1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 67 unsigned); 68 69 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 70 Value *FalseVal) { 71 BinaryOperator::BinaryOps BinOpCode; 72 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 73 BinOpCode = BO->getOpcode(); 74 else 75 return nullptr; 76 77 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 78 if (BinOpCode == BinaryOperator::Or) { 79 ExpectedPred = ICmpInst::ICMP_NE; 80 } else if (BinOpCode == BinaryOperator::And) { 81 ExpectedPred = ICmpInst::ICMP_EQ; 82 } else 83 return nullptr; 84 85 // %A = icmp eq %TV, %FV 86 // %B = icmp eq %X, %Y (and one of these is a select operand) 87 // %C = and %A, %B 88 // %D = select %C, %TV, %FV 89 // --> 90 // %FV 91 92 // %A = icmp ne %TV, %FV 93 // %B = icmp ne %X, %Y (and one of these is a select operand) 94 // %C = or %A, %B 95 // %D = select %C, %TV, %FV 96 // --> 97 // %TV 98 Value *X, *Y; 99 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 100 m_Specific(FalseVal)), 101 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 102 Pred1 != Pred2 || Pred1 != ExpectedPred) 103 return nullptr; 104 105 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 106 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 107 108 return nullptr; 109 } 110 111 /// For a boolean type or a vector of boolean type, return false or a vector 112 /// with every element false. 113 static Constant *getFalse(Type *Ty) { 114 return ConstantInt::getFalse(Ty); 115 } 116 117 /// For a boolean type or a vector of boolean type, return true or a vector 118 /// with every element true. 119 static Constant *getTrue(Type *Ty) { 120 return ConstantInt::getTrue(Ty); 121 } 122 123 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 124 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 125 Value *RHS) { 126 CmpInst *Cmp = dyn_cast<CmpInst>(V); 127 if (!Cmp) 128 return false; 129 CmpInst::Predicate CPred = Cmp->getPredicate(); 130 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 131 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 132 return true; 133 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 134 CRHS == LHS; 135 } 136 137 /// Does the given value dominate the specified phi node? 138 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 139 Instruction *I = dyn_cast<Instruction>(V); 140 if (!I) 141 // Arguments and constants dominate all instructions. 142 return true; 143 144 // If we are processing instructions (and/or basic blocks) that have not been 145 // fully added to a function, the parent nodes may still be null. Simply 146 // return the conservative answer in these cases. 147 if (!I->getParent() || !P->getParent() || !I->getFunction()) 148 return false; 149 150 // If we have a DominatorTree then do a precise test. 151 if (DT) 152 return DT->dominates(I, P); 153 154 // Otherwise, if the instruction is in the entry block and is not an invoke, 155 // then it obviously dominates all phi nodes. 156 if (I->getParent() == &I->getFunction()->getEntryBlock() && 157 !isa<InvokeInst>(I)) 158 return true; 159 160 return false; 161 } 162 163 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 164 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 165 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 166 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 167 /// Returns the simplified value, or null if no simplification was performed. 168 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 169 Instruction::BinaryOps OpcodeToExpand, 170 const SimplifyQuery &Q, unsigned MaxRecurse) { 171 // Recursion is always used, so bail out at once if we already hit the limit. 172 if (!MaxRecurse--) 173 return nullptr; 174 175 // Check whether the expression has the form "(A op' B) op C". 176 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 177 if (Op0->getOpcode() == OpcodeToExpand) { 178 // It does! Try turning it into "(A op C) op' (B op C)". 179 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 180 // Do "A op C" and "B op C" both simplify? 181 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 182 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 183 // They do! Return "L op' R" if it simplifies or is already available. 184 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 185 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 186 && L == B && R == A)) { 187 ++NumExpand; 188 return LHS; 189 } 190 // Otherwise return "L op' R" if it simplifies. 191 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 192 ++NumExpand; 193 return V; 194 } 195 } 196 } 197 198 // Check whether the expression has the form "A op (B op' C)". 199 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 200 if (Op1->getOpcode() == OpcodeToExpand) { 201 // It does! Try turning it into "(A op B) op' (A op C)". 202 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 203 // Do "A op B" and "A op C" both simplify? 204 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 205 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 206 // They do! Return "L op' R" if it simplifies or is already available. 207 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 208 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 209 && L == C && R == B)) { 210 ++NumExpand; 211 return RHS; 212 } 213 // Otherwise return "L op' R" if it simplifies. 214 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 215 ++NumExpand; 216 return V; 217 } 218 } 219 } 220 221 return nullptr; 222 } 223 224 /// Generic simplifications for associative binary operations. 225 /// Returns the simpler value, or null if none was found. 226 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 227 Value *LHS, Value *RHS, 228 const SimplifyQuery &Q, 229 unsigned MaxRecurse) { 230 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 231 232 // Recursion is always used, so bail out at once if we already hit the limit. 233 if (!MaxRecurse--) 234 return nullptr; 235 236 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 237 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 238 239 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 240 if (Op0 && Op0->getOpcode() == Opcode) { 241 Value *A = Op0->getOperand(0); 242 Value *B = Op0->getOperand(1); 243 Value *C = RHS; 244 245 // Does "B op C" simplify? 246 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 247 // It does! Return "A op V" if it simplifies or is already available. 248 // If V equals B then "A op V" is just the LHS. 249 if (V == B) return LHS; 250 // Otherwise return "A op V" if it simplifies. 251 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 252 ++NumReassoc; 253 return W; 254 } 255 } 256 } 257 258 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 259 if (Op1 && Op1->getOpcode() == Opcode) { 260 Value *A = LHS; 261 Value *B = Op1->getOperand(0); 262 Value *C = Op1->getOperand(1); 263 264 // Does "A op B" simplify? 265 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 266 // It does! Return "V op C" if it simplifies or is already available. 267 // If V equals B then "V op C" is just the RHS. 268 if (V == B) return RHS; 269 // Otherwise return "V op C" if it simplifies. 270 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 271 ++NumReassoc; 272 return W; 273 } 274 } 275 } 276 277 // The remaining transforms require commutativity as well as associativity. 278 if (!Instruction::isCommutative(Opcode)) 279 return nullptr; 280 281 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 282 if (Op0 && Op0->getOpcode() == Opcode) { 283 Value *A = Op0->getOperand(0); 284 Value *B = Op0->getOperand(1); 285 Value *C = RHS; 286 287 // Does "C op A" simplify? 288 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 289 // It does! Return "V op B" if it simplifies or is already available. 290 // If V equals A then "V op B" is just the LHS. 291 if (V == A) return LHS; 292 // Otherwise return "V op B" if it simplifies. 293 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 294 ++NumReassoc; 295 return W; 296 } 297 } 298 } 299 300 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 301 if (Op1 && Op1->getOpcode() == Opcode) { 302 Value *A = LHS; 303 Value *B = Op1->getOperand(0); 304 Value *C = Op1->getOperand(1); 305 306 // Does "C op A" simplify? 307 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 308 // It does! Return "B op V" if it simplifies or is already available. 309 // If V equals C then "B op V" is just the RHS. 310 if (V == C) return RHS; 311 // Otherwise return "B op V" if it simplifies. 312 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 313 ++NumReassoc; 314 return W; 315 } 316 } 317 } 318 319 return nullptr; 320 } 321 322 /// In the case of a binary operation with a select instruction as an operand, 323 /// try to simplify the binop by seeing whether evaluating it on both branches 324 /// of the select results in the same value. Returns the common value if so, 325 /// otherwise returns null. 326 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 327 Value *RHS, const SimplifyQuery &Q, 328 unsigned MaxRecurse) { 329 // Recursion is always used, so bail out at once if we already hit the limit. 330 if (!MaxRecurse--) 331 return nullptr; 332 333 SelectInst *SI; 334 if (isa<SelectInst>(LHS)) { 335 SI = cast<SelectInst>(LHS); 336 } else { 337 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 338 SI = cast<SelectInst>(RHS); 339 } 340 341 // Evaluate the BinOp on the true and false branches of the select. 342 Value *TV; 343 Value *FV; 344 if (SI == LHS) { 345 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 346 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 347 } else { 348 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 350 } 351 352 // If they simplified to the same value, then return the common value. 353 // If they both failed to simplify then return null. 354 if (TV == FV) 355 return TV; 356 357 // If one branch simplified to undef, return the other one. 358 if (TV && isa<UndefValue>(TV)) 359 return FV; 360 if (FV && isa<UndefValue>(FV)) 361 return TV; 362 363 // If applying the operation did not change the true and false select values, 364 // then the result of the binop is the select itself. 365 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 366 return SI; 367 368 // If one branch simplified and the other did not, and the simplified 369 // value is equal to the unsimplified one, return the simplified value. 370 // For example, select (cond, X, X & Z) & Z -> X & Z. 371 if ((FV && !TV) || (TV && !FV)) { 372 // Check that the simplified value has the form "X op Y" where "op" is the 373 // same as the original operation. 374 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 375 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 376 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 377 // We already know that "op" is the same as for the simplified value. See 378 // if the operands match too. If so, return the simplified value. 379 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 380 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 381 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 382 if (Simplified->getOperand(0) == UnsimplifiedLHS && 383 Simplified->getOperand(1) == UnsimplifiedRHS) 384 return Simplified; 385 if (Simplified->isCommutative() && 386 Simplified->getOperand(1) == UnsimplifiedLHS && 387 Simplified->getOperand(0) == UnsimplifiedRHS) 388 return Simplified; 389 } 390 } 391 392 return nullptr; 393 } 394 395 /// In the case of a comparison with a select instruction, try to simplify the 396 /// comparison by seeing whether both branches of the select result in the same 397 /// value. Returns the common value if so, otherwise returns null. 398 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 399 Value *RHS, const SimplifyQuery &Q, 400 unsigned MaxRecurse) { 401 // Recursion is always used, so bail out at once if we already hit the limit. 402 if (!MaxRecurse--) 403 return nullptr; 404 405 // Make sure the select is on the LHS. 406 if (!isa<SelectInst>(LHS)) { 407 std::swap(LHS, RHS); 408 Pred = CmpInst::getSwappedPredicate(Pred); 409 } 410 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 411 SelectInst *SI = cast<SelectInst>(LHS); 412 Value *Cond = SI->getCondition(); 413 Value *TV = SI->getTrueValue(); 414 Value *FV = SI->getFalseValue(); 415 416 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 417 // Does "cmp TV, RHS" simplify? 418 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 419 if (TCmp == Cond) { 420 // It not only simplified, it simplified to the select condition. Replace 421 // it with 'true'. 422 TCmp = getTrue(Cond->getType()); 423 } else if (!TCmp) { 424 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 425 // condition then we can replace it with 'true'. Otherwise give up. 426 if (!isSameCompare(Cond, Pred, TV, RHS)) 427 return nullptr; 428 TCmp = getTrue(Cond->getType()); 429 } 430 431 // Does "cmp FV, RHS" simplify? 432 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 433 if (FCmp == Cond) { 434 // It not only simplified, it simplified to the select condition. Replace 435 // it with 'false'. 436 FCmp = getFalse(Cond->getType()); 437 } else if (!FCmp) { 438 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 439 // condition then we can replace it with 'false'. Otherwise give up. 440 if (!isSameCompare(Cond, Pred, FV, RHS)) 441 return nullptr; 442 FCmp = getFalse(Cond->getType()); 443 } 444 445 // If both sides simplified to the same value, then use it as the result of 446 // the original comparison. 447 if (TCmp == FCmp) 448 return TCmp; 449 450 // The remaining cases only make sense if the select condition has the same 451 // type as the result of the comparison, so bail out if this is not so. 452 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 453 return nullptr; 454 // If the false value simplified to false, then the result of the compare 455 // is equal to "Cond && TCmp". This also catches the case when the false 456 // value simplified to false and the true value to true, returning "Cond". 457 if (match(FCmp, m_Zero())) 458 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 459 return V; 460 // If the true value simplified to true, then the result of the compare 461 // is equal to "Cond || FCmp". 462 if (match(TCmp, m_One())) 463 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 464 return V; 465 // Finally, if the false value simplified to true and the true value to 466 // false, then the result of the compare is equal to "!Cond". 467 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 468 if (Value *V = 469 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 470 Q, MaxRecurse)) 471 return V; 472 473 return nullptr; 474 } 475 476 /// In the case of a binary operation with an operand that is a PHI instruction, 477 /// try to simplify the binop by seeing whether evaluating it on the incoming 478 /// phi values yields the same result for every value. If so returns the common 479 /// value, otherwise returns null. 480 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 481 Value *RHS, const SimplifyQuery &Q, 482 unsigned MaxRecurse) { 483 // Recursion is always used, so bail out at once if we already hit the limit. 484 if (!MaxRecurse--) 485 return nullptr; 486 487 PHINode *PI; 488 if (isa<PHINode>(LHS)) { 489 PI = cast<PHINode>(LHS); 490 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 491 if (!valueDominatesPHI(RHS, PI, Q.DT)) 492 return nullptr; 493 } else { 494 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 495 PI = cast<PHINode>(RHS); 496 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 497 if (!valueDominatesPHI(LHS, PI, Q.DT)) 498 return nullptr; 499 } 500 501 // Evaluate the BinOp on the incoming phi values. 502 Value *CommonValue = nullptr; 503 for (Value *Incoming : PI->incoming_values()) { 504 // If the incoming value is the phi node itself, it can safely be skipped. 505 if (Incoming == PI) continue; 506 Value *V = PI == LHS ? 507 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 508 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 509 // If the operation failed to simplify, or simplified to a different value 510 // to previously, then give up. 511 if (!V || (CommonValue && V != CommonValue)) 512 return nullptr; 513 CommonValue = V; 514 } 515 516 return CommonValue; 517 } 518 519 /// In the case of a comparison with a PHI instruction, try to simplify the 520 /// comparison by seeing whether comparing with all of the incoming phi values 521 /// yields the same result every time. If so returns the common result, 522 /// otherwise returns null. 523 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 524 const SimplifyQuery &Q, unsigned MaxRecurse) { 525 // Recursion is always used, so bail out at once if we already hit the limit. 526 if (!MaxRecurse--) 527 return nullptr; 528 529 // Make sure the phi is on the LHS. 530 if (!isa<PHINode>(LHS)) { 531 std::swap(LHS, RHS); 532 Pred = CmpInst::getSwappedPredicate(Pred); 533 } 534 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 535 PHINode *PI = cast<PHINode>(LHS); 536 537 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 538 if (!valueDominatesPHI(RHS, PI, Q.DT)) 539 return nullptr; 540 541 // Evaluate the BinOp on the incoming phi values. 542 Value *CommonValue = nullptr; 543 for (Value *Incoming : PI->incoming_values()) { 544 // If the incoming value is the phi node itself, it can safely be skipped. 545 if (Incoming == PI) continue; 546 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 547 // If the operation failed to simplify, or simplified to a different value 548 // to previously, then give up. 549 if (!V || (CommonValue && V != CommonValue)) 550 return nullptr; 551 CommonValue = V; 552 } 553 554 return CommonValue; 555 } 556 557 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 558 Value *&Op0, Value *&Op1, 559 const SimplifyQuery &Q) { 560 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 561 if (auto *CRHS = dyn_cast<Constant>(Op1)) 562 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 563 564 // Canonicalize the constant to the RHS if this is a commutative operation. 565 if (Instruction::isCommutative(Opcode)) 566 std::swap(Op0, Op1); 567 } 568 return nullptr; 569 } 570 571 /// Given operands for an Add, see if we can fold the result. 572 /// If not, this returns null. 573 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 574 const SimplifyQuery &Q, unsigned MaxRecurse) { 575 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 576 return C; 577 578 // X + undef -> undef 579 if (match(Op1, m_Undef())) 580 return Op1; 581 582 // X + 0 -> X 583 if (match(Op1, m_Zero())) 584 return Op0; 585 586 // If two operands are negative, return 0. 587 if (isKnownNegation(Op0, Op1)) 588 return Constant::getNullValue(Op0->getType()); 589 590 // X + (Y - X) -> Y 591 // (Y - X) + X -> Y 592 // Eg: X + -X -> 0 593 Value *Y = nullptr; 594 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 595 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 596 return Y; 597 598 // X + ~X -> -1 since ~X = -X-1 599 Type *Ty = Op0->getType(); 600 if (match(Op0, m_Not(m_Specific(Op1))) || 601 match(Op1, m_Not(m_Specific(Op0)))) 602 return Constant::getAllOnesValue(Ty); 603 604 // add nsw/nuw (xor Y, signmask), signmask --> Y 605 // The no-wrapping add guarantees that the top bit will be set by the add. 606 // Therefore, the xor must be clearing the already set sign bit of Y. 607 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 608 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 609 return Y; 610 611 // add nuw %x, -1 -> -1, because %x can only be 0. 612 if (IsNUW && match(Op1, m_AllOnes())) 613 return Op1; // Which is -1. 614 615 /// i1 add -> xor. 616 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 617 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 618 return V; 619 620 // Try some generic simplifications for associative operations. 621 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 622 MaxRecurse)) 623 return V; 624 625 // Threading Add over selects and phi nodes is pointless, so don't bother. 626 // Threading over the select in "A + select(cond, B, C)" means evaluating 627 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 628 // only if B and C are equal. If B and C are equal then (since we assume 629 // that operands have already been simplified) "select(cond, B, C)" should 630 // have been simplified to the common value of B and C already. Analysing 631 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 632 // for threading over phi nodes. 633 634 return nullptr; 635 } 636 637 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 638 const SimplifyQuery &Query) { 639 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 640 } 641 642 /// Compute the base pointer and cumulative constant offsets for V. 643 /// 644 /// This strips all constant offsets off of V, leaving it the base pointer, and 645 /// accumulates the total constant offset applied in the returned constant. It 646 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 647 /// no constant offsets applied. 648 /// 649 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 650 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 651 /// folding. 