullptr; 3726 } 3727 3728 Value *llvm::SimplifyInsertValueInst( 3729 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3730 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3731 const Instruction *CxtI) { 3732 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3733 RecursionLimit); 3734 } 3735 3736 /// Given operands for an ExtractValueInst, see if we can fold the result. 3737 /// If not, this returns null. 3738 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3739 const Query &, unsigned) { 3740 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3741 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3742 3743 // extractvalue x, (insertvalue y, elt, n), n -> elt 3744 unsigned NumIdxs = Idxs.size(); 3745 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3746 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3747 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3748 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3749 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3750 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3751 Idxs.slice(0, NumCommonIdxs)) { 3752 if (NumIdxs == NumInsertValueIdxs) 3753 return IVI->getInsertedValueOperand(); 3754 break; 3755 } 3756 } 3757 3758 return nullptr; 3759 } 3760 3761 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3762 const DataLayout &DL, 3763 const TargetLibraryInfo *TLI, 3764 const DominatorTree *DT, 3765 AssumptionCache *AC, 3766 const Instruction *CxtI) { 3767 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3768 RecursionLimit); 3769 } 3770 3771 /// Given operands for an ExtractElementInst, see if we can fold the result. 3772 /// If not, this returns null. 3773 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3774 unsigned) { 3775 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3776 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3777 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3778 3779 // The index is not relevant if our vector is a splat. 3780 if (auto *Splat = CVec->getSplatValue()) 3781 return Splat; 3782 3783 if (isa<UndefValue>(Vec)) 3784 return UndefValue::get(Vec->getType()->getVectorElementType()); 3785 } 3786 3787 // If extracting a specified index from the vector, see if we can recursively 3788 // find a previously computed scalar that was inserted into the vector. 3789 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3790 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3791 return Elt; 3792 3793 return nullptr; 3794 } 3795 3796 Value *llvm::SimplifyExtractElementInst( 3797 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3798 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3799 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3800 RecursionLimit); 3801 } 3802 3803 /// See if we can fold the given phi. If not, returns null. 3804 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3805 // If all of the PHI's incoming values are the same then replace the PHI node 3806 // with the common value. 3807 Value *CommonValue = nullptr; 3808 bool HasUndefInput = false; 3809 for (Value *Incoming : PN->incoming_values()) { 3810 // If the incoming value is the phi node itself, it can safely be skipped. 3811 if (Incoming == PN) continue; 3812 if (isa<UndefValue>(Incoming)) { 3813 // Remember that we saw an undef value, but otherwise ignore them. 3814 HasUndefInput = true; 3815 continue; 3816 } 3817 if (CommonValue && Incoming != CommonValue) 3818 return nullptr; // Not the same, bail out. 3819 CommonValue = Incoming; 3820 } 3821 3822 // If CommonValue is null then all of the incoming values were either undef or 3823 // equal to the phi node itself. 3824 if (!CommonValue) 3825 return UndefValue::get(PN->getType()); 3826 3827 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3828 // instruction, we cannot return X as the result of the PHI node unless it 3829 // dominates the PHI block. 3830 if (HasUndefInput) 3831 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3832 3833 return CommonValue; 3834 } 3835 3836 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3837 Type *Ty, const Query &Q, unsigned MaxRecurse) { 3838 if (auto *C = dyn_cast<Constant>(Op)) 3839 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3840 3841 if (auto *CI = dyn_cast<CastInst>(Op)) { 3842 auto *Src = CI->getOperand(0); 3843 Type *SrcTy = Src->getType(); 3844 Type *MidTy = CI->getType(); 3845 Type *DstTy = Ty; 3846 if (Src->getType() == Ty) { 3847 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 3848 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 3849 Type *SrcIntPtrTy = 3850 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 3851 Type *MidIntPtrTy = 3852 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 3853 Type *DstIntPtrTy = 3854 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 3855 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 3856 SrcIntPtrTy, MidIntPtrTy, 3857 DstIntPtrTy) == Instruction::BitCast) 3858 return Src; 3859 } 3860 } 3861 3862 // bitcast x -> x 3863 if (CastOpc == Instruction::BitCast) 3864 if (Op->getType() == Ty) 3865 return Op; 3866 3867 return nullptr; 3868 } 3869 3870 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 3871 const DataLayout &DL, 3872 const TargetLibraryInfo *TLI, 3873 const DominatorTree *DT, AssumptionCache *AC, 3874 const Instruction *CxtI) { 3875 return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3876 RecursionLimit); 3877 } 3878 3879 //=== Helper functions for higher up the class hierarchy. 