1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/MemoryBuiltins.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/Analysis/VectorUtils.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/GetElementPtrTypeIterator.h"
33 #include "llvm/IR/GlobalAlias.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include <algorithm>
38 using namespace llvm;
39 using namespace llvm::PatternMatch;
40 
41 #define DEBUG_TYPE "instsimplify"
42 
43 enum { RecursionLimit = 3 };
44 
45 STATISTIC(NumExpand,  "Number of expansions");
46 STATISTIC(NumReassoc, "Number of reassociations");
47 
48 namespace {
49 struct Query {
50   const DataLayout &DL;
51   const TargetLibraryInfo *TLI;
52   const DominatorTree *DT;
53   AssumptionCache *AC;
54   const Instruction *CxtI;
55 
56   Query(const DataLayout &DL, const TargetLibraryInfo *tli,
57         const DominatorTree *dt, AssumptionCache *ac = nullptr,
58         const Instruction *cxti = nullptr)
59       : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {}
60 };
61 } // end anonymous namespace
62 
63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
65                             unsigned);
66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
67                               const Query &, unsigned);
68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
69                               unsigned);
70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
72 static Value *SimplifyCastInst(unsigned, Value *, Type *,
73                                const Query &, unsigned);
74 
75 /// For a boolean type, or a vector of boolean type, return false, or
76 /// a vector with every element false, as appropriate for the type.
77 static Constant *getFalse(Type *Ty) {
78   assert(Ty->getScalarType()->isIntegerTy(1) &&
79          "Expected i1 type or a vector of i1!");
80   return Constant::getNullValue(Ty);
81 }
82 
83 /// For a boolean type, or a vector of boolean type, return true, or
84 /// a vector with every element true, as appropriate for the type.
85 static Constant *getTrue(Type *Ty) {
86   assert(Ty->getScalarType()->isIntegerTy(1) &&
87          "Expected i1 type or a vector of i1!");
88   return Constant::getAllOnesValue(Ty);
89 }
90 
91 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
92 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
93                           Value *RHS) {
94   CmpInst *Cmp = dyn_cast<CmpInst>(V);
95   if (!Cmp)
96     return false;
97   CmpInst::Predicate CPred = Cmp->getPredicate();
98   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
99   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
100     return true;
101   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
102     CRHS == LHS;
103 }
104 
105 /// Does the given value dominate the specified phi node?
106 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
107   Instruction *I = dyn_cast<Instruction>(V);
108   if (!I)
109     // Arguments and constants dominate all instructions.
110     return true;
111 
112   // If we are processing instructions (and/or basic blocks) that have not been
113   // fully added to a function, the parent nodes may still be null. Simply
114   // return the conservative answer in these cases.
115   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
116     return false;
117 
118   // If we have a DominatorTree then do a precise test.
119   if (DT) {
120     if (!DT->isReachableFromEntry(P->getParent()))
121       return true;
122     if (!DT->isReachableFromEntry(I->getParent()))
123       return false;
124     return DT->dominates(I, P);
125   }
126 
127   // Otherwise, if the instruction is in the entry block and is not an invoke,
128   // then it obviously dominates all phi nodes.
129   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
130       !isa<InvokeInst>(I))
131     return true;
132 
133   return false;
134 }
135 
136 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
137 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
138 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
139 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
140 /// Returns the simplified value, or null if no simplification was performed.
141 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
142                           unsigned OpcToExpand, const Query &Q,
143                           unsigned MaxRecurse) {
144   Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
145   // Recursion is always used, so bail out at once if we already hit the limit.
146   if (!MaxRecurse--)
147     return nullptr;
148 
149   // Check whether the expression has the form "(A op' B) op C".
150   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
151     if (Op0->getOpcode() == OpcodeToExpand) {
152       // It does!  Try turning it into "(A op C) op' (B op C)".
153       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
154       // Do "A op C" and "B op C" both simplify?
155       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
156         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
157           // They do! Return "L op' R" if it simplifies or is already available.
158           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
159           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
160                                      && L == B && R == A)) {
161             ++NumExpand;
162             return LHS;
163           }
164           // Otherwise return "L op' R" if it simplifies.
165           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
166             ++NumExpand;
167             return V;
168           }
169         }
170     }
171 
172   // Check whether the expression has the form "A op (B op' C)".
173   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
174     if (Op1->getOpcode() == OpcodeToExpand) {
175       // It does!  Try turning it into "(A op B) op' (A op C)".
176       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
177       // Do "A op B" and "A op C" both simplify?
178       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
179         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
180           // They do! Return "L op' R" if it simplifies or is already available.
181           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
182           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
183                                      && L == C && R == B)) {
184             ++NumExpand;
185             return RHS;
186           }
187           // Otherwise return "L op' R" if it simplifies.
188           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
189             ++NumExpand;
190             return V;
191           }
192         }
193     }
194 
195   return nullptr;
196 }
197 
198 /// Generic simplifications for associative binary operations.
199 /// Returns the simpler value, or null if none was found.
200 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
201                                        const Query &Q, unsigned MaxRecurse) {
202   Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
203   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
204 
205   // Recursion is always used, so bail out at once if we already hit the limit.
206   if (!MaxRecurse--)
207     return nullptr;
208 
209   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
210   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
211 
212   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
213   if (Op0 && Op0->getOpcode() == Opcode) {
214     Value *A = Op0->getOperand(0);
215     Value *B = Op0->getOperand(1);
216     Value *C = RHS;
217 
218     // Does "B op C" simplify?
219     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
220       // It does!  Return "A op V" if it simplifies or is already available.
221       // If V equals B then "A op V" is just the LHS.
222       if (V == B) return LHS;
223       // Otherwise return "A op V" if it simplifies.
224       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
225         ++NumReassoc;
226         return W;
227       }
228     }
229   }
230 
231   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
232   if (Op1 && Op1->getOpcode() == Opcode) {
233     Value *A = LHS;
234     Value *B = Op1->getOperand(0);
235     Value *C = Op1->getOperand(1);
236 
237     // Does "A op B" simplify?
238     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
239       // It does!  Return "V op C" if it simplifies or is already available.
240       // If V equals B then "V op C" is just the RHS.
241       if (V == B) return RHS;
242       // Otherwise return "V op C" if it simplifies.
243       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
244         ++NumReassoc;
245         return W;
246       }
247     }
248   }
249 
250   // The remaining transforms require commutativity as well as associativity.
251   if (!Instruction::isCommutative(Opcode))
252     return nullptr;
253 
254   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
255   if (Op0 && Op0->getOpcode() == Opcode) {
256     Value *A = Op0->getOperand(0);
257     Value *B = Op0->getOperand(1);
258     Value *C = RHS;
259 
260     // Does "C op A" simplify?
261     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
262       // It does!  Return "V op B" if it simplifies or is already available.
263       // If V equals A then "V op B" is just the LHS.
264       if (V == A) return LHS;
265       // Otherwise return "V op B" if it simplifies.
266       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
267         ++NumReassoc;
268         return W;
269       }
270     }
271   }
272 
273   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
274   if (Op1 && Op1->getOpcode() == Opcode) {
275     Value *A = LHS;
276     Value *B = Op1->getOperand(0);
277     Value *C = Op1->getOperand(1);
278 
279     // Does "C op A" simplify?
280     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
281       // It does!  Return "B op V" if it simplifies or is already available.
282       // If V equals C then "B op V" is just the RHS.
283       if (V == C) return RHS;
284       // Otherwise return "B op V" if it simplifies.
285       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
286         ++NumReassoc;
287         return W;
288       }
289     }
290   }
291 
292   return nullptr;
293 }
294 
295 /// In the case of a binary operation with a select instruction as an operand,
296 /// try to simplify the binop by seeing whether evaluating it on both branches
297 /// of the select results in the same value. Returns the common value if so,
298 /// otherwise returns null.
299 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
300                                     const Query &Q, unsigned MaxRecurse) {
301   // Recursion is always used, so bail out at once if we already hit the limit.
302   if (!MaxRecurse--)
303     return nullptr;
304 
305   SelectInst *SI;
306   if (isa<SelectInst>(LHS)) {
307     SI = cast<SelectInst>(LHS);
308   } else {
309     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
310     SI = cast<SelectInst>(RHS);
311   }
312 
313   // Evaluate the BinOp on the true and false branches of the select.
314   Value *TV;
315   Value *FV;
316   if (SI == LHS) {
317     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
318     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
319   } else {
320     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
321     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
322   }
323 
324   // If they simplified to the same value, then return the common value.
325   // If they both failed to simplify then return null.
326   if (TV == FV)
327     return TV;
328 
329   // If one branch simplified to undef, return the other one.
330   if (TV && isa<UndefValue>(TV))
331     return FV;
332   if (FV && isa<UndefValue>(FV))
333     return TV;
334 
335   // If applying the operation did not change the true and false select values,
336   // then the result of the binop is the select itself.
337   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
338     return SI;
339 
340   // If one branch simplified and the other did not, and the simplified
341   // value is equal to the unsimplified one, return the simplified value.
342   // For example, select (cond, X, X & Z) & Z -> X & Z.
343   if ((FV && !TV) || (TV && !FV)) {
344     // Check that the simplified value has the form "X op Y" where "op" is the
345     // same as the original operation.
346     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
347     if (Simplified && Simplified->getOpcode() == Opcode) {
348       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
349       // We already know that "op" is the same as for the simplified value.  See
350       // if the operands match too.  If so, return the simplified value.
351       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
352       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
353       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
354       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
355           Simplified->getOperand(1) == UnsimplifiedRHS)
356         return Simplified;
357       if (Simplified->isCommutative() &&
358           Simplified->getOperand(1) == UnsimplifiedLHS &&
359           Simplified->getOperand(0) == UnsimplifiedRHS)
360         return Simplified;
361     }
362   }
363 
364   return nullptr;
365 }
366 
367 /// In the case of a comparison with a select instruction, try to simplify the
368 /// comparison by seeing whether both branches of the select result in the same
369 /// value. Returns the common value if so, otherwise returns null.
370 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
371                                   Value *RHS, const Query &Q,
372                                   unsigned MaxRecurse) {
373   // Recursion is always used, so bail out at once if we already hit the limit.
374   if (!MaxRecurse--)
375     return nullptr;
376 
377   // Make sure the select is on the LHS.
378   if (!isa<SelectInst>(LHS)) {
379     std::swap(LHS, RHS);
380     Pred = CmpInst::getSwappedPredicate(Pred);
381   }
382   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
383   SelectInst *SI = cast<SelectInst>(LHS);
384   Value *Cond = SI->getCondition();
385   Value *TV = SI->getTrueValue();
386   Value *FV = SI->getFalseValue();
387 
388   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
389   // Does "cmp TV, RHS" simplify?
390   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
391   if (TCmp == Cond) {
392     // It not only simplified, it simplified to the select condition.  Replace
393     // it with 'true'.
394     TCmp = getTrue(Cond->getType());
395   } else if (!TCmp) {
396     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
397     // condition then we can replace it with 'true'.  Otherwise give up.
398     if (!isSameCompare(Cond, Pred, TV, RHS))
399       return nullptr;
400     TCmp = getTrue(Cond->getType());
401   }
402 
403   // Does "cmp FV, RHS" simplify?
404   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
405   if (FCmp == Cond) {
406     // It not only simplified, it simplified to the select condition.  Replace
407     // it with 'false'.
408     FCmp = getFalse(Cond->getType());
409   } else if (!FCmp) {
410     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
411     // condition then we can replace it with 'false'.  Otherwise give up.
412     if (!isSameCompare(Cond, Pred, FV, RHS))
413       return nullptr;
414     FCmp = getFalse(Cond->getType());
415   }
416 
417   // If both sides simplified to the same value, then use it as the result of
418   // the original comparison.
419   if (TCmp == FCmp)
420     return TCmp;
421 
422   // The remaining cases only make sense if the select condition has the same
423   // type as the result of the comparison, so bail out if this is not so.
424   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
425     return nullptr;
426   // If the false value simplified to false, then the result of the compare
427   // is equal to "Cond && TCmp".  This also catches the case when the false
428   // value simplified to false and the true value to true, returning "Cond".
429   if (match(FCmp, m_Zero()))
430     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
431       return V;
432   // If the true value simplified to true, then the result of the compare
433   // is equal to "Cond || FCmp".
434   if (match(TCmp, m_One()))
435     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
436       return V;
437   // Finally, if the false value simplified to true and the true value to
438   // false, then the result of the compare is equal to "!Cond".
439   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
440     if (Value *V =
441         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
442                         Q, MaxRecurse))
443       return V;
444 
445   return nullptr;
446 }
447 
448 /// In the case of a binary operation with an operand that is a PHI instruction,
449 /// try to simplify the binop by seeing whether evaluating it on the incoming
450 /// phi values yields the same result for every value. If so returns the common
451 /// value, otherwise returns null.
452 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
453                                  const Query &Q, unsigned MaxRecurse) {
454   // Recursion is always used, so bail out at once if we already hit the limit.
455   if (!MaxRecurse--)
456     return nullptr;
457 
458   PHINode *PI;
459   if (isa<PHINode>(LHS)) {
460     PI = cast<PHINode>(LHS);
461     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
462     if (!ValueDominatesPHI(RHS, PI, Q.DT))
463       return nullptr;
464   } else {
465     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
466     PI = cast<PHINode>(RHS);
467     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
468     if (!ValueDominatesPHI(LHS, PI, Q.DT))
469       return nullptr;
470   }
471 
472   // Evaluate the BinOp on the incoming phi values.
473   Value *CommonValue = nullptr;
474   for (Value *Incoming : PI->incoming_values()) {
475     // If the incoming value is the phi node itself, it can safely be skipped.
476     if (Incoming == PI) continue;
477     Value *V = PI == LHS ?
478       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
479       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
480     // If the operation failed to simplify, or simplified to a different value
481     // to previously, then give up.
482     if (!V || (CommonValue && V != CommonValue))
483       return nullptr;
484     CommonValue = V;
485   }
486 
487   return CommonValue;
488 }
489 
490 /// In the case of a comparison with a PHI instruction, try to simplify the
491 /// comparison by seeing whether comparing with all of the incoming phi values
492 /// yields the same result every time. If so returns the common result,
493 /// otherwise returns null.
494 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
495                                const Query &Q, unsigned MaxRecurse) {
496   // Recursion is always used, so bail out at once if we already hit the limit.
497   if (!MaxRecurse--)
498     return nullptr;
499 
500   // Make sure the phi is on the LHS.
501   if (!isa<PHINode>(LHS)) {
502     std::swap(LHS, RHS);
503     Pred = CmpInst::getSwappedPredicate(Pred);
504   }
505   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
506   PHINode *PI = cast<PHINode>(LHS);
507 
508   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
509   if (!ValueDominatesPHI(RHS, PI, Q.DT))
510     return nullptr;
511 
512   // Evaluate the BinOp on the incoming phi values.
513   Value *CommonValue = nullptr;
514   for (Value *Incoming : PI->incoming_values()) {
515     // If the incoming value is the phi node itself, it can safely be skipped.
516     if (Incoming == PI) continue;
517     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
518     // If the operation failed to simplify, or simplified to a different value
519     // to previously, then give up.
520     if (!V || (CommonValue && V != CommonValue))
521       return nullptr;
522     CommonValue = V;
523   }
524 
525   return CommonValue;
526 }
527 
528 /// Given operands for an Add, see if we can fold the result.
529 /// If not, this returns null.
530 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
531                               const Query &Q, unsigned MaxRecurse) {
532   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
533     if (Constant *CRHS = dyn_cast<Constant>(Op1))
534       return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL);
535 
536     // Canonicalize the constant to the RHS.
537     std::swap(Op0, Op1);
538   }
539 
540   // X + undef -> undef
541   if (match(Op1, m_Undef()))
542     return Op1;
543 
544   // X + 0 -> X
545   if (match(Op1, m_Zero()))
546     return Op0;
547 
548   // X + (Y - X) -> Y
549   // (Y - X) + X -> Y
550   // Eg: X + -X -> 0
551   Value *Y = nullptr;
552   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
553       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
554     return Y;
555 
556   // X + ~X -> -1   since   ~X = -X-1
557   if (match(Op0, m_Not(m_Specific(Op1))) ||
558       match(Op1, m_Not(m_Specific(Op0))))
559     return Constant::getAllOnesValue(Op0->getType());
560 
561   /// i1 add -> xor.
562   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
563     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
564       return V;
565 
566   // Try some generic simplifications for associative operations.
567   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
568                                           MaxRecurse))
569     return V;
570 
571   // Threading Add over selects and phi nodes is pointless, so don't bother.
572   // Threading over the select in "A + select(cond, B, C)" means evaluating
573   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
574   // only if B and C are equal.  If B and C are equal then (since we assume
575   // that operands have already been simplified) "select(cond, B, C)" should
576   // have been simplified to the common value of B and C already.  Analysing
577   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
578   // for threading over phi nodes.
579 
580   return nullptr;
581 }
582 
583 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
584                              const DataLayout &DL, const TargetLibraryInfo *TLI,
585                              const DominatorTree *DT, AssumptionCache *AC,
586                              const Instruction *CxtI) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
588                            RecursionLimit);
589 }
590 
591 /// \brief Compute the base pointer and cumulative constant offsets for V.
592 ///
593 /// This strips all constant offsets off of V, leaving it the base pointer, and
594 /// accumulates the total constant offset applied in the returned constant. It
595 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
596 /// no constant offsets applied.
597 ///
598 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
599 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
600 /// folding.