652 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 653 bool AllowNonInbounds = false) { 654 assert(V->getType()->isPtrOrPtrVectorTy()); 655 656 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 657 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 658 659 // Even though we don't look through PHI nodes, we could be called on an 660 // instruction in an unreachable block, which may be on a cycle. 661 SmallPtrSet<Value *, 4> Visited; 662 Visited.insert(V); 663 do { 664 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 665 if ((!AllowNonInbounds && !GEP->isInBounds()) || 666 !GEP->accumulateConstantOffset(DL, Offset)) 667 break; 668 V = GEP->getPointerOperand(); 669 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 670 V = cast<Operator>(V)->getOperand(0); 671 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 672 if (GA->isInterposable()) 673 break; 674 V = GA->getAliasee(); 675 } else { 676 if (auto *Call = dyn_cast<CallBase>(V)) 677 if (Value *RV = Call->getReturnedArgOperand()) { 678 V = RV; 679 continue; 680 } 681 break; 682 } 683 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 684 } while (Visited.insert(V).second); 685 686 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 687 if (V->getType()->isVectorTy()) 688 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 689 OffsetIntPtr); 690 return OffsetIntPtr; 691 } 692 693 /// Compute the constant difference between two pointer values. 694 /// If the difference is not a constant, returns zero. 695 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 696 Value *RHS) { 697 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 698 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 699 700 // If LHS and RHS are not related via constant offsets to the same base 701 // value, there is nothing we can do here. 702 if (LHS != RHS) 703 return nullptr; 704 705 // Otherwise, the difference of LHS - RHS can be computed as: 706 // LHS - RHS 707 // = (LHSOffset + Base) - (RHSOffset + Base) 708 // = LHSOffset - RHSOffset 709 return ConstantExpr::getSub(LHSOffset, RHSOffset); 710 } 711 712 /// Given operands for a Sub, see if we can fold the result. 713 /// If not, this returns null. 714 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 715 const SimplifyQuery &Q, unsigned MaxRecurse) { 716 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 717 return C; 718 719 // X - undef -> undef 720 // undef - X -> undef 721 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 722 return UndefValue::get(Op0->getType()); 723 724 // X - 0 -> X 725 if (match(Op1, m_Zero())) 726 return Op0; 727 728 // X - X -> 0 729 if (Op0 == Op1) 730 return Constant::getNullValue(Op0->getType()); 731 732 // Is this a negation? 733 if (match(Op0, m_Zero())) { 734 // 0 - X -> 0 if the sub is NUW. 735 if (isNUW) 736 return Constant::getNullValue(Op0->getType()); 737 738 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 739 if (Known.Zero.isMaxSignedValue()) { 740 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 741 // Op1 must be 0 because negating the minimum signed value is undefined. 742 if (isNSW) 743 return Constant::getNullValue(Op0->getType()); 744 745 // 0 - X -> X if X is 0 or the minimum signed value. 746 return Op1; 747 } 748 } 749 750 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 751 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 752 Value *X = nullptr, *Y = nullptr, *Z = Op1; 753 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 754 // See if "V === Y - Z" simplifies. 755 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 756 // It does! Now see if "X + V" simplifies. 757 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 758 // It does, we successfully reassociated! 759 ++NumReassoc; 760 return W; 761 } 762 // See if "V === X - Z" simplifies. 763 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 764 // It does! Now see if "Y + V" simplifies. 765 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 766 // It does, we successfully reassociated! 767 ++NumReassoc; 768 return W; 769 } 770 } 771 772 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 773 // For example, X - (X + 1) -> -1 774 X = Op0; 775 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 776 // See if "V === X - Y" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 778 // It does! Now see if "V - Z" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 // See if "V === X - Z" simplifies. 785 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 786 // It does! Now see if "V - Y" simplifies. 787 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 788 // It does, we successfully reassociated! 789 ++NumReassoc; 790 return W; 791 } 792 } 793 794 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 795 // For example, X - (X - Y) -> Y. 796 Z = Op0; 797 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 798 // See if "V === Z - X" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 800 // It does! Now see if "V + Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 807 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 808 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 809 match(Op1, m_Trunc(m_Value(Y)))) 810 if (X->getType() == Y->getType()) 811 // See if "V === X - Y" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 813 // It does! Now see if "trunc V" simplifies. 814 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 815 Q, MaxRecurse - 1)) 816 // It does, return the simplified "trunc V". 817 return W; 818 819 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 820 if (match(Op0, m_PtrToInt(m_Value(X))) && 821 match(Op1, m_PtrToInt(m_Value(Y)))) 822 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 823 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 824 825 // i1 sub -> xor. 826 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 827 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 828 return V; 829 830 // Threading Sub over selects and phi nodes is pointless, so don't bother. 831 // Threading over the select in "A - select(cond, B, C)" means evaluating 832 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 833 // only if B and C are equal. If B and C are equal then (since we assume 834 // that operands have already been simplified) "select(cond, B, C)" should 835 // have been simplified to the common value of B and C already. Analysing 836 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 837 // for threading over phi nodes. 838 839 return nullptr; 840 } 841 842 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 843 const SimplifyQuery &Q) { 844 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 845 } 846 847 /// Given operands for a Mul, see if we can fold the result. 848 /// If not, this returns null. 849 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 850 unsigned MaxRecurse) { 851 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 852 return C; 853 854 // X * undef -> 0 855 // X * 0 -> 0 856 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 857 return Constant::getNullValue(Op0->getType()); 858 859 // X * 1 -> X 860 if (match(Op1, m_One())) 861 return Op0; 862 863 // (X / Y) * Y -> X if the division is exact. 864 Value *X = nullptr; 865 if (Q.IIQ.UseInstrInfo && 866 (match(Op0, 867 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 868 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 869 return X; 870 871 // i1 mul -> and. 872 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 873 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 874 return V; 875 876 // Try some generic simplifications for associative operations. 877 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 878 MaxRecurse)) 879 return V; 880 881 // Mul distributes over Add. Try some generic simplifications based on this. 882 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 883 Q, MaxRecurse)) 884 return V; 885 886 // If the operation is with the result of a select instruction, check whether 887 // operating on either branch of the select always yields the same value. 888 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 889 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 890 MaxRecurse)) 891 return V; 892 893 // If the operation is with the result of a phi instruction, check whether 894 // operating on all incoming values of the phi always yields the same value. 895 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 896 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 897 MaxRecurse)) 898 return V; 899 900 return nullptr; 901 } 902 903 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 904 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 905 } 906 907 /// Check for common or similar folds of integer division or integer remainder. 908 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 909 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 910 Type *Ty = Op0->getType(); 911 912 // X / undef -> undef 913 // X % undef -> undef 914 if (match(Op1, m_Undef())) 915 return Op1; 916 917 // X / 0 -> undef 918 // X % 0 -> undef 919 // We don't need to preserve faults! 920 if (match(Op1, m_Zero())) 921 return UndefValue::get(Ty); 922 923 // If any element of a constant divisor vector is zero or undef, the whole op 924 // is undef. 925 auto *Op1C = dyn_cast<Constant>(Op1); 926 if (Op1C && Ty->isVectorTy()) { 927 unsigned NumElts = Ty->getVectorNumElements(); 928 for (unsigned i = 0; i != NumElts; ++i) { 929 Constant *Elt = Op1C->getAggregateElement(i); 930 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 931 return UndefValue::get(Ty); 932 } 933 } 934 935 // undef / X -> 0 936 // undef % X -> 0 937 if (match(Op0, m_Undef())) 938 return Constant::getNullValue(Ty); 939 940 // 0 / X -> 0 941 // 0 % X -> 0 942 if (match(Op0, m_Zero())) 943 return Constant::getNullValue(Op0->getType()); 944 945 // X / X -> 1 946 // X % X -> 0 947 if (Op0 == Op1) 948 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 949 950 // X / 1 -> X 951 // X % 1 -> 0 952 // If this is a boolean op (single-bit element type), we can't have 953 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 954 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 955 Value *X; 956 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 957 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 958 return IsDiv ? Op0 : Constant::getNullValue(Ty); 959 960 return nullptr; 961 } 962 963 /// Given a predicate and two operands, return true if the comparison is true. 964 /// This is a helper for div/rem simplification where we return some other value 965 /// when we can prove a relationship between the operands. 966 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 967 const SimplifyQuery &Q, unsigned MaxRecurse) { 968 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 969 Constant *C = dyn_cast_or_null<Constant>(V); 970 return (C && C->isAllOnesValue()); 971 } 972 973 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 974 /// to simplify X % Y to X. 975 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 976 unsigned MaxRecurse, bool IsSigned) { 977 // Recursion is always used, so bail out at once if we already hit the limit. 978 if (!MaxRecurse--) 979 return false; 980 981 if (IsSigned) { 982 // |X| / |Y| --> 0 983 // 984 // We require that 1 operand is a simple constant. That could be extended to 985 // 2 variables if we computed the sign bit for each. 986 // 987 // Make sure that a constant is not the minimum signed value because taking 988 // the abs() of that is undefined. 989 Type *Ty = X->getType(); 990 const APInt *C; 991 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 992 // Is the variable divisor magnitude always greater than the constant 993 // dividend magnitude? 994 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 995 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 996 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 997 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 998 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 999 return true; 1000 } 1001 if (match(Y, m_APInt(C))) { 1002 // Special-case: we can't take the abs() of a minimum signed value. If 1003 // that's the divisor, then all we have to do is prove that the dividend 1004 // is also not the minimum signed value. 1005 if (C->isMinSignedValue()) 1006 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1007 1008 // Is the variable dividend magnitude always less than the constant 1009 // divisor magnitude? 1010 // |X| < |C| --> X > -abs(C) and X < abs(C) 1011 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1014 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 return false; 1018 } 1019 1020 // IsSigned == false. 1021 // Is the dividend unsigned less than the divisor? 1022 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1023 } 1024 1025 /// These are simplifications common to SDiv and UDiv. 1026 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1027 const SimplifyQuery &Q, unsigned MaxRecurse) { 1028 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1029 return C; 1030 1031 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1032 return V; 1033 1034 bool IsSigned = Opcode == Instruction::SDiv; 1035 1036 // (X * Y) / Y -> X if the multiplication does not overflow. 1037 Value *X; 1038 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1039 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1040 // If the Mul does not overflow, then we are good to go. 1041 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1042 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1043 return X; 1044 // If X has the form X = A / Y, then X * Y cannot overflow. 1045 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1046 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1047 return X; 1048 } 1049 1050 // (X rem Y) / Y -> 0 1051 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1052 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1053 return Constant::getNullValue(Op0->getType()); 1054 1055 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1056 ConstantInt *C1, *C2; 1057 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1058 match(Op1, m_ConstantInt(C2))) { 1059 bool Overflow; 1060 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1061 if (Overflow) 1062 return Constant::getNullValue(Op0->getType()); 1063 } 1064 1065 // If the operation is with the result of a select instruction, check whether 1066 // operating on either branch of the select always yields the same value. 1067 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1068 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1069 return V; 1070 1071 // If the operation is with the result of a phi instruction, check whether 1072 // operating on all incoming values of the phi always yields the same value. 1073 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1074 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1075 return V; 1076 1077 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1078 return Constant::getNullValue(Op0->getType()); 1079 1080 return nullptr; 1081 } 1082 1083 /// These are simplifications common to SRem and URem. 1084 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1085 const SimplifyQuery &Q, unsigned MaxRecurse) { 1086 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1087 return C; 1088 1089 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1090 return V; 1091 1092 // (X % Y) % Y -> X % Y 1093 if ((Opcode == Instruction::SRem && 1094 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1095 (Opcode == Instruction::URem && 1096 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1097 return Op0; 1098 1099 // (X << Y) % X -> 0 1100 if (Q.IIQ.UseInstrInfo && 1101 ((Opcode == Instruction::SRem && 1102 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1103 (Opcode == Instruction::URem && 1104 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1105 return Constant::getNullValue(Op0->getType()); 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 // If X / Y == 0, then X % Y == X. 1120 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1121 return Op0; 1122 1123 return nullptr; 1124 } 1125 1126 /// Given operands for an SDiv, see if we can fold the result. 1127 /// If not, this returns null. 1128 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1129 unsigned MaxRecurse) { 1130 // If two operands are negated and no signed overflow, return -1. 1131 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1132 return Constant::getAllOnesValue(Op0->getType()); 1133 1134 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1135 } 1136 1137 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1138 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1139 } 1140 1141 /// Given operands for a UDiv, see if we can fold the result. 1142 /// If not, this returns null. 1143 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1144 unsigned MaxRecurse) { 1145 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1146 } 1147 1148 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1149 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1150 } 1151 1152 /// Given operands for an SRem, see if we can fold the result. 1153 /// If not, this returns null. 1154 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1155 unsigned MaxRecurse) { 1156 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1157 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1158 Value *X; 1159 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1160 return ConstantInt::getNullValue(Op0->getType()); 1161 1162 // If the two operands are negated, return 0. 1163 if (isKnownNegation(Op0, Op1)) 1164 return ConstantInt::getNullValue(Op0->getType()); 1165 1166 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1167 } 1168 1169 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1170 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1171 } 1172 1173 /// Given operands for a URem, see if we can fold the result. 1174 /// If not, this returns null. 1175 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1176 unsigned MaxRecurse) { 1177 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1178 } 1179 1180 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1181 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1182 } 1183 1184 /// Returns true if a shift by \c Amount always yields undef. 1185 static bool isUndefShift(Value *Amount) { 1186 Constant *C = dyn_cast<Constant>(Amount); 1187 if (!C) 1188 return false; 1189 1190 // X shift by undef -> undef because it may shift by the bitwidth. 1191 if (isa<UndefValue>(C)) 1192 return true; 1193 1194 // Shifting by the bitwidth or more is undefined. 1195 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1196 if (CI->getValue().getLimitedValue() >= 1197 CI->getType()->getScalarSizeInBits()) 1198 return true; 1199 1200 // If all lanes of a vector shift are undefined the whole shift is. 1201 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1202 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1203 if (!isUndefShift(C->getAggregateElement(I))) 1204 return false; 1205 return true; 1206 } 1207 1208 return false; 1209 } 1210 1211 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1212 /// If not, this returns null. 1213 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1214 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1215 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1216 return C; 1217 1218 // 0 shift by X -> 0 1219 if (match(Op0, m_Zero())) 1220 return Constant::getNullValue(Op0->getType()); 1221 1222 // X shift by 0 -> X 1223 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1224 // would be poison. 1225 Value *X; 1226 if (match(Op1, m_Zero()) || 1227 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1228 return Op0; 1229 1230 // Fold undefined shifts. 1231 if (isUndefShift(Op1)) 1232 return UndefValue::get(Op0->getType()); 1233 1234 // If the operation is with the result of a select instruction, check whether 1235 // operating on either branch of the select always yields the same value. 1236 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1237 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1238 return V; 1239 1240 // If the operation is with the result of a phi instruction, check whether 1241 // operating on all incoming values of the phi always yields the same value. 1242 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1243 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1244 return V; 1245 1246 // If any bits in the shift amount make that value greater than or equal to 1247 // the number of bits in the type, the shift is undefined. 1248 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1249 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If all valid bits in the shift amount are known zero, the first operand is 1253 // unchanged. 