1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == Opcode) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->isPtrOrPtrVectorTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 631 } while (Visited.insert(V).second); 632 633 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 634 if (V->getType()->isVectorTy()) 635 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 636 OffsetIntPtr); 637 return OffsetIntPtr; 638 } 639 640 /// \brief Compute the constant difference between two pointer values. 641 /// If the difference is not a constant, returns zero. 642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 643 Value *RHS) { 644 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 645 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 646 647 // If LHS and RHS are not related via constant offsets to the same base 648 // value, there is nothing we can do here. 649 if (LHS != RHS) 650 return nullptr; 651 652 // Otherwise, the difference of LHS - RHS can be computed as: 653 // LHS - RHS 654 // = (LHSOffset + Base) - (RHSOffset + Base) 655 // = LHSOffset - RHSOffset 656 return ConstantExpr::getSub(LHSOffset, RHSOffset); 657 } 658 659 /// Given operands for a Sub, see if we can fold the result. 660 /// If not, this returns null. 661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 662 const SimplifyQuery &Q, unsigned MaxRecurse) { 663 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 664 return C; 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // Is this a negation? 680 if (match(Op0, m_Zero())) { 681 // 0 - X -> 0 if the sub is NUW. 682 if (isNUW) 683 return Op0; 684 685 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 686 if (Known.Zero.isMaxSignedValue()) { 687 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 688 // Op1 must be 0 because negating the minimum signed value is undefined. 689 if (isNSW) 690 return Op0; 691 692 // 0 - X -> X if X is 0 or the minimum signed value. 693 return Op1; 694 } 695 } 696 697 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 698 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 699 Value *X = nullptr, *Y = nullptr, *Z = Op1; 700 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 701 // See if "V === Y - Z" simplifies. 702 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 703 // It does! Now see if "X + V" simplifies. 704 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 705 // It does, we successfully reassociated! 706 ++NumReassoc; 707 return W; 708 } 709 // See if "V === X - Z" simplifies. 710 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 711 // It does! Now see if "Y + V" simplifies. 712 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 713 // It does, we successfully reassociated! 714 ++NumReassoc; 715 return W; 716 } 717 } 718 719 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 720 // For example, X - (X + 1) -> -1 721 X = Op0; 722 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 723 // See if "V === X - Y" simplifies. 724 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 725 // It does! Now see if "V - Z" simplifies. 726 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 727 // It does, we successfully reassociated! 728 ++NumReassoc; 729 return W; 730 } 731 // See if "V === X - Z" simplifies. 732 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 733 // It does! Now see if "V - Y" simplifies. 734 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 } 740 741 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 742 // For example, X - (X - Y) -> Y. 743 Z = Op0; 744 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 745 // See if "V === Z - X" simplifies. 746 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 747 // It does! Now see if "V + Y" simplifies. 748 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 749 // It does, we successfully reassociated! 750 ++NumReassoc; 751 return W; 752 } 753 754 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 755 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 756 match(Op1, m_Trunc(m_Value(Y)))) 757 if (X->getType() == Y->getType()) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "trunc V" simplifies. 761 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 762 Q, MaxRecurse - 1)) 763 // It does, return the simplified "trunc V". 764 return W; 765 766 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 767 if (match(Op0, m_PtrToInt(m_Value(X))) && 768 match(Op1, m_PtrToInt(m_Value(Y)))) 769 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 770 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 771 772 // i1 sub -> xor. 773 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 774 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 775 return V; 776 777 // Threading Sub over selects and phi nodes is pointless, so don't bother. 778 // Threading over the select in "A - select(cond, B, C)" means evaluating 779 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 780 // only if B and C are equal. If B and C are equal then (since we assume 781 // that operands have already been simplified) "select(cond, B, C)" should 782 // have been simplified to the common value of B and C already. Analysing 783 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 784 // for threading over phi nodes. 785 786 return nullptr; 787 } 788 789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 790 const SimplifyQuery &Q) { 791 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 792 } 793 794 /// Given operands for an FAdd, see if we can fold the result. If not, this 795 /// returns null. 796 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 797 const SimplifyQuery &Q, unsigned MaxRecurse) { 798 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 799 return C; 800 801 // fadd X, -0 ==> X 802 if (match(Op1, m_NegZero())) 803 return Op0; 804 805 // fadd X, 0 ==> X, when we know X is not -0 806 if (match(Op1, m_Zero()) && 807 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 808 return Op0; 809 810 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 811 // where nnan and ninf have to occur at least once somewhere in this 812 // expression 813 Value *SubOp = nullptr; 814 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 815 SubOp = Op1; 816 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 817 SubOp = Op0; 818 if (SubOp) { 819 Instruction *FSub = cast<Instruction>(SubOp); 820 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 821 (FMF.noInfs() || FSub->hasNoInfs())) 822 return Constant::getNullValue(Op0->getType()); 823 } 824 825 return nullptr; 826 } 827 828 /// Given operands for an FSub, see if we can fold the result. If not, this 829 /// returns null. 830 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 831 const SimplifyQuery &Q, unsigned MaxRecurse) { 832 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 833 return C; 834 835 // fsub X, 0 ==> X 836 if (match(Op1, m_Zero())) 837 return Op0; 838 839 // fsub X, -0 ==> X, when we know X is not -0 840 if (match(Op1, m_NegZero()) && 841 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 842 return Op0; 843 844 // fsub -0.0, (fsub -0.0, X) ==> X 845 Value *X; 846 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 847 return X; 848 849 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 850 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 851 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 852 return X; 853 854 // fsub nnan x, x ==> 0.0 855 if (FMF.noNaNs() && Op0 == Op1) 856 return Constant::getNullValue(Op0->getType()); 857 858 return nullptr; 859 } 860 861 /// Given the operands for an FMul, see if we can fold the result 862 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 863 const SimplifyQuery &Q, unsigned MaxRecurse) { 864 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 865 return C; 866 867 // fmul X, 1.0 ==> X 868 if (match(Op1, m_FPOne())) 869 return Op0; 870 871 // fmul nnan nsz X, 0 ==> 0 872 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 873 return Op1; 874 875 return nullptr; 876 } 877 878 /// Given operands for a Mul, see if we can fold the result. 879 /// If not, this returns null. 880 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 881 unsigned MaxRecurse) { 882 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 883 return C; 884 885 // X * undef -> 0 886 if (match(Op1, m_Undef())) 887 return Constant::getNullValue(Op0->getType()); 888 889 // X * 0 -> 0 890 if (match(Op1, m_Zero())) 891 return Op1; 892 893 // X * 1 -> X 894 if (match(Op1, m_One())) 895 return Op0; 896 897 // (X / Y) * Y -> X if the division is exact. 898 Value *X = nullptr; 899 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 900 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 901 return X; 902 903 // i1 mul -> and. 904 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 905 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 906 return V; 907 908 // Try some generic simplifications for associative operations. 909 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 910 MaxRecurse)) 911 return V; 912 913 // Mul distributes over Add. Try some generic simplifications based on this. 914 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 915 Q, MaxRecurse)) 916 return V; 917 918 // If the operation is with the result of a select instruction, check whether 919 // operating on either branch of the select always yields the same value. 920 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 921 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 922 MaxRecurse)) 923 return V; 924 925 // If the operation is with the result of a phi instruction, check whether 926 // operating on all incoming values of the phi always yields the same value. 927 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 928 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 929 MaxRecurse)) 930 return V; 931 932 return nullptr; 933 } 934 935 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 936 const SimplifyQuery &Q) { 937 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 938 } 939 940 941 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 942 const SimplifyQuery &Q) { 943 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 944 } 945 946 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 947 const SimplifyQuery &Q) { 948 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 949 } 950 951 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 952 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 953 } 954 955 /// Check for common or similar folds of integer division or integer remainder. 956 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 957 Type *Ty = Op0->getType(); 958 959 // X / undef -> undef 960 // X % undef -> undef 961 if (match(Op1, m_Undef())) 962 return Op1; 963 964 // X / 0 -> undef 965 // X % 0 -> undef 966 // We don't need to preserve faults! 967 if (match(Op1, m_Zero())) 968 return UndefValue::get(Ty); 969 970 // If any element of a constant divisor vector is zero, the whole op is undef. 971 auto *Op1C = dyn_cast<Constant>(Op1); 972 if (Op1C && Ty->isVectorTy()) { 973 unsigned NumElts = Ty->getVectorNumElements(); 974 for (unsigned i = 0; i != NumElts; ++i) { 975 Constant *Elt = Op1C->getAggregateElement(i); 976 if (Elt && Elt->isNullValue()) 977 return UndefValue::get(Ty); 978 } 979 } 980 981 // undef / X -> 0 982 // undef % X -> 0 983 if (match(Op0, m_Undef())) 984 return Constant::getNullValue(Ty); 985 986 // 0 / X -> 0 987 // 0 % X -> 0 988 if (match(Op0, m_Zero())) 989 return Op0; 990 991 // X / X -> 1 992 // X % X -> 0 993 if (Op0 == Op1) 994 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 995 996 // X / 1 -> X 997 // X % 1 -> 0 998 // If this is a boolean op (single-bit element type), we can't have 999 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1000 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 1001 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1002 1003 return nullptr; 1004 } 1005 1006 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1007 /// If not, this returns null. 1008 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1009 const SimplifyQuery &Q, unsigned MaxRecurse) { 1010 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1011 return C; 1012 1013 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1014 return V; 1015 1016 bool isSigned = Opcode == Instruction::SDiv; 1017 1018 // (X * Y) / Y -> X if the multiplication does not overflow. 1019 Value *X = nullptr, *Y = nullptr; 1020 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1021 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1022 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1023 // If the Mul knows it does not overflow, then we are good to go. 1024 if ((isSigned && Mul->hasNoSignedWrap()) || 1025 (!isSigned && Mul->hasNoUnsignedWrap())) 1026 return X; 1027 // If X has the form X = A / Y then X * Y cannot overflow. 1028 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1029 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1030 return X; 1031 } 1032 1033 // (X rem Y) / Y -> 0 1034 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1035 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1036 return Constant::getNullValue(Op0->getType()); 1037 1038 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1039 ConstantInt *C1, *C2; 1040 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1041 match(Op1, m_ConstantInt(C2))) { 1042 bool Overflow; 1043 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1044 if (Overflow) 1045 return Constant::getNullValue(Op0->getType()); 1046 } 1047 1048 // If the operation is with the result of a select instruction, check whether 1049 // operating on either branch of the select always yields the same value. 1050 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1051 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1052 return V; 1053 1054 // If the operation is with the result of a phi instruction, check whether 1055 // operating on all incoming values of the phi always yields the same value. 1056 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1057 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1058 return V; 1059 1060 return nullptr; 1061 } 1062 1063 /// Given operands for an SDiv, see if we can fold the result. 1064 /// If not, this returns null. 1065 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1066 unsigned MaxRecurse) { 1067 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1068 return V; 1069 1070 return nullptr; 1071 } 1072 1073 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1074 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1075 } 1076 1077 /// Given operands for a UDiv, see if we can fold the result. 1078 /// If not, this returns null. 1079 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1080 unsigned MaxRecurse) { 1081 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1082 return V; 1083 1084 // udiv %V, C -> 0 if %V < C 1085 if (MaxRecurse) { 1086 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1087 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1088 if (C->isAllOnesValue()) { 1089 return Constant::getNullValue(Op0->getType()); 1090 } 1091 } 1092 } 1093 1094 return nullptr; 1095 } 1096 1097 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1098 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1099 } 1100 1101 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1102 const SimplifyQuery &Q, unsigned) { 1103 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 1104 return C; 1105 1106 // undef / X -> undef (the undef could be a snan). 1107 if (match(Op0, m_Undef())) 1108 return Op0; 1109 1110 // X / undef -> undef 1111 if (match(Op1, m_Undef())) 1112 return Op1; 1113 1114 // X / 1.0 -> X 1115 if (match(Op1, m_FPOne())) 1116 return Op0; 1117 1118 // 0 / X -> 0 1119 // Requires that NaNs are off (X could be zero) and signed zeroes are 1120 // ignored (X could be positive or negative, so the output sign is unknown). 1121 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1122 return Op0; 1123 1124 if (FMF.noNaNs()) { 1125 // X / X -> 1.0 is legal when NaNs are ignored. 1126 if (Op0 == Op1) 1127 return ConstantFP::get(Op0->getType(), 1.0); 1128 1129 // -X / X -> -1.0 and 1130 // X / -X -> -1.0 are legal when NaNs are ignored. 1131 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1132 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1133 BinaryOperator::getFNegArgument(Op0) == Op1) || 1134 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1135 BinaryOperator::getFNegArgument(Op1) == Op0)) 1136 return ConstantFP::get(Op0->getType(), -1.0); 1137 } 1138 1139 return nullptr; 1140 } 1141 1142 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1143 const SimplifyQuery &Q) { 1144 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 1145 } 1146 1147 /// Given operands for an SRem or URem, see if we can fold the result. 1148 /// If not, this returns null. 1149 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1150 const SimplifyQuery &Q, unsigned MaxRecurse) { 1151 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1152 return C; 1153 1154 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1155 return V; 1156 1157 // (X % Y) % Y -> X % Y 1158 if ((Opcode == Instruction::SRem && 1159 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1160 (Opcode == Instruction::URem && 1161 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1162 return Op0; 1163 1164 // If the operation is with the result of a select instruction, check whether 1165 // operating on either branch of the select always yields the same value. 1166 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1167 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1168 return V; 1169 1170 // If the operation is with the result of a phi instruction, check whether 1171 // operating on all incoming values of the phi always yields the same value. 