601 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
602                                                 bool AllowNonInbounds = false) {
603   assert(V->getType()->getScalarType()->isPointerTy());
604 
605   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
606   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
607 
608   // Even though we don't look through PHI nodes, we could be called on an
609   // instruction in an unreachable block, which may be on a cycle.
610   SmallPtrSet<Value *, 4> Visited;
611   Visited.insert(V);
612   do {
613     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
614       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
615           !GEP->accumulateConstantOffset(DL, Offset))
616         break;
617       V = GEP->getPointerOperand();
618     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
619       V = cast<Operator>(V)->getOperand(0);
620     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
621       if (GA->isInterposable())
622         break;
623       V = GA->getAliasee();
624     } else {
625       if (auto CS = CallSite(V))
626         if (Value *RV = CS.getReturnedArgOperand()) {
627           V = RV;
628           continue;
629         }
630       break;
631     }
632     assert(V->getType()->getScalarType()->isPointerTy() &&
633            "Unexpected operand type!");
634   } while (Visited.insert(V).second);
635 
636   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
637   if (V->getType()->isVectorTy())
638     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
639                                     OffsetIntPtr);
640   return OffsetIntPtr;
641 }
642 
643 /// \brief Compute the constant difference between two pointer values.
644 /// If the difference is not a constant, returns zero.
645 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
646                                           Value *RHS) {
647   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
648   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
649 
650   // If LHS and RHS are not related via constant offsets to the same base
651   // value, there is nothing we can do here.
652   if (LHS != RHS)
653     return nullptr;
654 
655   // Otherwise, the difference of LHS - RHS can be computed as:
656   //    LHS - RHS
657   //  = (LHSOffset + Base) - (RHSOffset + Base)
658   //  = LHSOffset - RHSOffset
659   return ConstantExpr::getSub(LHSOffset, RHSOffset);
660 }
661 
662 /// Given operands for a Sub, see if we can fold the result.
663 /// If not, this returns null.
664 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
665                               const Query &Q, unsigned MaxRecurse) {
666   if (Constant *CLHS = dyn_cast<Constant>(Op0))
667     if (Constant *CRHS = dyn_cast<Constant>(Op1))
668       return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL);
669 
670   // X - undef -> undef
671   // undef - X -> undef
672   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
673     return UndefValue::get(Op0->getType());
674 
675   // X - 0 -> X
676   if (match(Op1, m_Zero()))
677     return Op0;
678 
679   // X - X -> 0
680   if (Op0 == Op1)
681     return Constant::getNullValue(Op0->getType());
682 
683   // 0 - X -> 0 if the sub is NUW.
684   if (isNUW && match(Op0, m_Zero()))
685     return Op0;
686 
687   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
688   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
689   Value *X = nullptr, *Y = nullptr, *Z = Op1;
690   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
691     // See if "V === Y - Z" simplifies.
692     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
693       // It does!  Now see if "X + V" simplifies.
694       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
695         // It does, we successfully reassociated!
696         ++NumReassoc;
697         return W;
698       }
699     // See if "V === X - Z" simplifies.
700     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
701       // It does!  Now see if "Y + V" simplifies.
702       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
703         // It does, we successfully reassociated!
704         ++NumReassoc;
705         return W;
706       }
707   }
708 
709   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
710   // For example, X - (X + 1) -> -1
711   X = Op0;
712   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
713     // See if "V === X - Y" simplifies.
714     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
715       // It does!  Now see if "V - Z" simplifies.
716       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
717         // It does, we successfully reassociated!
718         ++NumReassoc;
719         return W;
720       }
721     // See if "V === X - Z" simplifies.
722     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
723       // It does!  Now see if "V - Y" simplifies.
724       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
725         // It does, we successfully reassociated!
726         ++NumReassoc;
727         return W;
728       }
729   }
730 
731   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
732   // For example, X - (X - Y) -> Y.
733   Z = Op0;
734   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
735     // See if "V === Z - X" simplifies.
736     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
737       // It does!  Now see if "V + Y" simplifies.
738       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
739         // It does, we successfully reassociated!
740         ++NumReassoc;
741         return W;
742       }
743 
744   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
745   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
746       match(Op1, m_Trunc(m_Value(Y))))
747     if (X->getType() == Y->getType())
748       // See if "V === X - Y" simplifies.
749       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
750         // It does!  Now see if "trunc V" simplifies.
751         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
752                                         Q, MaxRecurse - 1))
753           // It does, return the simplified "trunc V".
754           return W;
755 
756   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
757   if (match(Op0, m_PtrToInt(m_Value(X))) &&
758       match(Op1, m_PtrToInt(m_Value(Y))))
759     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
760       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
761 
762   // i1 sub -> xor.
763   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
764     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
765       return V;
766 
767   // Threading Sub over selects and phi nodes is pointless, so don't bother.
768   // Threading over the select in "A - select(cond, B, C)" means evaluating
769   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
770   // only if B and C are equal.  If B and C are equal then (since we assume
771   // that operands have already been simplified) "select(cond, B, C)" should
772   // have been simplified to the common value of B and C already.  Analysing
773   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
774   // for threading over phi nodes.
775 
776   return nullptr;
777 }
778 
779 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
780                              const DataLayout &DL, const TargetLibraryInfo *TLI,
781                              const DominatorTree *DT, AssumptionCache *AC,
782                              const Instruction *CxtI) {
783   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
784                            RecursionLimit);
785 }
786 
787 /// Given operands for an FAdd, see if we can fold the result.  If not, this
788 /// returns null.
789 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
790                               const Query &Q, unsigned MaxRecurse) {
791   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
792     if (Constant *CRHS = dyn_cast<Constant>(Op1))
793       return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL);
794 
795     // Canonicalize the constant to the RHS.
796     std::swap(Op0, Op1);
797   }
798 
799   // fadd X, -0 ==> X
800   if (match(Op1, m_NegZero()))
801     return Op0;
802 
803   // fadd X, 0 ==> X, when we know X is not -0
804   if (match(Op1, m_Zero()) &&
805       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
806     return Op0;
807 
808   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
809   //   where nnan and ninf have to occur at least once somewhere in this
810   //   expression
811   Value *SubOp = nullptr;
812   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
813     SubOp = Op1;
814   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
815     SubOp = Op0;
816   if (SubOp) {
817     Instruction *FSub = cast<Instruction>(SubOp);
818     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
819         (FMF.noInfs() || FSub->hasNoInfs()))
820       return Constant::getNullValue(Op0->getType());
821   }
822 
823   return nullptr;
824 }
825 
826 /// Given operands for an FSub, see if we can fold the result.  If not, this
827 /// returns null.
828 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
829                               const Query &Q, unsigned MaxRecurse) {
830   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
831     if (Constant *CRHS = dyn_cast<Constant>(Op1))
832       return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL);
833   }
834 
835   // fsub X, 0 ==> X
836   if (match(Op1, m_Zero()))
837     return Op0;
838 
839   // fsub X, -0 ==> X, when we know X is not -0
840   if (match(Op1, m_NegZero()) &&
841       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
842     return Op0;
843 
844   // fsub -0.0, (fsub -0.0, X) ==> X
845   Value *X;
846   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
847     return X;
848 
849   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
850   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
851       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
852     return X;
853 
854   // fsub nnan x, x ==> 0.0
855   if (FMF.noNaNs() && Op0 == Op1)
856     return Constant::getNullValue(Op0->getType());
857 
858   return nullptr;
859 }
860 
861 /// Given the operands for an FMul, see if we can fold the result
862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
863                                FastMathFlags FMF,
864                                const Query &Q,
865                                unsigned MaxRecurse) {
866  if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
867     if (Constant *CRHS = dyn_cast<Constant>(Op1))
868       return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL);
869 
870     // Canonicalize the constant to the RHS.
871     std::swap(Op0, Op1);
872  }
873 
874  // fmul X, 1.0 ==> X
875  if (match(Op1, m_FPOne()))
876    return Op0;
877 
878  // fmul nnan nsz X, 0 ==> 0
879  if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
880    return Op1;
881 
882  return nullptr;
883 }
884 
885 /// Given operands for a Mul, see if we can fold the result.
886 /// If not, this returns null.
887 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
888                               unsigned MaxRecurse) {
889   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
890     if (Constant *CRHS = dyn_cast<Constant>(Op1))
891       return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL);
892 
893     // Canonicalize the constant to the RHS.
894     std::swap(Op0, Op1);
895   }
896 
897   // X * undef -> 0
898   if (match(Op1, m_Undef()))
899     return Constant::getNullValue(Op0->getType());
900 
901   // X * 0 -> 0
902   if (match(Op1, m_Zero()))
903     return Op1;
904 
905   // X * 1 -> X
906   if (match(Op1, m_One()))
907     return Op0;
908 
909   // (X / Y) * Y -> X if the division is exact.
910   Value *X = nullptr;
911   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
912       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
913     return X;
914 
915   // i1 mul -> and.
916   if (MaxRecurse && Op0->getType()->isIntegerTy(1))
917     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
918       return V;
919 
920   // Try some generic simplifications for associative operations.
921   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
922                                           MaxRecurse))
923     return V;
924 
925   // Mul distributes over Add.  Try some generic simplifications based on this.
926   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
927                              Q, MaxRecurse))
928     return V;
929 
930   // If the operation is with the result of a select instruction, check whether
931   // operating on either branch of the select always yields the same value.
932   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
933     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
934                                          MaxRecurse))
935       return V;
936 
937   // If the operation is with the result of a phi instruction, check whether
938   // operating on all incoming values of the phi always yields the same value.
939   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
940     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
941                                       MaxRecurse))
942       return V;
943 
944   return nullptr;
945 }
946 
947 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
948                               const DataLayout &DL,
949                               const TargetLibraryInfo *TLI,
950                               const DominatorTree *DT, AssumptionCache *AC,
951                               const Instruction *CxtI) {
952   return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
953                             RecursionLimit);
954 }
955 
956 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
957                               const DataLayout &DL,
958                               const TargetLibraryInfo *TLI,
959                               const DominatorTree *DT, AssumptionCache *AC,
960                               const Instruction *CxtI) {
961   return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
962                             RecursionLimit);
963 }
964 
965 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
966                               const DataLayout &DL,
967                               const TargetLibraryInfo *TLI,
968                               const DominatorTree *DT, AssumptionCache *AC,
969                               const Instruction *CxtI) {
970   return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
971                             RecursionLimit);
972 }
973 
974 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL,
975                              const TargetLibraryInfo *TLI,
976                              const DominatorTree *DT, AssumptionCache *AC,
977                              const Instruction *CxtI) {
978   return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
979                            RecursionLimit);
980 }
981 
982 /// Given operands for an SDiv or UDiv, see if we can fold the result.
983 /// If not, this returns null.
984 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
985                           const Query &Q, unsigned MaxRecurse) {
986   if (Constant *C0 = dyn_cast<Constant>(Op0))
987     if (Constant *C1 = dyn_cast<Constant>(Op1))
988       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
989 
990   bool isSigned = Opcode == Instruction::SDiv;
991 
992   // X / undef -> undef
993   if (match(Op1, m_Undef()))
994     return Op1;
995 
996   // X / 0 -> undef, we don't need to preserve faults!
997   if (match(Op1, m_Zero()))
998     return UndefValue::get(Op1->getType());
999 
1000   // undef / X -> 0
1001   if (match(Op0, m_Undef()))
1002     return Constant::getNullValue(Op0->getType());
1003 
1004   // 0 / X -> 0, we don't need to preserve faults!
1005   if (match(Op0, m_Zero()))
1006     return Op0;
1007 
1008   // X / 1 -> X
1009   if (match(Op1, m_One()))
1010     return Op0;
1011 
1012   if (Op0->getType()->isIntegerTy(1))
1013     // It can't be division by zero, hence it must be division by one.
1014     return Op0;
1015 
1016   // X / X -> 1
1017   if (Op0 == Op1)
1018     return ConstantInt::get(Op0->getType(), 1);
1019 
1020   // (X * Y) / Y -> X if the multiplication does not overflow.
1021   Value *X = nullptr, *Y = nullptr;
1022   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1023     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1024     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1025     // If the Mul knows it does not overflow, then we are good to go.
1026     if ((isSigned && Mul->hasNoSignedWrap()) ||
1027         (!isSigned && Mul->hasNoUnsignedWrap()))
1028       return X;
1029     // If X has the form X = A / Y then X * Y cannot overflow.
1030     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1031       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1032         return X;
1033   }
1034 
1035   // (X rem Y) / Y -> 0
1036   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1037       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1038     return Constant::getNullValue(Op0->getType());
1039 
1040   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1041   ConstantInt *C1, *C2;
1042   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1043       match(Op1, m_ConstantInt(C2))) {
1044     bool Overflow;
1045     C1->getValue().umul_ov(C2->getValue(), Overflow);
1046     if (Overflow)
1047       return Constant::getNullValue(Op0->getType());
1048   }
1049 
1050   // If the operation is with the result of a select instruction, check whether
1051   // operating on either branch of the select always yields the same value.
1052   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1053     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1054       return V;
1055 
1056   // If the operation is with the result of a phi instruction, check whether
1057   // operating on all incoming values of the phi always yields the same value.
1058   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1059     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1060       return V;
1061 
1062   return nullptr;
1063 }
1064 
1065 /// Given operands for an SDiv, see if we can fold the result.
1066 /// If not, this returns null.
1067 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1068                                unsigned MaxRecurse) {
1069   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1070     return V;
1071 
1072   return nullptr;
1073 }
1074 
1075 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1076                               const TargetLibraryInfo *TLI,
1077                               const DominatorTree *DT, AssumptionCache *AC,
1078                               const Instruction *CxtI) {
1079   return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1080                             RecursionLimit);
1081 }
1082 
1083 /// Given operands for a UDiv, see if we can fold the result.
1084 /// If not, this returns null.
1085 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1086                                unsigned MaxRecurse) {
1087   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1088     return V;
1089 
1090   return nullptr;
1091 }
1092 
1093 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL,
1094                               const TargetLibraryInfo *TLI,
1095                               const DominatorTree *DT, AssumptionCache *AC,
1096                               const Instruction *CxtI) {
1097   return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1098                             RecursionLimit);
1099 }
1100 
1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1102                                const Query &Q, unsigned) {
1103   // undef / X -> undef    (the undef could be a snan).
1104   if (match(Op0, m_Undef()))
1105     return Op0;
1106 
1107   // X / undef -> undef
1108   if (match(Op1, m_Undef()))
1109     return Op1;
1110 
1111   // 0 / X -> 0
1112   // Requires that NaNs are off (X could be zero) and signed zeroes are
1113   // ignored (X could be positive or negative, so the output sign is unknown).
1114   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1115     return Op0;
1116 
1117   if (FMF.noNaNs()) {
1118     // X / X -> 1.0 is legal when NaNs are ignored.
1119     if (Op0 == Op1)
1120       return ConstantFP::get(Op0->getType(), 1.0);
1121 
1122     // -X /  X -> -1.0 and
1123     //  X / -X -> -1.0 are legal when NaNs are ignored.
1124     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1125     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1126          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1127         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1128          BinaryOperator::getFNegArgument(Op1) == Op0))
1129       return ConstantFP::get(Op0->getType(), -1.0);
1130   }
1131 
1132   return nullptr;
1133 }
1134 
1135 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1136                               const DataLayout &DL,
1137                               const TargetLibraryInfo *TLI,
1138                               const DominatorTree *DT, AssumptionCache *AC,
1139                               const Instruction *CxtI) {
1140   return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1141                             RecursionLimit);
1142 }
1143 
1144 /// Given operands for an SRem or URem, see if we can fold the result.
1145 /// If not, this returns null.
1146 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1147                           const Query &Q, unsigned MaxRecurse) {
1148   if (Constant *C0 = dyn_cast<Constant>(Op0))
1149     if (Constant *C1 = dyn_cast<Constant>(Op1))
1150       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1151 
1152   // X % undef -> undef
1153   if (match(Op1, m_Undef()))
1154     return Op1;
1155 
1156   // undef % X -> 0
1157   if (match(Op0, m_Undef()))
1158     return Constant::getNullValue(Op0->getType());
1159 
1160   // 0 % X -> 0, we don't need to preserve faults!
1161   if (match(Op0, m_Zero()))
1162     return Op0;
1163 
1164   // X % 0 -> undef, we don't need to preserve faults!
1165   if (match(Op1, m_Zero()))
1166     return UndefValue::get(Op0->getType());
1167 
1168   // X % 1 -> 0
1169   if (match(Op1, m_One()))
1170     return Constant::getNullValue(Op0->getType());
1171 
1172   if (Op0->getType()->isIntegerTy(1))
1173     // It can't be remainder by zero, hence it must be remainder by one.
1174     return Constant::getNullValue(Op0->getType());
1175 
1176   // X % X -> 0
1177   if (Op0 == Op1)
1178     return Constant::getNullValue(Op0->getType());
1179 
1180   // (X % Y) % Y -> X % Y
1181   if ((Opcode == Instruction::SRem &&
1182        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1183       (Opcode == Instruction::URem &&
1184        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1185     return Op0;
1186 
1187   // If the operation is with the result of a select instruction, check whether
1188   // operating on either branch of the select always yields the same value.
1189   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1190     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1191       return V;
1192 
1193   // If the operation is with the result of a phi instruction, check whether
1194   // operating on all incoming values of the phi always yields the same value.
1195   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1196     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1197       return V;
1198 
1199   return nullptr;
1200 }
1201 
1202 /// Given operands for an SRem, see if we can fold the result.
1203 /// If not, this returns null.