1254 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1255 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1256 return Op0; 1257 1258 return nullptr; 1259 } 1260 1261 /// Given operands for an Shl, LShr or AShr, see if we can 1262 /// fold the result. If not, this returns null. 1263 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1264 Value *Op1, bool isExact, const SimplifyQuery &Q, 1265 unsigned MaxRecurse) { 1266 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1267 return V; 1268 1269 // X >> X -> 0 1270 if (Op0 == Op1) 1271 return Constant::getNullValue(Op0->getType()); 1272 1273 // undef >> X -> 0 1274 // undef >> X -> undef (if it's exact) 1275 if (match(Op0, m_Undef())) 1276 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1277 1278 // The low bit cannot be shifted out of an exact shift if it is set. 1279 if (isExact) { 1280 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1281 if (Op0Known.One[0]) 1282 return Op0; 1283 } 1284 1285 return nullptr; 1286 } 1287 1288 /// Given operands for an Shl, see if we can fold the result. 1289 /// If not, this returns null. 1290 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1291 const SimplifyQuery &Q, unsigned MaxRecurse) { 1292 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1293 return V; 1294 1295 // undef << X -> 0 1296 // undef << X -> undef if (if it's NSW/NUW) 1297 if (match(Op0, m_Undef())) 1298 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1299 1300 // (X >> A) << A -> X 1301 Value *X; 1302 if (Q.IIQ.UseInstrInfo && 1303 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1304 return X; 1305 1306 // shl nuw i8 C, %x -> C iff C has sign bit set. 1307 if (isNUW && match(Op0, m_Negative())) 1308 return Op0; 1309 // NOTE: could use computeKnownBits() / LazyValueInfo, 1310 // but the cost-benefit analysis suggests it isn't worth it. 1311 1312 return nullptr; 1313 } 1314 1315 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1316 const SimplifyQuery &Q) { 1317 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1318 } 1319 1320 /// Given operands for an LShr, see if we can fold the result. 1321 /// If not, this returns null. 1322 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1323 const SimplifyQuery &Q, unsigned MaxRecurse) { 1324 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1325 MaxRecurse)) 1326 return V; 1327 1328 // (X << A) >> A -> X 1329 Value *X; 1330 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1331 return X; 1332 1333 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1334 // We can return X as we do in the above case since OR alters no bits in X. 1335 // SimplifyDemandedBits in InstCombine can do more general optimization for 1336 // bit manipulation. This pattern aims to provide opportunities for other 1337 // optimizers by supporting a simple but common case in InstSimplify. 1338 Value *Y; 1339 const APInt *ShRAmt, *ShLAmt; 1340 if (match(Op1, m_APInt(ShRAmt)) && 1341 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1342 *ShRAmt == *ShLAmt) { 1343 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1344 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1345 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1346 if (ShRAmt->uge(EffWidthY)) 1347 return X; 1348 } 1349 1350 return nullptr; 1351 } 1352 1353 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1354 const SimplifyQuery &Q) { 1355 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1356 } 1357 1358 /// Given operands for an AShr, see if we can fold the result. 1359 /// If not, this returns null. 1360 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1361 const SimplifyQuery &Q, unsigned MaxRecurse) { 1362 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1363 MaxRecurse)) 1364 return V; 1365 1366 // all ones >>a X -> -1 1367 // Do not return Op0 because it may contain undef elements if it's a vector. 1368 if (match(Op0, m_AllOnes())) 1369 return Constant::getAllOnesValue(Op0->getType()); 1370 1371 // (X << A) >> A -> X 1372 Value *X; 1373 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1374 return X; 1375 1376 // Arithmetic shifting an all-sign-bit value is a no-op. 1377 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1378 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1379 return Op0; 1380 1381 return nullptr; 1382 } 1383 1384 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1385 const SimplifyQuery &Q) { 1386 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1387 } 1388 1389 /// Commuted variants are assumed to be handled by calling this function again 1390 /// with the parameters swapped. 1391 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1392 ICmpInst *UnsignedICmp, bool IsAnd) { 1393 Value *X, *Y; 1394 1395 ICmpInst::Predicate EqPred; 1396 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1397 !ICmpInst::isEquality(EqPred)) 1398 return nullptr; 1399 1400 ICmpInst::Predicate UnsignedPred; 1401 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1402 ICmpInst::isUnsigned(UnsignedPred)) 1403 ; 1404 else if (match(UnsignedICmp, 1405 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1406 ICmpInst::isUnsigned(UnsignedPred)) 1407 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1408 else 1409 return nullptr; 1410 1411 // X < Y && Y != 0 --> X < Y 1412 // X < Y || Y != 0 --> Y != 0 1413 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1414 return IsAnd ? UnsignedICmp : ZeroICmp; 1415 1416 // X >= Y || Y != 0 --> true 1417 // X >= Y || Y == 0 --> X >= Y 1418 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1419 if (EqPred == ICmpInst::ICMP_NE) 1420 return getTrue(UnsignedICmp->getType()); 1421 return UnsignedICmp; 1422 } 1423 1424 // X < Y && Y == 0 --> false 1425 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1426 IsAnd) 1427 return getFalse(UnsignedICmp->getType()); 1428 1429 return nullptr; 1430 } 1431 1432 /// Commuted variants are assumed to be handled by calling this function again 1433 /// with the parameters swapped. 1434 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1435 ICmpInst::Predicate Pred0, Pred1; 1436 Value *A ,*B; 1437 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1438 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1439 return nullptr; 1440 1441 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1442 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1443 // can eliminate Op1 from this 'and'. 1444 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1445 return Op0; 1446 1447 // Check for any combination of predicates that are guaranteed to be disjoint. 1448 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1449 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1450 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1451 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1452 return getFalse(Op0->getType()); 1453 1454 return nullptr; 1455 } 1456 1457 /// Commuted variants are assumed to be handled by calling this function again 1458 /// with the parameters swapped. 1459 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1460 ICmpInst::Predicate Pred0, Pred1; 1461 Value *A ,*B; 1462 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1463 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1464 return nullptr; 1465 1466 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1467 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1468 // can eliminate Op0 from this 'or'. 1469 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1470 return Op1; 1471 1472 // Check for any combination of predicates that cover the entire range of 1473 // possibilities. 1474 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1475 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1476 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1477 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1478 return getTrue(Op0->getType()); 1479 1480 return nullptr; 1481 } 1482 1483 /// Test if a pair of compares with a shared operand and 2 constants has an 1484 /// empty set intersection, full set union, or if one compare is a superset of 1485 /// the other. 1486 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1487 bool IsAnd) { 1488 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1489 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1490 return nullptr; 1491 1492 const APInt *C0, *C1; 1493 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1494 !match(Cmp1->getOperand(1), m_APInt(C1))) 1495 return nullptr; 1496 1497 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1498 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1499 1500 // For and-of-compares, check if the intersection is empty: 1501 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1502 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1503 return getFalse(Cmp0->getType()); 1504 1505 // For or-of-compares, check if the union is full: 1506 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1507 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1508 return getTrue(Cmp0->getType()); 1509 1510 // Is one range a superset of the other? 1511 // If this is and-of-compares, take the smaller set: 1512 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1513 // If this is or-of-compares, take the larger set: 1514 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1515 if (Range0.contains(Range1)) 1516 return IsAnd ? Cmp1 : Cmp0; 1517 if (Range1.contains(Range0)) 1518 return IsAnd ? Cmp0 : Cmp1; 1519 1520 return nullptr; 1521 } 1522 1523 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1524 bool IsAnd) { 1525 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1526 if (!match(Cmp0->getOperand(1), m_Zero()) || 1527 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1528 return nullptr; 1529 1530 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1531 return nullptr; 1532 1533 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1534 Value *X = Cmp0->getOperand(0); 1535 Value *Y = Cmp1->getOperand(0); 1536 1537 // If one of the compares is a masked version of a (not) null check, then 1538 // that compare implies the other, so we eliminate the other. Optionally, look 1539 // through a pointer-to-int cast to match a null check of a pointer type. 1540 1541 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1542 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1543 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1544 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1545 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1546 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1547 return Cmp1; 1548 1549 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1550 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1551 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1552 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1553 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1554 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1555 return Cmp0; 1556 1557 return nullptr; 1558 } 1559 1560 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1561 const InstrInfoQuery &IIQ) { 1562 // (icmp (add V, C0), C1) & (icmp V, C0) 1563 ICmpInst::Predicate Pred0, Pred1; 1564 const APInt *C0, *C1; 1565 Value *V; 1566 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1567 return nullptr; 1568 1569 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1570 return nullptr; 1571 1572 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1573 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1574 return nullptr; 1575 1576 Type *ITy = Op0->getType(); 1577 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1578 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1579 1580 const APInt Delta = *C1 - *C0; 1581 if (C0->isStrictlyPositive()) { 1582 if (Delta == 2) { 1583 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1584 return getFalse(ITy); 1585 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1586 return getFalse(ITy); 1587 } 1588 if (Delta == 1) { 1589 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1590 return getFalse(ITy); 1591 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1592 return getFalse(ITy); 1593 } 1594 } 1595 if (C0->getBoolValue() && isNUW) { 1596 if (Delta == 2) 1597 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1598 return getFalse(ITy); 1599 if (Delta == 1) 1600 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1601 return getFalse(ITy); 1602 } 1603 1604 return nullptr; 1605 } 1606 1607 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1608 const InstrInfoQuery &IIQ) { 1609 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1610 return X; 1611 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1612 return X; 1613 1614 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1615 return X; 1616 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1617 return X; 1618 1619 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1620 return X; 1621 1622 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1623 return X; 1624 1625 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1626 return X; 1627 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1628 return X; 1629 1630 return nullptr; 1631 } 1632 1633 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1634 const InstrInfoQuery &IIQ) { 1635 // (icmp (add V, C0), C1) | (icmp V, C0) 1636 ICmpInst::Predicate Pred0, Pred1; 1637 const APInt *C0, *C1; 1638 Value *V; 1639 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1640 return nullptr; 1641 1642 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1643 return nullptr; 1644 1645 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1646 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1647 return nullptr; 1648 1649 Type *ITy = Op0->getType(); 1650 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1651 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1652 1653 const APInt Delta = *C1 - *C0; 1654 if (C0->isStrictlyPositive()) { 1655 if (Delta == 2) { 1656 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1657 return getTrue(ITy); 1658 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1659 return getTrue(ITy); 1660 } 1661 if (Delta == 1) { 1662 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1663 return getTrue(ITy); 1664 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1665 return getTrue(ITy); 1666 } 1667 } 1668 if (C0->getBoolValue() && isNUW) { 1669 if (Delta == 2) 1670 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1671 return getTrue(ITy); 1672 if (Delta == 1) 1673 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1674 return getTrue(ITy); 1675 } 1676 1677 return nullptr; 1678 } 1679 1680 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1681 const InstrInfoQuery &IIQ) { 1682 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1683 return X; 1684 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1685 return X; 1686 1687 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1688 return X; 1689 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1690 return X; 1691 1692 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1693 return X; 1694 1695 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1696 return X; 1697 1698 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1699 return X; 1700 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1701 return X; 1702 1703 return nullptr; 1704 } 1705 1706 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1707 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1708 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1709 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1710 if (LHS0->getType() != RHS0->getType()) 1711 return nullptr; 1712 1713 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1714 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1715 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1716 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1717 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1718 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1719 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1720 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1721 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1722 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1723 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1724 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1725 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1726 return RHS; 1727 1728 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1729 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1730 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1731 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1732 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1733 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1734 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1735 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1736 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1737 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1738 return LHS; 1739 } 1740 1741 return nullptr; 1742 } 1743 1744 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1745 Value *Op0, Value *Op1, bool IsAnd) { 1746 // Look through casts of the 'and' operands to find compares. 1747 auto *Cast0 = dyn_cast<CastInst>(Op0); 1748 auto *Cast1 = dyn_cast<CastInst>(Op1); 1749 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1750 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1751 Op0 = Cast0->getOperand(0); 1752 Op1 = Cast1->getOperand(0); 1753 } 1754 1755 Value *V = nullptr; 1756 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1757 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1758 if (ICmp0 && ICmp1) 1759 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1760 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1761 1762 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1763 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1764 if (FCmp0 && FCmp1) 1765 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1766 1767 if (!V) 1768 return nullptr; 1769 if (!Cast0) 1770 return V; 1771 1772 // If we looked through casts, we can only handle a constant simplification 1773 // because we are not allowed to create a cast instruction here. 1774 if (auto *C = dyn_cast<Constant>(V)) 1775 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1776 1777 return nullptr; 1778 } 1779 1780 /// Given operands for an And, see if we can fold the result. 1781 /// If not, this returns null. 1782 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1783 unsigned MaxRecurse) { 1784 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1785 return C; 1786 1787 // X & undef -> 0 1788 if (match(Op1, m_Undef())) 1789 return Constant::getNullValue(Op0->getType()); 1790 1791 // X & X = X 1792 if (Op0 == Op1) 1793 return Op0; 1794 1795 // X & 0 = 0 1796 if (match(Op1, m_Zero())) 1797 return Constant::getNullValue(Op0->getType()); 1798 1799 // X & -1 = X 1800 if (match(Op1, m_AllOnes())) 1801 return Op0; 1802 1803 // A & ~A = ~A & A = 0 1804 if (match(Op0, m_Not(m_Specific(Op1))) || 1805 match(Op1, m_Not(m_Specific(Op0)))) 1806 return Constant::getNullValue(Op0->getType()); 1807 1808 // (A | ?) & A = A 1809 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1810 return Op1; 1811 1812 // A & (A | ?) = A 1813 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1814 return Op0; 1815 1816 // A mask that only clears known zeros of a shifted value is a no-op. 1817 Value *X; 1818 const APInt *Mask; 1819 const APInt *ShAmt; 1820 if (match(Op1, m_APInt(Mask))) { 1821 // If all bits in the inverted and shifted mask are clear: 1822 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1823 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1824 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1825 return Op0; 1826 1827 // If all bits in the inverted and shifted mask are clear: 1828 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1829 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1830 (~(*Mask)).shl(*ShAmt).isNullValue()) 1831 return Op0; 1832 } 1833 1834 // A & (-A) = A if A is a power of two or zero. 1835 if (match(Op0, m_Neg(m_Specific(Op1))) || 1836 match(Op1, m_Neg(m_Specific(Op0)))) { 1837 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1838 Q.DT)) 1839 return Op0; 1840 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1841 Q.DT)) 1842 return Op1; 1843 } 1844 1845 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1846 return V; 1847 1848 // Try some generic simplifications for associative operations. 1849 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1850 MaxRecurse)) 1851 return V; 1852 1853 // And distributes over Or. Try some generic simplifications based on this. 1854 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1855 Q, MaxRecurse)) 1856 return V; 1857 1858 // And distributes over Xor. Try some generic simplifications based on this. 1859 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1860 Q, MaxRecurse)) 1861 return V; 1862 1863 // If the operation is with the result of a select instruction, check whether 1864 // operating on either branch of the select always yields the same value. 1865 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1866 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1867 MaxRecurse)) 1868 return V; 1869 1870 // If the operation is with the result of a phi instruction, check whether 1871 // operating on all incoming values of the phi always yields the same value. 