3880 3881 /// Given operands for a BinaryOperator, see if we can fold the result. 3882 /// If not, this returns null. 3883 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3884 const Query &Q, unsigned MaxRecurse) { 3885 switch (Opcode) { 3886 case Instruction::Add: 3887 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3888 Q, MaxRecurse); 3889 case Instruction::FAdd: 3890 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3891 3892 case Instruction::Sub: 3893 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3894 Q, MaxRecurse); 3895 case Instruction::FSub: 3896 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3897 3898 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3899 case Instruction::FMul: 3900 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3901 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3902 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3903 case Instruction::FDiv: 3904 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3905 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3906 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3907 case Instruction::FRem: 3908 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3909 case Instruction::Shl: 3910 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3911 Q, MaxRecurse); 3912 case Instruction::LShr: 3913 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3914 case Instruction::AShr: 3915 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3916 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3917 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3918 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3919 default: 3920 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3921 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3922 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3923 3924 // If the operation is associative, try some generic simplifications. 3925 if (Instruction::isAssociative(Opcode)) 3926 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3927 return V; 3928 3929 // If the operation is with the result of a select instruction check whether 3930 // operating on either branch of the select always yields the same value. 3931 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3932 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3933 return V; 3934 3935 // If the operation is with the result of a phi instruction, check whether 3936 // operating on all incoming values of the phi always yields the same value. 3937 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3938 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3939 return V; 3940 3941 return nullptr; 3942 } 3943 } 3944 3945 /// Given operands for a BinaryOperator, see if we can fold the result. 3946 /// If not, this returns null. 3947 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3948 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3949 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3950 const FastMathFlags &FMF, const Query &Q, 3951 unsigned MaxRecurse) { 3952 switch (Opcode) { 3953 case Instruction::FAdd: 3954 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3955 case Instruction::FSub: 3956 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3957 case Instruction::FMul: 3958 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3959 default: 3960 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3961 } 3962 } 3963 3964 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3965 const DataLayout &DL, const TargetLibraryInfo *TLI, 3966 const DominatorTree *DT, AssumptionCache *AC, 3967 const Instruction *CxtI) { 3968 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3969 RecursionLimit); 3970 } 3971 3972 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3973 const FastMathFlags &FMF, const DataLayout &DL, 3974 const TargetLibraryInfo *TLI, 3975 const DominatorTree *DT, AssumptionCache *AC, 3976 const Instruction *CxtI) { 3977 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3978 RecursionLimit); 3979 } 3980 3981 /// Given operands for a CmpInst, see if we can fold the result. 