1172 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1173 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1174 return V; 1175 1176 return nullptr; 1177 } 1178 1179 /// Given operands for an SRem, see if we can fold the result. 1180 /// If not, this returns null. 1181 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1182 unsigned MaxRecurse) { 1183 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1184 return V; 1185 1186 return nullptr; 1187 } 1188 1189 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1190 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1191 } 1192 1193 /// Given operands for a URem, see if we can fold the result. 1194 /// If not, this returns null. 1195 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1196 unsigned MaxRecurse) { 1197 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1198 return V; 1199 1200 // urem %V, C -> %V if %V < C 1201 if (MaxRecurse) { 1202 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1203 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1204 if (C->isAllOnesValue()) { 1205 return Op0; 1206 } 1207 } 1208 } 1209 1210 return nullptr; 1211 } 1212 1213 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1214 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1215 } 1216 1217 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1218 const SimplifyQuery &Q, unsigned) { 1219 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 1220 return C; 1221 1222 // undef % X -> undef (the undef could be a snan). 1223 if (match(Op0, m_Undef())) 1224 return Op0; 1225 1226 // X % undef -> undef 1227 if (match(Op1, m_Undef())) 1228 return Op1; 1229 1230 // 0 % X -> 0 1231 // Requires that NaNs are off (X could be zero) and signed zeroes are 1232 // ignored (X could be positive or negative, so the output sign is unknown). 1233 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1234 return Op0; 1235 1236 return nullptr; 1237 } 1238 1239 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1240 const SimplifyQuery &Q) { 1241 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 1242 } 1243 1244 /// Returns true if a shift by \c Amount always yields undef. 1245 static bool isUndefShift(Value *Amount) { 1246 Constant *C = dyn_cast<Constant>(Amount); 1247 if (!C) 1248 return false; 1249 1250 // X shift by undef -> undef because it may shift by the bitwidth. 1251 if (isa<UndefValue>(C)) 1252 return true; 1253 1254 // Shifting by the bitwidth or more is undefined. 1255 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1256 if (CI->getValue().getLimitedValue() >= 1257 CI->getType()->getScalarSizeInBits()) 1258 return true; 1259 1260 // If all lanes of a vector shift are undefined the whole shift is. 1261 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1262 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1263 if (!isUndefShift(C->getAggregateElement(I))) 1264 return false; 1265 return true; 1266 } 1267 1268 return false; 1269 } 1270 1271 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1272 /// If not, this returns null. 1273 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1274 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1275 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1276 return C; 1277 1278 // 0 shift by X -> 0 1279 if (match(Op0, m_Zero())) 1280 return Op0; 1281 1282 // X shift by 0 -> X 1283 if (match(Op1, m_Zero())) 1284 return Op0; 1285 1286 // Fold undefined shifts. 1287 if (isUndefShift(Op1)) 1288 return UndefValue::get(Op0->getType()); 1289 1290 // If the operation is with the result of a select instruction, check whether 1291 // operating on either branch of the select always yields the same value. 1292 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1293 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1294 return V; 1295 1296 // If the operation is with the result of a phi instruction, check whether 1297 // operating on all incoming values of the phi always yields the same value. 1298 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1299 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1300 return V; 1301 1302 // If any bits in the shift amount make that value greater than or equal to 1303 // the number of bits in the type, the shift is undefined. 1304 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1305 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1306 return UndefValue::get(Op0->getType()); 1307 1308 // If all valid bits in the shift amount are known zero, the first operand is 1309 // unchanged. 1310 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1311 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1312 return Op0; 1313 1314 return nullptr; 1315 } 1316 1317 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1318 /// fold the result. If not, this returns null. 1319 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1320 Value *Op1, bool isExact, const SimplifyQuery &Q, 1321 unsigned MaxRecurse) { 1322 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1323 return V; 1324 1325 // X >> X -> 0 1326 if (Op0 == Op1) 1327 return Constant::getNullValue(Op0->getType()); 1328 1329 // undef >> X -> 0 1330 // undef >> X -> undef (if it's exact) 1331 if (match(Op0, m_Undef())) 1332 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1333 1334 // The low bit cannot be shifted out of an exact shift if it is set. 1335 if (isExact) { 1336 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1337 if (Op0Known.One[0]) 1338 return Op0; 1339 } 1340 1341 return nullptr; 1342 } 1343 1344 /// Given operands for an Shl, see if we can fold the result. 1345 /// If not, this returns null. 1346 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1347 const SimplifyQuery &Q, unsigned MaxRecurse) { 1348 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1349 return V; 1350 1351 // undef << X -> 0 1352 // undef << X -> undef if (if it's NSW/NUW) 1353 if (match(Op0, m_Undef())) 1354 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1355 1356 // (X >> A) << A -> X 1357 Value *X; 1358 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1359 return X; 1360 return nullptr; 1361 } 1362 1363 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1364 const SimplifyQuery &Q) { 1365 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1366 } 1367 1368 /// Given operands for an LShr, see if we can fold the result. 1369 /// If not, this returns null. 1370 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1371 const SimplifyQuery &Q, unsigned MaxRecurse) { 1372 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1373 MaxRecurse)) 1374 return V; 1375 1376 // (X << A) >> A -> X 1377 Value *X; 1378 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1379 return X; 1380 1381 return nullptr; 1382 } 1383 1384 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1385 const SimplifyQuery &Q) { 1386 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1387 } 1388 1389 /// Given operands for an AShr, see if we can fold the result. 1390 /// If not, this returns null. 1391 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1392 const SimplifyQuery &Q, unsigned MaxRecurse) { 1393 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1394 MaxRecurse)) 1395 return V; 1396 1397 // all ones >>a X -> all ones 1398 if (match(Op0, m_AllOnes())) 1399 return Op0; 1400 1401 // (X << A) >> A -> X 1402 Value *X; 1403 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1404 return X; 1405 1406 // Arithmetic shifting an all-sign-bit value is a no-op. 1407 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1408 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1409 return Op0; 1410 1411 return nullptr; 1412 } 1413 1414 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1415 const SimplifyQuery &Q) { 1416 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1417 } 1418 1419 /// Commuted variants are assumed to be handled by calling this function again 1420 /// with the parameters swapped. 1421 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1422 ICmpInst *UnsignedICmp, bool IsAnd) { 1423 Value *X, *Y; 1424 1425 ICmpInst::Predicate EqPred; 1426 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1427 !ICmpInst::isEquality(EqPred)) 1428 return nullptr; 1429 1430 ICmpInst::Predicate UnsignedPred; 1431 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1432 ICmpInst::isUnsigned(UnsignedPred)) 1433 ; 1434 else if (match(UnsignedICmp, 1435 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1436 ICmpInst::isUnsigned(UnsignedPred)) 1437 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1438 else 1439 return nullptr; 1440 1441 // X < Y && Y != 0 --> X < Y 1442 // X < Y || Y != 0 --> Y != 0 1443 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1444 return IsAnd ? UnsignedICmp : ZeroICmp; 1445 1446 // X >= Y || Y != 0 --> true 1447 // X >= Y || Y == 0 --> X >= Y 1448 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1449 if (EqPred == ICmpInst::ICMP_NE) 1450 return getTrue(UnsignedICmp->getType()); 1451 return UnsignedICmp; 1452 } 1453 1454 // X < Y && Y == 0 --> false 1455 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1456 IsAnd) 1457 return getFalse(UnsignedICmp->getType()); 1458 1459 return nullptr; 1460 } 1461 1462 /// Commuted variants are assumed to be handled by calling this function again 1463 /// with the parameters swapped. 1464 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1465 ICmpInst::Predicate Pred0, Pred1; 1466 Value *A ,*B; 1467 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1468 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1469 return nullptr; 1470 1471 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1472 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1473 // can eliminate Op1 from this 'and'. 1474 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1475 return Op0; 1476 1477 // Check for any combination of predicates that are guaranteed to be disjoint. 1478 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1479 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1480 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1481 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1482 return getFalse(Op0->getType()); 1483 1484 return nullptr; 1485 } 1486 1487 /// Commuted variants are assumed to be handled by calling this function again 1488 /// with the parameters swapped. 1489 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1490 ICmpInst::Predicate Pred0, Pred1; 1491 Value *A ,*B; 1492 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1493 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1494 return nullptr; 1495 1496 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1497 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1498 // can eliminate Op0 from this 'or'. 1499 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1500 return Op1; 1501 1502 // Check for any combination of predicates that cover the entire range of 1503 // possibilities. 1504 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1505 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1506 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1507 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1508 return getTrue(Op0->getType()); 1509 1510 return nullptr; 1511 } 1512 1513 /// Test if a pair of compares with a shared operand and 2 constants has an 1514 /// empty set intersection, full set union, or if one compare is a superset of 1515 /// the other. 1516 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1517 bool IsAnd) { 1518 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1519 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1520 return nullptr; 1521 1522 const APInt *C0, *C1; 1523 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1524 !match(Cmp1->getOperand(1), m_APInt(C1))) 1525 return nullptr; 1526 1527 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1528 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1529 1530 // For and-of-compares, check if the intersection is empty: 1531 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1532 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1533 return getFalse(Cmp0->getType()); 1534 1535 // For or-of-compares, check if the union is full: 1536 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1537 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1538 return getTrue(Cmp0->getType()); 1539 1540 // Is one range a superset of the other? 1541 // If this is and-of-compares, take the smaller set: 1542 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1543 // If this is or-of-compares, take the larger set: 1544 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1545 if (Range0.contains(Range1)) 1546 return IsAnd ? Cmp1 : Cmp0; 1547 if (Range1.contains(Range0)) 1548 return IsAnd ? Cmp0 : Cmp1; 1549 1550 return nullptr; 1551 } 1552 1553 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1554 // (icmp (add V, C0), C1) & (icmp V, C0) 1555 ICmpInst::Predicate Pred0, Pred1; 1556 const APInt *C0, *C1; 1557 Value *V; 1558 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1559 return nullptr; 1560 1561 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1562 return nullptr; 1563 1564 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1565 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1566 return nullptr; 1567 1568 Type *ITy = Op0->getType(); 1569 bool isNSW = AddInst->hasNoSignedWrap(); 1570 bool isNUW = AddInst->hasNoUnsignedWrap(); 1571 1572 const APInt Delta = *C1 - *C0; 1573 if (C0->isStrictlyPositive()) { 1574 if (Delta == 2) { 1575 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1576 return getFalse(ITy); 1577 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1578 return getFalse(ITy); 1579 } 1580 if (Delta == 1) { 1581 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1582 return getFalse(ITy); 1583 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1584 return getFalse(ITy); 1585 } 1586 } 1587 if (C0->getBoolValue() && isNUW) { 1588 if (Delta == 2) 1589 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1590 return getFalse(ITy); 1591 if (Delta == 1) 1592 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1593 return getFalse(ITy); 1594 } 1595 1596 return nullptr; 1597 } 1598 1599 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1600 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1601 return X; 1602 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1603 return X; 1604 1605 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1606 return X; 1607 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1608 return X; 1609 1610 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1611 return X; 1612 1613 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1614 return X; 1615 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1616 return X; 1617 1618 return nullptr; 1619 } 1620 1621 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1622 // (icmp (add V, C0), C1) | (icmp V, C0) 1623 ICmpInst::Predicate Pred0, Pred1; 1624 const APInt *C0, *C1; 1625 Value *V; 1626 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1627 return nullptr; 1628 1629 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1630 return nullptr; 1631 1632 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1633 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1634 return nullptr; 1635 1636 Type *ITy = Op0->getType(); 1637 bool isNSW = AddInst->hasNoSignedWrap(); 1638 bool isNUW = AddInst->hasNoUnsignedWrap(); 1639 1640 const APInt Delta = *C1 - *C0; 1641 if (C0->isStrictlyPositive()) { 1642 if (Delta == 2) { 1643 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1644 return getTrue(ITy); 1645 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1646 return getTrue(ITy); 1647 } 1648 if (Delta == 1) { 1649 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1650 return getTrue(ITy); 1651 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1652 return getTrue(ITy); 1653 } 1654 } 1655 if (C0->getBoolValue() && isNUW) { 1656 if (Delta == 2) 1657 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1658 return getTrue(ITy); 1659 if (Delta == 1) 1660 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1661 return getTrue(ITy); 1662 } 1663 1664 return nullptr; 1665 } 1666 1667 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1668 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1669 return X; 1670 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1671 return X; 1672 1673 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1674 return X; 1675 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1676 return X; 1677 1678 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1679 return X; 1680 1681 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1682 return X; 1683 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1684 return X; 1685 1686 return nullptr; 1687 } 1688 1689 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) { 1690 // Look through casts of the 'and' operands to find compares. 1691 auto *Cast0 = dyn_cast<CastInst>(Op0); 1692 auto *Cast1 = dyn_cast<CastInst>(Op1); 1693 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1694 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1695 Op0 = Cast0->getOperand(0); 1696 Op1 = Cast1->getOperand(0); 1697 } 1698 1699 auto *Cmp0 = dyn_cast<ICmpInst>(Op0); 1700 auto *Cmp1 = dyn_cast<ICmpInst>(Op1); 1701 if (!Cmp0 || !Cmp1) 1702 return nullptr; 1703 1704 Value *V = 1705 IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1); 1706 if (!V) 1707 return nullptr; 1708 if (!Cast0) 1709 return V; 1710 1711 // If we looked through casts, we can only handle a constant simplification 1712 // because we are not allowed to create a cast instruction here. 1713 if (auto *C = dyn_cast<Constant>(V)) 1714 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1715 1716 return nullptr; 1717 } 1718 1719 /// Given operands for an And, see if we can fold the result. 