1872 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1873 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1874 MaxRecurse)) 1875 return V; 1876 1877 // Assuming the effective width of Y is not larger than A, i.e. all bits 1878 // from X and Y are disjoint in (X << A) | Y, 1879 // if the mask of this AND op covers all bits of X or Y, while it covers 1880 // no bits from the other, we can bypass this AND op. E.g., 1881 // ((X << A) | Y) & Mask -> Y, 1882 // if Mask = ((1 << effective_width_of(Y)) - 1) 1883 // ((X << A) | Y) & Mask -> X << A, 1884 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1885 // SimplifyDemandedBits in InstCombine can optimize the general case. 1886 // This pattern aims to help other passes for a common case. 1887 Value *Y, *XShifted; 1888 if (match(Op1, m_APInt(Mask)) && 1889 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1890 m_Value(XShifted)), 1891 m_Value(Y)))) { 1892 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1893 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1894 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1895 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1896 if (EffWidthY <= ShftCnt) { 1897 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1898 Q.DT); 1899 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1900 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1901 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1902 // If the mask is extracting all bits from X or Y as is, we can skip 1903 // this AND op. 1904 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1905 return Y; 1906 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1907 return XShifted; 1908 } 1909 } 1910 1911 return nullptr; 1912 } 1913 1914 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1915 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1916 } 1917 1918 /// Given operands for an Or, see if we can fold the result. 1919 /// If not, this returns null. 1920 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1921 unsigned MaxRecurse) { 1922 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1923 return C; 1924 1925 // X | undef -> -1 1926 // X | -1 = -1 1927 // Do not return Op1 because it may contain undef elements if it's a vector. 1928 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1929 return Constant::getAllOnesValue(Op0->getType()); 1930 1931 // X | X = X 1932 // X | 0 = X 1933 if (Op0 == Op1 || match(Op1, m_Zero())) 1934 return Op0; 1935 1936 // A | ~A = ~A | A = -1 1937 if (match(Op0, m_Not(m_Specific(Op1))) || 1938 match(Op1, m_Not(m_Specific(Op0)))) 1939 return Constant::getAllOnesValue(Op0->getType()); 1940 1941 // (A & ?) | A = A 1942 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1943 return Op1; 1944 1945 // A | (A & ?) = A 1946 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1947 return Op0; 1948 1949 // ~(A & ?) | A = -1 1950 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1951 return Constant::getAllOnesValue(Op1->getType()); 1952 1953 // A | ~(A & ?) = -1 1954 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1955 return Constant::getAllOnesValue(Op0->getType()); 1956 1957 Value *A, *B; 1958 // (A & ~B) | (A ^ B) -> (A ^ B) 1959 // (~B & A) | (A ^ B) -> (A ^ B) 1960 // (A & ~B) | (B ^ A) -> (B ^ A) 1961 // (~B & A) | (B ^ A) -> (B ^ A) 1962 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1963 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1964 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1965 return Op1; 1966 1967 // Commute the 'or' operands. 1968 // (A ^ B) | (A & ~B) -> (A ^ B) 1969 // (A ^ B) | (~B & A) -> (A ^ B) 1970 // (B ^ A) | (A & ~B) -> (B ^ A) 1971 // (B ^ A) | (~B & A) -> (B ^ A) 1972 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1973 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1974 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1975 return Op0; 1976 1977 // (A & B) | (~A ^ B) -> (~A ^ B) 1978 // (B & A) | (~A ^ B) -> (~A ^ B) 1979 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1980 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1981 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1982 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1983 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1984 return Op1; 1985 1986 // (~A ^ B) | (A & B) -> (~A ^ B) 1987 // (~A ^ B) | (B & A) -> (~A ^ B) 1988 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1989 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1990 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1991 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1992 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1993 return Op0; 1994 1995 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 1996 return V; 1997 1998 // Try some generic simplifications for associative operations. 1999 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2000 MaxRecurse)) 2001 return V; 2002 2003 // Or distributes over And. Try some generic simplifications based on this. 2004 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2005 MaxRecurse)) 2006 return V; 2007 2008 // If the operation is with the result of a select instruction, check whether 2009 // operating on either branch of the select always yields the same value. 2010 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2011 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2012 MaxRecurse)) 2013 return V; 2014 2015 // (A & C1)|(B & C2) 2016 const APInt *C1, *C2; 2017 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2018 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2019 if (*C1 == ~*C2) { 2020 // (A & C1)|(B & C2) 2021 // If we have: ((V + N) & C1) | (V & C2) 2022 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2023 // replace with V+N. 2024 Value *N; 2025 if (C2->isMask() && // C2 == 0+1+ 2026 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2027 // Add commutes, try both ways. 2028 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2029 return A; 2030 } 2031 // Or commutes, try both ways. 2032 if (C1->isMask() && 2033 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2034 // Add commutes, try both ways. 2035 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2036 return B; 2037 } 2038 } 2039 } 2040 2041 // If the operation is with the result of a phi instruction, check whether 2042 // operating on all incoming values of the phi always yields the same value. 2043 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2044 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2045 return V; 2046 2047 return nullptr; 2048 } 2049 2050 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2051 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2052 } 2053 2054 /// Given operands for a Xor, see if we can fold the result. 2055 /// If not, this returns null. 2056 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2057 unsigned MaxRecurse) { 2058 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2059 return C; 2060 2061 // A ^ undef -> undef 2062 if (match(Op1, m_Undef())) 2063 return Op1; 2064 2065 // A ^ 0 = A 2066 if (match(Op1, m_Zero())) 2067 return Op0; 2068 2069 // A ^ A = 0 2070 if (Op0 == Op1) 2071 return Constant::getNullValue(Op0->getType()); 2072 2073 // A ^ ~A = ~A ^ A = -1 2074 if (match(Op0, m_Not(m_Specific(Op1))) || 2075 match(Op1, m_Not(m_Specific(Op0)))) 2076 return Constant::getAllOnesValue(Op0->getType()); 2077 2078 // Try some generic simplifications for associative operations. 2079 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2080 MaxRecurse)) 2081 return V; 2082 2083 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2084 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2085 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2086 // only if B and C are equal. If B and C are equal then (since we assume 2087 // that operands have already been simplified) "select(cond, B, C)" should 2088 // have been simplified to the common value of B and C already. Analysing 2089 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2090 // for threading over phi nodes. 2091 2092 return nullptr; 2093 } 2094 2095 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2096 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2097 } 2098 2099 2100 static Type *GetCompareTy(Value *Op) { 2101 return CmpInst::makeCmpResultType(Op->getType()); 2102 } 2103 2104 /// Rummage around inside V looking for something equivalent to the comparison 2105 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2106 /// Helper function for analyzing max/min idioms. 2107 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2108 Value *LHS, Value *RHS) { 2109 SelectInst *SI = dyn_cast<SelectInst>(V); 2110 if (!SI) 2111 return nullptr; 2112 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2113 if (!Cmp) 2114 return nullptr; 2115 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2116 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2117 return Cmp; 2118 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2119 LHS == CmpRHS && RHS == CmpLHS) 2120 return Cmp; 2121 return nullptr; 2122 } 2123 2124 // A significant optimization not implemented here is assuming that alloca 2125 // addresses are not equal to incoming argument values. They don't *alias*, 2126 // as we say, but that doesn't mean they aren't equal, so we take a 2127 // conservative approach. 2128 // 2129 // This is inspired in part by C++11 5.10p1: 2130 // "Two pointers of the same type compare equal if and only if they are both 2131 // null, both point to the same function, or both represent the same 2132 // address." 2133 // 2134 // This is pretty permissive. 2135 // 2136 // It's also partly due to C11 6.5.9p6: 2137 // "Two pointers compare equal if and only if both are null pointers, both are 2138 // pointers to the same object (including a pointer to an object and a 2139 // subobject at its beginning) or function, both are pointers to one past the 2140 // last element of the same array object, or one is a pointer to one past the 2141 // end of one array object and the other is a pointer to the start of a 2142 // different array object that happens to immediately follow the first array 2143 // object in the address space.) 2144 // 2145 // C11's version is more restrictive, however there's no reason why an argument 2146 // couldn't be a one-past-the-end value for a stack object in the caller and be 2147 // equal to the beginning of a stack object in the callee. 2148 // 2149 // If the C and C++ standards are ever made sufficiently restrictive in this 2150 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2151 // this optimization. 2152 static Constant * 2153 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2154 const DominatorTree *DT, CmpInst::Predicate Pred, 2155 AssumptionCache *AC, const Instruction *CxtI, 2156 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2157 // First, skip past any trivial no-ops. 2158 LHS = LHS->stripPointerCasts(); 2159 RHS = RHS->stripPointerCasts(); 2160 2161 // A non-null pointer is not equal to a null pointer. 2162 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2163 IIQ.UseInstrInfo) && 2164 isa<ConstantPointerNull>(RHS) && 2165 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2166 return ConstantInt::get(GetCompareTy(LHS), 2167 !CmpInst::isTrueWhenEqual(Pred)); 2168 2169 // We can only fold certain predicates on pointer comparisons. 2170 switch (Pred) { 2171 default: 2172 return nullptr; 2173 2174 // Equality comaprisons are easy to fold. 2175 case CmpInst::ICMP_EQ: 2176 case CmpInst::ICMP_NE: 2177 break; 2178 2179 // We can only handle unsigned relational comparisons because 'inbounds' on 2180 // a GEP only protects against unsigned wrapping. 2181 case CmpInst::ICMP_UGT: 2182 case CmpInst::ICMP_UGE: 2183 case CmpInst::ICMP_ULT: 2184 case CmpInst::ICMP_ULE: 2185 // However, we have to switch them to their signed variants to handle 2186 // negative indices from the base pointer. 2187 Pred = ICmpInst::getSignedPredicate(Pred); 2188 break; 2189 } 2190 2191 // Strip off any constant offsets so that we can reason about them. 2192 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2193 // here and compare base addresses like AliasAnalysis does, however there are 2194 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2195 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2196 // doesn't need to guarantee pointer inequality when it says NoAlias. 2197 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2198 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2199 2200 // If LHS and RHS are related via constant offsets to the same base 2201 // value, we can replace it with an icmp which just compares the offsets. 2202 if (LHS == RHS) 2203 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2204 2205 // Various optimizations for (in)equality comparisons. 2206 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2207 // Different non-empty allocations that exist at the same time have 2208 // different addresses (if the program can tell). Global variables always 2209 // exist, so they always exist during the lifetime of each other and all 2210 // allocas. Two different allocas usually have different addresses... 2211 // 2212 // However, if there's an @llvm.stackrestore dynamically in between two 2213 // allocas, they may have the same address. It's tempting to reduce the 2214 // scope of the problem by only looking at *static* allocas here. That would 2215 // cover the majority of allocas while significantly reducing the likelihood 2216 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2217 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2218 // an entry block. Also, if we have a block that's not attached to a 2219 // function, we can't tell if it's "static" under the current definition. 2220 // Theoretically, this problem could be fixed by creating a new kind of 2221 // instruction kind specifically for static allocas. Such a new instruction 2222 // could be required to be at the top of the entry block, thus preventing it 2223 // from being subject to a @llvm.stackrestore. Instcombine could even 2224 // convert regular allocas into these special allocas. It'd be nifty. 2225 // However, until then, this problem remains open. 2226 // 2227 // So, we'll assume that two non-empty allocas have different addresses 2228 // for now. 2229 // 2230 // With all that, if the offsets are within the bounds of their allocations 2231 // (and not one-past-the-end! so we can't use inbounds!), and their 2232 // allocations aren't the same, the pointers are not equal. 2233 // 2234 // Note that it's not necessary to check for LHS being a global variable 2235 // address, due to canonicalization and constant folding. 2236 if (isa<AllocaInst>(LHS) && 2237 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2238 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2239 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2240 uint64_t LHSSize, RHSSize; 2241 ObjectSizeOpts Opts; 2242 Opts.NullIsUnknownSize = 2243 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2244 if (LHSOffsetCI && RHSOffsetCI && 2245 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2246 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2247 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2248 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2249 if (!LHSOffsetValue.isNegative() && 2250 !RHSOffsetValue.isNegative() && 2251 LHSOffsetValue.ult(LHSSize) && 2252 RHSOffsetValue.ult(RHSSize)) { 2253 return ConstantInt::get(GetCompareTy(LHS), 2254 !CmpInst::isTrueWhenEqual(Pred)); 2255 } 2256 } 2257 2258 // Repeat the above check but this time without depending on DataLayout 2259 // or being able to compute a precise size. 2260 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2261 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2262 LHSOffset->isNullValue() && 2263 RHSOffset->isNullValue()) 2264 return ConstantInt::get(GetCompareTy(LHS), 2265 !CmpInst::isTrueWhenEqual(Pred)); 2266 } 2267 2268 // Even if an non-inbounds GEP occurs along the path we can still optimize 2269 // equality comparisons concerning the result. We avoid walking the whole 2270 // chain again by starting where the last calls to 2271 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2272 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2273 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2274 if (LHS == RHS) 2275 return ConstantExpr::getICmp(Pred, 2276 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2277 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2278 2279 // If one side of the equality comparison must come from a noalias call 2280 // (meaning a system memory allocation function), and the other side must 2281 // come from a pointer that cannot overlap with dynamically-allocated 2282 // memory within the lifetime of the current function (allocas, byval 2283 // arguments, globals), then determine the comparison result here. 2284 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2285 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2286 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2287 2288 // Is the set of underlying objects all noalias calls? 2289 auto IsNAC = [](ArrayRef<Value *> Objects) { 2290 return all_of(Objects, isNoAliasCall); 2291 }; 2292 2293 // Is the set of underlying objects all things which must be disjoint from 2294 // noalias calls. For allocas, we consider only static ones (dynamic 2295 // allocas might be transformed into calls to malloc not simultaneously 2296 // live with the compared-to allocation). For globals, we exclude symbols 2297 // that might be resolve lazily to symbols in another dynamically-loaded 2298 // library (and, thus, could be malloc'ed by the implementation). 2299 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2300 return all_of(Objects, [](Value *V) { 2301 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2302 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2303 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2304 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2305 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2306 !GV->isThreadLocal(); 2307 if (const Argument *A = dyn_cast<Argument>(V)) 2308 return A->hasByValAttr(); 2309 return false; 2310 }); 2311 }; 2312 2313 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2314 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2315 return ConstantInt::get(GetCompareTy(LHS), 2316 !CmpInst::isTrueWhenEqual(Pred)); 2317 2318 // Fold comparisons for non-escaping pointer even if the allocation call 2319 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2320 // dynamic allocation call could be either of the operands. 