3982 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3983 const Query &Q, unsigned MaxRecurse) { 3984 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3985 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3986 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3987 } 3988 3989 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3990 const DataLayout &DL, const TargetLibraryInfo *TLI, 3991 const DominatorTree *DT, AssumptionCache *AC, 3992 const Instruction *CxtI) { 3993 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3994 RecursionLimit); 3995 } 3996 3997 static bool IsIdempotent(Intrinsic::ID ID) { 3998 switch (ID) { 3999 default: return false; 4000 4001 // Unary idempotent: f(f(x)) = f(x) 4002 case Intrinsic::fabs: 4003 case Intrinsic::floor: 4004 case Intrinsic::ceil: 4005 case Intrinsic::trunc: 4006 case Intrinsic::rint: 4007 case Intrinsic::nearbyint: 4008 case Intrinsic::round: 4009 return true; 4010 } 4011 } 4012 4013 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4014 const DataLayout &DL) { 4015 GlobalValue *PtrSym; 4016 APInt PtrOffset; 4017 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4018 return nullptr; 4019 4020 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4021 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4022 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4023 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4024 4025 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4026 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4027 return nullptr; 4028 4029 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4030 if (OffsetInt % 4 != 0) 4031 return nullptr; 4032 4033 Constant *C = ConstantExpr::getGetElementPtr( 4034 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4035 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4036 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4037 if (!Loaded) 4038 return nullptr; 4039 4040 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4041 if (!LoadedCE) 4042 return nullptr; 4043 4044 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4045 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4046 if (!LoadedCE) 4047 return nullptr; 4048 } 4049 4050 if (LoadedCE->getOpcode() != Instruction::Sub) 4051 return nullptr; 4052 4053 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4054 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4055 return nullptr; 4056 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4057 4058 Constant *LoadedRHS = LoadedCE->getOperand(1); 4059 GlobalValue *LoadedRHSSym; 4060 APInt LoadedRHSOffset; 4061 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4062 DL) || 4063 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4064 return nullptr; 4065 4066 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4067 } 4068 4069 static bool maskIsAllZeroOrUndef(Value *Mask) { 4070 auto *ConstMask = dyn_cast<Constant>(Mask); 4071 if (!ConstMask) 4072 return false; 4073 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4074 return true; 4075 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4076 ++I) { 4077 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4078 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4079 continue; 4080 return false; 4081 } 4082 return true; 4083 } 4084 4085 template <typename IterTy> 4086 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4087 const Query &Q, unsigned MaxRecurse) { 4088 Intrinsic::ID IID = F->getIntrinsicID(); 4089 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4090 Type *ReturnType = F->getReturnType(); 4091 4092 // Binary Ops 4093 if (NumOperands == 2) { 4094 Value *LHS = *ArgBegin; 4095 Value *RHS = *(ArgBegin + 1); 4096 if (IID == Intrinsic::usub_with_overflow || 4097 IID == Intrinsic::ssub_with_overflow) { 4098 // X - X -> { 0, false } 4099 if (LHS == RHS) 4100 return Constant::getNullValue(ReturnType); 4101 4102 // X - undef -> undef 4103 // undef - X -> undef 4104 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4105 return UndefValue::get(ReturnType); 4106 } 4107 4108 if (IID == Intrinsic::uadd_with_overflow || 4109 IID == Intrinsic::sadd_with_overflow) { 4110 // X + undef -> undef 4111 if (isa<UndefValue>(RHS)) 4112 return UndefValue::get(ReturnType); 4113 } 4114 4115 if (IID == Intrinsic::umul_with_overflow || 4116 IID == Intrinsic::smul_with_overflow) { 4117 // X * 0 -> { 0, false } 4118 if (match(RHS, m_Zero())) 4119 return Constant::getNullValue(ReturnType); 4120 4121 // X * undef -> { 0, false } 4122 if (match(RHS, m_Undef())) 4123 return Constant::getNullValue(ReturnType); 4124 } 4125 4126 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 4127 isa<Constant>(RHS)) 4128 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 4129 Q.DL); 4130 } 4131 4132 // Simplify calls to llvm.masked.load.* 4133 if (IID == Intrinsic::masked_load) { 4134 Value *MaskArg = ArgBegin[2]; 4135 Value *PassthruArg = ArgBegin[3]; 4136 // If the mask is all zeros or undef, the "passthru" argument is the result. 