1720 /// If not, this returns null. 1721 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1722 unsigned MaxRecurse) { 1723 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1724 return C; 1725 1726 // X & undef -> 0 1727 if (match(Op1, m_Undef())) 1728 return Constant::getNullValue(Op0->getType()); 1729 1730 // X & X = X 1731 if (Op0 == Op1) 1732 return Op0; 1733 1734 // X & 0 = 0 1735 if (match(Op1, m_Zero())) 1736 return Op1; 1737 1738 // X & -1 = X 1739 if (match(Op1, m_AllOnes())) 1740 return Op0; 1741 1742 // A & ~A = ~A & A = 0 1743 if (match(Op0, m_Not(m_Specific(Op1))) || 1744 match(Op1, m_Not(m_Specific(Op0)))) 1745 return Constant::getNullValue(Op0->getType()); 1746 1747 // (A | ?) & A = A 1748 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1749 return Op1; 1750 1751 // A & (A | ?) = A 1752 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1753 return Op0; 1754 1755 // A mask that only clears known zeros of a shifted value is a no-op. 1756 Value *X; 1757 const APInt *Mask; 1758 const APInt *ShAmt; 1759 if (match(Op1, m_APInt(Mask))) { 1760 // If all bits in the inverted and shifted mask are clear: 1761 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1762 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1763 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1764 return Op0; 1765 1766 // If all bits in the inverted and shifted mask are clear: 1767 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1768 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1769 (~(*Mask)).shl(*ShAmt).isNullValue()) 1770 return Op0; 1771 } 1772 1773 // A & (-A) = A if A is a power of two or zero. 1774 if (match(Op0, m_Neg(m_Specific(Op1))) || 1775 match(Op1, m_Neg(m_Specific(Op0)))) { 1776 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1777 Q.DT)) 1778 return Op0; 1779 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1780 Q.DT)) 1781 return Op1; 1782 } 1783 1784 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true)) 1785 return V; 1786 1787 // Try some generic simplifications for associative operations. 1788 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1789 MaxRecurse)) 1790 return V; 1791 1792 // And distributes over Or. Try some generic simplifications based on this. 1793 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1794 Q, MaxRecurse)) 1795 return V; 1796 1797 // And distributes over Xor. Try some generic simplifications based on this. 1798 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1799 Q, MaxRecurse)) 1800 return V; 1801 1802 // If the operation is with the result of a select instruction, check whether 1803 // operating on either branch of the select always yields the same value. 1804 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1805 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1806 MaxRecurse)) 1807 return V; 1808 1809 // If the operation is with the result of a phi instruction, check whether 1810 // operating on all incoming values of the phi always yields the same value. 1811 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1812 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1813 MaxRecurse)) 1814 return V; 1815 1816 return nullptr; 1817 } 1818 1819 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1820 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1821 } 1822 1823 /// Given operands for an Or, see if we can fold the result. 1824 /// If not, this returns null. 1825 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1826 unsigned MaxRecurse) { 1827 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1828 return C; 1829 1830 // X | undef -> -1 1831 if (match(Op1, m_Undef())) 1832 return Constant::getAllOnesValue(Op0->getType()); 1833 1834 // X | X = X 1835 if (Op0 == Op1) 1836 return Op0; 1837 1838 // X | 0 = X 1839 if (match(Op1, m_Zero())) 1840 return Op0; 1841 1842 // X | -1 = -1 1843 if (match(Op1, m_AllOnes())) 1844 return Op1; 1845 1846 // A | ~A = ~A | A = -1 1847 if (match(Op0, m_Not(m_Specific(Op1))) || 1848 match(Op1, m_Not(m_Specific(Op0)))) 1849 return Constant::getAllOnesValue(Op0->getType()); 1850 1851 // (A & ?) | A = A 1852 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1853 return Op1; 1854 1855 // A | (A & ?) = A 1856 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1857 return Op0; 1858 1859 // ~(A & ?) | A = -1 1860 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1861 return Constant::getAllOnesValue(Op1->getType()); 1862 1863 // A | ~(A & ?) = -1 1864 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1865 return Constant::getAllOnesValue(Op0->getType()); 1866 1867 Value *A, *B; 1868 // (A & ~B) | (A ^ B) -> (A ^ B) 1869 // (~B & A) | (A ^ B) -> (A ^ B) 1870 // (A & ~B) | (B ^ A) -> (B ^ A) 1871 // (~B & A) | (B ^ A) -> (B ^ A) 1872 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1873 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1874 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1875 return Op1; 1876 1877 // Commute the 'or' operands. 1878 // (A ^ B) | (A & ~B) -> (A ^ B) 1879 // (A ^ B) | (~B & A) -> (A ^ B) 1880 // (B ^ A) | (A & ~B) -> (B ^ A) 1881 // (B ^ A) | (~B & A) -> (B ^ A) 1882 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1883 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1884 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1885 return Op0; 1886 1887 // (A & B) | (~A ^ B) -> (~A ^ B) 1888 // (B & A) | (~A ^ B) -> (~A ^ B) 1889 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1890 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1891 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1892 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1893 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1894 return Op1; 1895 1896 // (~A ^ B) | (A & B) -> (~A ^ B) 1897 // (~A ^ B) | (B & A) -> (~A ^ B) 1898 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1899 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1900 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1901 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1902 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1903 return Op0; 1904 1905 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false)) 1906 return V; 1907 1908 // Try some generic simplifications for associative operations. 1909 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1910 MaxRecurse)) 1911 return V; 1912 1913 // Or distributes over And. Try some generic simplifications based on this. 1914 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1915 MaxRecurse)) 1916 return V; 1917 1918 // If the operation is with the result of a select instruction, check whether 1919 // operating on either branch of the select always yields the same value. 1920 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1921 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1922 MaxRecurse)) 1923 return V; 1924 1925 // (A & C1)|(B & C2) 1926 const APInt *C1, *C2; 1927 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1928 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1929 if (*C1 == ~*C2) { 1930 // (A & C1)|(B & C2) 1931 // If we have: ((V + N) & C1) | (V & C2) 1932 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1933 // replace with V+N. 1934 Value *N; 1935 if (C2->isMask() && // C2 == 0+1+ 1936 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1937 // Add commutes, try both ways. 1938 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1939 return A; 1940 } 1941 // Or commutes, try both ways. 1942 if (C1->isMask() && 1943 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1944 // Add commutes, try both ways. 1945 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1946 return B; 1947 } 1948 } 1949 } 1950 1951 // If the operation is with the result of a phi instruction, check whether 1952 // operating on all incoming values of the phi always yields the same value. 1953 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1954 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1955 return V; 1956 1957 return nullptr; 1958 } 1959 1960 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1961 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1962 } 1963 1964 /// Given operands for a Xor, see if we can fold the result. 1965 /// If not, this returns null. 1966 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1967 unsigned MaxRecurse) { 1968 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1969 return C; 1970 1971 // A ^ undef -> undef 1972 if (match(Op1, m_Undef())) 1973 return Op1; 1974 1975 // A ^ 0 = A 1976 if (match(Op1, m_Zero())) 1977 return Op0; 1978 1979 // A ^ A = 0 1980 if (Op0 == Op1) 1981 return Constant::getNullValue(Op0->getType()); 1982 1983 // A ^ ~A = ~A ^ A = -1 1984 if (match(Op0, m_Not(m_Specific(Op1))) || 1985 match(Op1, m_Not(m_Specific(Op0)))) 1986 return Constant::getAllOnesValue(Op0->getType()); 1987 1988 // Try some generic simplifications for associative operations. 1989 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1990 MaxRecurse)) 1991 return V; 1992 1993 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1994 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1995 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1996 // only if B and C are equal. If B and C are equal then (since we assume 1997 // that operands have already been simplified) "select(cond, B, C)" should 1998 // have been simplified to the common value of B and C already. Analysing 1999 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2000 // for threading over phi nodes. 2001 2002 return nullptr; 2003 } 2004 2005 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2006 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2007 } 2008 2009 2010 static Type *GetCompareTy(Value *Op) { 2011 return CmpInst::makeCmpResultType(Op->getType()); 2012 } 2013 2014 /// Rummage around inside V looking for something equivalent to the comparison 2015 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2016 /// Helper function for analyzing max/min idioms. 2017 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2018 Value *LHS, Value *RHS) { 2019 SelectInst *SI = dyn_cast<SelectInst>(V); 2020 if (!SI) 2021 return nullptr; 2022 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2023 if (!Cmp) 2024 return nullptr; 2025 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2026 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2027 return Cmp; 2028 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2029 LHS == CmpRHS && RHS == CmpLHS) 2030 return Cmp; 2031 return nullptr; 2032 } 2033 2034 // A significant optimization not implemented here is assuming that alloca 2035 // addresses are not equal to incoming argument values. They don't *alias*, 2036 // as we say, but that doesn't mean they aren't equal, so we take a 2037 // conservative approach. 2038 // 2039 // This is inspired in part by C++11 5.10p1: 2040 // "Two pointers of the same type compare equal if and only if they are both 2041 // null, both point to the same function, or both represent the same 2042 // address." 2043 // 2044 // This is pretty permissive. 2045 // 2046 // It's also partly due to C11 6.5.9p6: 2047 // "Two pointers compare equal if and only if both are null pointers, both are 2048 // pointers to the same object (including a pointer to an object and a 2049 // subobject at its beginning) or function, both are pointers to one past the 2050 // last element of the same array object, or one is a pointer to one past the 2051 // end of one array object and the other is a pointer to the start of a 2052 // different array object that happens to immediately follow the first array 2053 // object in the address space.) 2054 // 2055 // C11's version is more restrictive, however there's no reason why an argument 2056 // couldn't be a one-past-the-end value for a stack object in the caller and be 2057 // equal to the beginning of a stack object in the callee. 2058 // 2059 // If the C and C++ standards are ever made sufficiently restrictive in this 2060 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2061 // this optimization. 2062 static Constant * 2063 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2064 const DominatorTree *DT, CmpInst::Predicate Pred, 2065 const Instruction *CxtI, Value *LHS, Value *RHS) { 2066 // First, skip past any trivial no-ops. 2067 LHS = LHS->stripPointerCasts(); 2068 RHS = RHS->stripPointerCasts(); 2069 2070 // A non-null pointer is not equal to a null pointer. 2071 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2072 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2073 return ConstantInt::get(GetCompareTy(LHS), 2074 !CmpInst::isTrueWhenEqual(Pred)); 2075 2076 // We can only fold certain predicates on pointer comparisons. 2077 switch (Pred) { 2078 default: 2079 return nullptr; 2080 2081 // Equality comaprisons are easy to fold. 2082 case CmpInst::ICMP_EQ: 2083 case CmpInst::ICMP_NE: 2084 break; 2085 2086 // We can only handle unsigned relational comparisons because 'inbounds' on 2087 // a GEP only protects against unsigned wrapping. 2088 case CmpInst::ICMP_UGT: 2089 case CmpInst::ICMP_UGE: 2090 case CmpInst::ICMP_ULT: 2091 case CmpInst::ICMP_ULE: 2092 // However, we have to switch them to their signed variants to handle 2093 // negative indices from the base pointer. 2094 Pred = ICmpInst::getSignedPredicate(Pred); 2095 break; 2096 } 2097 2098 // Strip off any constant offsets so that we can reason about them. 2099 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2100 // here and compare base addresses like AliasAnalysis does, however there are 2101 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2102 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2103 // doesn't need to guarantee pointer inequality when it says NoAlias. 2104 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2105 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2106 2107 // If LHS and RHS are related via constant offsets to the same base 2108 // value, we can replace it with an icmp which just compares the offsets. 2109 if (LHS == RHS) 2110 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2111 2112 // Various optimizations for (in)equality comparisons. 2113 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2114 // Different non-empty allocations that exist at the same time have 2115 // different addresses (if the program can tell). Global variables always 2116 // exist, so they always exist during the lifetime of each other and all 2117 // allocas. Two different allocas usually have different addresses... 2118 // 2119 // However, if there's an @llvm.stackrestore dynamically in between two 2120 // allocas, they may have the same address. It's tempting to reduce the 2121 // scope of the problem by only looking at *static* allocas here. That would 2122 // cover the majority of allocas while significantly reducing the likelihood 2123 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2124 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2125 // an entry block. Also, if we have a block that's not attached to a 2126 // function, we can't tell if it's "static" under the current definition. 2127 // Theoretically, this problem could be fixed by creating a new kind of 2128 // instruction kind specifically for static allocas. Such a new instruction 2129 // could be required to be at the top of the entry block, thus preventing it 2130 // from being subject to a @llvm.stackrestore. Instcombine could even 2131 // convert regular allocas into these special allocas. It'd be nifty. 2132 // However, until then, this problem remains open. 2133 // 2134 // So, we'll assume that two non-empty allocas have different addresses 2135 // for now. 2136 // 2137 // With all that, if the offsets are within the bounds of their allocations 2138 // (and not one-past-the-end! so we can't use inbounds!), and their 2139 // allocations aren't the same, the pointers are not equal. 2140 // 2141 // Note that it's not necessary to check for LHS being a global variable 2142 // address, due to canonicalization and constant folding. 2143 if (isa<AllocaInst>(LHS) && 2144 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2145 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2146 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2147 uint64_t LHSSize, RHSSize; 2148 if (LHSOffsetCI && RHSOffsetCI && 2149 getObjectSize(LHS, LHSSize, DL, TLI) && 2150 getObjectSize(RHS, RHSSize, DL, TLI)) { 2151 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2152 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2153 if (!LHSOffsetValue.isNegative() && 2154 !RHSOffsetValue.isNegative() && 2155 LHSOffsetValue.ult(LHSSize) && 2156 RHSOffsetValue.ult(RHSSize)) { 2157 return ConstantInt::get(GetCompareTy(LHS), 2158 !CmpInst::isTrueWhenEqual(Pred)); 2159 } 2160 } 2161 2162 // Repeat the above check but this time without depending on DataLayout 2163 // or being able to compute a precise size. 2164 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2165 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2166 LHSOffset->isNullValue() && 2167 RHSOffset->isNullValue()) 2168 return ConstantInt::get(GetCompareTy(LHS), 2169 !CmpInst::isTrueWhenEqual(Pred)); 2170 } 2171 2172 // Even if an non-inbounds GEP occurs along the path we can still optimize 2173 // equality comparisons concerning the result. We avoid walking the whole 2174 // chain again by starting where the last calls to 2175 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2176 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2177 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2178 if (LHS == RHS) 2179 return ConstantExpr::getICmp(Pred, 2180 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2181 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2182 2183 // If one side of the equality comparison must come from a noalias call 2184 // (meaning a system memory allocation function), and the other side must 2185 // come from a pointer that cannot overlap with dynamically-allocated 2186 // memory within the lifetime of the current function (allocas, byval 2187 // arguments, globals), then determine the comparison result here. 2188 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2189 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2190 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2191 2192 // Is the set of underlying objects all noalias calls? 