1204 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1205                                unsigned MaxRecurse) {
1206   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1207     return V;
1208 
1209   return nullptr;
1210 }
1211 
1212 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1213                               const TargetLibraryInfo *TLI,
1214                               const DominatorTree *DT, AssumptionCache *AC,
1215                               const Instruction *CxtI) {
1216   return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1217                             RecursionLimit);
1218 }
1219 
1220 /// Given operands for a URem, see if we can fold the result.
1221 /// If not, this returns null.
1222 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
1223                                unsigned MaxRecurse) {
1224   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1225     return V;
1226 
1227   return nullptr;
1228 }
1229 
1230 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL,
1231                               const TargetLibraryInfo *TLI,
1232                               const DominatorTree *DT, AssumptionCache *AC,
1233                               const Instruction *CxtI) {
1234   return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1235                             RecursionLimit);
1236 }
1237 
1238 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1239                                const Query &, unsigned) {
1240   // undef % X -> undef    (the undef could be a snan).
1241   if (match(Op0, m_Undef()))
1242     return Op0;
1243 
1244   // X % undef -> undef
1245   if (match(Op1, m_Undef()))
1246     return Op1;
1247 
1248   // 0 % X -> 0
1249   // Requires that NaNs are off (X could be zero) and signed zeroes are
1250   // ignored (X could be positive or negative, so the output sign is unknown).
1251   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1252     return Op0;
1253 
1254   return nullptr;
1255 }
1256 
1257 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1258                               const DataLayout &DL,
1259                               const TargetLibraryInfo *TLI,
1260                               const DominatorTree *DT, AssumptionCache *AC,
1261                               const Instruction *CxtI) {
1262   return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI),
1263                             RecursionLimit);
1264 }
1265 
1266 /// Returns true if a shift by \c Amount always yields undef.
1267 static bool isUndefShift(Value *Amount) {
1268   Constant *C = dyn_cast<Constant>(Amount);
1269   if (!C)
1270     return false;
1271 
1272   // X shift by undef -> undef because it may shift by the bitwidth.
1273   if (isa<UndefValue>(C))
1274     return true;
1275 
1276   // Shifting by the bitwidth or more is undefined.
1277   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1278     if (CI->getValue().getLimitedValue() >=
1279         CI->getType()->getScalarSizeInBits())
1280       return true;
1281 
1282   // If all lanes of a vector shift are undefined the whole shift is.
1283   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1284     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1285       if (!isUndefShift(C->getAggregateElement(I)))
1286         return false;
1287     return true;
1288   }
1289 
1290   return false;
1291 }
1292 
1293 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1294 /// If not, this returns null.
1295 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
1296                             const Query &Q, unsigned MaxRecurse) {
1297   if (Constant *C0 = dyn_cast<Constant>(Op0))
1298     if (Constant *C1 = dyn_cast<Constant>(Op1))
1299       return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL);
1300 
1301   // 0 shift by X -> 0
1302   if (match(Op0, m_Zero()))
1303     return Op0;
1304 
1305   // X shift by 0 -> X
1306   if (match(Op1, m_Zero()))
1307     return Op0;
1308 
1309   // Fold undefined shifts.
1310   if (isUndefShift(Op1))
1311     return UndefValue::get(Op0->getType());
1312 
1313   // If the operation is with the result of a select instruction, check whether
1314   // operating on either branch of the select always yields the same value.
1315   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1316     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1317       return V;
1318 
1319   // If the operation is with the result of a phi instruction, check whether
1320   // operating on all incoming values of the phi always yields the same value.
1321   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1322     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1323       return V;
1324 
1325   // If any bits in the shift amount make that value greater than or equal to
1326   // the number of bits in the type, the shift is undefined.
1327   unsigned BitWidth = Op1->getType()->getScalarSizeInBits();
1328   APInt KnownZero(BitWidth, 0);
1329   APInt KnownOne(BitWidth, 0);
1330   computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1331   if (KnownOne.getLimitedValue() >= BitWidth)
1332     return UndefValue::get(Op0->getType());
1333 
1334   // If all valid bits in the shift amount are known zero, the first operand is
1335   // unchanged.
1336   unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth);
1337   APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits);
1338   if ((KnownZero & ShiftAmountMask) == ShiftAmountMask)
1339     return Op0;
1340 
1341   return nullptr;
1342 }
1343 
1344 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1345 /// fold the result.  If not, this returns null.
1346 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1,
1347                                  bool isExact, const Query &Q,
1348                                  unsigned MaxRecurse) {
1349   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1350     return V;
1351 
1352   // X >> X -> 0
1353   if (Op0 == Op1)
1354     return Constant::getNullValue(Op0->getType());
1355 
1356   // undef >> X -> 0
1357   // undef >> X -> undef (if it's exact)
1358   if (match(Op0, m_Undef()))
1359     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1360 
1361   // The low bit cannot be shifted out of an exact shift if it is set.
1362   if (isExact) {
1363     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
1364     APInt Op0KnownZero(BitWidth, 0);
1365     APInt Op0KnownOne(BitWidth, 0);
1366     computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC,
1367                      Q.CxtI, Q.DT);
1368     if (Op0KnownOne[0])
1369       return Op0;
1370   }
1371 
1372   return nullptr;
1373 }
1374 
1375 /// Given operands for an Shl, see if we can fold the result.
1376 /// If not, this returns null.
1377 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1378                               const Query &Q, unsigned MaxRecurse) {
1379   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1380     return V;
1381 
1382   // undef << X -> 0
1383   // undef << X -> undef if (if it's NSW/NUW)
1384   if (match(Op0, m_Undef()))
1385     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1386 
1387   // (X >> A) << A -> X
1388   Value *X;
1389   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1390     return X;
1391   return nullptr;
1392 }
1393 
1394 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1395                              const DataLayout &DL, const TargetLibraryInfo *TLI,
1396                              const DominatorTree *DT, AssumptionCache *AC,
1397                              const Instruction *CxtI) {
1398   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI),
1399                            RecursionLimit);
1400 }
1401 
1402 /// Given operands for an LShr, see if we can fold the result.
1403 /// If not, this returns null.
1404 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1405                                const Query &Q, unsigned MaxRecurse) {
1406   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1407                                     MaxRecurse))
1408       return V;
1409 
1410   // (X << A) >> A -> X
1411   Value *X;
1412   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1413     return X;
1414 
1415   return nullptr;
1416 }
1417 
1418 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1419                               const DataLayout &DL,
1420                               const TargetLibraryInfo *TLI,
1421                               const DominatorTree *DT, AssumptionCache *AC,
1422                               const Instruction *CxtI) {
1423   return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1424                             RecursionLimit);
1425 }
1426 
1427 /// Given operands for an AShr, see if we can fold the result.
1428 /// If not, this returns null.
1429 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1430                                const Query &Q, unsigned MaxRecurse) {
1431   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1432                                     MaxRecurse))
1433     return V;
1434 
1435   // all ones >>a X -> all ones
1436   if (match(Op0, m_AllOnes()))
1437     return Op0;
1438 
1439   // (X << A) >> A -> X
1440   Value *X;
1441   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1442     return X;
1443 
1444   // Arithmetic shifting an all-sign-bit value is a no-op.
1445   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1446   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1447     return Op0;
1448 
1449   return nullptr;
1450 }
1451 
1452 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1453                               const DataLayout &DL,
1454                               const TargetLibraryInfo *TLI,
1455                               const DominatorTree *DT, AssumptionCache *AC,
1456                               const Instruction *CxtI) {
1457   return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI),
1458                             RecursionLimit);
1459 }
1460 
1461 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1462                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1463   Value *X, *Y;
1464 
1465   ICmpInst::Predicate EqPred;
1466   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1467       !ICmpInst::isEquality(EqPred))
1468     return nullptr;
1469 
1470   ICmpInst::Predicate UnsignedPred;
1471   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1472       ICmpInst::isUnsigned(UnsignedPred))
1473     ;
1474   else if (match(UnsignedICmp,
1475                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1476            ICmpInst::isUnsigned(UnsignedPred))
1477     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1478   else
1479     return nullptr;
1480 
1481   // X < Y && Y != 0  -->  X < Y
1482   // X < Y || Y != 0  -->  Y != 0
1483   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1484     return IsAnd ? UnsignedICmp : ZeroICmp;
1485 
1486   // X >= Y || Y != 0  -->  true
1487   // X >= Y || Y == 0  -->  X >= Y
1488   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1489     if (EqPred == ICmpInst::ICMP_NE)
1490       return getTrue(UnsignedICmp->getType());
1491     return UnsignedICmp;
1492   }
1493 
1494   // X < Y && Y == 0  -->  false
1495   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1496       IsAnd)
1497     return getFalse(UnsignedICmp->getType());
1498 
1499   return nullptr;
1500 }
1501 
1502 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1503   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1504     return X;
1505 
1506   // Look for this pattern: (icmp V, C0) & (icmp V, C1)).
1507   Type *ITy = Op0->getType();
1508   ICmpInst::Predicate Pred0, Pred1;
1509   const APInt *C0, *C1;
1510   Value *V;
1511   if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) &&
1512       match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) {
1513     // Make a constant range that's the intersection of the two icmp ranges.
1514     // If the intersection is empty, we know that the result is false.
1515     auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0);
1516     auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1);
1517     if (Range0.intersectWith(Range1).isEmptySet())
1518       return getFalse(ITy);
1519   }
1520 
1521   // (icmp (add V, C0), C1) & (icmp V, C0)
1522   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1523     return nullptr;
1524 
1525   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1526     return nullptr;
1527 
1528   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1529   if (AddInst->getOperand(1) != Op1->getOperand(1))
1530     return nullptr;
1531 
1532   bool isNSW = AddInst->hasNoSignedWrap();
1533   bool isNUW = AddInst->hasNoUnsignedWrap();
1534 
1535   const APInt Delta = *C1 - *C0;
1536   if (C0->isStrictlyPositive()) {
1537     if (Delta == 2) {
1538       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1539         return getFalse(ITy);
1540       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1541         return getFalse(ITy);
1542     }
1543     if (Delta == 1) {
1544       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1545         return getFalse(ITy);
1546       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1547         return getFalse(ITy);
1548     }
1549   }
1550   if (C0->getBoolValue() && isNUW) {
1551     if (Delta == 2)
1552       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1553         return getFalse(ITy);
1554     if (Delta == 1)
1555       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1556         return getFalse(ITy);
1557   }
1558 
1559   return nullptr;
1560 }
1561 
1562 /// Given operands for an And, see if we can fold the result.
1563 /// If not, this returns null.
1564 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
1565                               unsigned MaxRecurse) {
1566   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1567     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1568       return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL);
1569 
1570     // Canonicalize the constant to the RHS.
1571     std::swap(Op0, Op1);
1572   }
1573 
1574   // X & undef -> 0
1575   if (match(Op1, m_Undef()))
1576     return Constant::getNullValue(Op0->getType());
1577 
1578   // X & X = X
1579   if (Op0 == Op1)
1580     return Op0;
1581 
1582   // X & 0 = 0
1583   if (match(Op1, m_Zero()))
1584     return Op1;
1585 
1586   // X & -1 = X
1587   if (match(Op1, m_AllOnes()))
1588     return Op0;
1589 
1590   // A & ~A  =  ~A & A  =  0
1591   if (match(Op0, m_Not(m_Specific(Op1))) ||
1592       match(Op1, m_Not(m_Specific(Op0))))
1593     return Constant::getNullValue(Op0->getType());
1594 
1595   // (A | ?) & A = A
1596   Value *A = nullptr, *B = nullptr;
1597   if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
1598       (A == Op1 || B == Op1))
1599     return Op1;
1600 
1601   // A & (A | ?) = A
1602   if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
1603       (A == Op0 || B == Op0))
1604     return Op0;
1605 
1606   // A & (-A) = A if A is a power of two or zero.
1607   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1608       match(Op1, m_Neg(m_Specific(Op0)))) {
1609     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1610                                Q.DT))
1611       return Op0;
1612     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1613                                Q.DT))
1614       return Op1;
1615   }
1616 
1617   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1618     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1619       if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS))
1620         return V;
1621       if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS))
1622         return V;
1623     }
1624   }
1625 
1626   // The compares may be hidden behind casts. Look through those and try the
1627   // same folds as above.
1628   auto *Cast0 = dyn_cast<CastInst>(Op0);
1629   auto *Cast1 = dyn_cast<CastInst>(Op1);
1630   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1631       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1632     auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0));
1633     auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0));
1634     if (Cmp0 && Cmp1) {
1635       Instruction::CastOps CastOpc = Cast0->getOpcode();
1636       Type *ResultType = Cast0->getType();
1637       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1)))
1638         return ConstantExpr::getCast(CastOpc, V, ResultType);
1639       if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0)))
1640         return ConstantExpr::getCast(CastOpc, V, ResultType);
1641     }
1642   }
1643 
1644   // Try some generic simplifications for associative operations.
1645   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1646                                           MaxRecurse))
1647     return V;
1648 
1649   // And distributes over Or.  Try some generic simplifications based on this.
1650   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1651                              Q, MaxRecurse))
1652     return V;
1653 
1654   // And distributes over Xor.  Try some generic simplifications based on this.
1655   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1656                              Q, MaxRecurse))
1657     return V;
1658 
1659   // If the operation is with the result of a select instruction, check whether
1660   // operating on either branch of the select always yields the same value.
1661   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1662     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1663                                          MaxRecurse))
1664       return V;
1665 
1666   // If the operation is with the result of a phi instruction, check whether
1667   // operating on all incoming values of the phi always yields the same value.
1668   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1669     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1670                                       MaxRecurse))
1671       return V;
1672 
1673   return nullptr;
1674 }
1675 
1676 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL,
1677                              const TargetLibraryInfo *TLI,
1678                              const DominatorTree *DT, AssumptionCache *AC,
1679                              const Instruction *CxtI) {
1680   return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1681                            RecursionLimit);
1682 }
1683 
1684 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union
1685 /// contains all possible values.
1686 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1687   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1688     return X;
1689 
1690   // (icmp (add V, C0), C1) | (icmp V, C0)
1691   ICmpInst::Predicate Pred0, Pred1;
1692   const APInt *C0, *C1;
1693   Value *V;
1694   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1695     return nullptr;
1696 
1697   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1698     return nullptr;
1699 
1700   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1701   if (AddInst->getOperand(1) != Op1->getOperand(1))
1702     return nullptr;
1703 
1704   Type *ITy = Op0->getType();
1705   bool isNSW = AddInst->hasNoSignedWrap();
1706   bool isNUW = AddInst->hasNoUnsignedWrap();
1707 
1708   const APInt Delta = *C1 - *C0;
1709   if (C0->isStrictlyPositive()) {
1710     if (Delta == 2) {
1711       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1712         return getTrue(ITy);
1713       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1714         return getTrue(ITy);
1715     }
1716     if (Delta == 1) {
1717       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1718         return getTrue(ITy);
1719       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1720         return getTrue(ITy);
1721     }
1722   }
1723   if (C0->getBoolValue() && isNUW) {
1724     if (Delta == 2)
1725       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1726         return getTrue(ITy);
1727     if (Delta == 1)
1728       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1729         return getTrue(ITy);
1730   }
1731 
1732   return nullptr;
1733 }
1734 
1735 /// Given operands for an Or, see if we can fold the result.
1736 /// If not, this returns null.
1737 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1738                              unsigned MaxRecurse) {
1739   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1740     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1741       return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL);
1742 
1743     // Canonicalize the constant to the RHS.
1744     std::swap(Op0, Op1);
1745   }
1746 
1747   // X | undef -> -1
1748   if (match(Op1, m_Undef()))
1749     return Constant::getAllOnesValue(Op0->getType());
1750 
1751   // X | X = X
1752   if (Op0 == Op1)
1753     return Op0;
1754 
1755   // X | 0 = X
1756   if (match(Op1, m_Zero()))
1757     return Op0;
1758 
1759   // X | -1 = -1
1760   if (match(Op1, m_AllOnes()))
1761     return Op1;
1762 
1763   // A | ~A  =  ~A | A  =  -1
1764   if (match(Op0, m_Not(m_Specific(Op1))) ||
1765       match(Op1, m_Not(m_Specific(Op0))))
1766     return Constant::getAllOnesValue(Op0->getType());
1767 
1768   // (A & ?) | A = A
1769   Value *A = nullptr, *B = nullptr;
1770   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1771       (A == Op1 || B == Op1))
1772     return Op1;
1773 
1774   // A | (A & ?) = A
1775   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1776       (A == Op0 || B == Op0))
1777     return Op0;
1778 
1779   // ~(A & ?) | A = -1
1780   if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1781       (A == Op1 || B == Op1))
1782     return Constant::getAllOnesValue(Op1->getType());
1783 
1784   // A | ~(A & ?) = -1
1785   if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1786       (A == Op0 || B == Op0))
1787     return Constant::getAllOnesValue(Op0->getType());
1788 
1789   if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) {
1790     if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) {
1791       if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS))
1792         return V;
1793       if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS))
1794         return V;
1795     }
1796   }
1797 
1798   // Try some generic simplifications for associative operations.
1799   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1800                                           MaxRecurse))
1801     return V;
1802 
1803   // Or distributes over And.  Try some generic simplifications based on this.
1804   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1805                              MaxRecurse))
1806     return V;
1807 
1808   // If the operation is with the result of a select instruction, check whether
1809   // operating on either branch of the select always yields the same value.