4137 if (maskIsAllZeroOrUndef(MaskArg)) 4138 return PassthruArg; 4139 } 4140 4141 // Perform idempotent optimizations 4142 if (!IsIdempotent(IID)) 4143 return nullptr; 4144 4145 // Unary Ops 4146 if (NumOperands == 1) 4147 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 4148 if (II->getIntrinsicID() == IID) 4149 return II; 4150 4151 return nullptr; 4152 } 4153 4154 template <typename IterTy> 4155 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4156 const Query &Q, unsigned MaxRecurse) { 4157 Type *Ty = V->getType(); 4158 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4159 Ty = PTy->getElementType(); 4160 FunctionType *FTy = cast<FunctionType>(Ty); 4161 4162 // call undef -> undef 4163 // call null -> undef 4164 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4165 return UndefValue::get(FTy->getReturnType()); 4166 4167 Function *F = dyn_cast<Function>(V); 4168 if (!F) 4169 return nullptr; 4170 4171 if (F->isIntrinsic()) 4172 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4173 return Ret; 4174 4175 if (!canConstantFoldCallTo(F)) 4176 return nullptr; 4177 4178 SmallVector<Constant *, 4> ConstantArgs; 4179 ConstantArgs.reserve(ArgEnd - ArgBegin); 4180 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4181 Constant *C = dyn_cast<Constant>(*I); 4182 if (!C) 4183 return nullptr; 4184 ConstantArgs.push_back(C); 4185 } 4186 4187 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4188 } 4189 4190 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4191 User::op_iterator ArgEnd, const DataLayout &DL, 4192 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4193 AssumptionCache *AC, const Instruction *CxtI) { 4194 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4195 RecursionLimit); 4196 } 4197 4198 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4199 const DataLayout &DL, const TargetLibraryInfo *TLI, 4200 const DominatorTree *DT, AssumptionCache *AC, 4201 const Instruction *CxtI) { 4202 return ::SimplifyCall(V, Args.begin(), Args.end(), 4203 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4204 } 4205 4206 /// See if we can compute a simplified version of this instruction. 4207 /// If not, this returns null. 4208 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4209 const TargetLibraryInfo *TLI, 4210 const DominatorTree *DT, AssumptionCache *AC) { 4211 Value *Result; 4212 4213 switch (I->getOpcode()) { 4214 default: 4215 Result = ConstantFoldInstruction(I, DL, TLI); 4216 break; 4217 case Instruction::FAdd: 4218 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4219 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4220 break; 4221 case Instruction::Add: 4222 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4223 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4224 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4225 TLI, DT, AC, I); 4226 break; 4227 case Instruction::FSub: 4228 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4229 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4230 break; 4231 case Instruction::Sub: 4232 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4233 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4234 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4235 TLI, DT, AC, I); 4236 break; 4237 case Instruction::FMul: 4238 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4239 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4240 break; 4241 case Instruction::Mul: 4242 Result = 4243 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4244 break; 4245 case Instruction::SDiv: 4246 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4247 AC, I); 4248 break; 4249 case Instruction::UDiv: 4250 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4251 AC, I); 4252 break; 4253 case Instruction::FDiv: 4254 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4255 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4256 break; 4257 case Instruction::SRem: 4258 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4259 AC, I); 4260 break; 4261 case Instruction::URem: 4262 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4263 AC, I); 4264 break; 4265 case Instruction::FRem: 4266 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4267 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4268 break; 4269 case Instruction::Shl: 4270 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4271 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4272 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4273 TLI, DT, AC, I); 4274 break; 4275 case Instruction::LShr: 4276 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4277 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4278 AC, I); 4279 break; 4280 case Instruction::AShr: 4281 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4282 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4283 AC, I); 4284 break; 4285 case Instruction::And: 4286 Result = 4287 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4288 break; 4289 case Instruction::Or: 4290 Result = 4291 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4292 break; 4293 case Instruction::Xor: 4294 Result = 4295 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4296 break; 4297 case Instruction::ICmp: 4298 Result = 4299 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4300 I->getOperand(1), DL, TLI, DT, AC, I); 4301 break; 4302 case Instruction::FCmp: 4303 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4304 I->getOperand(0), I->getOperand(1), 4305 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4306 break; 4307 case Instruction::Select: 4308 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4309 I->getOperand(2), DL, TLI, DT, AC, I); 4310 break; 4311 case Instruction::GetElementPtr: { 4312 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4313 