2193 auto IsNAC = [](ArrayRef<Value *> Objects) { 2194 return all_of(Objects, isNoAliasCall); 2195 }; 2196 2197 // Is the set of underlying objects all things which must be disjoint from 2198 // noalias calls. For allocas, we consider only static ones (dynamic 2199 // allocas might be transformed into calls to malloc not simultaneously 2200 // live with the compared-to allocation). For globals, we exclude symbols 2201 // that might be resolve lazily to symbols in another dynamically-loaded 2202 // library (and, thus, could be malloc'ed by the implementation). 2203 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2204 return all_of(Objects, [](Value *V) { 2205 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2206 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2207 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2208 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2209 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2210 !GV->isThreadLocal(); 2211 if (const Argument *A = dyn_cast<Argument>(V)) 2212 return A->hasByValAttr(); 2213 return false; 2214 }); 2215 }; 2216 2217 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2218 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2219 return ConstantInt::get(GetCompareTy(LHS), 2220 !CmpInst::isTrueWhenEqual(Pred)); 2221 2222 // Fold comparisons for non-escaping pointer even if the allocation call 2223 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2224 // dynamic allocation call could be either of the operands. 2225 Value *MI = nullptr; 2226 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2227 MI = LHS; 2228 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2229 MI = RHS; 2230 // FIXME: We should also fold the compare when the pointer escapes, but the 2231 // compare dominates the pointer escape 2232 if (MI && !PointerMayBeCaptured(MI, true, true)) 2233 return ConstantInt::get(GetCompareTy(LHS), 2234 CmpInst::isFalseWhenEqual(Pred)); 2235 } 2236 2237 // Otherwise, fail. 2238 return nullptr; 2239 } 2240 2241 /// Fold an icmp when its operands have i1 scalar type. 2242 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2243 Value *RHS, const SimplifyQuery &Q) { 2244 Type *ITy = GetCompareTy(LHS); // The return type. 2245 Type *OpTy = LHS->getType(); // The operand type. 2246 if (!OpTy->isIntOrIntVectorTy(1)) 2247 return nullptr; 2248 2249 // A boolean compared to true/false can be simplified in 14 out of the 20 2250 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2251 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2252 if (match(RHS, m_Zero())) { 2253 switch (Pred) { 2254 case CmpInst::ICMP_NE: // X != 0 -> X 2255 case CmpInst::ICMP_UGT: // X >u 0 -> X 2256 case CmpInst::ICMP_SLT: // X <s 0 -> X 2257 return LHS; 2258 2259 case CmpInst::ICMP_ULT: // X <u 0 -> false 2260 case CmpInst::ICMP_SGT: // X >s 0 -> false 2261 return getFalse(ITy); 2262 2263 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2264 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2265 return getTrue(ITy); 2266 2267 default: break; 2268 } 2269 } else if (match(RHS, m_One())) { 2270 switch (Pred) { 2271 case CmpInst::ICMP_EQ: // X == 1 -> X 2272 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2273 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2274 return LHS; 2275 2276 case CmpInst::ICMP_UGT: // X >u 1 -> false 2277 case CmpInst::ICMP_SLT: // X <s -1 -> false 2278 return getFalse(ITy); 2279 2280 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2281 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2282 return getTrue(ITy); 2283 2284 default: break; 2285 } 2286 } 2287 2288 switch (Pred) { 2289 default: 2290 break; 2291 case ICmpInst::ICMP_UGE: 2292 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2293 return getTrue(ITy); 2294 break; 2295 case ICmpInst::ICMP_SGE: 2296 /// For signed comparison, the values for an i1 are 0 and -1 2297 /// respectively. This maps into a truth table of: 2298 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2299 /// 0 | 0 | 1 (0 >= 0) | 1 2300 /// 0 | 1 | 1 (0 >= -1) | 1 2301 /// 1 | 0 | 0 (-1 >= 0) | 0 2302 /// 1 | 1 | 1 (-1 >= -1) | 1 2303 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2304 return getTrue(ITy); 2305 break; 2306 case ICmpInst::ICMP_ULE: 2307 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2308 return getTrue(ITy); 2309 break; 2310 } 2311 2312 return nullptr; 2313 } 2314 2315 /// Try hard to fold icmp with zero RHS because this is a common case. 2316 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2317 Value *RHS, const SimplifyQuery &Q) { 2318 if (!match(RHS, m_Zero())) 2319 return nullptr; 2320 2321 Type *ITy = GetCompareTy(LHS); // The return type. 2322 switch (Pred) { 2323 default: 2324 llvm_unreachable("Unknown ICmp predicate!"); 2325 case ICmpInst::ICMP_ULT: 2326 return getFalse(ITy); 2327 case ICmpInst::ICMP_UGE: 2328 return getTrue(ITy); 2329 case ICmpInst::ICMP_EQ: 2330 case ICmpInst::ICMP_ULE: 2331 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2332 return getFalse(ITy); 2333 break; 2334 case ICmpInst::ICMP_NE: 2335 case ICmpInst::ICMP_UGT: 2336 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2337 return getTrue(ITy); 2338 break; 2339 case ICmpInst::ICMP_SLT: { 2340 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2341 if (LHSKnown.isNegative()) 2342 return getTrue(ITy); 2343 if (LHSKnown.isNonNegative()) 2344 return getFalse(ITy); 2345 break; 2346 } 2347 case ICmpInst::ICMP_SLE: { 2348 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2349 if (LHSKnown.isNegative()) 2350 return getTrue(ITy); 2351 if (LHSKnown.isNonNegative() && 2352 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2353 return getFalse(ITy); 2354 break; 2355 } 2356 case ICmpInst::ICMP_SGE: { 2357 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2358 if (LHSKnown.isNegative()) 2359 return getFalse(ITy); 2360 if (LHSKnown.isNonNegative()) 2361 return getTrue(ITy); 2362 break; 2363 } 2364 case ICmpInst::ICMP_SGT: { 2365 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2366 if (LHSKnown.isNegative()) 2367 return getFalse(ITy); 2368 if (LHSKnown.isNonNegative() && 2369 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2370 return getTrue(ITy); 2371 break; 2372 } 2373 } 2374 2375 return nullptr; 2376 } 2377 2378 /// Many binary operators with a constant operand have an easy-to-compute 2379 /// range of outputs. This can be used to fold a comparison to always true or 2380 /// always false. 2381 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2382 unsigned Width = Lower.getBitWidth(); 2383 const APInt *C; 2384 switch (BO.getOpcode()) { 2385 case Instruction::Add: 2386 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2387 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2388 if (BO.hasNoUnsignedWrap()) { 2389 // 'add nuw x, C' produces [C, UINT_MAX]. 2390 Lower = *C; 2391 } else if (BO.hasNoSignedWrap()) { 2392 if (C->isNegative()) { 2393 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2394 Lower = APInt::getSignedMinValue(Width); 2395 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2396 } else { 2397 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2398 Lower = APInt::getSignedMinValue(Width) + *C; 2399 Upper = APInt::getSignedMaxValue(Width) + 1; 2400 } 2401 } 2402 } 2403 break; 2404 2405 case Instruction::And: 2406 if (match(BO.getOperand(1), m_APInt(C))) 2407 // 'and x, C' produces [0, C]. 2408 Upper = *C + 1; 2409 break; 2410 2411 case Instruction::Or: 2412 if (match(BO.getOperand(1), m_APInt(C))) 2413 // 'or x, C' produces [C, UINT_MAX]. 2414 Lower = *C; 2415 break; 2416 2417 case Instruction::AShr: 2418 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2419 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2420 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2421 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2422 } else if (match(BO.getOperand(0), m_APInt(C))) { 2423 unsigned ShiftAmount = Width - 1; 2424 if (!C->isNullValue() && BO.isExact()) 2425 ShiftAmount = C->countTrailingZeros(); 2426 if (C->isNegative()) { 2427 // 'ashr C, x' produces [C, C >> (Width-1)] 2428 Lower = *C; 2429 Upper = C->ashr(ShiftAmount) + 1; 2430 } else { 2431 // 'ashr C, x' produces [C >> (Width-1), C] 2432 Lower = C->ashr(ShiftAmount); 2433 Upper = *C + 1; 2434 } 2435 } 2436 break; 2437 2438 case Instruction::LShr: 2439 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2440 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2441 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2442 } else if (match(BO.getOperand(0), m_APInt(C))) { 2443 // 'lshr C, x' produces [C >> (Width-1), C]. 2444 unsigned ShiftAmount = Width - 1; 2445 if (!C->isNullValue() && BO.isExact()) 2446 ShiftAmount = C->countTrailingZeros(); 2447 Lower = C->lshr(ShiftAmount); 2448 Upper = *C + 1; 2449 } 2450 break; 2451 2452 case Instruction::Shl: 2453 if (match(BO.getOperand(0), m_APInt(C))) { 2454 if (BO.hasNoUnsignedWrap()) { 2455 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2456 Lower = *C; 2457 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2458 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2459 if (C->isNegative()) { 2460 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2461 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2462 Lower = C->shl(ShiftAmount); 2463 Upper = *C + 1; 2464 } else { 2465 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2466 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2467 Lower = *C; 2468 Upper = C->shl(ShiftAmount) + 1; 2469 } 2470 } 2471 } 2472 break; 2473 2474 case Instruction::SDiv: 2475 if (match(BO.getOperand(1), m_APInt(C))) { 2476 APInt IntMin = APInt::getSignedMinValue(Width); 2477 APInt IntMax = APInt::getSignedMaxValue(Width); 2478 if (C->isAllOnesValue()) { 2479 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2480 // where C != -1 and C != 0 and C != 1 2481 Lower = IntMin + 1; 2482 Upper = IntMax + 1; 2483 } else if (C->countLeadingZeros() < Width - 1) { 2484 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2485 // where C != -1 and C != 0 and C != 1 2486 Lower = IntMin.sdiv(*C); 2487 Upper = IntMax.sdiv(*C); 2488 if (Lower.sgt(Upper)) 2489 std::swap(Lower, Upper); 2490 Upper = Upper + 1; 2491 assert(Upper != Lower && "Upper part of range has wrapped!"); 2492 } 2493 } else if (match(BO.getOperand(0), m_APInt(C))) { 2494 if (C->isMinSignedValue()) { 2495 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2496 Lower = *C; 2497 Upper = Lower.lshr(1) + 1; 2498 } else { 2499 // 'sdiv C, x' produces [-|C|, |C|]. 2500 Upper = C->abs() + 1; 2501 Lower = (-Upper) + 1; 2502 } 2503 } 2504 break; 2505 2506 case Instruction::UDiv: 2507 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2508 // 'udiv x, C' produces [0, UINT_MAX / C]. 2509 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2510 } else if (match(BO.getOperand(0), m_APInt(C))) { 2511 // 'udiv C, x' produces [0, C]. 2512 Upper = *C + 1; 2513 } 2514 break; 2515 2516 case Instruction::SRem: 2517 if (match(BO.getOperand(1), m_APInt(C))) { 2518 // 'srem x, C' produces (-|C|, |C|). 2519 Upper = C->abs(); 2520 Lower = (-Upper) + 1; 2521 } 2522 break; 2523 2524 case Instruction::URem: 2525 if (match(BO.getOperand(1), m_APInt(C))) 2526 // 'urem x, C' produces [0, C). 2527 Upper = *C; 2528 break; 2529 2530 default: 2531 break; 2532 } 2533 } 2534 2535 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2536 Value *RHS) { 2537 const APInt *C; 2538 if (!match(RHS, m_APInt(C))) 2539 return nullptr; 2540 2541 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2542 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2543 if (RHS_CR.isEmptySet()) 2544 return ConstantInt::getFalse(GetCompareTy(RHS)); 2545 if (RHS_CR.isFullSet()) 2546 return ConstantInt::getTrue(GetCompareTy(RHS)); 2547 2548 // Find the range of possible values for binary operators. 2549 unsigned Width = C->getBitWidth(); 2550 APInt Lower = APInt(Width, 0); 2551 APInt Upper = APInt(Width, 0); 2552 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2553 setLimitsForBinOp(*BO, Lower, Upper); 2554 2555 ConstantRange LHS_CR = 2556 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2557 2558 if (auto *I = dyn_cast<Instruction>(LHS)) 2559 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2560 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2561 2562 if (!LHS_CR.isFullSet()) { 2563 if (RHS_CR.contains(LHS_CR)) 2564 return ConstantInt::getTrue(GetCompareTy(RHS)); 2565 if (RHS_CR.inverse().contains(LHS_CR)) 2566 return ConstantInt::getFalse(GetCompareTy(RHS)); 2567 } 2568 2569 return nullptr; 2570 } 2571 2572 /// TODO: A large part of this logic is duplicated in InstCombine's 2573 /// foldICmpBinOp(). We should be able to share that and avoid the code 2574 /// duplication. 2575 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2576 Value *RHS, const SimplifyQuery &Q, 2577 unsigned MaxRecurse) { 2578 Type *ITy = GetCompareTy(LHS); // The return type. 2579 2580 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2581 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2582 if (MaxRecurse && (LBO || RBO)) { 2583 // Analyze the case when either LHS or RHS is an add instruction. 2584 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2585 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2586 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2587 if (LBO && LBO->getOpcode() == Instruction::Add) { 2588 A = LBO->getOperand(0); 2589 B = LBO->getOperand(1); 2590 NoLHSWrapProblem = 2591 ICmpInst::isEquality(Pred) || 2592 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2593 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2594 } 2595 if (RBO && RBO->getOpcode() == Instruction::Add) { 2596 C = RBO->getOperand(0); 2597 D = RBO->getOperand(1); 2598 NoRHSWrapProblem = 2599 ICmpInst::isEquality(Pred) || 2600 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2601 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2602 } 2603 2604 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2605 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2606 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2607 Constant::getNullValue(RHS->getType()), Q, 2608 MaxRecurse - 1)) 2609 return V; 2610 2611 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2612 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2613 if (Value *V = 2614 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2615 C == LHS ? D : C, Q, MaxRecurse - 1)) 2616 return V; 2617 2618 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2619 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2620 NoRHSWrapProblem) { 2621 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2622 Value *Y, *Z; 2623 if (A == C) { 2624 // C + B == C + D -> B == D 2625 Y = B; 2626 Z = D; 2627 } else if (A == D) { 2628 // D + B == C + D -> B == C 2629 Y = B; 2630 Z = C; 2631 } else if (B == C) { 2632 // A + C == C + D -> A == D 2633 Y = A; 2634 Z = D; 2635 } else { 2636 assert(B == D); 2637 // A + D == C + D -> A == C 2638 Y = A; 2639 Z = C; 2640 } 2641 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2642 return V; 2643 } 2644 } 2645 2646 { 2647 Value *Y = nullptr; 2648 // icmp pred (or X, Y), X 2649 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2650 if (Pred == ICmpInst::ICMP_ULT) 2651 return getFalse(ITy); 2652 if (Pred == ICmpInst::ICMP_UGE) 2653 return getTrue(ITy); 2654 2655 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2656 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2657 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2658 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2659 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2660 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2661 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2662 } 2663 } 2664 // icmp pred X, (or X, Y) 2665 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2666 if (Pred == ICmpInst::ICMP_ULE) 2667 return getTrue(ITy); 2668 if (Pred == ICmpInst::ICMP_UGT) 2669 return getFalse(ITy); 2670 2671 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2672 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2673 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2674 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2675 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2676 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2677 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2678 } 2679 } 2680 } 2681 2682 // icmp pred (and X, Y), X 2683 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2684 if (Pred == ICmpInst::ICMP_UGT) 2685 return getFalse(ITy); 2686 if (Pred == ICmpInst::ICMP_ULE) 2687 return getTrue(ITy); 2688 } 2689 // icmp pred X, (and X, Y) 2690 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2691 if (Pred == ICmpInst::ICMP_UGE) 2692 return getTrue(ITy); 2693 if (Pred == ICmpInst::ICMP_ULT) 2694 return getFalse(ITy); 2695 } 2696 2697 // 0 - (zext X) pred C 2698 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2699 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2700 if (RHSC->getValue().isStrictlyPositive()) { 2701 if (Pred == ICmpInst::ICMP_SLT) 2702 return ConstantInt::getTrue(RHSC->getContext()); 2703 if (Pred == ICmpInst::ICMP_SGE) 2704 return ConstantInt::getFalse(RHSC->getContext()); 2705 if (Pred == ICmpInst::ICMP_EQ) 2706 return ConstantInt::getFalse(RHSC->getContext()); 2707 if (Pred == ICmpInst::ICMP_NE) 2708 return ConstantInt::getTrue(RHSC->getContext()); 2709 } 2710 if (RHSC->getValue().isNonNegative()) { 2711 if (Pred == ICmpInst::ICMP_SLE) 2712 return ConstantInt::getTrue(RHSC->getContext()); 2713 if (Pred == ICmpInst::ICMP_SGT) 2714 return ConstantInt::getFalse(RHSC->getContext()); 2715 } 2716 } 2717 } 2718 2719 // icmp pred (urem X, Y), Y 2720 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2721 switch (Pred) { 2722 default: 2723 break; 2724 case ICmpInst::ICMP_SGT: 2725 case ICmpInst::ICMP_SGE: { 2726 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2727 if (!Known.isNonNegative()) 2728 break; 2729 LLVM_FALLTHROUGH; 2730 } 2731 case ICmpInst::ICMP_EQ: 2732 case ICmpInst::ICMP_UGT: 2733 case ICmpInst::ICMP_UGE: 2734 return getFalse(ITy); 2735 case ICmpInst::ICMP_SLT: 2736 case ICmpInst::ICMP_SLE: { 2737 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2738 if (!Known.isNonNegative()) 2739 break; 2740 LLVM_FALLTHROUGH; 2741 } 2742 case ICmpInst::ICMP_NE: 2743 case ICmpInst::ICMP_ULT: 2744 case ICmpInst::ICMP_ULE: 2745 return getTrue(ITy); 2746 } 2747 } 2748 2749 // icmp pred X, (urem Y, X) 2750 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2751 switch (Pred) { 2752 default: 2753 break; 2754 case ICmpInst::ICMP_SGT: 2755 case ICmpInst::ICMP_SGE: { 2756 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2757 if (!Known.isNonNegative()) 2758 break; 2759 LLVM_FALLTHROUGH; 2760 } 2761 case ICmpInst::ICMP_NE: 2762 case ICmpInst::ICMP_UGT: 2763 case ICmpInst::ICMP_UGE: 2764 return getTrue(ITy); 2765 case ICmpInst::ICMP_SLT: 2766 case ICmpInst::ICMP_SLE: { 2767 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2768 if (!Known.isNonNegative()) 2769 break; 2770 LLVM_FALLTHROUGH; 2771 } 2772 case ICmpInst::ICMP_EQ: 2773 case ICmpInst::ICMP_ULT: 2774 case ICmpInst::ICMP_ULE: 2775 return getFalse(ITy); 2776 } 2777 } 2778 2779 // x >> y <=u x 2780 // x udiv y <=u x. 2781 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2782 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2783 // icmp pred (X op Y), X 2784 if (Pred == ICmpInst::ICMP_UGT) 2785 return getFalse(ITy); 2786 if (Pred == ICmpInst::ICMP_ULE) 2787 return getTrue(ITy); 2788 } 2789 2790 // x >=u x >> y 2791 // x >=u x udiv y. 2792 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2793 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2794 // icmp pred X, (X op Y) 2795 if (Pred == ICmpInst::ICMP_ULT) 2796 return getFalse(ITy); 2797 if (Pred == ICmpInst::ICMP_UGE) 2798 return getTrue(ITy); 2799 } 2800 2801 // handle: 2802 // CI2 << X == CI 2803 // CI2 << X != CI 2804 // 2805 // where CI2 is a power of 2 and CI isn't 2806 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2807 const APInt *CI2Val, *CIVal = &CI->getValue(); 2808 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2809 CI2Val->isPowerOf2()) { 2810 if (!CIVal->isPowerOf2()) { 2811 // CI2 << X can equal zero in some circumstances, 2812 // this simplification is unsafe if CI is zero. 2813 // 2814 // We know it is safe if: 2815 // - The shift is nsw, we can't shift out the one bit. 2816 // - The shift is nuw, we can't shift out the one bit. 2817 // - CI2 is one 2818 // - CI isn't zero 2819 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2820 CI2Val->isOneValue() || !CI->isZero()) { 2821 if (Pred == ICmpInst::ICMP_EQ) 2822 return ConstantInt::getFalse(RHS->getContext()); 2823 if (Pred == ICmpInst::ICMP_NE) 2824 return ConstantInt::getTrue(RHS->getContext()); 2825 } 2826 } 2827 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2828 if (Pred == ICmpInst::ICMP_UGT) 2829 return ConstantInt::getFalse(RHS->getContext()); 2830 if (Pred == ICmpInst::ICMP_ULE) 2831 return ConstantInt::getTrue(RHS->getContext()); 2832 } 2833 } 2834 } 2835 2836 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2837 LBO->getOperand(1) == RBO->getOperand(1)) { 2838 switch (LBO->getOpcode()) { 2839 default: 2840 break; 2841 case Instruction::UDiv: 2842 case Instruction::LShr: 2843 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2844 break; 2845 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2846 RBO->getOperand(0), Q, MaxRecurse - 1)) 2847 return V; 2848 break; 2849 case Instruction::SDiv: 2850 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2851 break; 2852 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2853 RBO->getOperand(0), Q, MaxRecurse - 1)) 2854 return V; 2855 break; 2856 case Instruction::AShr: 2857 if (!LBO->isExact() || !RBO->isExact()) 2858 break; 2859 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2860 RBO->getOperand(0), Q, MaxRecurse - 1)) 2861 return V; 2862 break; 2863 case Instruction::Shl: { 2864 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2865 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2866 if (!NUW && !NSW) 2867 break; 2868 if (!NSW && ICmpInst::isSigned(Pred)) 2869 break; 2870 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2871 RBO->getOperand(0), Q, MaxRecurse - 1)) 2872 return V; 2873 break; 2874 } 2875 } 2876 } 2877 return nullptr; 2878 } 2879 2880 /// Simplify integer comparisons where at least one operand of the compare 2881 /// matches an integer min/max idiom. 2882 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2883 Value *RHS, const SimplifyQuery &Q, 2884 unsigned MaxRecurse) { 2885 Type *ITy = GetCompareTy(LHS); // The return type. 2886 Value *A, *B; 2887 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2888 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2889 2890 // Signed variants on "max(a,b)>=a -> true". 2891 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2892 if (A != RHS) 2893 std::swap(A, B); // smax(A, B) pred A. 2894 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2895 // We analyze this as smax(A, B) pred A. 2896 P = Pred; 2897 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2898 (A == LHS || B == LHS)) { 2899 if (A != LHS) 2900 std::swap(A, B); // A pred smax(A, B). 2901 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2902 // We analyze this as smax(A, B) swapped-pred A. 2903 P = CmpInst::getSwappedPredicate(Pred); 2904 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2905 (A == RHS || B == RHS)) { 2906 if (A != RHS) 2907 std::swap(A, B); // smin(A, B) pred A. 2908 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2909 // We analyze this as smax(-A, -B) swapped-pred -A. 2910 // Note that we do not need to actually form -A or -B thanks to EqP. 2911 P = CmpInst::getSwappedPredicate(Pred); 2912 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2913 (A == LHS || B == LHS)) { 2914 if (A != LHS) 2915 std::swap(A, B); // A pred smin(A, B). 2916 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2917 // We analyze this as smax(-A, -B) pred -A. 2918 // Note that we do not need to actually form -A or -B thanks to EqP. 2919 P = Pred; 2920 } 2921 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2922 // Cases correspond to "max(A, B) p A". 2923 switch (P) { 2924 default: 2925 break; 2926 case CmpInst::ICMP_EQ: 2927 case CmpInst::ICMP_SLE: 2928 // Equivalent to "A EqP B". This may be the same as the condition tested 2929 // in the max/min; if so, we can just return that. 2930 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2931 return V; 2932 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2933 return V; 2934 // Otherwise, see if "A EqP B" simplifies. 2935 if (MaxRecurse) 2936 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2937 return V; 2938 break; 2939 case CmpInst::ICMP_NE: 2940 case CmpInst::ICMP_SGT: { 2941 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2942 // Equivalent to "A InvEqP B". This may be the same as the condition 2943 // tested in the max/min; if so, we can just return that. 2944 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2945 return V; 2946 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2947 return V; 2948 // Otherwise, see if "A InvEqP B" simplifies. 2949 if (MaxRecurse) 2950 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2951 return V; 2952 break; 2953 } 2954 case CmpInst::ICMP_SGE: 2955 // Always true. 2956 return getTrue(ITy); 2957 case CmpInst::ICMP_SLT: 2958 // Always false. 2959 return getFalse(ITy); 2960 } 2961 } 2962 2963 // Unsigned variants on "max(a,b)>=a -> true". 2964 P = CmpInst::BAD_ICMP_PREDICATE; 2965 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2966 if (A != RHS) 2967 std::swap(A, B); // umax(A, B) pred A. 2968 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2969 // We analyze this as umax(A, B) pred A. 2970 P = Pred; 2971 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2972 (A == LHS || B == LHS)) { 2973 if (A != LHS) 2974 std::swap(A, B); // A pred umax(A, B). 2975 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2976 // We analyze this as umax(A, B) swapped-pred A. 2977 P = CmpInst::getSwappedPredicate(Pred); 2978 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2979 (A == RHS || B == RHS)) { 2980 if (A != RHS) 2981 std::swap(A, B); // umin(A, B) pred A. 2982 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2983 // We analyze this as umax(-A, -B) swapped-pred -A. 2984 // Note that we do not need to actually form -A or -B thanks to EqP. 2985 P = CmpInst::getSwappedPredicate(Pred); 2986 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2987 (A == LHS || B == LHS)) { 2988 if (A != LHS) 2989 std::swap(A, B); // A pred umin(A, B). 2990 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2991 // We analyze this as umax(-A, -B) pred -A. 2992 // Note that we do not need to actually form -A or -B thanks to EqP. 2993 P = Pred; 2994 } 2995 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2996 // Cases correspond to "max(A, B) p A". 2997 switch (P) { 2998 default: 2999 break; 3000 case CmpInst::ICMP_EQ: 3001 case CmpInst::ICMP_ULE: 3002 // Equivalent to "A EqP B". This may be the same as the condition tested 3003 // in the max/min; if so, we can just return that. 3004 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3005 return V; 3006 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3007 return V; 3008 // Otherwise, see if "A EqP B" simplifies. 3009 if (MaxRecurse) 3010 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3011 return V; 3012 break; 3013 case CmpInst::ICMP_NE: 3014 case CmpInst::ICMP_UGT: { 3015 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3016 // Equivalent to "A InvEqP B". This may be the same as the condition 3017 // tested in the max/min; if so, we can just return that. 3018 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3019 return V; 3020 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3021 return V; 3022 // Otherwise, see if "A InvEqP B" simplifies. 3023 if (MaxRecurse) 3024 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3025 return V; 3026 break; 3027 } 3028 case CmpInst::ICMP_UGE: 3029 // Always true. 3030 return getTrue(ITy); 3031 case CmpInst::ICMP_ULT: 3032 // Always false. 3033 return getFalse(ITy); 3034 } 3035 } 3036 3037 // Variants on "max(x,y) >= min(x,z)". 3038 Value *C, *D; 3039 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3040 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3041 (A == C || A == D || B == C || B == D)) { 3042 // max(x, ?) pred min(x, ?). 3043 if (Pred == CmpInst::ICMP_SGE) 3044 // Always true. 3045 return getTrue(ITy); 3046 if (Pred == CmpInst::ICMP_SLT) 3047 // Always false. 3048 return getFalse(ITy); 3049 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3050 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3051 (A == C || A == D || B == C || B == D)) { 3052 // min(x, ?) pred max(x, ?). 3053 if (Pred == CmpInst::ICMP_SLE) 3054 // Always true. 3055 return getTrue(ITy); 3056 if (Pred == CmpInst::ICMP_SGT) 3057 // Always false. 3058 return getFalse(ITy); 3059 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3060 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3061 (A == C || A == D || B == C || B == D)) { 3062 // max(x, ?) pred min(x, ?). 3063 if (Pred == CmpInst::ICMP_UGE) 3064 // Always true. 3065 return getTrue(ITy); 3066 if (Pred == CmpInst::ICMP_ULT) 3067 // Always false. 3068 return getFalse(ITy); 3069 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3070 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3071 (A == C || A == D || B == C || B == D)) { 3072 // min(x, ?) pred max(x, ?). 3073 if (Pred == CmpInst::ICMP_ULE) 3074 // Always true. 3075 return getTrue(ITy); 3076 if (Pred == CmpInst::ICMP_UGT) 3077 // Always false. 3078 return getFalse(ITy); 3079 } 3080 3081 return nullptr; 3082 } 3083 3084 /// Given operands for an ICmpInst, see if we can fold the result. 3085 /// If not, this returns null. 3086 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3087 const SimplifyQuery &Q, unsigned MaxRecurse) { 3088 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3089 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3090 3091 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3092 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3093 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3094 3095 // If we have a constant, make sure it is on the RHS. 3096 std::swap(LHS, RHS); 3097 Pred = CmpInst::getSwappedPredicate(Pred); 3098 } 3099 3100 Type *ITy = GetCompareTy(LHS); // The return type. 3101 3102 // icmp X, X -> true/false 3103 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3104 // because X could be 0. 3105 if (LHS == RHS || isa<UndefValue>(RHS)) 3106 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3107 3108 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3109 return V; 3110 3111 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3112 return V; 3113 3114 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3115 return V; 3116 3117 // If both operands have range metadata, use the metadata 3118 // to simplify the comparison. 3119 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3120 auto RHS_Instr = cast<Instruction>(RHS); 3121 auto LHS_Instr = cast<Instruction>(LHS); 3122 3123 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3124 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3125 auto RHS_CR = getConstantRangeFromMetadata( 3126 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3127 auto LHS_CR = getConstantRangeFromMetadata( 3128 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3129 3130 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3131 if (Satisfied_CR.contains(LHS_CR)) 3132 return ConstantInt::getTrue(RHS->getContext()); 3133 3134 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3135 CmpInst::getInversePredicate(Pred), RHS_CR); 3136 if (InversedSatisfied_CR.contains(LHS_CR)) 3137 return ConstantInt::getFalse(RHS->getContext()); 3138 } 3139 } 3140 3141 // Compare of cast, for example (zext X) != 0 -> X != 0 3142 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3143 Instruction *LI = cast<CastInst>(LHS); 3144 Value *SrcOp = LI->getOperand(0); 3145 Type *SrcTy = SrcOp->getType(); 3146 Type *DstTy = LI->getType(); 3147 3148 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3149 // if the integer type is the same size as the pointer type. 3150 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3151 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3152 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3153 // Transfer the cast to the constant. 3154 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3155 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3156 Q, MaxRecurse-1)) 3157 return V; 3158 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3159 if (RI->getOperand(0)->getType() == SrcTy) 3160 // Compare without the cast. 3161 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3162 Q, MaxRecurse-1)) 3163 return V; 3164 } 3165 } 3166 3167 if (isa<ZExtInst>(LHS)) { 3168 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3169 // same type. 3170 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3171 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3172 // Compare X and Y. Note that signed predicates become unsigned. 3173 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3174 SrcOp, RI->getOperand(0), Q, 3175 MaxRecurse-1)) 3176 return V; 3177 } 3178 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3179 // too. If not, then try to deduce the result of the comparison. 3180 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3181 // Compute the constant that would happen if we truncated to SrcTy then 3182 // reextended to DstTy. 3183 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3184 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3185 3186 // If the re-extended constant didn't change then this is effectively 3187 // also a case of comparing two zero-extended values. 3188 if (RExt == CI && MaxRecurse) 3189 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3190 SrcOp, Trunc, Q, MaxRecurse-1)) 3191 return V; 3192 3193 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3194 // there. Use this to work out the result of the comparison. 3195 if (RExt != CI) { 3196 switch (Pred) { 3197 default: llvm_unreachable("Unknown ICmp predicate!"); 3198 // LHS <u RHS. 3199 case ICmpInst::ICMP_EQ: 3200 case ICmpInst::ICMP_UGT: 3201 case ICmpInst::ICMP_UGE: 3202 return ConstantInt::getFalse(CI->getContext()); 3203 3204 case ICmpInst::ICMP_NE: 3205 case ICmpInst::ICMP_ULT: 3206 case ICmpInst::ICMP_ULE: 3207 return ConstantInt::getTrue(CI->getContext()); 3208 3209 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3210 // is non-negative then LHS <s RHS. 3211 case ICmpInst::ICMP_SGT: 3212 case ICmpInst::ICMP_SGE: 3213 return CI->getValue().isNegative() ? 3214 ConstantInt::getTrue(CI->getContext()) : 3215 ConstantInt::getFalse(CI->getContext()); 3216 3217 case ICmpInst::ICMP_SLT: 3218 case ICmpInst::ICMP_SLE: 3219 return CI->getValue().isNegative() ? 