2321 Value *MI = nullptr; 2322 if (isAllocLikeFn(LHS, TLI) && 2323 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2324 MI = LHS; 2325 else if (isAllocLikeFn(RHS, TLI) && 2326 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2327 MI = RHS; 2328 // FIXME: We should also fold the compare when the pointer escapes, but the 2329 // compare dominates the pointer escape 2330 if (MI && !PointerMayBeCaptured(MI, true, true)) 2331 return ConstantInt::get(GetCompareTy(LHS), 2332 CmpInst::isFalseWhenEqual(Pred)); 2333 } 2334 2335 // Otherwise, fail. 2336 return nullptr; 2337 } 2338 2339 /// Fold an icmp when its operands have i1 scalar type. 2340 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2341 Value *RHS, const SimplifyQuery &Q) { 2342 Type *ITy = GetCompareTy(LHS); // The return type. 2343 Type *OpTy = LHS->getType(); // The operand type. 2344 if (!OpTy->isIntOrIntVectorTy(1)) 2345 return nullptr; 2346 2347 // A boolean compared to true/false can be simplified in 14 out of the 20 2348 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2349 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2350 if (match(RHS, m_Zero())) { 2351 switch (Pred) { 2352 case CmpInst::ICMP_NE: // X != 0 -> X 2353 case CmpInst::ICMP_UGT: // X >u 0 -> X 2354 case CmpInst::ICMP_SLT: // X <s 0 -> X 2355 return LHS; 2356 2357 case CmpInst::ICMP_ULT: // X <u 0 -> false 2358 case CmpInst::ICMP_SGT: // X >s 0 -> false 2359 return getFalse(ITy); 2360 2361 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2362 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2363 return getTrue(ITy); 2364 2365 default: break; 2366 } 2367 } else if (match(RHS, m_One())) { 2368 switch (Pred) { 2369 case CmpInst::ICMP_EQ: // X == 1 -> X 2370 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2371 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2372 return LHS; 2373 2374 case CmpInst::ICMP_UGT: // X >u 1 -> false 2375 case CmpInst::ICMP_SLT: // X <s -1 -> false 2376 return getFalse(ITy); 2377 2378 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2379 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2380 return getTrue(ITy); 2381 2382 default: break; 2383 } 2384 } 2385 2386 switch (Pred) { 2387 default: 2388 break; 2389 case ICmpInst::ICMP_UGE: 2390 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2391 return getTrue(ITy); 2392 break; 2393 case ICmpInst::ICMP_SGE: 2394 /// For signed comparison, the values for an i1 are 0 and -1 2395 /// respectively. This maps into a truth table of: 2396 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2397 /// 0 | 0 | 1 (0 >= 0) | 1 2398 /// 0 | 1 | 1 (0 >= -1) | 1 2399 /// 1 | 0 | 0 (-1 >= 0) | 0 2400 /// 1 | 1 | 1 (-1 >= -1) | 1 2401 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2402 return getTrue(ITy); 2403 break; 2404 case ICmpInst::ICMP_ULE: 2405 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2406 return getTrue(ITy); 2407 break; 2408 } 2409 2410 return nullptr; 2411 } 2412 2413 /// Try hard to fold icmp with zero RHS because this is a common case. 2414 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2415 Value *RHS, const SimplifyQuery &Q) { 2416 if (!match(RHS, m_Zero())) 2417 return nullptr; 2418 2419 Type *ITy = GetCompareTy(LHS); // The return type. 2420 switch (Pred) { 2421 default: 2422 llvm_unreachable("Unknown ICmp predicate!"); 2423 case ICmpInst::ICMP_ULT: 2424 return getFalse(ITy); 2425 case ICmpInst::ICMP_UGE: 2426 return getTrue(ITy); 2427 case ICmpInst::ICMP_EQ: 2428 case ICmpInst::ICMP_ULE: 2429 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2430 return getFalse(ITy); 2431 break; 2432 case ICmpInst::ICMP_NE: 2433 case ICmpInst::ICMP_UGT: 2434 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2435 return getTrue(ITy); 2436 break; 2437 case ICmpInst::ICMP_SLT: { 2438 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2439 if (LHSKnown.isNegative()) 2440 return getTrue(ITy); 2441 if (LHSKnown.isNonNegative()) 2442 return getFalse(ITy); 2443 break; 2444 } 2445 case ICmpInst::ICMP_SLE: { 2446 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2447 if (LHSKnown.isNegative()) 2448 return getTrue(ITy); 2449 if (LHSKnown.isNonNegative() && 2450 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2451 return getFalse(ITy); 2452 break; 2453 } 2454 case ICmpInst::ICMP_SGE: { 2455 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2456 if (LHSKnown.isNegative()) 2457 return getFalse(ITy); 2458 if (LHSKnown.isNonNegative()) 2459 return getTrue(ITy); 2460 break; 2461 } 2462 case ICmpInst::ICMP_SGT: { 2463 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2464 if (LHSKnown.isNegative()) 2465 return getFalse(ITy); 2466 if (LHSKnown.isNonNegative() && 2467 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2468 return getTrue(ITy); 2469 break; 2470 } 2471 } 2472 2473 return nullptr; 2474 } 2475 2476 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2477 Value *RHS, const InstrInfoQuery &IIQ) { 2478 Type *ITy = GetCompareTy(RHS); // The return type. 2479 2480 Value *X; 2481 // Sign-bit checks can be optimized to true/false after unsigned 2482 // floating-point casts: 2483 // icmp slt (bitcast (uitofp X)), 0 --> false 2484 // icmp sgt (bitcast (uitofp X)), -1 --> true 2485 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2486 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2487 return ConstantInt::getFalse(ITy); 2488 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2489 return ConstantInt::getTrue(ITy); 2490 } 2491 2492 const APInt *C; 2493 if (!match(RHS, m_APInt(C))) 2494 return nullptr; 2495 2496 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2497 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2498 if (RHS_CR.isEmptySet()) 2499 return ConstantInt::getFalse(ITy); 2500 if (RHS_CR.isFullSet()) 2501 return ConstantInt::getTrue(ITy); 2502 2503 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2504 if (!LHS_CR.isFullSet()) { 2505 if (RHS_CR.contains(LHS_CR)) 2506 return ConstantInt::getTrue(ITy); 2507 if (RHS_CR.inverse().contains(LHS_CR)) 2508 return ConstantInt::getFalse(ITy); 2509 } 2510 2511 return nullptr; 2512 } 2513 2514 /// TODO: A large part of this logic is duplicated in InstCombine's 2515 /// foldICmpBinOp(). We should be able to share that and avoid the code 2516 /// duplication. 2517 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2518 Value *RHS, const SimplifyQuery &Q, 2519 unsigned MaxRecurse) { 2520 Type *ITy = GetCompareTy(LHS); // The return type. 2521 2522 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2523 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2524 if (MaxRecurse && (LBO || RBO)) { 2525 // Analyze the case when either LHS or RHS is an add instruction. 2526 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2527 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2528 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2529 if (LBO && LBO->getOpcode() == Instruction::Add) { 2530 A = LBO->getOperand(0); 2531 B = LBO->getOperand(1); 2532 NoLHSWrapProblem = 2533 ICmpInst::isEquality(Pred) || 2534 (CmpInst::isUnsigned(Pred) && 2535 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2536 (CmpInst::isSigned(Pred) && 2537 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2538 } 2539 if (RBO && RBO->getOpcode() == Instruction::Add) { 2540 C = RBO->getOperand(0); 2541 D = RBO->getOperand(1); 2542 NoRHSWrapProblem = 2543 ICmpInst::isEquality(Pred) || 2544 (CmpInst::isUnsigned(Pred) && 2545 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2546 (CmpInst::isSigned(Pred) && 2547 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2548 } 2549 2550 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2551 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2552 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2553 Constant::getNullValue(RHS->getType()), Q, 2554 MaxRecurse - 1)) 2555 return V; 2556 2557 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2558 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2559 if (Value *V = 2560 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2561 C == LHS ? D : C, Q, MaxRecurse - 1)) 2562 return V; 2563 2564 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2565 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2566 NoRHSWrapProblem) { 2567 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2568 Value *Y, *Z; 2569 if (A == C) { 2570 // C + B == C + D -> B == D 2571 Y = B; 2572 Z = D; 2573 } else if (A == D) { 2574 // D + B == C + D -> B == C 2575 Y = B; 2576 Z = C; 2577 } else if (B == C) { 2578 // A + C == C + D -> A == D 2579 Y = A; 2580 Z = D; 2581 } else { 2582 assert(B == D); 2583 // A + D == C + D -> A == C 2584 Y = A; 2585 Z = C; 2586 } 2587 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2588 return V; 2589 } 2590 } 2591 2592 { 2593 Value *Y = nullptr; 2594 // icmp pred (or X, Y), X 2595 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2596 if (Pred == ICmpInst::ICMP_ULT) 2597 return getFalse(ITy); 2598 if (Pred == ICmpInst::ICMP_UGE) 2599 return getTrue(ITy); 2600 2601 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2602 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2603 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2604 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2605 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2606 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2607 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2608 } 2609 } 2610 // icmp pred X, (or X, Y) 2611 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2612 if (Pred == ICmpInst::ICMP_ULE) 2613 return getTrue(ITy); 2614 if (Pred == ICmpInst::ICMP_UGT) 2615 return getFalse(ITy); 2616 2617 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2618 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2619 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2620 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2621 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2622 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2623 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2624 } 2625 } 2626 } 2627 2628 // icmp pred (and X, Y), X 2629 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2630 if (Pred == ICmpInst::ICMP_UGT) 2631 return getFalse(ITy); 2632 if (Pred == ICmpInst::ICMP_ULE) 2633 return getTrue(ITy); 2634 } 2635 // icmp pred X, (and X, Y) 2636 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2637 if (Pred == ICmpInst::ICMP_UGE) 2638 return getTrue(ITy); 2639 if (Pred == ICmpInst::ICMP_ULT) 2640 return getFalse(ITy); 2641 } 2642 2643 // 0 - (zext X) pred C 2644 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2645 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2646 if (RHSC->getValue().isStrictlyPositive()) { 2647 if (Pred == ICmpInst::ICMP_SLT) 2648 return ConstantInt::getTrue(RHSC->getContext()); 2649 if (Pred == ICmpInst::ICMP_SGE) 2650 return ConstantInt::getFalse(RHSC->getContext()); 2651 if (Pred == ICmpInst::ICMP_EQ) 2652 return ConstantInt::getFalse(RHSC->getContext()); 2653 if (Pred == ICmpInst::ICMP_NE) 2654 return ConstantInt::getTrue(RHSC->getContext()); 2655 } 2656 if (RHSC->getValue().isNonNegative()) { 2657 if (Pred == ICmpInst::ICMP_SLE) 2658 return ConstantInt::getTrue(RHSC->getContext()); 2659 if (Pred == ICmpInst::ICMP_SGT) 2660 return ConstantInt::getFalse(RHSC->getContext()); 2661 } 2662 } 2663 } 2664 2665 // icmp pred (urem X, Y), Y 2666 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2667 switch (Pred) { 2668 default: 2669 break; 2670 case ICmpInst::ICMP_SGT: 2671 case ICmpInst::ICMP_SGE: { 2672 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2673 if (!Known.isNonNegative()) 2674 break; 2675 LLVM_FALLTHROUGH; 2676 } 2677 case ICmpInst::ICMP_EQ: 2678 case ICmpInst::ICMP_UGT: 2679 case ICmpInst::ICMP_UGE: 2680 return getFalse(ITy); 2681 case ICmpInst::ICMP_SLT: 2682 case ICmpInst::ICMP_SLE: { 2683 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2684 if (!Known.isNonNegative()) 2685 break; 2686 LLVM_FALLTHROUGH; 2687 } 2688 case ICmpInst::ICMP_NE: 2689 case ICmpInst::ICMP_ULT: 2690 case ICmpInst::ICMP_ULE: 2691 return getTrue(ITy); 2692 } 2693 } 2694 2695 // icmp pred X, (urem Y, X) 2696 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2697 switch (Pred) { 2698 default: 2699 break; 2700 case ICmpInst::ICMP_SGT: 2701 case ICmpInst::ICMP_SGE: { 2702 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2703 if (!Known.isNonNegative()) 2704 break; 2705 LLVM_FALLTHROUGH; 2706 } 2707 case ICmpInst::ICMP_NE: 2708 case ICmpInst::ICMP_UGT: 2709 case ICmpInst::ICMP_UGE: 2710 return getTrue(ITy); 2711 case ICmpInst::ICMP_SLT: 2712 case ICmpInst::ICMP_SLE: { 2713 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2714 if (!Known.isNonNegative()) 2715 break; 2716 LLVM_FALLTHROUGH; 2717 } 2718 case ICmpInst::ICMP_EQ: 2719 case ICmpInst::ICMP_ULT: 2720 case ICmpInst::ICMP_ULE: 2721 return getFalse(ITy); 2722 } 2723 } 2724 2725 // x >> y <=u x 2726 // x udiv y <=u x. 2727 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2728 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2729 // icmp pred (X op Y), X 2730 if (Pred == ICmpInst::ICMP_UGT) 2731 return getFalse(ITy); 2732 if (Pred == ICmpInst::ICMP_ULE) 2733 return getTrue(ITy); 2734 } 2735 2736 // x >=u x >> y 2737 // x >=u x udiv y. 2738 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2739 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2740 // icmp pred X, (X op Y) 2741 if (Pred == ICmpInst::ICMP_ULT) 2742 return getFalse(ITy); 2743 if (Pred == ICmpInst::ICMP_UGE) 2744 return getTrue(ITy); 2745 } 2746 2747 // handle: 2748 // CI2 << X == CI 2749 // CI2 << X != CI 2750 // 2751 // where CI2 is a power of 2 and CI isn't 2752 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2753 const APInt *CI2Val, *CIVal = &CI->getValue(); 2754 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2755 CI2Val->isPowerOf2()) { 2756 if (!CIVal->isPowerOf2()) { 2757 // CI2 << X can equal zero in some circumstances, 2758 // this simplification is unsafe if CI is zero. 2759 // 2760 // We know it is safe if: 2761 // - The shift is nsw, we can't shift out the one bit. 2762 // - The shift is nuw, we can't shift out the one bit. 2763 // - CI2 is one 2764 // - CI isn't zero 2765 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2766 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2767 CI2Val->isOneValue() || !CI->isZero()) { 2768 if (Pred == ICmpInst::ICMP_EQ) 2769 return ConstantInt::getFalse(RHS->getContext()); 2770 if (Pred == ICmpInst::ICMP_NE) 2771 return ConstantInt::getTrue(RHS->getContext()); 2772 } 2773 } 2774 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2775 if (Pred == ICmpInst::ICMP_UGT) 2776 return ConstantInt::getFalse(RHS->getContext()); 2777 if (Pred == ICmpInst::ICMP_ULE) 2778 return ConstantInt::getTrue(RHS->getContext()); 2779 } 2780 } 2781 } 2782 2783 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2784 LBO->getOperand(1) == RBO->getOperand(1)) { 2785 switch (LBO->getOpcode()) { 2786 default: 2787 break; 2788 case Instruction::UDiv: 2789 case Instruction::LShr: 2790 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2791 !Q.IIQ.isExact(RBO)) 2792 break; 2793 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2794 RBO->getOperand(0), Q, MaxRecurse - 1)) 2795 return V; 2796 break; 2797 case Instruction::SDiv: 2798 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2799 !Q.IIQ.isExact(RBO)) 2800 break; 2801 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2802 RBO->getOperand(0), Q, MaxRecurse - 1)) 2803 return V; 2804 break; 2805 case Instruction::AShr: 2806 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2807 break; 2808 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2809 RBO->getOperand(0), Q, MaxRecurse - 1)) 2810 return V; 2811 break; 2812 case Instruction::Shl: { 2813 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2814 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2815 if (!NUW && !NSW) 2816 break; 2817 if (!NSW && ICmpInst::isSigned(Pred)) 2818 break; 2819 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2820 RBO->getOperand(0), Q, MaxRecurse - 1)) 2821 return V; 2822 break; 2823 } 2824 } 2825 } 2826 return nullptr; 2827 } 2828 2829 /// Simplify integer comparisons where at least one operand of the compare 2830 /// matches an integer min/max idiom. 2831 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2832 Value *RHS, const SimplifyQuery &Q, 2833 unsigned MaxRecurse) { 2834 Type *ITy = GetCompareTy(LHS); // The return type. 2835 Value *A, *B; 2836 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2837 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2838 2839 // Signed variants on "max(a,b)>=a -> true". 2840 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2841 if (A != RHS) 2842 std::swap(A, B); // smax(A, B) pred A. 2843 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2844 // We analyze this as smax(A, B) pred A. 2845 P = Pred; 2846 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2847 (A == LHS || B == LHS)) { 2848 if (A != LHS) 2849 std::swap(A, B); // A pred smax(A, B). 2850 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2851 // We analyze this as smax(A, B) swapped-pred A. 2852 P = CmpInst::getSwappedPredicate(Pred); 2853 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2854 (A == RHS || B == RHS)) { 2855 if (A != RHS) 2856 std::swap(A, B); // smin(A, B) pred A. 2857 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2858 // We analyze this as smax(-A, -B) swapped-pred -A. 2859 // Note that we do not need to actually form -A or -B thanks to EqP. 2860 P = CmpInst::getSwappedPredicate(Pred); 2861 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2862 (A == LHS || B == LHS)) { 2863 if (A != LHS) 2864 std::swap(A, B); // A pred smin(A, B). 2865 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2866 // We analyze this as smax(-A, -B) pred -A. 2867 // Note that we do not need to actually form -A or -B thanks to EqP. 2868 P = Pred; 2869 } 2870 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2871 // Cases correspond to "max(A, B) p A". 2872 switch (P) { 2873 default: 2874 break; 2875 case CmpInst::ICMP_EQ: 2876 case CmpInst::ICMP_SLE: 2877 // Equivalent to "A EqP B". This may be the same as the condition tested 2878 // in the max/min; if so, we can just return that. 2879 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2880 return V; 2881 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2882 return V; 2883 // Otherwise, see if "A EqP B" simplifies. 2884 if (MaxRecurse) 2885 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2886 return V; 2887 break; 2888 case CmpInst::ICMP_NE: 2889 case CmpInst::ICMP_SGT: { 2890 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2891 // Equivalent to "A InvEqP B". This may be the same as the condition 2892 // tested in the max/min; if so, we can just return that. 2893 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2894 return V; 2895 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2896 return V; 2897 // Otherwise, see if "A InvEqP B" simplifies. 2898 if (MaxRecurse) 2899 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2900 return V; 2901 break; 2902 } 2903 case CmpInst::ICMP_SGE: 2904 // Always true. 2905 return getTrue(ITy); 2906 case CmpInst::ICMP_SLT: 2907 // Always false. 2908 return getFalse(ITy); 2909 } 2910 } 2911 2912 // Unsigned variants on "max(a,b)>=a -> true". 2913 P = CmpInst::BAD_ICMP_PREDICATE; 2914 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2915 if (A != RHS) 2916 std::swap(A, B); // umax(A, B) pred A. 2917 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2918 // We analyze this as umax(A, B) pred A. 2919 P = Pred; 2920 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2921 (A == LHS || B == LHS)) { 2922 if (A != LHS) 2923 std::swap(A, B); // A pred umax(A, B). 2924 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2925 // We analyze this as umax(A, B) swapped-pred A. 2926 P = CmpInst::getSwappedPredicate(Pred); 2927 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2928 (A == RHS || B == RHS)) { 2929 if (A != RHS) 2930 std::swap(A, B); // umin(A, B) pred A. 2931 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2932 // We analyze this as umax(-A, -B) swapped-pred -A. 2933 // Note that we do not need to actually form -A or -B thanks to EqP. 2934 P = CmpInst::getSwappedPredicate(Pred); 2935 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2936 (A == LHS || B == LHS)) { 2937 if (A != LHS) 2938 std::swap(A, B); // A pred umin(A, B). 2939 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2940 // We analyze this as umax(-A, -B) pred -A. 2941 // Note that we do not need to actually form -A or -B thanks to EqP. 2942 P = Pred; 2943 } 2944 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2945 // Cases correspond to "max(A, B) p A". 2946 switch (P) { 2947 default: 2948 break; 2949 case CmpInst::ICMP_EQ: 2950 case CmpInst::ICMP_ULE: 2951 // Equivalent to "A EqP B". This may be the same as the condition tested 2952 // in the max/min; if so, we can just return that. 2953 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2954 return V; 2955 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2956 return V; 2957 // Otherwise, see if "A EqP B" simplifies. 2958 if (MaxRecurse) 2959 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2960 return V; 2961 break; 2962 case CmpInst::ICMP_NE: 2963 case CmpInst::ICMP_UGT: { 2964 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2965 // Equivalent to "A InvEqP B". This may be the same as the condition 2966 // tested in the max/min; if so, we can just return that. 2967 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2968 return V; 2969 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2970 return V; 2971 // Otherwise, see if "A InvEqP B" simplifies. 2972 if (MaxRecurse) 2973 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2974 return V; 2975 break; 2976 } 2977 case CmpInst::ICMP_UGE: 2978 // Always true. 2979 return getTrue(ITy); 2980 case CmpInst::ICMP_ULT: 2981 // Always false. 2982 return getFalse(ITy); 2983 } 2984 } 2985 2986 // Variants on "max(x,y) >= min(x,z)". 2987 Value *C, *D; 2988 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2989 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2990 (A == C || A == D || B == C || B == D)) { 2991 // max(x, ?) pred min(x, ?). 2992 if (Pred == CmpInst::ICMP_SGE) 2993 // Always true. 2994 return getTrue(ITy); 2995 if (Pred == CmpInst::ICMP_SLT) 2996 // Always false. 2997 return getFalse(ITy); 2998 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2999 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3000 (A == C || A == D || B == C || B == D)) { 3001 // min(x, ?) pred max(x, ?). 3002 if (Pred == CmpInst::ICMP_SLE) 3003 // Always true. 3004 return getTrue(ITy); 3005 if (Pred == CmpInst::ICMP_SGT) 3006 // Always false. 3007 return getFalse(ITy); 3008 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3009 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3010 (A == C || A == D || B == C || B == D)) { 3011 // max(x, ?) pred min(x, ?). 3012 if (Pred == CmpInst::ICMP_UGE) 3013 // Always true. 3014 return getTrue(ITy); 3015 if (Pred == CmpInst::ICMP_ULT) 3016 // Always false. 3017 return getFalse(ITy); 3018 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3019 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3020 (A == C || A == D || B == C || B == D)) { 3021 // min(x, ?) pred max(x, ?). 3022 if (Pred == CmpInst::ICMP_ULE) 3023 // Always true. 3024 return getTrue(ITy); 3025 if (Pred == CmpInst::ICMP_UGT) 3026 // Always false. 3027 return getFalse(ITy); 3028 } 3029 3030 return nullptr; 3031 } 3032 3033 /// Given operands for an ICmpInst, see if we can fold the result. 