1810   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1811     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1812                                          MaxRecurse))
1813       return V;
1814 
1815   // (A & C)|(B & D)
1816   Value *C = nullptr, *D = nullptr;
1817   if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
1818       match(Op1, m_And(m_Value(B), m_Value(D)))) {
1819     ConstantInt *C1 = dyn_cast<ConstantInt>(C);
1820     ConstantInt *C2 = dyn_cast<ConstantInt>(D);
1821     if (C1 && C2 && (C1->getValue() == ~C2->getValue())) {
1822       // (A & C1)|(B & C2)
1823       // If we have: ((V + N) & C1) | (V & C2)
1824       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1825       // replace with V+N.
1826       Value *V1, *V2;
1827       if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+
1828           match(A, m_Add(m_Value(V1), m_Value(V2)))) {
1829         // Add commutes, try both ways.
1830         if (V1 == B &&
1831             MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1832           return A;
1833         if (V2 == B &&
1834             MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1835           return A;
1836       }
1837       // Or commutes, try both ways.
1838       if ((C1->getValue() & (C1->getValue() + 1)) == 0 &&
1839           match(B, m_Add(m_Value(V1), m_Value(V2)))) {
1840         // Add commutes, try both ways.
1841         if (V1 == A &&
1842             MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1843           return B;
1844         if (V2 == A &&
1845             MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1846           return B;
1847       }
1848     }
1849   }
1850 
1851   // If the operation is with the result of a phi instruction, check whether
1852   // operating on all incoming values of the phi always yields the same value.
1853   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1854     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1855       return V;
1856 
1857   return nullptr;
1858 }
1859 
1860 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL,
1861                             const TargetLibraryInfo *TLI,
1862                             const DominatorTree *DT, AssumptionCache *AC,
1863                             const Instruction *CxtI) {
1864   return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1865                           RecursionLimit);
1866 }
1867 
1868 /// Given operands for a Xor, see if we can fold the result.
1869 /// If not, this returns null.
1870 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1871                               unsigned MaxRecurse) {
1872   if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1873     if (Constant *CRHS = dyn_cast<Constant>(Op1))
1874       return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL);
1875 
1876     // Canonicalize the constant to the RHS.
1877     std::swap(Op0, Op1);
1878   }
1879 
1880   // A ^ undef -> undef
1881   if (match(Op1, m_Undef()))
1882     return Op1;
1883 
1884   // A ^ 0 = A
1885   if (match(Op1, m_Zero()))
1886     return Op0;
1887 
1888   // A ^ A = 0
1889   if (Op0 == Op1)
1890     return Constant::getNullValue(Op0->getType());
1891 
1892   // A ^ ~A  =  ~A ^ A  =  -1
1893   if (match(Op0, m_Not(m_Specific(Op1))) ||
1894       match(Op1, m_Not(m_Specific(Op0))))
1895     return Constant::getAllOnesValue(Op0->getType());
1896 
1897   // Try some generic simplifications for associative operations.
1898   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1899                                           MaxRecurse))
1900     return V;
1901 
1902   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1903   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1904   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1905   // only if B and C are equal.  If B and C are equal then (since we assume
1906   // that operands have already been simplified) "select(cond, B, C)" should
1907   // have been simplified to the common value of B and C already.  Analysing
1908   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
1909   // for threading over phi nodes.
1910 
1911   return nullptr;
1912 }
1913 
1914 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL,
1915                              const TargetLibraryInfo *TLI,
1916                              const DominatorTree *DT, AssumptionCache *AC,
1917                              const Instruction *CxtI) {
1918   return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI),
1919                            RecursionLimit);
1920 }
1921 
1922 static Type *GetCompareTy(Value *Op) {
1923   return CmpInst::makeCmpResultType(Op->getType());
1924 }
1925 
1926 /// Rummage around inside V looking for something equivalent to the comparison
1927 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
1928 /// Helper function for analyzing max/min idioms.
1929 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1930                                          Value *LHS, Value *RHS) {
1931   SelectInst *SI = dyn_cast<SelectInst>(V);
1932   if (!SI)
1933     return nullptr;
1934   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1935   if (!Cmp)
1936     return nullptr;
1937   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1938   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1939     return Cmp;
1940   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1941       LHS == CmpRHS && RHS == CmpLHS)
1942     return Cmp;
1943   return nullptr;
1944 }
1945 
1946 // A significant optimization not implemented here is assuming that alloca
1947 // addresses are not equal to incoming argument values. They don't *alias*,
1948 // as we say, but that doesn't mean they aren't equal, so we take a
1949 // conservative approach.
1950 //
1951 // This is inspired in part by C++11 5.10p1:
1952 //   "Two pointers of the same type compare equal if and only if they are both
1953 //    null, both point to the same function, or both represent the same
1954 //    address."
1955 //
1956 // This is pretty permissive.
1957 //
1958 // It's also partly due to C11 6.5.9p6:
1959 //   "Two pointers compare equal if and only if both are null pointers, both are
1960 //    pointers to the same object (including a pointer to an object and a
1961 //    subobject at its beginning) or function, both are pointers to one past the
1962 //    last element of the same array object, or one is a pointer to one past the
1963 //    end of one array object and the other is a pointer to the start of a
1964 //    different array object that happens to immediately follow the first array
1965 //    object in the address space.)
1966 //
1967 // C11's version is more restrictive, however there's no reason why an argument
1968 // couldn't be a one-past-the-end value for a stack object in the caller and be
1969 // equal to the beginning of a stack object in the callee.
1970 //
1971 // If the C and C++ standards are ever made sufficiently restrictive in this
1972 // area, it may be possible to update LLVM's semantics accordingly and reinstate
1973 // this optimization.
1974 static Constant *
1975 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
1976                    const DominatorTree *DT, CmpInst::Predicate Pred,
1977                    const Instruction *CxtI, Value *LHS, Value *RHS) {
1978   // First, skip past any trivial no-ops.
1979   LHS = LHS->stripPointerCasts();
1980   RHS = RHS->stripPointerCasts();
1981 
1982   // A non-null pointer is not equal to a null pointer.
1983   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1984       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1985     return ConstantInt::get(GetCompareTy(LHS),
1986                             !CmpInst::isTrueWhenEqual(Pred));
1987 
1988   // We can only fold certain predicates on pointer comparisons.
1989   switch (Pred) {
1990   default:
1991     return nullptr;
1992 
1993     // Equality comaprisons are easy to fold.
1994   case CmpInst::ICMP_EQ:
1995   case CmpInst::ICMP_NE:
1996     break;
1997 
1998     // We can only handle unsigned relational comparisons because 'inbounds' on
1999     // a GEP only protects against unsigned wrapping.
2000   case CmpInst::ICMP_UGT:
2001   case CmpInst::ICMP_UGE:
2002   case CmpInst::ICMP_ULT:
2003   case CmpInst::ICMP_ULE:
2004     // However, we have to switch them to their signed variants to handle
2005     // negative indices from the base pointer.
2006     Pred = ICmpInst::getSignedPredicate(Pred);
2007     break;
2008   }
2009 
2010   // Strip off any constant offsets so that we can reason about them.
2011   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2012   // here and compare base addresses like AliasAnalysis does, however there are
2013   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2014   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2015   // doesn't need to guarantee pointer inequality when it says NoAlias.
2016   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2017   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2018 
2019   // If LHS and RHS are related via constant offsets to the same base
2020   // value, we can replace it with an icmp which just compares the offsets.
2021   if (LHS == RHS)
2022     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2023 
2024   // Various optimizations for (in)equality comparisons.
2025   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2026     // Different non-empty allocations that exist at the same time have
2027     // different addresses (if the program can tell). Global variables always
2028     // exist, so they always exist during the lifetime of each other and all
2029     // allocas. Two different allocas usually have different addresses...
2030     //
2031     // However, if there's an @llvm.stackrestore dynamically in between two
2032     // allocas, they may have the same address. It's tempting to reduce the
2033     // scope of the problem by only looking at *static* allocas here. That would
2034     // cover the majority of allocas while significantly reducing the likelihood
2035     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2036     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2037     // an entry block. Also, if we have a block that's not attached to a
2038     // function, we can't tell if it's "static" under the current definition.
2039     // Theoretically, this problem could be fixed by creating a new kind of
2040     // instruction kind specifically for static allocas. Such a new instruction
2041     // could be required to be at the top of the entry block, thus preventing it
2042     // from being subject to a @llvm.stackrestore. Instcombine could even
2043     // convert regular allocas into these special allocas. It'd be nifty.
2044     // However, until then, this problem remains open.
2045     //
2046     // So, we'll assume that two non-empty allocas have different addresses
2047     // for now.
2048     //
2049     // With all that, if the offsets are within the bounds of their allocations
2050     // (and not one-past-the-end! so we can't use inbounds!), and their
2051     // allocations aren't the same, the pointers are not equal.
2052     //
2053     // Note that it's not necessary to check for LHS being a global variable
2054     // address, due to canonicalization and constant folding.
2055     if (isa<AllocaInst>(LHS) &&
2056         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2057       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2058       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2059       uint64_t LHSSize, RHSSize;
2060       if (LHSOffsetCI && RHSOffsetCI &&
2061           getObjectSize(LHS, LHSSize, DL, TLI) &&
2062           getObjectSize(RHS, RHSSize, DL, TLI)) {
2063         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2064         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2065         if (!LHSOffsetValue.isNegative() &&
2066             !RHSOffsetValue.isNegative() &&
2067             LHSOffsetValue.ult(LHSSize) &&
2068             RHSOffsetValue.ult(RHSSize)) {
2069           return ConstantInt::get(GetCompareTy(LHS),
2070                                   !CmpInst::isTrueWhenEqual(Pred));
2071         }
2072       }
2073 
2074       // Repeat the above check but this time without depending on DataLayout
2075       // or being able to compute a precise size.
2076       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2077           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2078           LHSOffset->isNullValue() &&
2079           RHSOffset->isNullValue())
2080         return ConstantInt::get(GetCompareTy(LHS),
2081                                 !CmpInst::isTrueWhenEqual(Pred));
2082     }
2083 
2084     // Even if an non-inbounds GEP occurs along the path we can still optimize
2085     // equality comparisons concerning the result. We avoid walking the whole
2086     // chain again by starting where the last calls to
2087     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2088     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2089     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2090     if (LHS == RHS)
2091       return ConstantExpr::getICmp(Pred,
2092                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2093                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2094 
2095     // If one side of the equality comparison must come from a noalias call
2096     // (meaning a system memory allocation function), and the other side must
2097     // come from a pointer that cannot overlap with dynamically-allocated
2098     // memory within the lifetime of the current function (allocas, byval
2099     // arguments, globals), then determine the comparison result here.
2100     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2101     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2102     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2103 
2104     // Is the set of underlying objects all noalias calls?
2105     auto IsNAC = [](ArrayRef<Value *> Objects) {
2106       return all_of(Objects, isNoAliasCall);
2107     };
2108 
2109     // Is the set of underlying objects all things which must be disjoint from
2110     // noalias calls. For allocas, we consider only static ones (dynamic
2111     // allocas might be transformed into calls to malloc not simultaneously
2112     // live with the compared-to allocation). For globals, we exclude symbols
2113     // that might be resolve lazily to symbols in another dynamically-loaded
2114     // library (and, thus, could be malloc'ed by the implementation).
2115     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2116       return all_of(Objects, [](Value *V) {
2117         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2118           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2119         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2120           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2121                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2122                  !GV->isThreadLocal();
2123         if (const Argument *A = dyn_cast<Argument>(V))
2124           return A->hasByValAttr();
2125         return false;
2126       });
2127     };
2128 
2129     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2130         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2131         return ConstantInt::get(GetCompareTy(LHS),
2132                                 !CmpInst::isTrueWhenEqual(Pred));
2133 
2134     // Fold comparisons for non-escaping pointer even if the allocation call
2135     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2136     // dynamic allocation call could be either of the operands.
2137     Value *MI = nullptr;
2138     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2139       MI = LHS;
2140     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2141       MI = RHS;
2142     // FIXME: We should also fold the compare when the pointer escapes, but the
2143     // compare dominates the pointer escape
2144     if (MI && !PointerMayBeCaptured(MI, true, true))
2145       return ConstantInt::get(GetCompareTy(LHS),
2146                               CmpInst::isFalseWhenEqual(Pred));
2147   }
2148 
2149   // Otherwise, fail.
2150   return nullptr;
2151 }
2152 
2153 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2154                                        Value *RHS) {
2155   const APInt *C;
2156   if (!match(RHS, m_APInt(C)))
2157     return nullptr;
2158 
2159   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2160   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2161   if (RHS_CR.isEmptySet())
2162     return ConstantInt::getFalse(GetCompareTy(RHS));
2163   if (RHS_CR.isFullSet())
2164     return ConstantInt::getTrue(GetCompareTy(RHS));
2165 
2166   // Many binary operators with constant RHS have easy to compute constant
2167   // range.  Use them to check whether the comparison is a tautology.
2168   unsigned Width = C->getBitWidth();
2169   APInt Lower = APInt(Width, 0);
2170   APInt Upper = APInt(Width, 0);
2171   const APInt *C2;
2172   if (match(LHS, m_URem(m_Value(), m_APInt(C2)))) {
2173     // 'urem x, C2' produces [0, C2).
2174     Upper = *C2;
2175   } else if (match(LHS, m_SRem(m_Value(), m_APInt(C2)))) {
2176     // 'srem x, C2' produces (-|C2|, |C2|).
2177     Upper = C2->abs();
2178     Lower = (-Upper) + 1;
2179   } else if (match(LHS, m_UDiv(m_APInt(C2), m_Value()))) {
2180     // 'udiv C2, x' produces [0, C2].
2181     Upper = *C2 + 1;
2182   } else if (match(LHS, m_UDiv(m_Value(), m_APInt(C2)))) {
2183     // 'udiv x, C2' produces [0, UINT_MAX / C2].
2184     APInt NegOne = APInt::getAllOnesValue(Width);
2185     if (*C2 != 0)
2186       Upper = NegOne.udiv(*C2) + 1;
2187   } else if (match(LHS, m_SDiv(m_APInt(C2), m_Value()))) {
2188     if (C2->isMinSignedValue()) {
2189       // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2190       Lower = *C2;
2191       Upper = Lower.lshr(1) + 1;
2192     } else {
2193       // 'sdiv C2, x' produces [-|C2|, |C2|].
2194       Upper = C2->abs() + 1;
2195       Lower = (-Upper) + 1;
2196     }
2197   } else if (match(LHS, m_SDiv(m_Value(), m_APInt(C2)))) {
2198     APInt IntMin = APInt::getSignedMinValue(Width);
2199     APInt IntMax = APInt::getSignedMaxValue(Width);
2200     if (C2->isAllOnesValue()) {
2201       // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2202       //    where C2 != -1 and C2 != 0 and C2 != 1
2203       Lower = IntMin + 1;
2204       Upper = IntMax + 1;
2205     } else if (C2->countLeadingZeros() < Width - 1) {
2206       // 'sdiv x, C2' produces [INT_MIN / C2, INT_MAX / C2]
2207       //    where C2 != -1 and C2 != 0 and C2 != 1
2208       Lower = IntMin.sdiv(*C2);
2209       Upper = IntMax.sdiv(*C2);
2210       if (Lower.sgt(Upper))
2211         std::swap(Lower, Upper);
2212       Upper = Upper + 1;
2213       assert(Upper != Lower && "Upper part of range has wrapped!");
2214     }
2215   } else if (match(LHS, m_NUWShl(m_APInt(C2), m_Value()))) {
2216     // 'shl nuw C2, x' produces [C2, C2 << CLZ(C2)]
2217     Lower = *C2;
2218     Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2219   } else if (match(LHS, m_NSWShl(m_APInt(C2), m_Value()))) {
2220     if (C2->isNegative()) {
2221       // 'shl nsw C2, x' produces [C2 << CLO(C2)-1, C2]
2222       unsigned ShiftAmount = C2->countLeadingOnes() - 1;
2223       Lower = C2->shl(ShiftAmount);
2224       Upper = *C2 + 1;
2225     } else {
2226       // 'shl nsw C2, x' produces [C2, C2 << CLZ(C2)-1]
2227       unsigned ShiftAmount = C2->countLeadingZeros() - 1;
2228       Lower = *C2;
2229       Upper = C2->shl(ShiftAmount) + 1;
2230     }
2231   } else if (match(LHS, m_LShr(m_Value(), m_APInt(C2)))) {
2232     // 'lshr x, C2' produces [0, UINT_MAX >> C2].
2233     APInt NegOne = APInt::getAllOnesValue(Width);
2234     if (C2->ult(Width))
2235       Upper = NegOne.lshr(*C2) + 1;
2236   } else if (match(LHS, m_LShr(m_APInt(C2), m_Value()))) {
2237     // 'lshr C2, x' produces [C2 >> (Width-1), C2].
2238     unsigned ShiftAmount = Width - 1;
2239     if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
2240       ShiftAmount = C2->countTrailingZeros();
2241     Lower = C2->lshr(ShiftAmount);
2242     Upper = *C2 + 1;
2243   } else if (match(LHS, m_AShr(m_Value(), m_APInt(C2)))) {
2244     // 'ashr x, C2' produces [INT_MIN >> C2, INT_MAX >> C2].