3220 ConstantInt::getFalse(CI->getContext()) : 3221 ConstantInt::getTrue(CI->getContext()); 3222 } 3223 } 3224 } 3225 } 3226 3227 if (isa<SExtInst>(LHS)) { 3228 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3229 // same type. 3230 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3231 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3232 // Compare X and Y. Note that the predicate does not change. 3233 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3234 Q, MaxRecurse-1)) 3235 return V; 3236 } 3237 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3238 // too. If not, then try to deduce the result of the comparison. 3239 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3240 // Compute the constant that would happen if we truncated to SrcTy then 3241 // reextended to DstTy. 3242 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3243 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3244 3245 // If the re-extended constant didn't change then this is effectively 3246 // also a case of comparing two sign-extended values. 3247 if (RExt == CI && MaxRecurse) 3248 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3249 return V; 3250 3251 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3252 // bits there. Use this to work out the result of the comparison. 3253 if (RExt != CI) { 3254 switch (Pred) { 3255 default: llvm_unreachable("Unknown ICmp predicate!"); 3256 case ICmpInst::ICMP_EQ: 3257 return ConstantInt::getFalse(CI->getContext()); 3258 case ICmpInst::ICMP_NE: 3259 return ConstantInt::getTrue(CI->getContext()); 3260 3261 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3262 // LHS >s RHS. 3263 case ICmpInst::ICMP_SGT: 3264 case ICmpInst::ICMP_SGE: 3265 return CI->getValue().isNegative() ? 3266 ConstantInt::getTrue(CI->getContext()) : 3267 ConstantInt::getFalse(CI->getContext()); 3268 case ICmpInst::ICMP_SLT: 3269 case ICmpInst::ICMP_SLE: 3270 return CI->getValue().isNegative() ? 3271 ConstantInt::getFalse(CI->getContext()) : 3272 ConstantInt::getTrue(CI->getContext()); 3273 3274 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3275 // LHS >u RHS. 3276 case ICmpInst::ICMP_UGT: 3277 case ICmpInst::ICMP_UGE: 3278 // Comparison is true iff the LHS <s 0. 3279 if (MaxRecurse) 3280 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3281 Constant::getNullValue(SrcTy), 3282 Q, MaxRecurse-1)) 3283 return V; 3284 break; 3285 case ICmpInst::ICMP_ULT: 3286 case ICmpInst::ICMP_ULE: 3287 // Comparison is true iff the LHS >=s 0. 3288 if (MaxRecurse) 3289 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3290 Constant::getNullValue(SrcTy), 3291 Q, MaxRecurse-1)) 3292 return V; 3293 break; 3294 } 3295 } 3296 } 3297 } 3298 } 3299 3300 // icmp eq|ne X, Y -> false|true if X != Y 3301 if (ICmpInst::isEquality(Pred) && 3302 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3303 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3304 } 3305 3306 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3307 return V; 3308 3309 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3310 return V; 3311 3312 // Simplify comparisons of related pointers using a powerful, recursive 3313 // GEP-walk when we have target data available.. 3314 if (LHS->getType()->isPointerTy()) 3315 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3316 return C; 3317 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3318 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3319 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3320 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3321 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3322 Q.DL.getTypeSizeInBits(CRHS->getType())) 3323 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3324 CLHS->getPointerOperand(), 3325 CRHS->getPointerOperand())) 3326 return C; 3327 3328 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3329 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3330 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3331 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3332 (ICmpInst::isEquality(Pred) || 3333 (GLHS->isInBounds() && GRHS->isInBounds() && 3334 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3335 // The bases are equal and the indices are constant. Build a constant 3336 // expression GEP with the same indices and a null base pointer to see 3337 // what constant folding can make out of it. 3338 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3339 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3340 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3341 GLHS->getSourceElementType(), Null, IndicesLHS); 3342 3343 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3344 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3345 GLHS->getSourceElementType(), Null, IndicesRHS); 3346 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3347 } 3348 } 3349 } 3350 3351 // If the comparison is with the result of a select instruction, check whether 3352 // comparing with either branch of the select always yields the same value. 3353 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3354 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3355 return V; 3356 3357 // If the comparison is with the result of a phi instruction, check whether 3358 // doing the compare with each incoming phi value yields a common result. 3359 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3360 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3361 return V; 3362 3363 return nullptr; 3364 } 3365 3366 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3367 const SimplifyQuery &Q) { 3368 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3369 } 3370 3371 /// Given operands for an FCmpInst, see if we can fold the result. 3372 /// If not, this returns null. 3373 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3374 FastMathFlags FMF, const SimplifyQuery &Q, 3375 unsigned MaxRecurse) { 3376 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3377 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3378 3379 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3380 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3381 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3382 3383 // If we have a constant, make sure it is on the RHS. 3384 std::swap(LHS, RHS); 3385 Pred = CmpInst::getSwappedPredicate(Pred); 3386 } 3387 3388 // Fold trivial predicates. 3389 Type *RetTy = GetCompareTy(LHS); 3390 if (Pred == FCmpInst::FCMP_FALSE) 3391 return getFalse(RetTy); 3392 if (Pred == FCmpInst::FCMP_TRUE) 3393 return getTrue(RetTy); 3394 3395 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3396 if (FMF.noNaNs()) { 3397 if (Pred == FCmpInst::FCMP_UNO) 3398 return getFalse(RetTy); 3399 if (Pred == FCmpInst::FCMP_ORD) 3400 return getTrue(RetTy); 3401 } 3402 3403 // fcmp pred x, undef and fcmp pred undef, x 3404 // fold to true if unordered, false if ordered 3405 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3406 // Choosing NaN for the undef will always make unordered comparison succeed 3407 // and ordered comparison fail. 3408 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3409 } 3410 3411 // fcmp x,x -> true/false. Not all compares are foldable. 3412 if (LHS == RHS) { 3413 if (CmpInst::isTrueWhenEqual(Pred)) 3414 return getTrue(RetTy); 3415 if (CmpInst::isFalseWhenEqual(Pred)) 3416 return getFalse(RetTy); 3417 } 3418 3419 // Handle fcmp with constant RHS 3420 const ConstantFP *CFP = nullptr; 3421 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3422 if (RHS->getType()->isVectorTy()) 3423 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3424 else 3425 CFP = dyn_cast<ConstantFP>(RHSC); 3426 } 3427 if (CFP) { 3428 // If the constant is a nan, see if we can fold the comparison based on it. 3429 if (CFP->getValueAPF().isNaN()) { 3430 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3431 return getFalse(RetTy); 3432 assert(FCmpInst::isUnordered(Pred) && 3433 "Comparison must be either ordered or unordered!"); 3434 // True if unordered. 3435 return getTrue(RetTy); 3436 } 3437 // Check whether the constant is an infinity. 3438 if (CFP->getValueAPF().isInfinity()) { 3439 if (CFP->getValueAPF().isNegative()) { 3440 switch (Pred) { 3441 case FCmpInst::FCMP_OLT: 3442 // No value is ordered and less than negative infinity. 3443 return getFalse(RetTy); 3444 case FCmpInst::FCMP_UGE: 3445 // All values are unordered with or at least negative infinity. 3446 return getTrue(RetTy); 3447 default: 3448 break; 3449 } 3450 } else { 3451 switch (Pred) { 3452 case FCmpInst::FCMP_OGT: 3453 // No value is ordered and greater than infinity. 3454 return getFalse(RetTy); 3455 case FCmpInst::FCMP_ULE: 3456 // All values are unordered with and at most infinity. 3457 return getTrue(RetTy); 3458 default: 3459 break; 3460 } 3461 } 3462 } 3463 if (CFP->getValueAPF().isZero()) { 3464 switch (Pred) { 3465 case FCmpInst::FCMP_UGE: 3466 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3467 return getTrue(RetTy); 3468 break; 3469 case FCmpInst::FCMP_OLT: 3470 // X < 0 3471 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3472 return getFalse(RetTy); 3473 break; 3474 default: 3475 break; 3476 } 3477 } 3478 } 3479 3480 // If the comparison is with the result of a select instruction, check whether 3481 // comparing with either branch of the select always yields the same value. 3482 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3483 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3484 return V; 3485 3486 // If the comparison is with the result of a phi instruction, check whether 3487 // doing the compare with each incoming phi value yields a common result. 3488 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3489 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3490 return V; 3491 3492 return nullptr; 3493 } 3494 3495 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3496 FastMathFlags FMF, const SimplifyQuery &Q) { 3497 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3498 } 3499 3500 /// See if V simplifies when its operand Op is replaced with RepOp. 3501 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3502 const SimplifyQuery &Q, 3503 unsigned MaxRecurse) { 3504 // Trivial replacement. 3505 if (V == Op) 3506 return RepOp; 3507 3508 // We cannot replace a constant, and shouldn't even try. 3509 if (isa<Constant>(Op)) 3510 return nullptr; 3511 3512 auto *I = dyn_cast<Instruction>(V); 3513 if (!I) 3514 return nullptr; 3515 3516 // If this is a binary operator, try to simplify it with the replaced op. 3517 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3518 // Consider: 3519 // %cmp = icmp eq i32 %x, 2147483647 3520 // %add = add nsw i32 %x, 1 3521 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3522 // 3523 // We can't replace %sel with %add unless we strip away the flags. 3524 if (isa<OverflowingBinaryOperator>(B)) 3525 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3526 return nullptr; 3527 if (isa<PossiblyExactOperator>(B)) 3528 if (B->isExact()) 3529 return nullptr; 3530 3531 if (MaxRecurse) { 3532 if (B->getOperand(0) == Op) 3533 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3534 MaxRecurse - 1); 3535 if (B->getOperand(1) == Op) 3536 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3537 MaxRecurse - 1); 3538 } 3539 } 3540 3541 // Same for CmpInsts. 3542 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3543 if (MaxRecurse) { 3544 if (C->getOperand(0) == Op) 3545 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3546 MaxRecurse - 1); 3547 if (C->getOperand(1) == Op) 3548 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3549 MaxRecurse - 1); 3550 } 3551 } 3552 3553 // TODO: We could hand off more cases to instsimplify here. 3554 3555 // If all operands are constant after substituting Op for RepOp then we can 3556 // constant fold the instruction. 3557 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3558 // Build a list of all constant operands. 3559 SmallVector<Constant *, 8> ConstOps; 3560 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3561 if (I->getOperand(i) == Op) 3562 ConstOps.push_back(CRepOp); 3563 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3564 ConstOps.push_back(COp); 3565 else 3566 break; 3567 } 3568 3569 // All operands were constants, fold it. 3570 if (ConstOps.size() == I->getNumOperands()) { 3571 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3572 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3573 ConstOps[1], Q.DL, Q.TLI); 3574 3575 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3576 if (!LI->isVolatile()) 3577 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3578 3579 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3580 } 3581 } 3582 3583 return nullptr; 3584 } 3585 3586 /// Try to simplify a select instruction when its condition operand is an 3587 /// integer comparison where one operand of the compare is a constant. 3588 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3589 const APInt *Y, bool TrueWhenUnset) { 3590 const APInt *C; 3591 3592 // (X & Y) == 0 ? X & ~Y : X --> X 3593 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3594 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3595 *Y == ~*C) 3596 return TrueWhenUnset ? FalseVal : TrueVal; 3597 3598 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3599 // (X & Y) != 0 ? X : X & ~Y --> X 3600 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3601 *Y == ~*C) 3602 return TrueWhenUnset ? FalseVal : TrueVal; 3603 3604 if (Y->isPowerOf2()) { 3605 // (X & Y) == 0 ? X | Y : X --> X | Y 3606 // (X & Y) != 0 ? X | Y : X --> X 3607 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3608 *Y == *C) 3609 return TrueWhenUnset ? TrueVal : FalseVal; 3610 3611 // (X & Y) == 0 ? X : X | Y --> X 3612 // (X & Y) != 0 ? X : X | Y --> X | Y 3613 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3614 *Y == *C) 3615 return TrueWhenUnset ? TrueVal : FalseVal; 3616 } 3617 3618 return nullptr; 3619 } 3620 3621 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3622 /// eq/ne. 3623 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3624 Value *FalseVal, 3625 bool TrueWhenUnset) { 3626 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3627 if (!BitWidth) 3628 return nullptr; 3629 3630 APInt MinSignedValue; 3631 Value *X; 3632 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3633 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3634 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3635 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3636 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3637 } else { 3638 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3639 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3640 X = CmpLHS; 3641 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3642 } 3643 3644 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3645 TrueWhenUnset)) 3646 return V; 3647 3648 return nullptr; 3649 } 3650 3651 /// Try to simplify a select instruction when its condition operand is an 3652 /// integer comparison. 3653 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3654 Value *FalseVal, const SimplifyQuery &Q, 3655 unsigned MaxRecurse) { 3656 ICmpInst::Predicate Pred; 3657 Value *CmpLHS, *CmpRHS; 3658 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3659 return nullptr; 3660 3661 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3662 // decomposeBitTestICmp() might help. 3663 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3664 Value *X; 3665 const APInt *Y; 3666 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3667 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3668 Pred == ICmpInst::ICMP_EQ)) 3669 return V; 3670 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3671 // Comparing signed-less-than 0 checks if the sign bit is set. 3672 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3673 false)) 3674 return V; 3675 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3676 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3677 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3678 true)) 3679 return V; 3680 } 3681 3682 if (CondVal->hasOneUse()) { 3683 const APInt *C; 3684 if (match(CmpRHS, m_APInt(C))) { 3685 // X < MIN ? T : F --> F 3686 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3687 return FalseVal; 3688 // X < MIN ? T : F --> F 3689 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3690 return FalseVal; 3691 // X > MAX ? T : F --> F 3692 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3693 return FalseVal; 3694 // X > MAX ? T : F --> F 3695 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3696 return FalseVal; 3697 } 3698 } 3699 3700 // If we have an equality comparison, then we know the value in one of the 3701 // arms of the select. See if substituting this value into the arm and 3702 // simplifying the result yields the same value as the other arm. 3703 if (Pred == ICmpInst::ICMP_EQ) { 3704 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3705 TrueVal || 3706 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3707 TrueVal) 3708 return FalseVal; 3709 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3710 FalseVal || 3711 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3712 FalseVal) 3713 return FalseVal; 3714 } else if (Pred == ICmpInst::ICMP_NE) { 3715 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3716 FalseVal || 3717 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3718 FalseVal) 3719 return TrueVal; 3720 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3721 TrueVal || 3722 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3723 TrueVal) 3724 return TrueVal; 3725 } 3726 3727 return nullptr; 3728 } 3729 3730 /// Given operands for a SelectInst, see if we can fold the result. 