3034 /// If not, this returns null. 3035 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3036 const SimplifyQuery &Q, unsigned MaxRecurse) { 3037 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3038 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3039 3040 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3041 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3042 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3043 3044 // If we have a constant, make sure it is on the RHS. 3045 std::swap(LHS, RHS); 3046 Pred = CmpInst::getSwappedPredicate(Pred); 3047 } 3048 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3049 3050 Type *ITy = GetCompareTy(LHS); // The return type. 3051 3052 // For EQ and NE, we can always pick a value for the undef to make the 3053 // predicate pass or fail, so we can return undef. 3054 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3055 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3056 return UndefValue::get(ITy); 3057 3058 // icmp X, X -> true/false 3059 // icmp X, undef -> true/false because undef could be X. 3060 if (LHS == RHS || isa<UndefValue>(RHS)) 3061 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3062 3063 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3064 return V; 3065 3066 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3067 return V; 3068 3069 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3070 return V; 3071 3072 // If both operands have range metadata, use the metadata 3073 // to simplify the comparison. 3074 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3075 auto RHS_Instr = cast<Instruction>(RHS); 3076 auto LHS_Instr = cast<Instruction>(LHS); 3077 3078 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3079 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3080 auto RHS_CR = getConstantRangeFromMetadata( 3081 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3082 auto LHS_CR = getConstantRangeFromMetadata( 3083 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3084 3085 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3086 if (Satisfied_CR.contains(LHS_CR)) 3087 return ConstantInt::getTrue(RHS->getContext()); 3088 3089 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3090 CmpInst::getInversePredicate(Pred), RHS_CR); 3091 if (InversedSatisfied_CR.contains(LHS_CR)) 3092 return ConstantInt::getFalse(RHS->getContext()); 3093 } 3094 } 3095 3096 // Compare of cast, for example (zext X) != 0 -> X != 0 3097 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3098 Instruction *LI = cast<CastInst>(LHS); 3099 Value *SrcOp = LI->getOperand(0); 3100 Type *SrcTy = SrcOp->getType(); 3101 Type *DstTy = LI->getType(); 3102 3103 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3104 // if the integer type is the same size as the pointer type. 3105 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3106 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3107 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3108 // Transfer the cast to the constant. 3109 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3110 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3111 Q, MaxRecurse-1)) 3112 return V; 3113 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3114 if (RI->getOperand(0)->getType() == SrcTy) 3115 // Compare without the cast. 3116 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3117 Q, MaxRecurse-1)) 3118 return V; 3119 } 3120 } 3121 3122 if (isa<ZExtInst>(LHS)) { 3123 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3124 // same type. 3125 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3126 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3127 // Compare X and Y. Note that signed predicates become unsigned. 3128 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3129 SrcOp, RI->getOperand(0), Q, 3130 MaxRecurse-1)) 3131 return V; 3132 } 3133 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3134 // too. If not, then try to deduce the result of the comparison. 3135 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3136 // Compute the constant that would happen if we truncated to SrcTy then 3137 // reextended to DstTy. 3138 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3139 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3140 3141 // If the re-extended constant didn't change then this is effectively 3142 // also a case of comparing two zero-extended values. 3143 if (RExt == CI && MaxRecurse) 3144 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3145 SrcOp, Trunc, Q, MaxRecurse-1)) 3146 return V; 3147 3148 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3149 // there. Use this to work out the result of the comparison. 3150 if (RExt != CI) { 3151 switch (Pred) { 3152 default: llvm_unreachable("Unknown ICmp predicate!"); 3153 // LHS <u RHS. 3154 case ICmpInst::ICMP_EQ: 3155 case ICmpInst::ICMP_UGT: 3156 case ICmpInst::ICMP_UGE: 3157 return ConstantInt::getFalse(CI->getContext()); 3158 3159 case ICmpInst::ICMP_NE: 3160 case ICmpInst::ICMP_ULT: 3161 case ICmpInst::ICMP_ULE: 3162 return ConstantInt::getTrue(CI->getContext()); 3163 3164 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3165 // is non-negative then LHS <s RHS. 3166 case ICmpInst::ICMP_SGT: 3167 case ICmpInst::ICMP_SGE: 3168 return CI->getValue().isNegative() ? 3169 ConstantInt::getTrue(CI->getContext()) : 3170 ConstantInt::getFalse(CI->getContext()); 3171 3172 case ICmpInst::ICMP_SLT: 3173 case ICmpInst::ICMP_SLE: 3174 return CI->getValue().isNegative() ? 3175 ConstantInt::getFalse(CI->getContext()) : 3176 ConstantInt::getTrue(CI->getContext()); 3177 } 3178 } 3179 } 3180 } 3181 3182 if (isa<SExtInst>(LHS)) { 3183 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3184 // same type. 3185 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3186 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3187 // Compare X and Y. Note that the predicate does not change. 3188 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3189 Q, MaxRecurse-1)) 3190 return V; 3191 } 3192 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3193 // too. If not, then try to deduce the result of the comparison. 3194 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3195 // Compute the constant that would happen if we truncated to SrcTy then 3196 // reextended to DstTy. 3197 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3198 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3199 3200 // If the re-extended constant didn't change then this is effectively 3201 // also a case of comparing two sign-extended values. 3202 if (RExt == CI && MaxRecurse) 3203 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3204 return V; 3205 3206 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3207 // bits there. Use this to work out the result of the comparison. 3208 if (RExt != CI) { 3209 switch (Pred) { 3210 default: llvm_unreachable("Unknown ICmp predicate!"); 3211 case ICmpInst::ICMP_EQ: 3212 return ConstantInt::getFalse(CI->getContext()); 3213 case ICmpInst::ICMP_NE: 3214 return ConstantInt::getTrue(CI->getContext()); 3215 3216 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3217 // LHS >s RHS. 3218 case ICmpInst::ICMP_SGT: 3219 case ICmpInst::ICMP_SGE: 3220 return CI->getValue().isNegative() ? 3221 ConstantInt::getTrue(CI->getContext()) : 3222 ConstantInt::getFalse(CI->getContext()); 3223 case ICmpInst::ICMP_SLT: 3224 case ICmpInst::ICMP_SLE: 3225 return CI->getValue().isNegative() ? 3226 ConstantInt::getFalse(CI->getContext()) : 3227 ConstantInt::getTrue(CI->getContext()); 3228 3229 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3230 // LHS >u RHS. 3231 case ICmpInst::ICMP_UGT: 3232 case ICmpInst::ICMP_UGE: 3233 // Comparison is true iff the LHS <s 0. 3234 if (MaxRecurse) 3235 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3236 Constant::getNullValue(SrcTy), 3237 Q, MaxRecurse-1)) 3238 return V; 3239 break; 3240 case ICmpInst::ICMP_ULT: 3241 case ICmpInst::ICMP_ULE: 3242 // Comparison is true iff the LHS >=s 0. 3243 if (MaxRecurse) 3244 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3245 Constant::getNullValue(SrcTy), 3246 Q, MaxRecurse-1)) 3247 return V; 3248 break; 3249 } 3250 } 3251 } 3252 } 3253 } 3254 3255 // icmp eq|ne X, Y -> false|true if X != Y 3256 if (ICmpInst::isEquality(Pred) && 3257 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3258 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3259 } 3260 3261 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3262 return V; 3263 3264 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3265 return V; 3266 3267 // Simplify comparisons of related pointers using a powerful, recursive 3268 // GEP-walk when we have target data available.. 3269 if (LHS->getType()->isPointerTy()) 3270 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3271 Q.IIQ, LHS, RHS)) 3272 return C; 3273 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3274 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3275 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3276 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3277 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3278 Q.DL.getTypeSizeInBits(CRHS->getType())) 3279 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3280 Q.IIQ, CLHS->getPointerOperand(), 3281 CRHS->getPointerOperand())) 3282 return C; 3283 3284 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3285 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3286 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3287 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3288 (ICmpInst::isEquality(Pred) || 3289 (GLHS->isInBounds() && GRHS->isInBounds() && 3290 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3291 // The bases are equal and the indices are constant. Build a constant 3292 // expression GEP with the same indices and a null base pointer to see 3293 // what constant folding can make out of it. 3294 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3295 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3296 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3297 GLHS->getSourceElementType(), Null, IndicesLHS); 3298 3299 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3300 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3301 GLHS->getSourceElementType(), Null, IndicesRHS); 3302 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3303 } 3304 } 3305 } 3306 3307 // If the comparison is with the result of a select instruction, check whether 3308 // comparing with either branch of the select always yields the same value. 3309 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3310 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3311 return V; 3312 3313 // If the comparison is with the result of a phi instruction, check whether 3314 // doing the compare with each incoming phi value yields a common result. 3315 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3316 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3317 return V; 3318 3319 return nullptr; 3320 } 3321 3322 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3323 const SimplifyQuery &Q) { 3324 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3325 } 3326 3327 /// Given operands for an FCmpInst, see if we can fold the result. 3328 /// If not, this returns null. 3329 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3330 FastMathFlags FMF, const SimplifyQuery &Q, 3331 unsigned MaxRecurse) { 3332 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3333 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3334 3335 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3336 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3337 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3338 3339 // If we have a constant, make sure it is on the RHS. 3340 std::swap(LHS, RHS); 3341 Pred = CmpInst::getSwappedPredicate(Pred); 3342 } 3343 3344 // Fold trivial predicates. 3345 Type *RetTy = GetCompareTy(LHS); 3346 if (Pred == FCmpInst::FCMP_FALSE) 3347 return getFalse(RetTy); 3348 if (Pred == FCmpInst::FCMP_TRUE) 3349 return getTrue(RetTy); 3350 3351 // Fold (un)ordered comparison if we can determine there are no NaNs. 3352 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3353 if (FMF.noNaNs() || 3354 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3355 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3356 3357 // NaN is unordered; NaN is not ordered. 3358 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3359 "Comparison must be either ordered or unordered"); 3360 if (match(RHS, m_NaN())) 3361 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3362 3363 // fcmp pred x, undef and fcmp pred undef, x 3364 // fold to true if unordered, false if ordered 3365 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3366 // Choosing NaN for the undef will always make unordered comparison succeed 3367 // and ordered comparison fail. 3368 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3369 } 3370 3371 // fcmp x,x -> true/false. Not all compares are foldable. 3372 if (LHS == RHS) { 3373 if (CmpInst::isTrueWhenEqual(Pred)) 3374 return getTrue(RetTy); 3375 if (CmpInst::isFalseWhenEqual(Pred)) 3376 return getFalse(RetTy); 3377 } 3378 3379 // Handle fcmp with constant RHS. 3380 // TODO: Use match with a specific FP value, so these work with vectors with 3381 // undef lanes. 3382 const APFloat *C; 3383 if (match(RHS, m_APFloat(C))) { 3384 // Check whether the constant is an infinity. 3385 if (C->isInfinity()) { 3386 if (C->isNegative()) { 3387 switch (Pred) { 3388 case FCmpInst::FCMP_OLT: 3389 // No value is ordered and less than negative infinity. 3390 return getFalse(RetTy); 3391 case FCmpInst::FCMP_UGE: 3392 // All values are unordered with or at least negative infinity. 3393 return getTrue(RetTy); 3394 default: 3395 break; 3396 } 3397 } else { 3398 switch (Pred) { 3399 case FCmpInst::FCMP_OGT: 3400 // No value is ordered and greater than infinity. 3401 return getFalse(RetTy); 3402 case FCmpInst::FCMP_ULE: 3403 // All values are unordered with and at most infinity. 3404 return getTrue(RetTy); 3405 default: 3406 break; 3407 } 3408 } 3409 } 3410 if (C->isNegative() && !C->isNegZero()) { 3411 assert(!C->isNaN() && "Unexpected NaN constant!"); 3412 // TODO: We can catch more cases by using a range check rather than 3413 // relying on CannotBeOrderedLessThanZero. 3414 switch (Pred) { 3415 case FCmpInst::FCMP_UGE: 3416 case FCmpInst::FCMP_UGT: 3417 case FCmpInst::FCMP_UNE: 3418 // (X >= 0) implies (X > C) when (C < 0) 3419 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3420 return getTrue(RetTy); 3421 break; 3422 case FCmpInst::FCMP_OEQ: 3423 case FCmpInst::FCMP_OLE: 3424 case FCmpInst::FCMP_OLT: 3425 // (X >= 0) implies !(X < C) when (C < 0) 3426 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3427 return getFalse(RetTy); 3428 break; 3429 default: 3430 break; 3431 } 3432 } 3433 } 3434 if (match(RHS, m_AnyZeroFP())) { 3435 switch (Pred) { 3436 case FCmpInst::FCMP_OGE: 3437 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3438 return getTrue(RetTy); 3439 break; 3440 case FCmpInst::FCMP_UGE: 3441 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3442 return getTrue(RetTy); 3443 break; 3444 case FCmpInst::FCMP_ULT: 3445 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3446 return getFalse(RetTy); 3447 break; 3448 case FCmpInst::FCMP_OLT: 3449 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3450 return getFalse(RetTy); 3451 break; 3452 default: 3453 break; 3454 } 3455 } 3456 3457 // If the comparison is with the result of a select instruction, check whether 3458 // comparing with either branch of the select always yields the same value. 3459 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3460 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3461 return V; 3462 3463 // If the comparison is with the result of a phi instruction, check whether 3464 // doing the compare with each incoming phi value yields a common result. 3465 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3466 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3467 return V; 3468 3469 return nullptr; 3470 } 3471 3472 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3473 FastMathFlags FMF, const SimplifyQuery &Q) { 3474 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3475 } 3476 3477 /// See if V simplifies when its operand Op is replaced with RepOp. 3478 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3479 const SimplifyQuery &Q, 3480 unsigned MaxRecurse) { 3481 // Trivial replacement. 3482 if (V == Op) 3483 return RepOp; 3484 3485 // We cannot replace a constant, and shouldn't even try. 3486 if (isa<Constant>(Op)) 3487 return nullptr; 3488 3489 auto *I = dyn_cast<Instruction>(V); 3490 if (!I) 3491 return nullptr; 3492 3493 // If this is a binary operator, try to simplify it with the replaced op. 3494 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3495 // Consider: 3496 // %cmp = icmp eq i32 %x, 2147483647 3497 // %add = add nsw i32 %x, 1 3498 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3499 // 3500 // We can't replace %sel with %add unless we strip away the flags. 3501 if (isa<OverflowingBinaryOperator>(B)) 3502 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3503 return nullptr; 3504 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3505 return nullptr; 3506 3507 if (MaxRecurse) { 3508 if (B->getOperand(0) == Op) 3509 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3510 MaxRecurse - 1); 3511 if (B->getOperand(1) == Op) 3512 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3513 MaxRecurse - 1); 3514 } 3515 } 3516 3517 // Same for CmpInsts. 3518 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3519 if (MaxRecurse) { 3520 if (C->getOperand(0) == Op) 3521 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3522 MaxRecurse - 1); 3523 if (C->getOperand(1) == Op) 3524 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3525 MaxRecurse - 1); 3526 } 3527 } 3528 3529 // Same for GEPs. 3530 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3531 if (MaxRecurse) { 3532 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3533 transform(GEP->operands(), NewOps.begin(), 3534 [&](Value *V) { return V == Op ? RepOp : V; }); 3535 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3536 MaxRecurse - 1); 3537 } 3538 } 3539 3540 // TODO: We could hand off more cases to instsimplify here. 3541 3542 // If all operands are constant after substituting Op for RepOp then we can 3543 // constant fold the instruction. 3544 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3545 // Build a list of all constant operands. 3546 SmallVector<Constant *, 8> ConstOps; 3547 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3548 if (I->getOperand(i) == Op) 3549 ConstOps.push_back(CRepOp); 3550 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3551 ConstOps.push_back(COp); 3552 else 3553 break; 3554 } 3555 3556 // All operands were constants, fold it. 3557 if (ConstOps.size() == I->getNumOperands()) { 3558 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3559 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3560 ConstOps[1], Q.DL, Q.TLI); 3561 3562 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3563 if (!LI->isVolatile()) 3564 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3565 3566 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3567 } 3568 } 3569 3570 return nullptr; 3571 } 3572 3573 /// Try to simplify a select instruction when its condition operand is an 3574 /// integer comparison where one operand of the compare is a constant. 3575 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3576 const APInt *Y, bool TrueWhenUnset) { 3577 const APInt *C; 3578 3579 // (X & Y) == 0 ? X & ~Y : X --> X 3580 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3581 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3582 *Y == ~*C) 3583 return TrueWhenUnset ? FalseVal : TrueVal; 3584 3585 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3586 // (X & Y) != 0 ? X : X & ~Y --> X 3587 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3588 *Y == ~*C) 3589 return TrueWhenUnset ? FalseVal : TrueVal; 3590 3591 if (Y->isPowerOf2()) { 3592 // (X & Y) == 0 ? X | Y : X --> X | Y 3593 // (X & Y) != 0 ? X | Y : X --> X 3594 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3595 *Y == *C) 3596 return TrueWhenUnset ? TrueVal : FalseVal; 3597 3598 // (X & Y) == 0 ? X : X | Y --> X 3599 // (X & Y) != 0 ? X : X | Y --> X | Y 3600 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3601 *Y == *C) 3602 return TrueWhenUnset ? TrueVal : FalseVal; 3603 } 3604 3605 return nullptr; 3606 } 3607 3608 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3609 /// eq/ne. 3610 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3611 ICmpInst::Predicate Pred, 3612 Value *TrueVal, Value *FalseVal) { 3613 Value *X; 3614 APInt Mask; 3615 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3616 return nullptr; 3617 3618 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3619 Pred == ICmpInst::ICMP_EQ); 3620 } 3621 3622 /// Try to simplify a select instruction when its condition operand is an 3623 /// integer comparison. 