2245     APInt IntMin = APInt::getSignedMinValue(Width);
2246     APInt IntMax = APInt::getSignedMaxValue(Width);
2247     if (C2->ult(Width)) {
2248       Lower = IntMin.ashr(*C2);
2249       Upper = IntMax.ashr(*C2) + 1;
2250     }
2251   } else if (match(LHS, m_AShr(m_APInt(C2), m_Value()))) {
2252     unsigned ShiftAmount = Width - 1;
2253     if (*C2 != 0 && cast<BinaryOperator>(LHS)->isExact())
2254       ShiftAmount = C2->countTrailingZeros();
2255     if (C2->isNegative()) {
2256       // 'ashr C2, x' produces [C2, C2 >> (Width-1)]
2257       Lower = *C2;
2258       Upper = C2->ashr(ShiftAmount) + 1;
2259     } else {
2260       // 'ashr C2, x' produces [C2 >> (Width-1), C2]
2261       Lower = C2->ashr(ShiftAmount);
2262       Upper = *C2 + 1;
2263     }
2264   } else if (match(LHS, m_Or(m_Value(), m_APInt(C2)))) {
2265     // 'or x, C2' produces [C2, UINT_MAX].
2266     Lower = *C2;
2267   } else if (match(LHS, m_And(m_Value(), m_APInt(C2)))) {
2268     // 'and x, C2' produces [0, C2].
2269     Upper = *C2 + 1;
2270   } else if (match(LHS, m_NUWAdd(m_Value(), m_APInt(C2)))) {
2271     // 'add nuw x, C2' produces [C2, UINT_MAX].
2272     Lower = *C2;
2273   }
2274 
2275   ConstantRange LHS_CR =
2276       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2277 
2278   if (auto *I = dyn_cast<Instruction>(LHS))
2279     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2280       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2281 
2282   if (!LHS_CR.isFullSet()) {
2283     if (RHS_CR.contains(LHS_CR))
2284       return ConstantInt::getTrue(GetCompareTy(RHS));
2285     if (RHS_CR.inverse().contains(LHS_CR))
2286       return ConstantInt::getFalse(GetCompareTy(RHS));
2287   }
2288 
2289   return nullptr;
2290 }
2291 
2292 /// Given operands for an ICmpInst, see if we can fold the result.
2293 /// If not, this returns null.
2294 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
2295                                const Query &Q, unsigned MaxRecurse) {
2296   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2297   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
2298 
2299   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
2300     if (Constant *CRHS = dyn_cast<Constant>(RHS))
2301       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
2302 
2303     // If we have a constant, make sure it is on the RHS.
2304     std::swap(LHS, RHS);
2305     Pred = CmpInst::getSwappedPredicate(Pred);
2306   }
2307 
2308   Type *ITy = GetCompareTy(LHS); // The return type.
2309   Type *OpTy = LHS->getType();   // The operand type.
2310 
2311   // icmp X, X -> true/false
2312   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
2313   // because X could be 0.
2314   if (LHS == RHS || isa<UndefValue>(RHS))
2315     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
2316 
2317   // Special case logic when the operands have i1 type.
2318   if (OpTy->getScalarType()->isIntegerTy(1)) {
2319     switch (Pred) {
2320     default: break;
2321     case ICmpInst::ICMP_EQ:
2322       // X == 1 -> X
2323       if (match(RHS, m_One()))
2324         return LHS;
2325       break;
2326     case ICmpInst::ICMP_NE:
2327       // X != 0 -> X
2328       if (match(RHS, m_Zero()))
2329         return LHS;
2330       break;
2331     case ICmpInst::ICMP_UGT:
2332       // X >u 0 -> X
2333       if (match(RHS, m_Zero()))
2334         return LHS;
2335       break;
2336     case ICmpInst::ICMP_UGE: {
2337       // X >=u 1 -> X
2338       if (match(RHS, m_One()))
2339         return LHS;
2340       if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2341         return getTrue(ITy);
2342       break;
2343     }
2344     case ICmpInst::ICMP_SGE: {
2345       /// For signed comparison, the values for an i1 are 0 and -1
2346       /// respectively. This maps into a truth table of:
2347       /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2348       ///  0  |  0  |  1 (0 >= 0)   |  1
2349       ///  0  |  1  |  1 (0 >= -1)  |  1
2350       ///  1  |  0  |  0 (-1 >= 0)  |  0
2351       ///  1  |  1  |  1 (-1 >= -1) |  1
2352       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2353         return getTrue(ITy);
2354       break;
2355     }
2356     case ICmpInst::ICMP_SLT:
2357       // X <s 0 -> X
2358       if (match(RHS, m_Zero()))
2359         return LHS;
2360       break;
2361     case ICmpInst::ICMP_SLE:
2362       // X <=s -1 -> X
2363       if (match(RHS, m_One()))
2364         return LHS;
2365       break;
2366     case ICmpInst::ICMP_ULE: {
2367       if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2368         return getTrue(ITy);
2369       break;
2370     }
2371     }
2372   }
2373 
2374   // If we are comparing with zero then try hard since this is a common case.
2375   if (match(RHS, m_Zero())) {
2376     bool LHSKnownNonNegative, LHSKnownNegative;
2377     switch (Pred) {
2378     default: llvm_unreachable("Unknown ICmp predicate!");
2379     case ICmpInst::ICMP_ULT:
2380       return getFalse(ITy);
2381     case ICmpInst::ICMP_UGE:
2382       return getTrue(ITy);
2383     case ICmpInst::ICMP_EQ:
2384     case ICmpInst::ICMP_ULE:
2385       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2386         return getFalse(ITy);
2387       break;
2388     case ICmpInst::ICMP_NE:
2389     case ICmpInst::ICMP_UGT:
2390       if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2391         return getTrue(ITy);
2392       break;
2393     case ICmpInst::ICMP_SLT:
2394       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2395                      Q.CxtI, Q.DT);
2396       if (LHSKnownNegative)
2397         return getTrue(ITy);
2398       if (LHSKnownNonNegative)
2399         return getFalse(ITy);
2400       break;
2401     case ICmpInst::ICMP_SLE:
2402       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2403                      Q.CxtI, Q.DT);
2404       if (LHSKnownNegative)
2405         return getTrue(ITy);
2406       if (LHSKnownNonNegative &&
2407           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2408         return getFalse(ITy);
2409       break;
2410     case ICmpInst::ICMP_SGE:
2411       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2412                      Q.CxtI, Q.DT);
2413       if (LHSKnownNegative)
2414         return getFalse(ITy);
2415       if (LHSKnownNonNegative)
2416         return getTrue(ITy);
2417       break;
2418     case ICmpInst::ICMP_SGT:
2419       ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC,
2420                      Q.CxtI, Q.DT);
2421       if (LHSKnownNegative)
2422         return getFalse(ITy);
2423       if (LHSKnownNonNegative &&
2424           isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2425         return getTrue(ITy);
2426       break;
2427     }
2428   }
2429 
2430   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
2431     return V;
2432 
2433   // If both operands have range metadata, use the metadata
2434   // to simplify the comparison.
2435   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
2436     auto RHS_Instr = dyn_cast<Instruction>(RHS);
2437     auto LHS_Instr = dyn_cast<Instruction>(LHS);
2438 
2439     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
2440         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
2441       auto RHS_CR = getConstantRangeFromMetadata(
2442           *RHS_Instr->getMetadata(LLVMContext::MD_range));
2443       auto LHS_CR = getConstantRangeFromMetadata(
2444           *LHS_Instr->getMetadata(LLVMContext::MD_range));
2445 
2446       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
2447       if (Satisfied_CR.contains(LHS_CR))
2448         return ConstantInt::getTrue(RHS->getContext());
2449 
2450       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
2451                 CmpInst::getInversePredicate(Pred), RHS_CR);
2452       if (InversedSatisfied_CR.contains(LHS_CR))
2453         return ConstantInt::getFalse(RHS->getContext());
2454     }
2455   }
2456 
2457   // Compare of cast, for example (zext X) != 0 -> X != 0
2458   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2459     Instruction *LI = cast<CastInst>(LHS);
2460     Value *SrcOp = LI->getOperand(0);
2461     Type *SrcTy = SrcOp->getType();
2462     Type *DstTy = LI->getType();
2463 
2464     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2465     // if the integer type is the same size as the pointer type.
2466     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
2467         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
2468       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2469         // Transfer the cast to the constant.
2470         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2471                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
2472                                         Q, MaxRecurse-1))
2473           return V;
2474       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2475         if (RI->getOperand(0)->getType() == SrcTy)
2476           // Compare without the cast.
2477           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2478                                           Q, MaxRecurse-1))
2479             return V;
2480       }
2481     }
2482 
2483     if (isa<ZExtInst>(LHS)) {
2484       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2485       // same type.
2486       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2487         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2488           // Compare X and Y.  Note that signed predicates become unsigned.
2489           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2490                                           SrcOp, RI->getOperand(0), Q,
2491                                           MaxRecurse-1))
2492             return V;
2493       }
2494       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2495       // too.  If not, then try to deduce the result of the comparison.
2496       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2497         // Compute the constant that would happen if we truncated to SrcTy then
2498         // reextended to DstTy.
2499         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2500         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2501 
2502         // If the re-extended constant didn't change then this is effectively
2503         // also a case of comparing two zero-extended values.
2504         if (RExt == CI && MaxRecurse)
2505           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
2506                                         SrcOp, Trunc, Q, MaxRecurse-1))
2507             return V;
2508 
2509         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2510         // there.  Use this to work out the result of the comparison.
2511         if (RExt != CI) {
2512           switch (Pred) {
2513           default: llvm_unreachable("Unknown ICmp predicate!");
2514           // LHS <u RHS.
2515           case ICmpInst::ICMP_EQ:
2516           case ICmpInst::ICMP_UGT:
2517           case ICmpInst::ICMP_UGE:
2518             return ConstantInt::getFalse(CI->getContext());
2519 
2520           case ICmpInst::ICMP_NE:
2521           case ICmpInst::ICMP_ULT:
2522           case ICmpInst::ICMP_ULE:
2523             return ConstantInt::getTrue(CI->getContext());
2524 
2525           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
2526           // is non-negative then LHS <s RHS.
2527           case ICmpInst::ICMP_SGT:
2528           case ICmpInst::ICMP_SGE:
2529             return CI->getValue().isNegative() ?
2530               ConstantInt::getTrue(CI->getContext()) :
2531               ConstantInt::getFalse(CI->getContext());
2532 
2533           case ICmpInst::ICMP_SLT:
2534           case ICmpInst::ICMP_SLE:
2535             return CI->getValue().isNegative() ?
2536               ConstantInt::getFalse(CI->getContext()) :
2537               ConstantInt::getTrue(CI->getContext());
2538           }
2539         }
2540       }
2541     }
2542 
2543     if (isa<SExtInst>(LHS)) {
2544       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2545       // same type.
2546       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2547         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2548           // Compare X and Y.  Note that the predicate does not change.
2549           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
2550                                           Q, MaxRecurse-1))
2551             return V;
2552       }
2553       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2554       // too.  If not, then try to deduce the result of the comparison.
2555       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2556         // Compute the constant that would happen if we truncated to SrcTy then
2557         // reextended to DstTy.
2558         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2559         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2560 
2561         // If the re-extended constant didn't change then this is effectively
2562         // also a case of comparing two sign-extended values.
2563         if (RExt == CI && MaxRecurse)
2564           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
2565             return V;
2566 
2567         // Otherwise the upper bits of LHS are all equal, while RHS has varying
2568         // bits there.  Use this to work out the result of the comparison.
2569         if (RExt != CI) {
2570           switch (Pred) {
2571           default: llvm_unreachable("Unknown ICmp predicate!");
2572           case ICmpInst::ICMP_EQ:
2573             return ConstantInt::getFalse(CI->getContext());
2574           case ICmpInst::ICMP_NE:
2575             return ConstantInt::getTrue(CI->getContext());
2576 
2577           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
2578           // LHS >s RHS.
2579           case ICmpInst::ICMP_SGT:
2580           case ICmpInst::ICMP_SGE:
2581             return CI->getValue().isNegative() ?
2582               ConstantInt::getTrue(CI->getContext()) :
2583               ConstantInt::getFalse(CI->getContext());
2584           case ICmpInst::ICMP_SLT:
2585           case ICmpInst::ICMP_SLE:
2586             return CI->getValue().isNegative() ?
2587               ConstantInt::getFalse(CI->getContext()) :
2588               ConstantInt::getTrue(CI->getContext());
2589 
2590           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
2591           // LHS >u RHS.
2592           case ICmpInst::ICMP_UGT:
2593           case ICmpInst::ICMP_UGE:
2594             // Comparison is true iff the LHS <s 0.
2595             if (MaxRecurse)
2596               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2597                                               Constant::getNullValue(SrcTy),
2598                                               Q, MaxRecurse-1))
2599                 return V;
2600             break;
2601           case ICmpInst::ICMP_ULT:
2602           case ICmpInst::ICMP_ULE:
2603             // Comparison is true iff the LHS >=s 0.
2604             if (MaxRecurse)
2605               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2606                                               Constant::getNullValue(SrcTy),
2607                                               Q, MaxRecurse-1))
2608                 return V;
2609             break;
2610           }
2611         }
2612       }
2613     }
2614   }
2615 
2616   // icmp eq|ne X, Y -> false|true if X != Y
2617   if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2618       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
2619     LLVMContext &Ctx = LHS->getType()->getContext();
2620     return Pred == ICmpInst::ICMP_NE ?
2621       ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
2622   }
2623 
2624   // Special logic for binary operators.
2625   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2626   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2627   if (MaxRecurse && (LBO || RBO)) {
2628     // Analyze the case when either LHS or RHS is an add instruction.
2629     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2630     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2631     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2632     if (LBO && LBO->getOpcode() == Instruction::Add) {
2633       A = LBO->getOperand(0); B = LBO->getOperand(1);
2634       NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2635         (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2636         (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2637     }
2638     if (RBO && RBO->getOpcode() == Instruction::Add) {
2639       C = RBO->getOperand(0); D = RBO->getOperand(1);
2640       NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2641         (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2642         (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2643     }
2644 
2645     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2646     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2647       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2648                                       Constant::getNullValue(RHS->getType()),
2649                                       Q, MaxRecurse-1))
2650         return V;
2651 
2652     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2653     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2654       if (Value *V = SimplifyICmpInst(Pred,
2655                                       Constant::getNullValue(LHS->getType()),
2656                                       C == LHS ? D : C, Q, MaxRecurse-1))
2657         return V;
2658 
2659     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2660     if (A && C && (A == C || A == D || B == C || B == D) &&
2661         NoLHSWrapProblem && NoRHSWrapProblem) {
2662       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2663       Value *Y, *Z;
2664       if (A == C) {
2665         // C + B == C + D  ->  B == D
2666         Y = B;
2667         Z = D;
2668       } else if (A == D) {
2669         // D + B == C + D  ->  B == C
2670         Y = B;
2671         Z = C;
2672       } else if (B == C) {
2673         // A + C == C + D  ->  A == D
2674         Y = A;
2675         Z = D;
2676       } else {
2677         assert(B == D);
2678         // A + D == C + D  ->  A == C
2679         Y = A;
2680         Z = C;
2681       }
2682       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
2683         return V;
2684     }
2685   }
2686 
2687   {
2688     Value *Y = nullptr;
2689     // icmp pred (or X, Y), X
2690     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2691       if (Pred == ICmpInst::ICMP_ULT)
2692         return getFalse(ITy);
2693       if (Pred == ICmpInst::ICMP_UGE)
2694         return getTrue(ITy);
2695 
2696       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2697         bool RHSKnownNonNegative, RHSKnownNegative;
2698         bool YKnownNonNegative, YKnownNegative;
2699         ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0,
2700                        Q.AC, Q.CxtI, Q.DT);
2701         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2702                        Q.CxtI, Q.DT);
2703         if (RHSKnownNonNegative && YKnownNegative)
2704           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2705         if (RHSKnownNegative || YKnownNonNegative)
2706           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2707       }
2708     }
2709     // icmp pred X, (or X, Y)
2710     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2711       if (Pred == ICmpInst::ICMP_ULE)
2712         return getTrue(ITy);
2713       if (Pred == ICmpInst::ICMP_UGT)
2714         return getFalse(ITy);
2715 
2716       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2717         bool LHSKnownNonNegative, LHSKnownNegative;
2718         bool YKnownNonNegative, YKnownNegative;
2719         ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0,
2720                        Q.AC, Q.CxtI, Q.DT);
2721         ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC,
2722                        Q.CxtI, Q.DT);
2723         if (LHSKnownNonNegative && YKnownNegative)
2724           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2725         if (LHSKnownNegative || YKnownNonNegative)
2726           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2727       }
2728     }
2729   }
2730 
2731   // icmp pred (and X, Y), X
2732   if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)),
2733                                     m_And(m_Specific(RHS), m_Value())))) {
2734     if (Pred == ICmpInst::ICMP_UGT)
2735       return getFalse(ITy);
2736     if (Pred == ICmpInst::ICMP_ULE)
2737       return getTrue(ITy);
2738   }
2739   // icmp pred X, (and X, Y)
2740   if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)),
2741                                     m_And(m_Specific(LHS), m_Value())))) {
2742     if (Pred == ICmpInst::ICMP_UGE)
2743       return getTrue(ITy);
2744     if (Pred == ICmpInst::ICMP_ULT)
2745       return getFalse(ITy);
2746   }
2747 
2748   // 0 - (zext X) pred C
2749   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2750     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2751       if (RHSC->getValue().isStrictlyPositive()) {
2752         if (Pred == ICmpInst::ICMP_SLT)
2753           return ConstantInt::getTrue(RHSC->getContext());
2754         if (Pred == ICmpInst::ICMP_SGE)
2755           return ConstantInt::getFalse(RHSC->getContext());
2756         if (Pred == ICmpInst::ICMP_EQ)
2757           return ConstantInt::getFalse(RHSC->getContext());
2758         if (Pred == ICmpInst::ICMP_NE)
2759           return ConstantInt::getTrue(RHSC->getContext());
2760       }
2761       if (RHSC->getValue().isNonNegative()) {
2762         if (Pred == ICmpInst::ICMP_SLE)
2763           return ConstantInt::getTrue(RHSC->getContext());
2764         if (Pred == ICmpInst::ICMP_SGT)
2765           return ConstantInt::getFalse(RHSC->getContext());
2766       }
2767     }
2768   }
2769 
2770   // icmp pred (urem X, Y), Y
2771   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2772     bool KnownNonNegative, KnownNegative;
2773     switch (Pred) {
2774     default:
2775       break;
2776     case ICmpInst::ICMP_SGT:
2777     case ICmpInst::ICMP_SGE:
2778       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2779                      Q.CxtI, Q.DT);
2780       if (!KnownNonNegative)
2781         break;
2782       LLVM_FALLTHROUGH;
2783     case ICmpInst::ICMP_EQ:
2784     case ICmpInst::ICMP_UGT:
2785     case ICmpInst::ICMP_UGE:
2786       return getFalse(ITy);
2787     case ICmpInst::ICMP_SLT:
2788     case ICmpInst::ICMP_SLE:
2789       ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2790                      Q.CxtI, Q.DT);
2791       if (!KnownNonNegative)
2792         break;
2793       LLVM_FALLTHROUGH;
2794     case ICmpInst::ICMP_NE:
2795     case ICmpInst::ICMP_ULT:
2796     case ICmpInst::ICMP_ULE:
2797       return getTrue(ITy);
2798     }
2799   }
2800 
2801   // icmp pred X, (urem Y, X)
2802   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2803     bool KnownNonNegative, KnownNegative;
2804     switch (Pred) {
2805     default:
2806       break;
2807     case ICmpInst::ICMP_SGT:
2808     case ICmpInst::ICMP_SGE:
2809       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2810                      Q.CxtI, Q.DT);
2811       if (!KnownNonNegative)
2812         break;
2813       LLVM_FALLTHROUGH;
2814     case ICmpInst::ICMP_NE:
2815     case ICmpInst::ICMP_UGT:
2816     case ICmpInst::ICMP_UGE:
2817       return getTrue(ITy);
2818     case ICmpInst::ICMP_SLT:
2819     case ICmpInst::ICMP_SLE:
2820       ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC,
2821                      Q.CxtI, Q.DT);
2822       if (!KnownNonNegative)
2823         break;
2824       LLVM_FALLTHROUGH;
2825     case ICmpInst::ICMP_EQ:
2826     case ICmpInst::ICMP_ULT:
2827     case ICmpInst::ICMP_ULE:
2828       return getFalse(ITy);
2829     }
2830   }
2831 
2832   // x >> y <=u x
2833   // x udiv y <=u x.