3731 /// If not, this returns null. 3732 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3733 Value *FalseVal, const SimplifyQuery &Q, 3734 unsigned MaxRecurse) { 3735 // select true, X, Y -> X 3736 // select false, X, Y -> Y 3737 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3738 if (CB->isAllOnesValue()) 3739 return TrueVal; 3740 if (CB->isNullValue()) 3741 return FalseVal; 3742 } 3743 3744 // select C, X, X -> X 3745 if (TrueVal == FalseVal) 3746 return TrueVal; 3747 3748 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3749 if (isa<Constant>(FalseVal)) 3750 return FalseVal; 3751 return TrueVal; 3752 } 3753 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3754 return FalseVal; 3755 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3756 return TrueVal; 3757 3758 if (Value *V = 3759 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3760 return V; 3761 3762 return nullptr; 3763 } 3764 3765 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3766 const SimplifyQuery &Q) { 3767 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3768 } 3769 3770 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3771 /// If not, this returns null. 3772 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3773 const SimplifyQuery &Q, unsigned) { 3774 // The type of the GEP pointer operand. 3775 unsigned AS = 3776 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3777 3778 // getelementptr P -> P. 3779 if (Ops.size() == 1) 3780 return Ops[0]; 3781 3782 // Compute the (pointer) type returned by the GEP instruction. 3783 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3784 Type *GEPTy = PointerType::get(LastType, AS); 3785 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3786 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3787 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3788 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3789 3790 if (isa<UndefValue>(Ops[0])) 3791 return UndefValue::get(GEPTy); 3792 3793 if (Ops.size() == 2) { 3794 // getelementptr P, 0 -> P. 3795 if (match(Ops[1], m_Zero())) 3796 return Ops[0]; 3797 3798 Type *Ty = SrcTy; 3799 if (Ty->isSized()) { 3800 Value *P; 3801 uint64_t C; 3802 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3803 // getelementptr P, N -> P if P points to a type of zero size. 3804 if (TyAllocSize == 0) 3805 return Ops[0]; 3806 3807 // The following transforms are only safe if the ptrtoint cast 3808 // doesn't truncate the pointers. 3809 if (Ops[1]->getType()->getScalarSizeInBits() == 3810 Q.DL.getPointerSizeInBits(AS)) { 3811 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3812 if (match(P, m_Zero())) 3813 return Constant::getNullValue(GEPTy); 3814 Value *Temp; 3815 if (match(P, m_PtrToInt(m_Value(Temp)))) 3816 if (Temp->getType() == GEPTy) 3817 return Temp; 3818 return nullptr; 3819 }; 3820 3821 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3822 if (TyAllocSize == 1 && 3823 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3824 if (Value *R = PtrToIntOrZero(P)) 3825 return R; 3826 3827 // getelementptr V, (ashr (sub P, V), C) -> Q 3828 // if P points to a type of size 1 << C. 3829 if (match(Ops[1], 3830 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3831 m_ConstantInt(C))) && 3832 TyAllocSize == 1ULL << C) 3833 if (Value *R = PtrToIntOrZero(P)) 3834 return R; 3835 3836 // getelementptr V, (sdiv (sub P, V), C) -> Q 3837 // if P points to a type of size C. 3838 if (match(Ops[1], 3839 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3840 m_SpecificInt(TyAllocSize)))) 3841 if (Value *R = PtrToIntOrZero(P)) 3842 return R; 3843 } 3844 } 3845 } 3846 3847 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3848 all_of(Ops.slice(1).drop_back(1), 3849 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3850 unsigned PtrWidth = 3851 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3852 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3853 APInt BasePtrOffset(PtrWidth, 0); 3854 Value *StrippedBasePtr = 3855 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3856 BasePtrOffset); 3857 3858 // gep (gep V, C), (sub 0, V) -> C 3859 if (match(Ops.back(), 3860 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3861 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3862 return ConstantExpr::getIntToPtr(CI, GEPTy); 3863 } 3864 // gep (gep V, C), (xor V, -1) -> C-1 3865 if (match(Ops.back(), 3866 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3867 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3868 return ConstantExpr::getIntToPtr(CI, GEPTy); 3869 } 3870 } 3871 } 3872 3873 // Check to see if this is constant foldable. 3874 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3875 return nullptr; 3876 3877 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3878 Ops.slice(1)); 3879 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3880 return CEFolded; 3881 return CE; 3882 } 3883 3884 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3885 const SimplifyQuery &Q) { 3886 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3887 } 3888 3889 /// Given operands for an InsertValueInst, see if we can fold the result. 3890 /// If not, this returns null. 3891 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3892 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3893 unsigned) { 3894 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3895 if (Constant *CVal = dyn_cast<Constant>(Val)) 3896 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3897 3898 // insertvalue x, undef, n -> x 3899 if (match(Val, m_Undef())) 3900 return Agg; 3901 3902 // insertvalue x, (extractvalue y, n), n 3903 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3904 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3905 EV->getIndices() == Idxs) { 3906 // insertvalue undef, (extractvalue y, n), n -> y 3907 if (match(Agg, m_Undef())) 3908 return EV->getAggregateOperand(); 3909 3910 // insertvalue y, (extractvalue y, n), n -> y 3911 if (Agg == EV->getAggregateOperand()) 3912 return Agg; 3913 } 3914 3915 return nullptr; 3916 } 3917 3918 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3919 ArrayRef<unsigned> Idxs, 3920 const SimplifyQuery &Q) { 3921 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3922 } 3923 3924 /// Given operands for an ExtractValueInst, see if we can fold the result. 3925 /// If not, this returns null. 3926 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3927 const SimplifyQuery &, unsigned) { 3928 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3929 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3930 3931 // extractvalue x, (insertvalue y, elt, n), n -> elt 3932 unsigned NumIdxs = Idxs.size(); 3933 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3934 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3935 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3936 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3937 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3938 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3939 Idxs.slice(0, NumCommonIdxs)) { 3940 if (NumIdxs == NumInsertValueIdxs) 3941 return IVI->getInsertedValueOperand(); 3942 break; 3943 } 3944 } 3945 3946 return nullptr; 3947 } 3948 3949 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3950 const SimplifyQuery &Q) { 3951 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3952 } 3953 3954 /// Given operands for an ExtractElementInst, see if we can fold the result. 3955 /// If not, this returns null. 3956 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3957 unsigned) { 3958 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3959 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3960 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3961 3962 // The index is not relevant if our vector is a splat. 3963 if (auto *Splat = CVec->getSplatValue()) 3964 return Splat; 3965 3966 if (isa<UndefValue>(Vec)) 3967 return UndefValue::get(Vec->getType()->getVectorElementType()); 3968 } 3969 3970 // If extracting a specified index from the vector, see if we can recursively 3971 // find a previously computed scalar that was inserted into the vector. 3972 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3973 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3974 return Elt; 3975 3976 return nullptr; 3977 } 3978 3979 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3980 const SimplifyQuery &Q) { 3981 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3982 } 3983 3984 /// See if we can fold the given phi. If not, returns null. 3985 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3986 // If all of the PHI's incoming values are the same then replace the PHI node 3987 // with the common value. 3988 Value *CommonValue = nullptr; 3989 bool HasUndefInput = false; 3990 for (Value *Incoming : PN->incoming_values()) { 3991 // If the incoming value is the phi node itself, it can safely be skipped. 3992 if (Incoming == PN) continue; 3993 if (isa<UndefValue>(Incoming)) { 3994 // Remember that we saw an undef value, but otherwise ignore them. 3995 HasUndefInput = true; 3996 continue; 3997 } 3998 if (CommonValue && Incoming != CommonValue) 3999 return nullptr; // Not the same, bail out. 4000 CommonValue = Incoming; 4001 } 4002 4003 // If CommonValue is null then all of the incoming values were either undef or 4004 // equal to the phi node itself. 4005 if (!CommonValue) 4006 return UndefValue::get(PN->getType()); 4007 4008 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4009 // instruction, we cannot return X as the result of the PHI node unless it 4010 // dominates the PHI block. 4011 if (HasUndefInput) 4012 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4013 4014 return CommonValue; 4015 } 4016 4017 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4018 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4019 if (auto *C = dyn_cast<Constant>(Op)) 4020 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4021 4022 if (auto *CI = dyn_cast<CastInst>(Op)) { 4023 auto *Src = CI->getOperand(0); 4024 Type *SrcTy = Src->getType(); 4025 Type *MidTy = CI->getType(); 4026 Type *DstTy = Ty; 4027 if (Src->getType() == Ty) { 4028 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4029 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4030 Type *SrcIntPtrTy = 4031 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4032 Type *MidIntPtrTy = 4033 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4034 Type *DstIntPtrTy = 4035 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4036 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4037 SrcIntPtrTy, MidIntPtrTy, 4038 DstIntPtrTy) == Instruction::BitCast) 4039 return Src; 4040 } 4041 } 4042 4043 // bitcast x -> x 4044 if (CastOpc == Instruction::BitCast) 4045 if (Op->getType() == Ty) 4046 return Op; 4047 4048 return nullptr; 4049 } 4050 4051 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4052 const SimplifyQuery &Q) { 4053 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4054 } 4055 4056 /// For the given destination element of a shuffle, peek through shuffles to 4057 /// match a root vector source operand that contains that element in the same 4058 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4059 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4060 int MaskVal, Value *RootVec, 4061 unsigned MaxRecurse) { 4062 if (!MaxRecurse--) 4063 return nullptr; 4064 4065 // Bail out if any mask value is undefined. That kind of shuffle may be 4066 // simplified further based on demanded bits or other folds. 4067 if (MaskVal == -1) 4068 return nullptr; 4069 4070 // The mask value chooses which source operand we need to look at next. 4071 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4072 int RootElt = MaskVal; 4073 Value *SourceOp = Op0; 4074 if (MaskVal >= InVecNumElts) { 4075 RootElt = MaskVal - InVecNumElts; 4076 SourceOp = Op1; 4077 } 4078 4079 // If the source operand is a shuffle itself, look through it to find the 4080 // matching root vector. 4081 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4082 return foldIdentityShuffles( 4083 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4084 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4085 } 4086 4087 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4088 // size? 4089 4090 // The source operand is not a shuffle. Initialize the root vector value for 4091 // this shuffle if that has not been done yet. 4092 if (!RootVec) 4093 RootVec = SourceOp; 4094 4095 // Give up as soon as a source operand does not match the existing root value. 4096 if (RootVec != SourceOp) 4097 return nullptr; 4098 4099 // The element must be coming from the same lane in the source vector 4100 // (although it may have crossed lanes in intermediate shuffles). 4101 if (RootElt != DestElt) 4102 return nullptr; 4103 4104 return RootVec; 4105 } 4106 4107 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4108 Type *RetTy, const SimplifyQuery &Q, 4109 unsigned MaxRecurse) { 4110 if (isa<UndefValue>(Mask)) 4111 return UndefValue::get(RetTy); 4112 4113 Type *InVecTy = Op0->getType(); 4114 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4115 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4116 4117 SmallVector<int, 32> Indices; 4118 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4119 assert(MaskNumElts == Indices.size() && 4120 "Size of Indices not same as number of mask elements?"); 4121 4122 // Canonicalization: If mask does not select elements from an input vector, 4123 // replace that input vector with undef. 4124 bool MaskSelects0 = false, MaskSelects1 = false; 4125 for (unsigned i = 0; i != MaskNumElts; ++i) { 4126 if (Indices[i] == -1) 4127 continue; 4128 if ((unsigned)Indices[i] < InVecNumElts) 4129 MaskSelects0 = true; 4130 else 4131 MaskSelects1 = true; 4132 } 4133 if (!MaskSelects0) 4134 Op0 = UndefValue::get(InVecTy); 4135 if (!MaskSelects1) 4136 Op1 = UndefValue::get(InVecTy); 4137 4138 auto *Op0Const = dyn_cast<Constant>(Op0); 4139 auto *Op1Const = dyn_cast<Constant>(Op1); 4140 4141 // If all operands are constant, constant fold the shuffle. 4142 if (Op0Const && Op1Const) 4143 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4144 4145 // Canonicalization: if only one input vector is constant, it shall be the 4146 // second one. 4147 if (Op0Const && !Op1Const) { 4148 std::swap(Op0, Op1); 4149 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4150 } 4151 4152 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4153 // value type is same as the input vectors' type. 4154 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4155 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4156 OpShuf->getMask()->getSplatValue()) 4157 return Op0; 4158 4159 // Don't fold a shuffle with undef mask elements. This may get folded in a 4160 // better way using demanded bits or other analysis. 4161 // TODO: Should we allow this? 4162 if (find(Indices, -1) != Indices.end()) 4163 return nullptr; 4164 4165 // Check if every element of this shuffle can be mapped back to the 4166 // corresponding element of a single root vector. If so, we don't need this 4167 // shuffle. This handles simple identity shuffles as well as chains of 4168 // shuffles that may widen/narrow and/or move elements across lanes and back. 4169 Value *RootVec = nullptr; 4170 for (unsigned i = 0; i != MaskNumElts; ++i) { 4171 // Note that recursion is limited for each vector element, so if any element 4172 // exceeds the limit, this will fail to simplify. 4173 RootVec = 4174 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4175 4176 // We can't replace a widening/narrowing shuffle with one of its operands. 4177 if (!RootVec || RootVec->getType() != RetTy) 4178 return nullptr; 4179 } 4180 return RootVec; 4181 } 4182 4183 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4184 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4185 Type *RetTy, const SimplifyQuery &Q) { 4186 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4187 } 4188 4189 //=== Helper functions for higher up the class hierarchy. 4190 4191 /// Given operands for a BinaryOperator, see if we can fold the result. 4192 /// If not, this returns null. 4193 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4194 const SimplifyQuery &Q, unsigned MaxRecurse) { 4195 switch (Opcode) { 4196 case Instruction::Add: 4197 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4198 case Instruction::FAdd: 4199 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4200 case Instruction::Sub: 4201 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4202 case Instruction::FSub: 4203 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4204 case Instruction::Mul: 4205 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4206 case Instruction::FMul: 4207 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4208 case Instruction::SDiv: 4209 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4210 case Instruction::UDiv: 4211 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4212 case Instruction::FDiv: 4213 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4214 case Instruction::SRem: 4215 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4216 case Instruction::URem: 4217 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4218 case Instruction::FRem: 4219 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4220 case Instruction::Shl: 4221 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4222 case Instruction::LShr: 4223 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4224 case Instruction::AShr: 4225 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4226 case Instruction::And: 4227 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4228 case Instruction::Or: 4229 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4230 case Instruction::Xor: 4231 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4232 default: 4233 llvm_unreachable("Unexpected opcode"); 4234 } 4235 } 4236 4237 /// Given operands for a BinaryOperator, see if we can fold the result. 