3624 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3625 Value *FalseVal, const SimplifyQuery &Q, 3626 unsigned MaxRecurse) { 3627 ICmpInst::Predicate Pred; 3628 Value *CmpLHS, *CmpRHS; 3629 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3630 return nullptr; 3631 3632 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3633 Value *X; 3634 const APInt *Y; 3635 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3636 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3637 Pred == ICmpInst::ICMP_EQ)) 3638 return V; 3639 3640 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3641 Value *ShAmt; 3642 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3643 m_Value(ShAmt)), 3644 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3645 m_Value(ShAmt))); 3646 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3647 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3648 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3649 Pred == ICmpInst::ICMP_EQ) 3650 return X; 3651 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3652 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3653 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3654 Pred == ICmpInst::ICMP_NE) 3655 return X; 3656 3657 // Test for a zero-shift-guard-op around rotates. These are used to 3658 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3659 // intrinsics do not have that problem. 3660 // We do not allow this transform for the general funnel shift case because 3661 // that would not preserve the poison safety of the original code. 3662 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3663 m_Deferred(X), 3664 m_Value(ShAmt)), 3665 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3666 m_Deferred(X), 3667 m_Value(ShAmt))); 3668 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3669 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3670 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3671 Pred == ICmpInst::ICMP_NE) 3672 return TrueVal; 3673 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3674 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3675 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3676 Pred == ICmpInst::ICMP_EQ) 3677 return FalseVal; 3678 } 3679 3680 // Check for other compares that behave like bit test. 3681 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3682 TrueVal, FalseVal)) 3683 return V; 3684 3685 // If we have an equality comparison, then we know the value in one of the 3686 // arms of the select. See if substituting this value into the arm and 3687 // simplifying the result yields the same value as the other arm. 3688 if (Pred == ICmpInst::ICMP_EQ) { 3689 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3690 TrueVal || 3691 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3692 TrueVal) 3693 return FalseVal; 3694 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3695 FalseVal || 3696 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3697 FalseVal) 3698 return FalseVal; 3699 } else if (Pred == ICmpInst::ICMP_NE) { 3700 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3701 FalseVal || 3702 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3703 FalseVal) 3704 return TrueVal; 3705 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3706 TrueVal || 3707 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3708 TrueVal) 3709 return TrueVal; 3710 } 3711 3712 return nullptr; 3713 } 3714 3715 /// Try to simplify a select instruction when its condition operand is a 3716 /// floating-point comparison. 3717 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3718 FCmpInst::Predicate Pred; 3719 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3720 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3721 return nullptr; 3722 3723 // TODO: The transform may not be valid with -0.0. An incomplete way of 3724 // testing for that possibility is to check if at least one operand is a 3725 // non-zero constant. 3726 const APFloat *C; 3727 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3728 (match(F, m_APFloat(C)) && C->isNonZero())) { 3729 // (T == F) ? T : F --> F 3730 // (F == T) ? T : F --> F 3731 if (Pred == FCmpInst::FCMP_OEQ) 3732 return F; 3733 3734 // (T != F) ? T : F --> T 3735 // (F != T) ? T : F --> T 3736 if (Pred == FCmpInst::FCMP_UNE) 3737 return T; 3738 } 3739 3740 return nullptr; 3741 } 3742 3743 /// Given operands for a SelectInst, see if we can fold the result. 3744 /// If not, this returns null. 3745 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3746 const SimplifyQuery &Q, unsigned MaxRecurse) { 3747 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3748 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3749 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3750 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3751 3752 // select undef, X, Y -> X or Y 3753 if (isa<UndefValue>(CondC)) 3754 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3755 3756 // TODO: Vector constants with undef elements don't simplify. 3757 3758 // select true, X, Y -> X 3759 if (CondC->isAllOnesValue()) 3760 return TrueVal; 3761 // select false, X, Y -> Y 3762 if (CondC->isNullValue()) 3763 return FalseVal; 3764 } 3765 3766 // select ?, X, X -> X 3767 if (TrueVal == FalseVal) 3768 return TrueVal; 3769 3770 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3771 return FalseVal; 3772 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3773 return TrueVal; 3774 3775 if (Value *V = 3776 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3777 return V; 3778 3779 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3780 return V; 3781 3782 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3783 return V; 3784 3785 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3786 if (Imp) 3787 return *Imp ? TrueVal : FalseVal; 3788 3789 return nullptr; 3790 } 3791 3792 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3793 const SimplifyQuery &Q) { 3794 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3795 } 3796 3797 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3798 /// If not, this returns null. 3799 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3800 const SimplifyQuery &Q, unsigned) { 3801 // The type of the GEP pointer operand. 3802 unsigned AS = 3803 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3804 3805 // getelementptr P -> P. 3806 if (Ops.size() == 1) 3807 return Ops[0]; 3808 3809 // Compute the (pointer) type returned by the GEP instruction. 3810 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3811 Type *GEPTy = PointerType::get(LastType, AS); 3812 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3813 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3814 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3815 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3816 3817 if (isa<UndefValue>(Ops[0])) 3818 return UndefValue::get(GEPTy); 3819 3820 if (Ops.size() == 2) { 3821 // getelementptr P, 0 -> P. 3822 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3823 return Ops[0]; 3824 3825 Type *Ty = SrcTy; 3826 if (Ty->isSized()) { 3827 Value *P; 3828 uint64_t C; 3829 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3830 // getelementptr P, N -> P if P points to a type of zero size. 3831 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3832 return Ops[0]; 3833 3834 // The following transforms are only safe if the ptrtoint cast 3835 // doesn't truncate the pointers. 3836 if (Ops[1]->getType()->getScalarSizeInBits() == 3837 Q.DL.getIndexSizeInBits(AS)) { 3838 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3839 if (match(P, m_Zero())) 3840 return Constant::getNullValue(GEPTy); 3841 Value *Temp; 3842 if (match(P, m_PtrToInt(m_Value(Temp)))) 3843 if (Temp->getType() == GEPTy) 3844 return Temp; 3845 return nullptr; 3846 }; 3847 3848 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3849 if (TyAllocSize == 1 && 3850 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3851 if (Value *R = PtrToIntOrZero(P)) 3852 return R; 3853 3854 // getelementptr V, (ashr (sub P, V), C) -> Q 3855 // if P points to a type of size 1 << C. 3856 if (match(Ops[1], 3857 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3858 m_ConstantInt(C))) && 3859 TyAllocSize == 1ULL << C) 3860 if (Value *R = PtrToIntOrZero(P)) 3861 return R; 3862 3863 // getelementptr V, (sdiv (sub P, V), C) -> Q 3864 // if P points to a type of size C. 3865 if (match(Ops[1], 3866 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3867 m_SpecificInt(TyAllocSize)))) 3868 if (Value *R = PtrToIntOrZero(P)) 3869 return R; 3870 } 3871 } 3872 } 3873 3874 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3875 all_of(Ops.slice(1).drop_back(1), 3876 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3877 unsigned IdxWidth = 3878 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3879 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3880 APInt BasePtrOffset(IdxWidth, 0); 3881 Value *StrippedBasePtr = 3882 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3883 BasePtrOffset); 3884 3885 // gep (gep V, C), (sub 0, V) -> C 3886 if (match(Ops.back(), 3887 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3888 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3889 return ConstantExpr::getIntToPtr(CI, GEPTy); 3890 } 3891 // gep (gep V, C), (xor V, -1) -> C-1 3892 if (match(Ops.back(), 3893 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3894 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3895 return ConstantExpr::getIntToPtr(CI, GEPTy); 3896 } 3897 } 3898 } 3899 3900 // Check to see if this is constant foldable. 3901 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3902 return nullptr; 3903 3904 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3905 Ops.slice(1)); 3906 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3907 return CEFolded; 3908 return CE; 3909 } 3910 3911 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3912 const SimplifyQuery &Q) { 3913 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3914 } 3915 3916 /// Given operands for an InsertValueInst, see if we can fold the result. 3917 /// If not, this returns null. 3918 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3919 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3920 unsigned) { 3921 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3922 if (Constant *CVal = dyn_cast<Constant>(Val)) 3923 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3924 3925 // insertvalue x, undef, n -> x 3926 if (match(Val, m_Undef())) 3927 return Agg; 3928 3929 // insertvalue x, (extractvalue y, n), n 3930 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3931 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3932 EV->getIndices() == Idxs) { 3933 // insertvalue undef, (extractvalue y, n), n -> y 3934 if (match(Agg, m_Undef())) 3935 return EV->getAggregateOperand(); 3936 3937 // insertvalue y, (extractvalue y, n), n -> y 3938 if (Agg == EV->getAggregateOperand()) 3939 return Agg; 3940 } 3941 3942 return nullptr; 3943 } 3944 3945 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3946 ArrayRef<unsigned> Idxs, 3947 const SimplifyQuery &Q) { 3948 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3949 } 3950 3951 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3952 const SimplifyQuery &Q) { 3953 // Try to constant fold. 3954 auto *VecC = dyn_cast<Constant>(Vec); 3955 auto *ValC = dyn_cast<Constant>(Val); 3956 auto *IdxC = dyn_cast<Constant>(Idx); 3957 if (VecC && ValC && IdxC) 3958 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3959 3960 // Fold into undef if index is out of bounds. 3961 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3962 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3963 if (CI->uge(NumElements)) 3964 return UndefValue::get(Vec->getType()); 3965 } 3966 3967 // If index is undef, it might be out of bounds (see above case) 3968 if (isa<UndefValue>(Idx)) 3969 return UndefValue::get(Vec->getType()); 3970 3971 return nullptr; 3972 } 3973 3974 /// Given operands for an ExtractValueInst, see if we can fold the result. 3975 /// If not, this returns null. 3976 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3977 const SimplifyQuery &, unsigned) { 3978 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3979 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3980 3981 // extractvalue x, (insertvalue y, elt, n), n -> elt 3982 unsigned NumIdxs = Idxs.size(); 3983 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3984 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3985 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3986 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3987 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3988 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3989 Idxs.slice(0, NumCommonIdxs)) { 3990 if (NumIdxs == NumInsertValueIdxs) 3991 return IVI->getInsertedValueOperand(); 3992 break; 3993 } 3994 } 3995 3996 return nullptr; 3997 } 3998 3999 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4000 const SimplifyQuery &Q) { 4001 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4002 } 4003 4004 /// Given operands for an ExtractElementInst, see if we can fold the result. 4005 /// If not, this returns null. 4006 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4007 unsigned) { 4008 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4009 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4010 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4011 4012 // The index is not relevant if our vector is a splat. 4013 if (auto *Splat = CVec->getSplatValue()) 4014 return Splat; 4015 4016 if (isa<UndefValue>(Vec)) 4017 return UndefValue::get(Vec->getType()->getVectorElementType()); 4018 } 4019 4020 // If extracting a specified index from the vector, see if we can recursively 4021 // find a previously computed scalar that was inserted into the vector. 4022 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4023 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4024 // definitely out of bounds, thus undefined result 4025 return UndefValue::get(Vec->getType()->getVectorElementType()); 4026 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4027 return Elt; 4028 } 4029 4030 // An undef extract index can be arbitrarily chosen to be an out-of-range 4031 // index value, which would result in the instruction being undef. 4032 if (isa<UndefValue>(Idx)) 4033 return UndefValue::get(Vec->getType()->getVectorElementType()); 4034 4035 return nullptr; 4036 } 4037 4038 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4039 const SimplifyQuery &Q) { 4040 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4041 } 4042 4043 /// See if we can fold the given phi. If not, returns null. 4044 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4045 // If all of the PHI's incoming values are the same then replace the PHI node 4046 // with the common value. 4047 Value *CommonValue = nullptr; 4048 bool HasUndefInput = false; 4049 for (Value *Incoming : PN->incoming_values()) { 4050 // If the incoming value is the phi node itself, it can safely be skipped. 4051 if (Incoming == PN) continue; 4052 if (isa<UndefValue>(Incoming)) { 4053 // Remember that we saw an undef value, but otherwise ignore them. 4054 HasUndefInput = true; 4055 continue; 4056 } 4057 if (CommonValue && Incoming != CommonValue) 4058 return nullptr; // Not the same, bail out. 4059 CommonValue = Incoming; 4060 } 4061 4062 // If CommonValue is null then all of the incoming values were either undef or 4063 // equal to the phi node itself. 4064 if (!CommonValue) 4065 return UndefValue::get(PN->getType()); 4066 4067 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4068 // instruction, we cannot return X as the result of the PHI node unless it 4069 // dominates the PHI block. 4070 if (HasUndefInput) 4071 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4072 4073 return CommonValue; 4074 } 4075 4076 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4077 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4078 if (auto *C = dyn_cast<Constant>(Op)) 4079 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4080 4081 if (auto *CI = dyn_cast<CastInst>(Op)) { 4082 auto *Src = CI->getOperand(0); 4083 Type *SrcTy = Src->getType(); 4084 Type *MidTy = CI->getType(); 4085 Type *DstTy = Ty; 4086 if (Src->getType() == Ty) { 4087 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4088 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4089 Type *SrcIntPtrTy = 4090 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4091 Type *MidIntPtrTy = 4092 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4093 Type *DstIntPtrTy = 4094 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4095 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4096 SrcIntPtrTy, MidIntPtrTy, 4097 DstIntPtrTy) == Instruction::BitCast) 4098 return Src; 4099 } 4100 } 4101 4102 // bitcast x -> x 4103 if (CastOpc == Instruction::BitCast) 4104 if (Op->getType() == Ty) 4105 return Op; 4106 4107 return nullptr; 4108 } 4109 4110 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4111 const SimplifyQuery &Q) { 4112 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4113 } 4114 4115 /// For the given destination element of a shuffle, peek through shuffles to 4116 /// match a root vector source operand that contains that element in the same 4117 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4118 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4119 int MaskVal, Value *RootVec, 4120 unsigned MaxRecurse) { 4121 if (!MaxRecurse--) 4122 return nullptr; 4123 4124 // Bail out if any mask value is undefined. That kind of shuffle may be 4125 // simplified further based on demanded bits or other folds. 4126 if (MaskVal == -1) 4127 return nullptr; 4128 4129 // The mask value chooses which source operand we need to look at next. 4130 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4131 int RootElt = MaskVal; 4132 Value *SourceOp = Op0; 4133 if (MaskVal >= InVecNumElts) { 4134 RootElt = MaskVal - InVecNumElts; 4135 SourceOp = Op1; 4136 } 4137 4138 // If the source operand is a shuffle itself, look through it to find the 4139 // matching root vector. 4140 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4141 return foldIdentityShuffles( 4142 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4143 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4144 } 4145 4146 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4147 // size? 4148 4149 // The source operand is not a shuffle. Initialize the root vector value for 4150 // this shuffle if that has not been done yet. 4151 if (!RootVec) 4152 RootVec = SourceOp; 4153 4154 // Give up as soon as a source operand does not match the existing root value. 4155 if (RootVec != SourceOp) 4156 return nullptr; 4157 4158 // The element must be coming from the same lane in the source vector 4159 // (although it may have crossed lanes in intermediate shuffles). 4160 if (RootElt != DestElt) 4161 return nullptr; 4162 4163 return RootVec; 4164 } 4165 4166 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4167 Type *RetTy, const SimplifyQuery &Q, 4168 unsigned MaxRecurse) { 4169 if (isa<UndefValue>(Mask)) 4170 return UndefValue::get(RetTy); 4171 4172 Type *InVecTy = Op0->getType(); 4173 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4174 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4175 4176 SmallVector<int, 32> Indices; 4177 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4178 assert(MaskNumElts == Indices.size() && 4179 "Size of Indices not same as number of mask elements?"); 4180 4181 // Canonicalization: If mask does not select elements from an input vector, 4182 // replace that input vector with undef. 4183 bool MaskSelects0 = false, MaskSelects1 = false; 4184 for (unsigned i = 0; i != MaskNumElts; ++i) { 4185 if (Indices[i] == -1) 4186 continue; 4187 if ((unsigned)Indices[i] < InVecNumElts) 4188 MaskSelects0 = true; 4189 else 4190 MaskSelects1 = true; 4191 } 4192 if (!MaskSelects0) 4193 Op0 = UndefValue::get(InVecTy); 4194 if (!MaskSelects1) 4195 Op1 = UndefValue::get(InVecTy); 4196 4197 auto *Op0Const = dyn_cast<Constant>(Op0); 4198 auto *Op1Const = dyn_cast<Constant>(Op1); 4199 4200 // If all operands are constant, constant fold the shuffle. 4201 if (Op0Const && Op1Const) 4202 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4203 4204 // Canonicalization: if only one input vector is constant, it shall be the 4205 // second one. 4206 if (Op0Const && !Op1Const) { 4207 std::swap(Op0, Op1); 4208 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4209 } 4210 4211 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4212 // value type is same as the input vectors' type. 4213 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4214 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4215 OpShuf->getMask()->getSplatValue()) 4216 return Op0; 4217 4218 // Don't fold a shuffle with undef mask elements. This may get folded in a 4219 // better way using demanded bits or other analysis. 4220 // TODO: Should we allow this? 4221 if (find(Indices, -1) != Indices.end()) 4222 return nullptr; 4223 4224 // Check if every element of this shuffle can be mapped back to the 4225 // corresponding element of a single root vector. If so, we don't need this 4226 // shuffle. This handles simple identity shuffles as well as chains of 4227 // shuffles that may widen/narrow and/or move elements across lanes and back. 4228 Value *RootVec = nullptr; 4229 for (unsigned i = 0; i != MaskNumElts; ++i) { 4230 // Note that recursion is limited for each vector element, so if any element 4231 // exceeds the limit, this will fail to simplify. 