2834   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2835               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2836     // icmp pred (X op Y), X
2837     if (Pred == ICmpInst::ICMP_UGT)
2838       return getFalse(ITy);
2839     if (Pred == ICmpInst::ICMP_ULE)
2840       return getTrue(ITy);
2841   }
2842 
2843   // handle:
2844   //   CI2 << X == CI
2845   //   CI2 << X != CI
2846   //
2847   //   where CI2 is a power of 2 and CI isn't
2848   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2849     const APInt *CI2Val, *CIVal = &CI->getValue();
2850     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2851         CI2Val->isPowerOf2()) {
2852       if (!CIVal->isPowerOf2()) {
2853         // CI2 << X can equal zero in some circumstances,
2854         // this simplification is unsafe if CI is zero.
2855         //
2856         // We know it is safe if:
2857         // - The shift is nsw, we can't shift out the one bit.
2858         // - The shift is nuw, we can't shift out the one bit.
2859         // - CI2 is one
2860         // - CI isn't zero
2861         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2862             *CI2Val == 1 || !CI->isZero()) {
2863           if (Pred == ICmpInst::ICMP_EQ)
2864             return ConstantInt::getFalse(RHS->getContext());
2865           if (Pred == ICmpInst::ICMP_NE)
2866             return ConstantInt::getTrue(RHS->getContext());
2867         }
2868       }
2869       if (CIVal->isSignBit() && *CI2Val == 1) {
2870         if (Pred == ICmpInst::ICMP_UGT)
2871           return ConstantInt::getFalse(RHS->getContext());
2872         if (Pred == ICmpInst::ICMP_ULE)
2873           return ConstantInt::getTrue(RHS->getContext());
2874       }
2875     }
2876   }
2877 
2878   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2879       LBO->getOperand(1) == RBO->getOperand(1)) {
2880     switch (LBO->getOpcode()) {
2881     default: break;
2882     case Instruction::UDiv:
2883     case Instruction::LShr:
2884       if (ICmpInst::isSigned(Pred))
2885         break;
2886       LLVM_FALLTHROUGH;
2887     case Instruction::SDiv:
2888     case Instruction::AShr:
2889       if (!LBO->isExact() || !RBO->isExact())
2890         break;
2891       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2892                                       RBO->getOperand(0), Q, MaxRecurse-1))
2893         return V;
2894       break;
2895     case Instruction::Shl: {
2896       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2897       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2898       if (!NUW && !NSW)
2899         break;
2900       if (!NSW && ICmpInst::isSigned(Pred))
2901         break;
2902       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2903                                       RBO->getOperand(0), Q, MaxRecurse-1))
2904         return V;
2905       break;
2906     }
2907     }
2908   }
2909 
2910   // Simplify comparisons involving max/min.
2911   Value *A, *B;
2912   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2913   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2914 
2915   // Signed variants on "max(a,b)>=a -> true".
2916   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2917     if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
2918     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2919     // We analyze this as smax(A, B) pred A.
2920     P = Pred;
2921   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2922              (A == LHS || B == LHS)) {
2923     if (A != LHS) std::swap(A, B); // A pred smax(A, B).
2924     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2925     // We analyze this as smax(A, B) swapped-pred A.
2926     P = CmpInst::getSwappedPredicate(Pred);
2927   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2928              (A == RHS || B == RHS)) {
2929     if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
2930     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2931     // We analyze this as smax(-A, -B) swapped-pred -A.
2932     // Note that we do not need to actually form -A or -B thanks to EqP.
2933     P = CmpInst::getSwappedPredicate(Pred);
2934   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2935              (A == LHS || B == LHS)) {
2936     if (A != LHS) std::swap(A, B); // A pred smin(A, B).
2937     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2938     // We analyze this as smax(-A, -B) pred -A.
2939     // Note that we do not need to actually form -A or -B thanks to EqP.
2940     P = Pred;
2941   }
2942   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2943     // Cases correspond to "max(A, B) p A".
2944     switch (P) {
2945     default:
2946       break;
2947     case CmpInst::ICMP_EQ:
2948     case CmpInst::ICMP_SLE:
2949       // Equivalent to "A EqP B".  This may be the same as the condition tested
2950       // in the max/min; if so, we can just return that.
2951       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2952         return V;
2953       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2954         return V;
2955       // Otherwise, see if "A EqP B" simplifies.
2956       if (MaxRecurse)
2957         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
2958           return V;
2959       break;
2960     case CmpInst::ICMP_NE:
2961     case CmpInst::ICMP_SGT: {
2962       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2963       // Equivalent to "A InvEqP B".  This may be the same as the condition
2964       // tested in the max/min; if so, we can just return that.
2965       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2966         return V;
2967       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2968         return V;
2969       // Otherwise, see if "A InvEqP B" simplifies.
2970       if (MaxRecurse)
2971         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
2972           return V;
2973       break;
2974     }
2975     case CmpInst::ICMP_SGE:
2976       // Always true.
2977       return getTrue(ITy);
2978     case CmpInst::ICMP_SLT:
2979       // Always false.
2980       return getFalse(ITy);
2981     }
2982   }
2983 
2984   // Unsigned variants on "max(a,b)>=a -> true".
2985   P = CmpInst::BAD_ICMP_PREDICATE;
2986   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2987     if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
2988     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2989     // We analyze this as umax(A, B) pred A.
2990     P = Pred;
2991   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2992              (A == LHS || B == LHS)) {
2993     if (A != LHS) std::swap(A, B); // A pred umax(A, B).
2994     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2995     // We analyze this as umax(A, B) swapped-pred A.
2996     P = CmpInst::getSwappedPredicate(Pred);
2997   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2998              (A == RHS || B == RHS)) {
2999     if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
3000     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3001     // We analyze this as umax(-A, -B) swapped-pred -A.
3002     // Note that we do not need to actually form -A or -B thanks to EqP.
3003     P = CmpInst::getSwappedPredicate(Pred);
3004   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3005              (A == LHS || B == LHS)) {
3006     if (A != LHS) std::swap(A, B); // A pred umin(A, B).
3007     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3008     // We analyze this as umax(-A, -B) pred -A.
3009     // Note that we do not need to actually form -A or -B thanks to EqP.
3010     P = Pred;
3011   }
3012   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3013     // Cases correspond to "max(A, B) p A".
3014     switch (P) {
3015     default:
3016       break;
3017     case CmpInst::ICMP_EQ:
3018     case CmpInst::ICMP_ULE:
3019       // Equivalent to "A EqP B".  This may be the same as the condition tested
3020       // in the max/min; if so, we can just return that.
3021       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3022         return V;
3023       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3024         return V;
3025       // Otherwise, see if "A EqP B" simplifies.
3026       if (MaxRecurse)
3027         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
3028           return V;
3029       break;
3030     case CmpInst::ICMP_NE:
3031     case CmpInst::ICMP_UGT: {
3032       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3033       // Equivalent to "A InvEqP B".  This may be the same as the condition
3034       // tested in the max/min; if so, we can just return that.
3035       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3036         return V;
3037       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3038         return V;
3039       // Otherwise, see if "A InvEqP B" simplifies.
3040       if (MaxRecurse)
3041         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
3042           return V;
3043       break;
3044     }
3045     case CmpInst::ICMP_UGE:
3046       // Always true.
3047       return getTrue(ITy);
3048     case CmpInst::ICMP_ULT:
3049       // Always false.
3050       return getFalse(ITy);
3051     }
3052   }
3053 
3054   // Variants on "max(x,y) >= min(x,z)".
3055   Value *C, *D;
3056   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3057       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3058       (A == C || A == D || B == C || B == D)) {
3059     // max(x, ?) pred min(x, ?).
3060     if (Pred == CmpInst::ICMP_SGE)
3061       // Always true.
3062       return getTrue(ITy);
3063     if (Pred == CmpInst::ICMP_SLT)
3064       // Always false.
3065       return getFalse(ITy);
3066   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3067              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3068              (A == C || A == D || B == C || B == D)) {
3069     // min(x, ?) pred max(x, ?).
3070     if (Pred == CmpInst::ICMP_SLE)
3071       // Always true.
3072       return getTrue(ITy);
3073     if (Pred == CmpInst::ICMP_SGT)
3074       // Always false.
3075       return getFalse(ITy);
3076   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3077              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3078              (A == C || A == D || B == C || B == D)) {
3079     // max(x, ?) pred min(x, ?).
3080     if (Pred == CmpInst::ICMP_UGE)
3081       // Always true.
3082       return getTrue(ITy);
3083     if (Pred == CmpInst::ICMP_ULT)
3084       // Always false.
3085       return getFalse(ITy);
3086   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3087              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3088              (A == C || A == D || B == C || B == D)) {
3089     // min(x, ?) pred max(x, ?).
3090     if (Pred == CmpInst::ICMP_ULE)
3091       // Always true.
3092       return getTrue(ITy);
3093     if (Pred == CmpInst::ICMP_UGT)
3094       // Always false.
3095       return getFalse(ITy);
3096   }
3097 
3098   // Simplify comparisons of related pointers using a powerful, recursive
3099   // GEP-walk when we have target data available..
3100   if (LHS->getType()->isPointerTy())
3101     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3102       return C;
3103   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3104     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3105       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3106               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3107           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3108               Q.DL.getTypeSizeInBits(CRHS->getType()))
3109         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3110                                          CLHS->getPointerOperand(),
3111                                          CRHS->getPointerOperand()))
3112           return C;
3113 
3114   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3115     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3116       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3117           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3118           (ICmpInst::isEquality(Pred) ||
3119            (GLHS->isInBounds() && GRHS->isInBounds() &&
3120             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3121         // The bases are equal and the indices are constant.  Build a constant
3122         // expression GEP with the same indices and a null base pointer to see
3123         // what constant folding can make out of it.
3124         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3125         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3126         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3127             GLHS->getSourceElementType(), Null, IndicesLHS);
3128 
3129         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3130         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3131             GLHS->getSourceElementType(), Null, IndicesRHS);
3132         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3133       }
3134     }
3135   }
3136 
3137   // If a bit is known to be zero for A and known to be one for B,
3138   // then A and B cannot be equal.
3139   if (ICmpInst::isEquality(Pred)) {
3140     const APInt *RHSVal;
3141     if (match(RHS, m_APInt(RHSVal))) {
3142       unsigned BitWidth = RHSVal->getBitWidth();
3143       APInt LHSKnownZero(BitWidth, 0);
3144       APInt LHSKnownOne(BitWidth, 0);
3145       computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC,
3146                        Q.CxtI, Q.DT);
3147       if (((LHSKnownZero & *RHSVal) != 0) || ((LHSKnownOne & ~(*RHSVal)) != 0))
3148         return Pred == ICmpInst::ICMP_EQ ? ConstantInt::getFalse(ITy)
3149                                          : ConstantInt::getTrue(ITy);
3150     }
3151   }
3152 
3153   // If the comparison is with the result of a select instruction, check whether
3154   // comparing with either branch of the select always yields the same value.
3155   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3156     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3157       return V;
3158 
3159   // If the comparison is with the result of a phi instruction, check whether
3160   // doing the compare with each incoming phi value yields a common result.
3161   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3162     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3163       return V;
3164 
3165   return nullptr;
3166 }
3167 
3168 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3169                               const DataLayout &DL,
3170                               const TargetLibraryInfo *TLI,
3171                               const DominatorTree *DT, AssumptionCache *AC,
3172                               const Instruction *CxtI) {
3173   return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3174                             RecursionLimit);
3175 }
3176 
3177 /// Given operands for an FCmpInst, see if we can fold the result.
3178 /// If not, this returns null.
3179 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3180                                FastMathFlags FMF, const Query &Q,
3181                                unsigned MaxRecurse) {
3182   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3183   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3184 
3185   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3186     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3187       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3188 
3189     // If we have a constant, make sure it is on the RHS.
3190     std::swap(LHS, RHS);
3191     Pred = CmpInst::getSwappedPredicate(Pred);
3192   }
3193 
3194   // Fold trivial predicates.
3195   Type *RetTy = GetCompareTy(LHS);
3196   if (Pred == FCmpInst::FCMP_FALSE)
3197     return getFalse(RetTy);
3198   if (Pred == FCmpInst::FCMP_TRUE)
3199     return getTrue(RetTy);
3200 
3201   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3202   if (FMF.noNaNs()) {
3203     if (Pred == FCmpInst::FCMP_UNO)
3204       return getFalse(RetTy);
3205     if (Pred == FCmpInst::FCMP_ORD)
3206       return getTrue(RetTy);
3207   }
3208 
3209   // fcmp pred x, undef  and  fcmp pred undef, x
3210   // fold to true if unordered, false if ordered
3211   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3212     // Choosing NaN for the undef will always make unordered comparison succeed
3213     // and ordered comparison fail.
3214     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3215   }
3216 
3217   // fcmp x,x -> true/false.  Not all compares are foldable.
3218   if (LHS == RHS) {
3219     if (CmpInst::isTrueWhenEqual(Pred))
3220       return getTrue(RetTy);
3221     if (CmpInst::isFalseWhenEqual(Pred))
3222       return getFalse(RetTy);
3223   }
3224 
3225   // Handle fcmp with constant RHS
3226   const ConstantFP *CFP = nullptr;
3227   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3228     if (RHS->getType()->isVectorTy())
3229       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3230     else
3231       CFP = dyn_cast<ConstantFP>(RHSC);
3232   }
3233   if (CFP) {
3234     // If the constant is a nan, see if we can fold the comparison based on it.
3235     if (CFP->getValueAPF().isNaN()) {
3236       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3237         return getFalse(RetTy);
3238       assert(FCmpInst::isUnordered(Pred) &&
3239              "Comparison must be either ordered or unordered!");
3240       // True if unordered.
3241       return getTrue(RetTy);
3242     }
3243     // Check whether the constant is an infinity.
3244     if (CFP->getValueAPF().isInfinity()) {
3245       if (CFP->getValueAPF().isNegative()) {
3246         switch (Pred) {
3247         case FCmpInst::FCMP_OLT:
3248           // No value is ordered and less than negative infinity.
3249           return getFalse(RetTy);
3250         case FCmpInst::FCMP_UGE:
3251           // All values are unordered with or at least negative infinity.
3252           return getTrue(RetTy);
3253         default:
3254           break;
3255         }
3256       } else {
3257         switch (Pred) {
3258         case FCmpInst::FCMP_OGT:
3259           // No value is ordered and greater than infinity.
3260           return getFalse(RetTy);
3261         case FCmpInst::FCMP_ULE:
3262           // All values are unordered with and at most infinity.