4238 /// If not, this returns null. 4239 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4240 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4241 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4242 const FastMathFlags &FMF, const SimplifyQuery &Q, 4243 unsigned MaxRecurse) { 4244 switch (Opcode) { 4245 case Instruction::FAdd: 4246 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4247 case Instruction::FSub: 4248 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4249 case Instruction::FMul: 4250 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4251 case Instruction::FDiv: 4252 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4253 default: 4254 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4255 } 4256 } 4257 4258 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4259 const SimplifyQuery &Q) { 4260 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4261 } 4262 4263 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4264 FastMathFlags FMF, const SimplifyQuery &Q) { 4265 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4266 } 4267 4268 /// Given operands for a CmpInst, see if we can fold the result. 4269 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4270 const SimplifyQuery &Q, unsigned MaxRecurse) { 4271 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4272 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4273 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4274 } 4275 4276 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4277 const SimplifyQuery &Q) { 4278 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4279 } 4280 4281 static bool IsIdempotent(Intrinsic::ID ID) { 4282 switch (ID) { 4283 default: return false; 4284 4285 // Unary idempotent: f(f(x)) = f(x) 4286 case Intrinsic::fabs: 4287 case Intrinsic::floor: 4288 case Intrinsic::ceil: 4289 case Intrinsic::trunc: 4290 case Intrinsic::rint: 4291 case Intrinsic::nearbyint: 4292 case Intrinsic::round: 4293 return true; 4294 } 4295 } 4296 4297 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4298 const DataLayout &DL) { 4299 GlobalValue *PtrSym; 4300 APInt PtrOffset; 4301 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4302 return nullptr; 4303 4304 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4305 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4306 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4307 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4308 4309 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4310 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4311 return nullptr; 4312 4313 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4314 if (OffsetInt % 4 != 0) 4315 return nullptr; 4316 4317 Constant *C = ConstantExpr::getGetElementPtr( 4318 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4319 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4320 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4321 if (!Loaded) 4322 return nullptr; 4323 4324 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4325 if (!LoadedCE) 4326 return nullptr; 4327 4328 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4329 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4330 if (!LoadedCE) 4331 return nullptr; 4332 } 4333 4334 if (LoadedCE->getOpcode() != Instruction::Sub) 4335 return nullptr; 4336 4337 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4338 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4339 return nullptr; 4340 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4341 4342 Constant *LoadedRHS = LoadedCE->getOperand(1); 4343 GlobalValue *LoadedRHSSym; 4344 APInt LoadedRHSOffset; 4345 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4346 DL) || 4347 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4348 return nullptr; 4349 4350 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4351 } 4352 4353 static bool maskIsAllZeroOrUndef(Value *Mask) { 4354 auto *ConstMask = dyn_cast<Constant>(Mask); 4355 if (!ConstMask) 4356 return false; 4357 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4358 return true; 4359 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4360 ++I) { 4361 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4362 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4363 continue; 4364 return false; 4365 } 4366 return true; 4367 } 4368 4369 template <typename IterTy> 4370 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4371 const SimplifyQuery &Q, unsigned MaxRecurse) { 4372 Intrinsic::ID IID = F->getIntrinsicID(); 4373 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4374 4375 // Unary Ops 4376 if (NumOperands == 1) { 4377 // Perform idempotent optimizations 4378 if (IsIdempotent(IID)) { 4379 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4380 if (II->getIntrinsicID() == IID) 4381 return II; 4382 } 4383 } 4384 4385 switch (IID) { 4386 case Intrinsic::fabs: { 4387 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4388 return *ArgBegin; 4389 return nullptr; 4390 } 4391 default: 4392 return nullptr; 4393 } 4394 } 4395 4396 // Binary Ops 4397 if (NumOperands == 2) { 4398 Value *LHS = *ArgBegin; 4399 Value *RHS = *(ArgBegin + 1); 4400 Type *ReturnType = F->getReturnType(); 4401 4402 switch (IID) { 4403 case Intrinsic::usub_with_overflow: 4404 case Intrinsic::ssub_with_overflow: { 4405 // X - X -> { 0, false } 4406 if (LHS == RHS) 4407 return Constant::getNullValue(ReturnType); 4408 4409 // X - undef -> undef 4410 // undef - X -> undef 4411 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4412 return UndefValue::get(ReturnType); 4413 4414 return nullptr; 4415 } 4416 case Intrinsic::uadd_with_overflow: 4417 case Intrinsic::sadd_with_overflow: { 4418 // X + undef -> undef 4419 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4420 return UndefValue::get(ReturnType); 4421 4422 return nullptr; 4423 } 4424 case Intrinsic::umul_with_overflow: 4425 case Intrinsic::smul_with_overflow: { 4426 // 0 * X -> { 0, false } 4427 // X * 0 -> { 0, false } 4428 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4429 return Constant::getNullValue(ReturnType); 4430 4431 // undef * X -> { 0, false } 4432 // X * undef -> { 0, false } 4433 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4434 return Constant::getNullValue(ReturnType); 4435 4436 return nullptr; 4437 } 4438 case Intrinsic::load_relative: { 4439 Constant *C0 = dyn_cast<Constant>(LHS); 4440 Constant *C1 = dyn_cast<Constant>(RHS); 4441 if (C0 && C1) 4442 return SimplifyRelativeLoad(C0, C1, Q.DL); 4443 return nullptr; 4444 } 4445 default: 4446 return nullptr; 4447 } 4448 } 4449 4450 // Simplify calls to llvm.masked.load.* 4451 switch (IID) { 4452 case Intrinsic::masked_load: { 4453 Value *MaskArg = ArgBegin[2]; 4454 Value *PassthruArg = ArgBegin[3]; 4455 // If the mask is all zeros or undef, the "passthru" argument is the result. 4456 if (maskIsAllZeroOrUndef(MaskArg)) 4457 return PassthruArg; 4458 return nullptr; 4459 } 4460 default: 4461 return nullptr; 4462 } 4463 } 4464 4465 template <typename IterTy> 4466 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4467 IterTy ArgEnd, const SimplifyQuery &Q, 4468 unsigned MaxRecurse) { 4469 Type *Ty = V->getType(); 4470 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4471 Ty = PTy->getElementType(); 4472 FunctionType *FTy = cast<FunctionType>(Ty); 4473 4474 // call undef -> undef 4475 // call null -> undef 4476 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4477 return UndefValue::get(FTy->getReturnType()); 4478 4479 Function *F = dyn_cast<Function>(V); 4480 if (!F) 4481 return nullptr; 4482 4483 if (F->isIntrinsic()) 4484 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4485 return Ret; 4486 4487 if (!canConstantFoldCallTo(CS, F)) 4488 return nullptr; 4489 4490 SmallVector<Constant *, 4> ConstantArgs; 4491 ConstantArgs.reserve(ArgEnd - ArgBegin); 4492 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4493 Constant *C = dyn_cast<Constant>(*I); 4494 if (!C) 4495 return nullptr; 4496 ConstantArgs.push_back(C); 4497 } 4498 4499 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4500 } 4501 4502 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4503 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4504 const SimplifyQuery &Q) { 4505 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4506 } 4507 4508 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4509 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4510 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4511 } 4512 4513 /// See if we can compute a simplified version of this instruction. 4514 /// If not, this returns null. 4515 4516 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4517 OptimizationRemarkEmitter *ORE) { 4518 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4519 Value *Result; 4520 4521 switch (I->getOpcode()) { 4522 default: 4523 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4524 break; 4525 case Instruction::FAdd: 4526 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4527 I->getFastMathFlags(), Q); 4528 break; 4529 case Instruction::Add: 4530 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4531 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4532 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4533 break; 4534 case Instruction::FSub: 4535 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4536 I->getFastMathFlags(), Q); 4537 break; 4538 case Instruction::Sub: 4539 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4540 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4541 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4542 break; 4543 case Instruction::FMul: 4544 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4545 I->getFastMathFlags(), Q); 4546 break; 4547 case Instruction::Mul: 4548 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4549 break; 4550 case Instruction::SDiv: 4551 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4552 break; 4553 case Instruction::UDiv: 4554 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4555 break; 4556 case Instruction::FDiv: 4557 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4558 I->getFastMathFlags(), Q); 4559 break; 4560 case Instruction::SRem: 4561 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4562 break; 4563 case Instruction::URem: 4564 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4565 break; 4566 case Instruction::FRem: 4567 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4568 I->getFastMathFlags(), Q); 4569 break; 4570 case Instruction::Shl: 4571 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4572 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4573 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4574 break; 4575 case Instruction::LShr: 4576 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4577 cast<BinaryOperator>(I)->isExact(), Q); 4578 break; 4579 case Instruction::AShr: 4580 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4581 cast<BinaryOperator>(I)->isExact(), Q); 4582 break; 4583 case Instruction::And: 4584 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4585 break; 4586 case Instruction::Or: 4587 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4588 break; 4589 case Instruction::Xor: 4590 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4591 break; 4592 case Instruction::ICmp: 4593 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4594 I->getOperand(0), I->getOperand(1), Q); 4595 break; 4596 case Instruction::FCmp: 4597 Result = 4598 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4599 I->getOperand(1), I->getFastMathFlags(), Q); 4600 break; 4601 case Instruction::Select: 4602 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4603 I->getOperand(2), Q); 4604 break; 4605 case Instruction::GetElementPtr: { 4606 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4607 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4608 Ops, Q); 4609 break; 4610 } 4611 case Instruction::InsertValue: { 4612 InsertValueInst *IV = cast<InsertValueInst>(I); 4613 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4614 IV->getInsertedValueOperand(), 4615 IV->getIndices(), Q); 4616 break; 4617 } 4618 case Instruction::ExtractValue: { 4619 auto *EVI = cast<ExtractValueInst>(I); 4620 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4621 EVI->getIndices(), Q); 4622 break; 4623 } 4624 case Instruction::ExtractElement: { 4625 auto *EEI = cast<ExtractElementInst>(I); 4626 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4627 EEI->getIndexOperand(), Q); 4628 break; 4629 } 4630 case Instruction::ShuffleVector: { 4631 auto *SVI = cast<ShuffleVectorInst>(I); 4632 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4633 SVI->getMask(), SVI->getType(), Q); 4634 break; 4635 } 4636 case Instruction::PHI: 4637 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4638 break; 4639 case Instruction::Call: { 4640 CallSite CS(cast<CallInst>(I)); 4641 Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4642 Q); 4643 break; 4644 } 4645 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4646 #include "llvm/IR/Instruction.def" 4647 #undef HANDLE_CAST_INST 4648 Result = 4649 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4650 break; 4651 case Instruction::Alloca: 4652 // No simplifications for Alloca and it can't be constant folded. 4653 Result = nullptr; 4654 break; 4655 } 4656 4657 // In general, it is possible for computeKnownBits to determine all bits in a 4658 // value even when the operands are not all constants. 4659 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4660 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4661 if (Known.isConstant()) 4662 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4663 } 4664 4665 /// If called on unreachable code, the above logic may report that the 4666 /// instruction simplified to itself. Make life easier for users by 4667 /// detecting that case here, returning a safe value instead. 4668 return Result == I ? UndefValue::get(I->getType()) : Result; 4669 } 4670 4671 /// \brief Implementation of recursive simplification through an instruction's 4672 /// uses. 4673 /// 4674 /// This is the common implementation of the recursive simplification routines. 4675 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4676 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4677 /// instructions to process and attempt to simplify it using 4678 /// InstructionSimplify. 4679 /// 4680 /// This routine returns 'true' only when *it* simplifies something. The passed 4681 /// in simplified value does not count toward this. 4682 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4683 const TargetLibraryInfo *TLI, 4684 const DominatorTree *DT, 4685 AssumptionCache *AC) { 4686 bool Simplified = false; 4687 SmallSetVector<Instruction *, 8> Worklist; 4688 const DataLayout &DL = I->getModule()->getDataLayout(); 4689 4690 // If we have an explicit value to collapse to, do that round of the 4691 // simplification loop by hand initially. 4692 if (SimpleV) { 4693 for (User *U : I->users()) 4694 if (U != I) 4695 Worklist.insert(cast<Instruction>(U)); 4696 4697 // Replace the instruction with its simplified value. 4698 I->replaceAllUsesWith(SimpleV); 4699 4700 // Gracefully handle edge cases where the instruction is not wired into any 4701 // parent block. 4702 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4703 !I->mayHaveSideEffects()) 4704 I->eraseFromParent(); 4705 } else { 4706 Worklist.insert(I); 4707 } 4708 4709 // Note that we must test the size on each iteration, the worklist can grow. 4710 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4711 I = Worklist[Idx]; 4712 4713 // See if this instruction simplifies. 4714 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4715 if (!SimpleV) 4716 continue; 4717 4718 Simplified = true; 4719 4720 // Stash away all the uses of the old instruction so we can check them for 4721 // recursive simplifications after a RAUW. This is cheaper than checking all 4722 // uses of To on the recursive step in most cases. 4723 for (User *U : I->users()) 4724 Worklist.insert(cast<Instruction>(U)); 4725 4726 // Replace the instruction with its simplified value. 4727 I->replaceAllUsesWith(SimpleV); 4728 4729 // Gracefully handle edge cases where the instruction is not wired into any 4730 // parent block. 4731 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4732 !I->mayHaveSideEffects()) 4733 I->eraseFromParent(); 4734 } 4735 return Simplified; 4736 } 4737 4738 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4739 const TargetLibraryInfo *TLI, 4740 const DominatorTree *DT, 4741 AssumptionCache *AC) { 4742 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4743 } 4744 4745 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4746 const TargetLibraryInfo *TLI, 4747 const DominatorTree *DT, 4748 AssumptionCache *AC) { 4749 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4750 assert(SimpleV && "Must provide a simplified value."); 4751 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4752 } 4753 4754 namespace llvm { 4755 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4756 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4757 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4758 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4759 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4760 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4761 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4762 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4763 } 4764 4765 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4766 const DataLayout &DL) { 4767 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4768 } 4769 4770 template <class T, class... TArgs> 4771 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4772 Function &F) { 4773 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4774 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4775 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4776 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4777 } 4778 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4779 Function &); 4780 } 4781