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4314 Ops, DL, TLI, DT, AC, I); 4315 break; 4316 } 4317 case Instruction::InsertValue: { 4318 InsertValueInst *IV = cast<InsertValueInst>(I); 4319 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4320 IV->getInsertedValueOperand(), 4321 IV->getIndices(), DL, TLI, DT, AC, I); 4322 break; 4323 } 4324 case Instruction::ExtractValue: { 4325 auto *EVI = cast<ExtractValueInst>(I); 4326 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4327 EVI->getIndices(), DL, TLI, DT, AC, I); 4328 break; 4329 } 4330 case Instruction::ExtractElement: { 4331 auto *EEI = cast<ExtractElementInst>(I); 4332 Result = SimplifyExtractElementInst( 4333 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4334 break; 4335 } 4336 case Instruction::PHI: 4337 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4338 break; 4339 case Instruction::Call: { 4340 CallSite CS(cast<CallInst>(I)); 4341 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4342 TLI, DT, AC, I); 4343 break; 4344 } 4345 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4346 #include "llvm/IR/Instruction.def" 4347 #undef HANDLE_CAST_INST 4348 Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), 4349 DL, TLI, DT, AC, I); 4350 break; 4351 } 4352 4353 // In general, it is possible for computeKnownBits to determine all bits in a 4354 // value even when the operands are not all constants. 4355 if (!Result && I->getType()->isIntegerTy()) { 4356 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4357 APInt KnownZero(BitWidth, 0); 4358 APInt KnownOne(BitWidth, 0); 4359 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4360 if ((KnownZero | KnownOne).isAllOnesValue()) 4361 Result = ConstantInt::get(I->getContext(), KnownOne); 4362 } 4363 4364 /// If called on unreachable code, the above logic may report that the 4365 /// instruction simplified to itself. Make life easier for users by 4366 /// detecting that case here, returning a safe value instead. 4367 return Result == I ? UndefValue::get(I->getType()) : Result; 4368 } 4369 4370 /// \brief Implementation of recursive simplification through an instruction's 4371 /// uses. 4372 /// 4373 /// This is the common implementation of the recursive simplification routines. 4374 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4375 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4376 /// instructions to process and attempt to simplify it using 4377 /// InstructionSimplify. 4378 /// 4379 /// This routine returns 'true' only when *it* simplifies something. The passed 4380 /// in simplified value does not count toward this. 4381 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4382 const TargetLibraryInfo *TLI, 4383 const DominatorTree *DT, 4384 AssumptionCache *AC) { 4385 bool Simplified = false; 4386 SmallSetVector<Instruction *, 8> Worklist; 4387 const DataLayout &DL = I->getModule()->getDataLayout(); 4388 4389 // If we have an explicit value to collapse to, do that round of the 4390 // simplification loop by hand initially. 4391 if (SimpleV) { 4392 for (User *U : I->users()) 4393 if (U != I) 4394 Worklist.insert(cast<Instruction>(U)); 4395 4396 // Replace the instruction with its simplified value. 4397 I->replaceAllUsesWith(SimpleV); 4398 4399 // Gracefully handle edge cases where the instruction is not wired into any 4400 // parent block. 4401 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4402 !I->mayHaveSideEffects()) 4403 I->eraseFromParent(); 4404 } else { 4405 Worklist.insert(I); 4406 } 4407 4408 // Note that we must test the size on each iteration, the worklist can grow. 4409 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4410 I = Worklist[Idx]; 4411 4412 // See if this instruction simplifies. 4413 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4414 if (!SimpleV) 4415 continue; 4416 4417 Simplified = true; 4418 4419 // Stash away all the uses of the old instruction so we can check them for 4420 // recursive simplifications after a RAUW. This is cheaper than checking all 4421 // uses of To on the recursive step in most cases. 4422 for (User *U : I->users()) 4423 Worklist.insert(cast<Instruction>(U)); 4424 4425 // Replace the instruction with its simplified value. 4426 I->replaceAllUsesWith(SimpleV); 4427 4428 // Gracefully handle edge cases where the instruction is not wired into any 4429 // parent block. 4430 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4431 !I->mayHaveSideEffects()) 4432 I->eraseFromParent(); 4433 } 4434 return Simplified; 4435 } 4436 4437 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4438 const TargetLibraryInfo *TLI, 4439 const DominatorTree *DT, 4440 AssumptionCache *AC) { 4441 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4442 } 4443 4444 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4445 const TargetLibraryInfo *TLI, 4446 const DominatorTree *DT, 4447 AssumptionCache *AC) { 4448 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4449 assert(SimpleV && "Must provide a simplified value."); 4450 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4451 } 4452