3263           return getTrue(RetTy);
3264         default:
3265           break;
3266         }
3267       }
3268     }
3269     if (CFP->getValueAPF().isZero()) {
3270       switch (Pred) {
3271       case FCmpInst::FCMP_UGE:
3272         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3273           return getTrue(RetTy);
3274         break;
3275       case FCmpInst::FCMP_OLT:
3276         // X < 0
3277         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3278           return getFalse(RetTy);
3279         break;
3280       default:
3281         break;
3282       }
3283     }
3284   }
3285 
3286   // If the comparison is with the result of a select instruction, check whether
3287   // comparing with either branch of the select always yields the same value.
3288   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3289     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3290       return V;
3291 
3292   // If the comparison is with the result of a phi instruction, check whether
3293   // doing the compare with each incoming phi value yields a common result.
3294   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3295     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3296       return V;
3297 
3298   return nullptr;
3299 }
3300 
3301 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3302                               FastMathFlags FMF, const DataLayout &DL,
3303                               const TargetLibraryInfo *TLI,
3304                               const DominatorTree *DT, AssumptionCache *AC,
3305                               const Instruction *CxtI) {
3306   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF,
3307                             Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3308 }
3309 
3310 /// See if V simplifies when its operand Op is replaced with RepOp.
3311 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3312                                            const Query &Q,
3313                                            unsigned MaxRecurse) {
3314   // Trivial replacement.
3315   if (V == Op)
3316     return RepOp;
3317 
3318   auto *I = dyn_cast<Instruction>(V);
3319   if (!I)
3320     return nullptr;
3321 
3322   // If this is a binary operator, try to simplify it with the replaced op.
3323   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3324     // Consider:
3325     //   %cmp = icmp eq i32 %x, 2147483647
3326     //   %add = add nsw i32 %x, 1
3327     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3328     //
3329     // We can't replace %sel with %add unless we strip away the flags.
3330     if (isa<OverflowingBinaryOperator>(B))
3331       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3332         return nullptr;
3333     if (isa<PossiblyExactOperator>(B))
3334       if (B->isExact())
3335         return nullptr;
3336 
3337     if (MaxRecurse) {
3338       if (B->getOperand(0) == Op)
3339         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3340                              MaxRecurse - 1);
3341       if (B->getOperand(1) == Op)
3342         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3343                              MaxRecurse - 1);
3344     }
3345   }
3346 
3347   // Same for CmpInsts.
3348   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3349     if (MaxRecurse) {
3350       if (C->getOperand(0) == Op)
3351         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3352                                MaxRecurse - 1);
3353       if (C->getOperand(1) == Op)
3354         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3355                                MaxRecurse - 1);
3356     }
3357   }
3358 
3359   // TODO: We could hand off more cases to instsimplify here.
3360 
3361   // If all operands are constant after substituting Op for RepOp then we can
3362   // constant fold the instruction.
3363   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3364     // Build a list of all constant operands.
3365     SmallVector<Constant *, 8> ConstOps;
3366     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3367       if (I->getOperand(i) == Op)
3368         ConstOps.push_back(CRepOp);
3369       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3370         ConstOps.push_back(COp);
3371       else
3372         break;
3373     }
3374 
3375     // All operands were constants, fold it.
3376     if (ConstOps.size() == I->getNumOperands()) {
3377       if (CmpInst *C = dyn_cast<CmpInst>(I))
3378         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3379                                                ConstOps[1], Q.DL, Q.TLI);
3380 
3381       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3382         if (!LI->isVolatile())
3383           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3384 
3385       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3386     }
3387   }
3388 
3389   return nullptr;
3390 }
3391 
3392 /// Try to simplify a select instruction when its condition operand is an
3393 /// integer comparison where one operand of the compare is a constant.
3394 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3395                                     const APInt *Y, bool TrueWhenUnset) {
3396   const APInt *C;
3397 
3398   // (X & Y) == 0 ? X & ~Y : X  --> X
3399   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3400   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3401       *Y == ~*C)
3402     return TrueWhenUnset ? FalseVal : TrueVal;
3403 
3404   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3405   // (X & Y) != 0 ? X : X & ~Y  --> X
3406   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3407       *Y == ~*C)
3408     return TrueWhenUnset ? FalseVal : TrueVal;
3409 
3410   if (Y->isPowerOf2()) {
3411     // (X & Y) == 0 ? X | Y : X  --> X | Y
3412     // (X & Y) != 0 ? X | Y : X  --> X
3413     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3414         *Y == *C)
3415       return TrueWhenUnset ? TrueVal : FalseVal;
3416 
3417     // (X & Y) == 0 ? X : X | Y  --> X
3418     // (X & Y) != 0 ? X : X | Y  --> X | Y
3419     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3420         *Y == *C)
3421       return TrueWhenUnset ? TrueVal : FalseVal;
3422   }
3423 
3424   return nullptr;
3425 }
3426 
3427 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3428 /// eq/ne.
3429 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal,
3430                                            Value *FalseVal,
3431                                            bool TrueWhenUnset) {
3432   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
3433   if (!BitWidth)
3434     return nullptr;
3435 
3436   APInt MinSignedValue;
3437   Value *X;
3438   if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) {
3439     // icmp slt (trunc X), 0  <--> icmp ne (and X, C), 0
3440     // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0
3441     unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits();
3442     MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth);
3443   } else {
3444     // icmp slt X, 0  <--> icmp ne (and X, C), 0
3445     // icmp sgt X, -1 <--> icmp eq (and X, C), 0
3446     X = CmpLHS;
3447     MinSignedValue = APInt::getSignedMinValue(BitWidth);
3448   }
3449 
3450   if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue,
3451                                        TrueWhenUnset))
3452     return V;
3453 
3454   return nullptr;
3455 }
3456 
3457 /// Try to simplify a select instruction when its condition operand is an
3458 /// integer comparison.
3459 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3460                                          Value *FalseVal, const Query &Q,
3461                                          unsigned MaxRecurse) {
3462   ICmpInst::Predicate Pred;
3463   Value *CmpLHS, *CmpRHS;
3464   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3465     return nullptr;
3466 
3467   // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring
3468   // decomposeBitTestICmp() might help.
3469   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3470     Value *X;
3471     const APInt *Y;
3472     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3473       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3474                                            Pred == ICmpInst::ICMP_EQ))
3475         return V;
3476   } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
3477     // Comparing signed-less-than 0 checks if the sign bit is set.
3478     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3479                                                 false))
3480       return V;
3481   } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
3482     // Comparing signed-greater-than -1 checks if the sign bit is not set.
3483     if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal,
3484                                                 true))
3485       return V;
3486   }
3487 
3488   if (CondVal->hasOneUse()) {
3489     const APInt *C;
3490     if (match(CmpRHS, m_APInt(C))) {
3491       // X < MIN ? T : F  -->  F
3492       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3493         return FalseVal;
3494       // X < MIN ? T : F  -->  F
3495       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3496         return FalseVal;
3497       // X > MAX ? T : F  -->  F
3498       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3499         return FalseVal;
3500       // X > MAX ? T : F  -->  F
3501       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3502         return FalseVal;
3503     }
3504   }
3505 
3506   // If we have an equality comparison, then we know the value in one of the
3507   // arms of the select. See if substituting this value into the arm and
3508   // simplifying the result yields the same value as the other arm.
3509   if (Pred == ICmpInst::ICMP_EQ) {
3510     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3511             TrueVal ||
3512         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3513             TrueVal)
3514       return FalseVal;
3515     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3516             FalseVal ||
3517         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3518             FalseVal)
3519       return FalseVal;
3520   } else if (Pred == ICmpInst::ICMP_NE) {
3521     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3522             FalseVal ||
3523         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3524             FalseVal)
3525       return TrueVal;
3526     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3527             TrueVal ||
3528         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3529             TrueVal)
3530       return TrueVal;
3531   }
3532 
3533   return nullptr;
3534 }
3535 
3536 /// Given operands for a SelectInst, see if we can fold the result.
3537 /// If not, this returns null.
3538 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3539                                  Value *FalseVal, const Query &Q,
3540                                  unsigned MaxRecurse) {
3541   // select true, X, Y  -> X
3542   // select false, X, Y -> Y
3543   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3544     if (CB->isAllOnesValue())
3545       return TrueVal;
3546     if (CB->isNullValue())
3547       return FalseVal;
3548   }
3549 
3550   // select C, X, X -> X
3551   if (TrueVal == FalseVal)
3552     return TrueVal;
3553 
3554   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3555     if (isa<Constant>(TrueVal))
3556       return TrueVal;
3557     return FalseVal;
3558   }
3559   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3560     return FalseVal;
3561   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3562     return TrueVal;
3563 
3564   if (Value *V =
3565           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3566     return V;
3567 
3568   return nullptr;
3569 }
3570 
3571 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3572                                 const DataLayout &DL,
3573                                 const TargetLibraryInfo *TLI,
3574                                 const DominatorTree *DT, AssumptionCache *AC,
3575                                 const Instruction *CxtI) {
3576   return ::SimplifySelectInst(Cond, TrueVal, FalseVal,
3577                               Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3578 }
3579 
3580 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3581 /// If not, this returns null.
3582 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3583                               const Query &Q, unsigned) {
3584   // The type of the GEP pointer operand.
3585   unsigned AS =
3586       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3587 
3588   // getelementptr P -> P.
3589   if (Ops.size() == 1)
3590     return Ops[0];
3591 
3592   // Compute the (pointer) type returned by the GEP instruction.
3593   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3594   Type *GEPTy = PointerType::get(LastType, AS);
3595   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3596     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3597 
3598   if (isa<UndefValue>(Ops[0]))
3599     return UndefValue::get(GEPTy);
3600 
3601   if (Ops.size() == 2) {
3602     // getelementptr P, 0 -> P.
3603     if (match(Ops[1], m_Zero()))
3604       return Ops[0];
3605 
3606     Type *Ty = SrcTy;
3607     if (Ty->isSized()) {
3608       Value *P;
3609       uint64_t C;
3610       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3611       // getelementptr P, N -> P if P points to a type of zero size.
3612       if (TyAllocSize == 0)
3613         return Ops[0];
3614 
3615       // The following transforms are only safe if the ptrtoint cast
3616       // doesn't truncate the pointers.
3617       if (Ops[1]->getType()->getScalarSizeInBits() ==
3618           Q.DL.getPointerSizeInBits(AS)) {
3619         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3620           if (match(P, m_Zero()))
3621             return Constant::getNullValue(GEPTy);
3622           Value *Temp;
3623           if (match(P, m_PtrToInt(m_Value(Temp))))
3624             if (Temp->getType() == GEPTy)
3625               return Temp;
3626           return nullptr;
3627         };
3628 
3629         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3630         if (TyAllocSize == 1 &&
3631             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3632           if (Value *R = PtrToIntOrZero(P))
3633             return R;
3634 
3635         // getelementptr V, (ashr (sub P, V), C) -> Q
3636         // if P points to a type of size 1 << C.
3637         if (match(Ops[1],
3638                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3639                          m_ConstantInt(C))) &&
3640             TyAllocSize == 1ULL << C)
3641           if (Value *R = PtrToIntOrZero(P))
3642             return R;
3643 
3644         // getelementptr V, (sdiv (sub P, V), C) -> Q
3645         // if P points to a type of size C.
3646         if (match(Ops[1],
3647                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3648                          m_SpecificInt(TyAllocSize))))
3649           if (Value *R = PtrToIntOrZero(P))
3650             return R;
3651       }
3652     }
3653   }
3654 
3655   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3656       all_of(Ops.slice(1).drop_back(1),
3657              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3658     unsigned PtrWidth =
3659         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3660     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3661       APInt BasePtrOffset(PtrWidth, 0);
3662       Value *StrippedBasePtr =
3663           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3664                                                             BasePtrOffset);
3665 
3666       // gep (gep V, C), (sub 0, V) -> C
3667       if (match(Ops.back(),
3668                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3669         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3670         return ConstantExpr::getIntToPtr(CI, GEPTy);
3671       }
3672       // gep (gep V, C), (xor V, -1) -> C-1
3673       if (match(Ops.back(),
3674                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3675         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3676         return ConstantExpr::getIntToPtr(CI, GEPTy);
3677       }
3678     }
3679   }
3680 
3681   // Check to see if this is constant foldable.
3682   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3683     if (!isa<Constant>(Ops[i]))
3684       return nullptr;
3685 
3686   return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3687                                         Ops.slice(1));
3688 }
3689 
3690 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3691                              const DataLayout &DL,
3692                              const TargetLibraryInfo *TLI,
3693                              const DominatorTree *DT, AssumptionCache *AC,
3694                              const Instruction *CxtI) {
3695   return ::SimplifyGEPInst(SrcTy, Ops,
3696                            Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
3697 }
3698 
3699 /// Given operands for an InsertValueInst, see if we can fold the result.
3700 /// If not, this returns null.
3701 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3702                                       ArrayRef<unsigned> Idxs, const Query &Q,
3703                                       unsigned) {
3704   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3705     if (Constant *CVal = dyn_cast<Constant>(Val))
3706       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3707 
3708   // insertvalue x, undef, n -> x
3709   if (match(Val, m_Undef()))
3710     return Agg;
3711 
3712   // insertvalue x, (extractvalue y, n), n
3713   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3714     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3715         EV->getIndices() == Idxs) {
3716       // insertvalue undef, (extractvalue y, n), n -> y
3717       if (match(Agg, m_Undef()))
3718         return EV->getAggregateOperand();
3719 
3720       // insertvalue y, (extractvalue y, n), n -> y
3721       if (Agg == EV->getAggregateOperand())
3722         return Agg;
3723     }
3724 
3725   return nullptr;
3726 }
3727 
3728 Value *llvm::SimplifyInsertValueInst(
3729     Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL,
3730     const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC,
3731     const Instruction *CxtI) {
3732   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI),
3733                                    RecursionLimit);
3734 }
3735 
3736 /// Given operands for an ExtractValueInst, see if we can fold the result.
3737 /// If not, this returns null.
3738 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3739                                        const Query &, unsigned) {
3740   if (auto *CAgg = dyn_cast<Constant>(Agg))
3741     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3742 
3743   // extractvalue x, (insertvalue y, elt, n), n -> elt
3744   unsigned NumIdxs = Idxs.size();
3745   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3746        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3747     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3748     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3749     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3750     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3751         Idxs.slice(0, NumCommonIdxs)) {
3752       if (NumIdxs == NumInsertValueIdxs)
3753         return IVI->getInsertedValueOperand();
3754       break;
3755     }
3756   }
3757 
3758   return nullptr;
3759 }
3760 
3761 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3762                                       const DataLayout &DL,
3763                                       const TargetLibraryInfo *TLI,
3764                                       const DominatorTree *DT,
3765                                       AssumptionCache *AC,
3766                                       const Instruction *CxtI) {
3767   return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI),
3768                                     RecursionLimit);
3769 }
3770 
3771 /// Given operands for an ExtractElementInst, see if we can fold the result.
3772 /// If not, this returns null.
3773 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &,
3774                                          unsigned) {
3775   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3776     if (auto *CIdx = dyn_cast<Constant>(Idx))
3777       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3778 
3779     // The index is not relevant if our vector is a splat.
3780     if (auto *Splat = CVec->getSplatValue())
3781       return Splat;
3782 
3783     if (isa<UndefValue>(Vec))
3784       return UndefValue::get(Vec->getType()->getVectorElementType());
3785   }
3786 
3787   // If extracting a specified index from the vector, see if we can recursively
3788   // find a previously computed scalar that was inserted into the vector.
3789   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3790     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3791       return Elt;
3792 
3793   return nullptr;
3794 }
3795 
3796 Value *llvm::SimplifyExtractElementInst(
3797     Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI,
3798     const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) {
3799   return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI),
3800                                       RecursionLimit);
3801 }
3802 
3803 /// See if we can fold the given phi. If not, returns null.
3804 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
3805   // If all of the PHI's incoming values are the same then replace the PHI node
3806   // with the common value.
3807   Value *CommonValue = nullptr;
3808   bool HasUndefInput = false;
3809   for (Value *Incoming : PN->incoming_values()) {
3810     // If the incoming value is the phi node itself, it can safely be skipped.
3811     if (Incoming == PN) continue;
3812     if (isa<UndefValue>(Incoming)) {
3813       // Remember that we saw an undef value, but otherwise ignore them.
3814       HasUndefInput = true;
3815       continue;
3816     }
3817     if (CommonValue && Incoming != CommonValue)
3818       return nullptr;  // Not the same, bail out.
3819     CommonValue = Incoming;
3820   }
3821 
3822   // If CommonValue is null then all of the incoming values were either undef or
3823   // equal to the phi node itself.
3824   if (!CommonValue)
3825     return UndefValue::get(PN->getType());
3826 
3827   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3828   // instruction, we cannot return X as the result of the PHI node unless it
3829   // dominates the PHI block.
3830   if (HasUndefInput)
3831     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3832 
3833   return CommonValue;
3834 }
3835 
3836 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3837                                Type *Ty, const Query &Q, unsigned MaxRecurse) {
3838   if (auto *C = dyn_cast<Constant>(Op))
3839     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3840 
3841   if (auto *CI = dyn_cast<CastInst>(Op)) {
3842     auto *Src = CI->getOperand(0);
3843     Type *SrcTy = Src->getType();
3844     Type *MidTy = CI->getType();
3845     Type *DstTy = Ty;
3846     if (Src->getType() == Ty) {
3847       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
3848       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
3849       Type *SrcIntPtrTy =
3850           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
3851       Type *MidIntPtrTy =
3852           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
3853       Type *DstIntPtrTy =
3854           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
3855       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
3856                                          SrcIntPtrTy, MidIntPtrTy,
3857                                          DstIntPtrTy) == Instruction::BitCast)
3858         return Src;
3859     }
3860   }
3861 
3862   // bitcast x -> x
3863   if (CastOpc == Instruction::BitCast)
3864     if (Op->getType() == Ty)
3865       return Op;
3866 
3867   return nullptr;
3868 }
3869 
3870 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
3871                               const DataLayout &DL,
3872                               const TargetLibraryInfo *TLI,
3873                               const DominatorTree *DT, AssumptionCache *AC,
3874                               const Instruction *CxtI) {
3875   return ::SimplifyCastInst(CastOpc, Op, Ty, Query(DL, TLI, DT, AC, CxtI),
3876                             RecursionLimit);
3877 }
3878 
3879 //=== Helper functions for higher up the class hierarchy.
3880 
3881 /// Given operands for a BinaryOperator, see if we can fold the result.
3882 /// If not, this returns null.
3883 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3884                             const Query &Q, unsigned MaxRecurse) {
3885   switch (Opcode) {
3886   case Instruction::Add:
3887     return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3888                            Q, MaxRecurse);
3889   case Instruction::FAdd:
3890     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3891 
3892   case Instruction::Sub:
3893     return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3894                            Q, MaxRecurse);
3895   case Instruction::FSub:
3896     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3897 
3898   case Instruction::Mul:  return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
3899   case Instruction::FMul:
3900     return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3901   case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
3902   case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
3903   case Instruction::FDiv:
3904       return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3905   case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
3906   case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
3907   case Instruction::FRem:
3908       return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3909   case Instruction::Shl:
3910     return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
3911                            Q, MaxRecurse);
3912   case Instruction::LShr:
3913     return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3914   case Instruction::AShr:
3915     return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
3916   case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
3917   case Instruction::Or:  return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
3918   case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
3919   default:
3920     if (Constant *CLHS = dyn_cast<Constant>(LHS))
3921       if (Constant *CRHS = dyn_cast<Constant>(RHS))
3922         return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
3923 
3924     // If the operation is associative, try some generic simplifications.
3925     if (Instruction::isAssociative(Opcode))
3926       if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
3927         return V;
3928 
3929     // If the operation is with the result of a select instruction check whether
3930     // operating on either branch of the select always yields the same value.
3931     if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3932       if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
3933         return V;
3934 
3935     // If the operation is with the result of a phi instruction, check whether
3936     // operating on all incoming values of the phi always yields the same value.
3937     if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3938       if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
3939         return V;
3940 
3941     return nullptr;
3942   }
3943 }
3944 
3945 /// Given operands for a BinaryOperator, see if we can fold the result.
3946 /// If not, this returns null.
3947 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
3948 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
3949 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3950                               const FastMathFlags &FMF, const Query &Q,
3951                               unsigned MaxRecurse) {
3952   switch (Opcode) {
3953   case Instruction::FAdd:
3954     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
3955   case Instruction::FSub:
3956     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
3957   case Instruction::FMul:
3958     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
3959   default:
3960     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
3961   }
3962 }
3963 
3964 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3965                            const DataLayout &DL, const TargetLibraryInfo *TLI,
3966                            const DominatorTree *DT, AssumptionCache *AC,
3967                            const Instruction *CxtI) {
3968   return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3969                          RecursionLimit);
3970 }
3971 
3972 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
3973                              const FastMathFlags &FMF, const DataLayout &DL,
3974                              const TargetLibraryInfo *TLI,
3975                              const DominatorTree *DT, AssumptionCache *AC,
3976                              const Instruction *CxtI) {
3977   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI),
3978                            RecursionLimit);
3979 }
3980 
3981 /// Given operands for a CmpInst, see if we can fold the result.
3982 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3983                               const Query &Q, unsigned MaxRecurse) {
3984   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
3985     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
3986   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
3987 }
3988 
3989 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3990                              const DataLayout &DL, const TargetLibraryInfo *TLI,
3991                              const DominatorTree *DT, AssumptionCache *AC,
3992                              const Instruction *CxtI) {
3993   return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI),
3994                            RecursionLimit);
3995 }
3996 
3997 static bool IsIdempotent(Intrinsic::ID ID) {
3998   switch (ID) {
3999   default: return false;
4000 
4001   // Unary idempotent: f(f(x)) = f(x)
4002   case Intrinsic::fabs:
4003   case Intrinsic::floor:
4004   case Intrinsic::ceil:
4005   case Intrinsic::trunc:
4006   case Intrinsic::rint:
4007   case Intrinsic::nearbyint:
4008   case Intrinsic::round:
4009     return true;
4010   }
4011 }
4012 
4013 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4014                                    const DataLayout &DL) {
4015   GlobalValue *PtrSym;
4016   APInt PtrOffset;
4017   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4018     return nullptr;
4019 
4020   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4021   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4022   Type *Int32PtrTy = Int32Ty->getPointerTo();
4023   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4024 
4025   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4026   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4027     return nullptr;
4028 
4029   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4030   if (OffsetInt % 4 != 0)
4031     return nullptr;
4032 
4033   Constant *C = ConstantExpr::getGetElementPtr(
4034       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4035       ConstantInt::get(Int64Ty, OffsetInt / 4));
4036   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4037   if (!Loaded)
4038     return nullptr;
4039 
4040   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4041   if (!LoadedCE)
4042     return nullptr;
4043 
4044   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4045     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4046     if (!LoadedCE)
4047       return nullptr;
4048   }
4049 
4050   if (LoadedCE->getOpcode() != Instruction::Sub)
4051     return nullptr;
4052 
4053   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4054   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4055     return nullptr;
4056   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4057 
4058   Constant *LoadedRHS = LoadedCE->getOperand(1);
4059   GlobalValue *LoadedRHSSym;
4060   APInt LoadedRHSOffset;
4061   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4062                                   DL) ||
4063       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4064     return nullptr;
4065 
4066   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4067 }
4068 
4069 static bool maskIsAllZeroOrUndef(Value *Mask) {
4070   auto *ConstMask = dyn_cast<Constant>(Mask);
4071   if (!ConstMask)
4072     return false;
4073   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4074     return true;
4075   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4076        ++I) {
4077     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4078       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4079         continue;
4080     return false;
4081   }
4082   return true;
4083 }
4084 
4085 template <typename IterTy>
4086 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4087                                 const Query &Q, unsigned MaxRecurse) {
4088   Intrinsic::ID IID = F->getIntrinsicID();
4089   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4090   Type *ReturnType = F->getReturnType();
4091 
4092   // Binary Ops
4093   if (NumOperands == 2) {
4094     Value *LHS = *ArgBegin;
4095     Value *RHS = *(ArgBegin + 1);
4096     if (IID == Intrinsic::usub_with_overflow ||
4097         IID == Intrinsic::ssub_with_overflow) {
4098       // X - X -> { 0, false }
4099       if (LHS == RHS)
4100         return Constant::getNullValue(ReturnType);
4101 
4102       // X - undef -> undef
4103       // undef - X -> undef
4104       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4105         return UndefValue::get(ReturnType);
4106     }
4107 
4108     if (IID == Intrinsic::uadd_with_overflow ||
4109         IID == Intrinsic::sadd_with_overflow) {
4110       // X + undef -> undef
4111       if (isa<UndefValue>(RHS))
4112         return UndefValue::get(ReturnType);
4113     }
4114 
4115     if (IID == Intrinsic::umul_with_overflow ||
4116         IID == Intrinsic::smul_with_overflow) {
4117       // X * 0 -> { 0, false }
4118       if (match(RHS, m_Zero()))
4119         return Constant::getNullValue(ReturnType);
4120 
4121       // X * undef -> { 0, false }
4122       if (match(RHS, m_Undef()))
4123         return Constant::getNullValue(ReturnType);
4124     }
4125 
4126     if (IID == Intrinsic::load_relative && isa<Constant>(LHS) &&
4127         isa<Constant>(RHS))
4128       return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS),
4129                                   Q.DL);
4130   }
4131 
4132   // Simplify calls to llvm.masked.load.*
4133   if (IID == Intrinsic::masked_load) {
4134     Value *MaskArg = ArgBegin[2];
4135     Value *PassthruArg = ArgBegin[3];
4136     // If the mask is all zeros or undef, the "passthru" argument is the result.
4137     if (maskIsAllZeroOrUndef(MaskArg))
4138       return PassthruArg;
4139   }
4140 
4141   // Perform idempotent optimizations
4142   if (!IsIdempotent(IID))
4143     return nullptr;
4144 
4145   // Unary Ops
4146   if (NumOperands == 1)
4147     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
4148       if (II->getIntrinsicID() == IID)
4149         return II;
4150 
4151   return nullptr;
4152 }
4153 
4154 template <typename IterTy>
4155 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
4156                            const Query &Q, unsigned MaxRecurse) {
4157   Type *Ty = V->getType();
4158   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4159     Ty = PTy->getElementType();
4160   FunctionType *FTy = cast<FunctionType>(Ty);
4161 
4162   // call undef -> undef
4163   // call null -> undef
4164   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4165     return UndefValue::get(FTy->getReturnType());
4166 
4167   Function *F = dyn_cast<Function>(V);
4168   if (!F)
4169     return nullptr;
4170 
4171   if (F->isIntrinsic())
4172     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4173       return Ret;
4174 
4175   if (!canConstantFoldCallTo(F))
4176     return nullptr;
4177 
4178   SmallVector<Constant *, 4> ConstantArgs;
4179   ConstantArgs.reserve(ArgEnd - ArgBegin);
4180   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4181     Constant *C = dyn_cast<Constant>(*I);
4182     if (!C)
4183       return nullptr;
4184     ConstantArgs.push_back(C);
4185   }
4186 
4187   return ConstantFoldCall(F, ConstantArgs, Q.TLI);
4188 }
4189 
4190 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
4191                           User::op_iterator ArgEnd, const DataLayout &DL,
4192                           const TargetLibraryInfo *TLI, const DominatorTree *DT,
4193                           AssumptionCache *AC, const Instruction *CxtI) {
4194   return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI),
4195                         RecursionLimit);
4196 }
4197 
4198 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
4199                           const DataLayout &DL, const TargetLibraryInfo *TLI,
4200                           const DominatorTree *DT, AssumptionCache *AC,
4201                           const Instruction *CxtI) {
4202   return ::SimplifyCall(V, Args.begin(), Args.end(),
4203                         Query(DL, TLI, DT, AC, CxtI), RecursionLimit);
4204 }
4205 
4206 /// See if we can compute a simplified version of this instruction.
4207 /// If not, this returns null.
4208 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL,
4209                                  const TargetLibraryInfo *TLI,
4210                                  const DominatorTree *DT, AssumptionCache *AC) {
4211   Value *Result;
4212 
4213   switch (I->getOpcode()) {
4214   default:
4215     Result = ConstantFoldInstruction(I, DL, TLI);
4216     break;
4217   case Instruction::FAdd:
4218     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4219                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4220     break;
4221   case Instruction::Add:
4222     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4223                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4224                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4225                              TLI, DT, AC, I);
4226     break;
4227   case Instruction::FSub:
4228     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4229                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4230     break;
4231   case Instruction::Sub:
4232     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4233                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4234                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4235                              TLI, DT, AC, I);
4236     break;
4237   case Instruction::FMul:
4238     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4239                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4240     break;
4241   case Instruction::Mul:
4242     Result =
4243         SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4244     break;
4245   case Instruction::SDiv:
4246     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4247                               AC, I);
4248     break;
4249   case Instruction::UDiv:
4250     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4251                               AC, I);
4252     break;
4253   case Instruction::FDiv:
4254     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4255                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4256     break;
4257   case Instruction::SRem:
4258     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4259                               AC, I);
4260     break;
4261   case Instruction::URem:
4262     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT,
4263                               AC, I);
4264     break;
4265   case Instruction::FRem:
4266     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4267                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4268     break;
4269   case Instruction::Shl:
4270     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4271                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4272                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL,
4273                              TLI, DT, AC, I);
4274     break;
4275   case Instruction::LShr:
4276     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4277                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4278                               AC, I);
4279     break;
4280   case Instruction::AShr:
4281     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4282                               cast<BinaryOperator>(I)->isExact(), DL, TLI, DT,
4283                               AC, I);
4284     break;
4285   case Instruction::And:
4286     Result =
4287         SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4288     break;
4289   case Instruction::Or:
4290     Result =
4291         SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4292     break;
4293   case Instruction::Xor:
4294     Result =
4295         SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I);
4296     break;
4297   case Instruction::ICmp:
4298     Result =
4299         SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0),
4300                          I->getOperand(1), DL, TLI, DT, AC, I);
4301     break;
4302   case Instruction::FCmp:
4303     Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
4304                               I->getOperand(0), I->getOperand(1),
4305                               I->getFastMathFlags(), DL, TLI, DT, AC, I);
4306     break;
4307   case Instruction::Select:
4308     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4309                                 I->getOperand(2), DL, TLI, DT, AC, I);
4310     break;
4311   case Instruction::GetElementPtr: {
4312     SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
4313     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4314                              Ops, DL, TLI, DT, AC, I);
4315     break;
4316   }
4317   case Instruction::InsertValue: {
4318     InsertValueInst *IV = cast<InsertValueInst>(I);
4319     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4320                                      IV->getInsertedValueOperand(),
4321                                      IV->getIndices(), DL, TLI, DT, AC, I);
4322     break;
4323   }
4324   case Instruction::ExtractValue: {
4325     auto *EVI = cast<ExtractValueInst>(I);
4326     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4327                                       EVI->getIndices(), DL, TLI, DT, AC, I);
4328     break;
4329   }
4330   case Instruction::ExtractElement: {
4331     auto *EEI = cast<ExtractElementInst>(I);
4332     Result = SimplifyExtractElementInst(
4333         EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I);
4334     break;
4335   }
4336   case Instruction::PHI:
4337     Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I));
4338     break;
4339   case Instruction::Call: {
4340     CallSite CS(cast<CallInst>(I));
4341     Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL,
4342                           TLI, DT, AC, I);
4343     break;
4344   }
4345 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4346 #include "llvm/IR/Instruction.def"
4347 #undef HANDLE_CAST_INST
4348     Result = SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(),
4349                               DL, TLI, DT, AC, I);
4350     break;
4351   }
4352 
4353   // In general, it is possible for computeKnownBits to determine all bits in a
4354   // value even when the operands are not all constants.
4355   if (!Result && I->getType()->isIntegerTy()) {
4356     unsigned BitWidth = I->getType()->getScalarSizeInBits();
4357     APInt KnownZero(BitWidth, 0);
4358     APInt KnownOne(BitWidth, 0);
4359     computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT);
4360     if ((KnownZero | KnownOne).isAllOnesValue())
4361       Result = ConstantInt::get(I->getContext(), KnownOne);
4362   }
4363 
4364   /// If called on unreachable code, the above logic may report that the
4365   /// instruction simplified to itself.  Make life easier for users by
4366   /// detecting that case here, returning a safe value instead.
4367   return Result == I ? UndefValue::get(I->getType()) : Result;
4368 }
4369 
4370 /// \brief Implementation of recursive simplification through an instruction's
4371 /// uses.
4372 ///
4373 /// This is the common implementation of the recursive simplification routines.
4374 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4375 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4376 /// instructions to process and attempt to simplify it using
4377 /// InstructionSimplify.
4378 ///
4379 /// This routine returns 'true' only when *it* simplifies something. The passed
4380 /// in simplified value does not count toward this.
4381 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4382                                               const TargetLibraryInfo *TLI,
4383                                               const DominatorTree *DT,
4384                                               AssumptionCache *AC) {
4385   bool Simplified = false;
4386   SmallSetVector<Instruction *, 8> Worklist;
4387   const DataLayout &DL = I->getModule()->getDataLayout();
4388 
4389   // If we have an explicit value to collapse to, do that round of the
4390   // simplification loop by hand initially.
4391   if (SimpleV) {
4392     for (User *U : I->users())
4393       if (U != I)
4394         Worklist.insert(cast<Instruction>(U));
4395 
4396     // Replace the instruction with its simplified value.
4397     I->replaceAllUsesWith(SimpleV);
4398 
4399     // Gracefully handle edge cases where the instruction is not wired into any
4400     // parent block.
4401     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4402         !I->mayHaveSideEffects())
4403       I->eraseFromParent();
4404   } else {
4405     Worklist.insert(I);
4406   }
4407 
4408   // Note that we must test the size on each iteration, the worklist can grow.
4409   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4410     I = Worklist[Idx];
4411 
4412     // See if this instruction simplifies.
4413     SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC);
4414     if (!SimpleV)
4415       continue;
4416 
4417     Simplified = true;
4418 
4419     // Stash away all the uses of the old instruction so we can check them for
4420     // recursive simplifications after a RAUW. This is cheaper than checking all
4421     // uses of To on the recursive step in most cases.
4422     for (User *U : I->users())
4423       Worklist.insert(cast<Instruction>(U));
4424 
4425     // Replace the instruction with its simplified value.
4426     I->replaceAllUsesWith(SimpleV);
4427 
4428     // Gracefully handle edge cases where the instruction is not wired into any
4429     // parent block.
4430     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4431         !I->mayHaveSideEffects())
4432       I->eraseFromParent();
4433   }
4434   return Simplified;
4435 }
4436 
4437 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4438                                           const TargetLibraryInfo *TLI,
4439                                           const DominatorTree *DT,
4440                                           AssumptionCache *AC) {
4441   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4442 }
4443 
4444 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4445                                          const TargetLibraryInfo *TLI,
4446                                          const DominatorTree *DT,
4447                                          AssumptionCache *AC) {
4448   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4449   assert(SimpleV && "Must provide a simplified value.");
4450   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4451 }
4452