4232 RootVec = 4233 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4234 4235 // We can't replace a widening/narrowing shuffle with one of its operands. 4236 if (!RootVec || RootVec->getType() != RetTy) 4237 return nullptr; 4238 } 4239 return RootVec; 4240 } 4241 4242 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4243 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4244 Type *RetTy, const SimplifyQuery &Q) { 4245 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4246 } 4247 4248 static Constant *propagateNaN(Constant *In) { 4249 // If the input is a vector with undef elements, just return a default NaN. 4250 if (!In->isNaN()) 4251 return ConstantFP::getNaN(In->getType()); 4252 4253 // Propagate the existing NaN constant when possible. 4254 // TODO: Should we quiet a signaling NaN? 4255 return In; 4256 } 4257 4258 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4259 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4260 return ConstantFP::getNaN(Op0->getType()); 4261 4262 if (match(Op0, m_NaN())) 4263 return propagateNaN(cast<Constant>(Op0)); 4264 if (match(Op1, m_NaN())) 4265 return propagateNaN(cast<Constant>(Op1)); 4266 4267 return nullptr; 4268 } 4269 4270 /// Given operands for an FAdd, see if we can fold the result. If not, this 4271 /// returns null. 4272 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4273 const SimplifyQuery &Q, unsigned MaxRecurse) { 4274 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4275 return C; 4276 4277 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4278 return C; 4279 4280 // fadd X, -0 ==> X 4281 if (match(Op1, m_NegZeroFP())) 4282 return Op0; 4283 4284 // fadd X, 0 ==> X, when we know X is not -0 4285 if (match(Op1, m_PosZeroFP()) && 4286 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4287 return Op0; 4288 4289 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4290 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4291 // Negative zeros are allowed because we always end up with positive zero: 4292 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4293 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4294 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4295 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4296 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4297 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4298 return ConstantFP::getNullValue(Op0->getType()); 4299 4300 // (X - Y) + Y --> X 4301 // Y + (X - Y) --> X 4302 Value *X; 4303 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4304 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4305 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4306 return X; 4307 4308 return nullptr; 4309 } 4310 4311 /// Given operands for an FSub, see if we can fold the result. If not, this 4312 /// returns null. 4313 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4314 const SimplifyQuery &Q, unsigned MaxRecurse) { 4315 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4316 return C; 4317 4318 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4319 return C; 4320 4321 // fsub X, +0 ==> X 4322 if (match(Op1, m_PosZeroFP())) 4323 return Op0; 4324 4325 // fsub X, -0 ==> X, when we know X is not -0 4326 if (match(Op1, m_NegZeroFP()) && 4327 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4328 return Op0; 4329 4330 // fsub -0.0, (fsub -0.0, X) ==> X 4331 Value *X; 4332 if (match(Op0, m_NegZeroFP()) && 4333 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4334 return X; 4335 4336 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4337 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4338 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4339 return X; 4340 4341 // fsub nnan x, x ==> 0.0 4342 if (FMF.noNaNs() && Op0 == Op1) 4343 return Constant::getNullValue(Op0->getType()); 4344 4345 // Y - (Y - X) --> X 4346 // (X + Y) - Y --> X 4347 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4348 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4349 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4350 return X; 4351 4352 return nullptr; 4353 } 4354 4355 /// Given the operands for an FMul, see if we can fold the result 4356 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4357 const SimplifyQuery &Q, unsigned MaxRecurse) { 4358 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4359 return C; 4360 4361 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4362 return C; 4363 4364 // fmul X, 1.0 ==> X 4365 if (match(Op1, m_FPOne())) 4366 return Op0; 4367 4368 // fmul nnan nsz X, 0 ==> 0 4369 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4370 return ConstantFP::getNullValue(Op0->getType()); 4371 4372 // sqrt(X) * sqrt(X) --> X, if we can: 4373 // 1. Remove the intermediate rounding (reassociate). 4374 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4375 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4376 Value *X; 4377 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4378 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4379 return X; 4380 4381 return nullptr; 4382 } 4383 4384 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4385 const SimplifyQuery &Q) { 4386 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4387 } 4388 4389 4390 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4391 const SimplifyQuery &Q) { 4392 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4393 } 4394 4395 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4396 const SimplifyQuery &Q) { 4397 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4398 } 4399 4400 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4401 const SimplifyQuery &Q, unsigned) { 4402 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4403 return C; 4404 4405 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4406 return C; 4407 4408 // X / 1.0 -> X 4409 if (match(Op1, m_FPOne())) 4410 return Op0; 4411 4412 // 0 / X -> 0 4413 // Requires that NaNs are off (X could be zero) and signed zeroes are 4414 // ignored (X could be positive or negative, so the output sign is unknown). 4415 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4416 return ConstantFP::getNullValue(Op0->getType()); 4417 4418 if (FMF.noNaNs()) { 4419 // X / X -> 1.0 is legal when NaNs are ignored. 4420 // We can ignore infinities because INF/INF is NaN. 4421 if (Op0 == Op1) 4422 return ConstantFP::get(Op0->getType(), 1.0); 4423 4424 // (X * Y) / Y --> X if we can reassociate to the above form. 4425 Value *X; 4426 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4427 return X; 4428 4429 // -X / X -> -1.0 and 4430 // X / -X -> -1.0 are legal when NaNs are ignored. 4431 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4432 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4433 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4434 return ConstantFP::get(Op0->getType(), -1.0); 4435 } 4436 4437 return nullptr; 4438 } 4439 4440 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4441 const SimplifyQuery &Q) { 4442 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4443 } 4444 4445 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4446 const SimplifyQuery &Q, unsigned) { 4447 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4448 return C; 4449 4450 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4451 return C; 4452 4453 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4454 // The constant match may include undef elements in a vector, so return a full 4455 // zero constant as the result. 4456 if (FMF.noNaNs()) { 4457 // +0 % X -> 0 4458 if (match(Op0, m_PosZeroFP())) 4459 return ConstantFP::getNullValue(Op0->getType()); 4460 // -0 % X -> -0 4461 if (match(Op0, m_NegZeroFP())) 4462 return ConstantFP::getNegativeZero(Op0->getType()); 4463 } 4464 4465 return nullptr; 4466 } 4467 4468 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4469 const SimplifyQuery &Q) { 4470 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4471 } 4472 4473 //=== Helper functions for higher up the class hierarchy. 4474 4475 /// Given operands for a BinaryOperator, see if we can fold the result. 4476 /// If not, this returns null. 4477 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4478 const SimplifyQuery &Q, unsigned MaxRecurse) { 4479 switch (Opcode) { 4480 case Instruction::Add: 4481 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4482 case Instruction::Sub: 4483 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4484 case Instruction::Mul: 4485 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4486 case Instruction::SDiv: 4487 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4488 case Instruction::UDiv: 4489 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4490 case Instruction::SRem: 4491 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4492 case Instruction::URem: 4493 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4494 case Instruction::Shl: 4495 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4496 case Instruction::LShr: 4497 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4498 case Instruction::AShr: 4499 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4500 case Instruction::And: 4501 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4502 case Instruction::Or: 4503 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4504 case Instruction::Xor: 4505 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4506 case Instruction::FAdd: 4507 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4508 case Instruction::FSub: 4509 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4510 case Instruction::FMul: 4511 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4512 case Instruction::FDiv: 4513 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4514 case Instruction::FRem: 4515 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4516 default: 4517 llvm_unreachable("Unexpected opcode"); 4518 } 4519 } 4520 4521 /// Given operands for a BinaryOperator, see if we can fold the result. 4522 /// If not, this returns null. 4523 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4524 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4525 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4526 const FastMathFlags &FMF, const SimplifyQuery &Q, 4527 unsigned MaxRecurse) { 4528 switch (Opcode) { 4529 case Instruction::FAdd: 4530 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4531 case Instruction::FSub: 4532 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4533 case Instruction::FMul: 4534 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4535 case Instruction::FDiv: 4536 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4537 default: 4538 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4539 } 4540 } 4541 4542 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4543 const SimplifyQuery &Q) { 4544 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4545 } 4546 4547 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4548 FastMathFlags FMF, const SimplifyQuery &Q) { 4549 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4550 } 4551 4552 /// Given operands for a CmpInst, see if we can fold the result. 4553 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4554 const SimplifyQuery &Q, unsigned MaxRecurse) { 4555 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4556 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4557 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4558 } 4559 4560 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4561 const SimplifyQuery &Q) { 4562 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4563 } 4564 4565 static bool IsIdempotent(Intrinsic::ID ID) { 4566 switch (ID) { 4567 default: return false; 4568 4569 // Unary idempotent: f(f(x)) = f(x) 4570 case Intrinsic::fabs: 4571 case Intrinsic::floor: 4572 case Intrinsic::ceil: 4573 case Intrinsic::trunc: 4574 case Intrinsic::rint: 4575 case Intrinsic::nearbyint: 4576 case Intrinsic::round: 4577 case Intrinsic::canonicalize: 4578 return true; 4579 } 4580 } 4581 4582 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4583 const DataLayout &DL) { 4584 GlobalValue *PtrSym; 4585 APInt PtrOffset; 4586 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4587 return nullptr; 4588 4589 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4590 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4591 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4592 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4593 4594 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4595 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4596 return nullptr; 4597 4598 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4599 if (OffsetInt % 4 != 0) 4600 return nullptr; 4601 4602 Constant *C = ConstantExpr::getGetElementPtr( 4603 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4604 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4605 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4606 if (!Loaded) 4607 return nullptr; 4608 4609 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4610 if (!LoadedCE) 4611 return nullptr; 4612 4613 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4614 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4615 if (!LoadedCE) 4616 return nullptr; 4617 } 4618 4619 if (LoadedCE->getOpcode() != Instruction::Sub) 4620 return nullptr; 4621 4622 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4623 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4624 return nullptr; 4625 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4626 4627 Constant *LoadedRHS = LoadedCE->getOperand(1); 4628 GlobalValue *LoadedRHSSym; 4629 APInt LoadedRHSOffset; 4630 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4631 DL) || 4632 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4633 return nullptr; 4634 4635 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4636 } 4637 4638 static bool maskIsAllZeroOrUndef(Value *Mask) { 4639 auto *ConstMask = dyn_cast<Constant>(Mask); 4640 if (!ConstMask) 4641 return false; 4642 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4643 return true; 4644 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4645 ++I) { 4646 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4647 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4648 continue; 4649 return false; 4650 } 4651 return true; 4652 } 4653 4654 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4655 const SimplifyQuery &Q) { 4656 // Idempotent functions return the same result when called repeatedly. 4657 Intrinsic::ID IID = F->getIntrinsicID(); 4658 if (IsIdempotent(IID)) 4659 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4660 if (II->getIntrinsicID() == IID) 4661 return II; 4662 4663 Value *X; 4664 switch (IID) { 4665 case Intrinsic::fabs: 4666 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4667 break; 4668 case Intrinsic::bswap: 4669 // bswap(bswap(x)) -> x 4670 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4671 break; 4672 case Intrinsic::bitreverse: 4673 // bitreverse(bitreverse(x)) -> x 4674 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4675 break; 4676 case Intrinsic::exp: 4677 // exp(log(x)) -> x 4678 if (Q.CxtI->hasAllowReassoc() && 4679 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4680 break; 4681 case Intrinsic::exp2: 4682 // exp2(log2(x)) -> x 4683 if (Q.CxtI->hasAllowReassoc() && 4684 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4685 break; 4686 case Intrinsic::log: 4687 // log(exp(x)) -> x 4688 if (Q.CxtI->hasAllowReassoc() && 4689 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4690 break; 4691 case Intrinsic::log2: 4692 // log2(exp2(x)) -> x 4693 if (Q.CxtI->hasAllowReassoc() && 4694 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4695 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4696 m_Value(X))))) return X; 4697 break; 4698 case Intrinsic::log10: 4699 // log10(pow(10.0, x)) -> x 4700 if (Q.CxtI->hasAllowReassoc() && 4701 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4702 m_Value(X)))) return X; 4703 break; 4704 case Intrinsic::floor: 4705 case Intrinsic::trunc: 4706 case Intrinsic::ceil: 4707 case Intrinsic::round: 4708 case Intrinsic::nearbyint: 4709 case Intrinsic::rint: { 4710 // floor (sitofp x) -> sitofp x 4711 // floor (uitofp x) -> uitofp x 4712 // 4713 // Converting from int always results in a finite integral number or 4714 // infinity. For either of those inputs, these rounding functions always 4715 // return the same value, so the rounding can be eliminated. 4716 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4717 return Op0; 4718 break; 4719 } 4720 default: 4721 break; 4722 } 4723 4724 return nullptr; 4725 } 4726 4727 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4728 const SimplifyQuery &Q) { 4729 Intrinsic::ID IID = F->getIntrinsicID(); 4730 Type *ReturnType = F->getReturnType(); 4731 switch (IID) { 4732 case Intrinsic::usub_with_overflow: 4733 case Intrinsic::ssub_with_overflow: 4734 // X - X -> { 0, false } 4735 if (Op0 == Op1) 4736 return Constant::getNullValue(ReturnType); 4737 // X - undef -> undef 4738 // undef - X -> undef 4739 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4740 return UndefValue::get(ReturnType); 4741 break; 4742 case Intrinsic::uadd_with_overflow: 4743 case Intrinsic::sadd_with_overflow: 4744 // X + undef -> undef 4745 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4746 return UndefValue::get(ReturnType); 4747 break; 4748 case Intrinsic::umul_with_overflow: 4749 case Intrinsic::smul_with_overflow: 4750 // 0 * X -> { 0, false } 4751 // X * 0 -> { 0, false } 4752 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4753 return Constant::getNullValue(ReturnType); 4754 // undef * X -> { 0, false } 4755 // X * undef -> { 0, false } 4756 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4757 return Constant::getNullValue(ReturnType); 4758 break; 4759 case Intrinsic::uadd_sat: 4760 // sat(MAX + X) -> MAX 4761 // sat(X + MAX) -> MAX 4762 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4763 return Constant::getAllOnesValue(ReturnType); 4764 LLVM_FALLTHROUGH; 4765 case Intrinsic::sadd_sat: 4766 // sat(X + undef) -> -1 4767 // sat(undef + X) -> -1 4768 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 4769 // For signed: Assume undef is ~X, in which case X + ~X = -1. 4770 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4771 return Constant::getAllOnesValue(ReturnType); 4772 4773 // X + 0 -> X 4774 if (match(Op1, m_Zero())) 4775 return Op0; 4776 // 0 + X -> X 4777 if (match(Op0, m_Zero())) 4778 return Op1; 4779 break; 4780 case Intrinsic::usub_sat: 4781 // sat(0 - X) -> 0, sat(X - MAX) -> 0 4782 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 4783 return Constant::getNullValue(ReturnType); 4784 LLVM_FALLTHROUGH; 4785 case Intrinsic::ssub_sat: 4786 // X - X -> 0, X - undef -> 0, undef - X -> 0 4787 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 4788 return Constant::getNullValue(ReturnType); 4789 // X - 0 -> X 4790 if (match(Op1, m_Zero())) 4791 return Op0; 4792 break; 4793 case Intrinsic::load_relative: 4794 if (auto *C0 = dyn_cast<Constant>(Op0)) 4795 if (auto *C1 = dyn_cast<Constant>(Op1)) 4796 return SimplifyRelativeLoad(C0, C1, Q.DL); 4797 break; 4798 case Intrinsic::powi: 4799 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 4800 // powi(x, 0) -> 1.0 4801 if (Power->isZero()) 4802 return ConstantFP::get(Op0->getType(), 1.0); 4803 // powi(x, 1) -> x 4804 if (Power->isOne()) 4805 return Op0; 4806 } 4807 break; 4808 case Intrinsic::maxnum: 4809 case Intrinsic::minnum: 4810 case Intrinsic::maximum: 4811 case Intrinsic::minimum: { 4812 // If the arguments are the same, this is a no-op. 4813 if (Op0 == Op1) return Op0; 4814 4815 // If one argument is undef, return the other argument. 4816 if (match(Op0, m_Undef())) 4817 return Op1; 4818 if (match(Op1, m_Undef())) 4819 return Op0; 4820 4821 // If one argument is NaN, return other or NaN appropriately. 4822 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 4823 if (match(Op0, m_NaN())) 4824 return PropagateNaN ? Op0 : Op1; 4825 if (match(Op1, m_NaN())) 4826 return PropagateNaN ? Op1 : Op0; 4827 4828 // Min/max of the same operation with common operand: 4829 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 4830 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 4831 if (M0->getIntrinsicID() == IID && 4832 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 4833 return Op0; 4834 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 4835 if (M1->getIntrinsicID() == IID && 4836 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 4837 return Op1; 4838 4839 // min(X, -Inf) --> -Inf (and commuted variant) 4840 // max(X, +Inf) --> +Inf (and commuted variant) 4841 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 4842 const APFloat *C; 4843 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 4844 C->isNegative() == UseNegInf) || 4845 (match(Op1, m_APFloat(C)) && C->isInfinity() && 4846 C->isNegative() == UseNegInf)) 4847 return ConstantFP::getInfinity(ReturnType, UseNegInf); 4848 4849 // TODO: minnum(nnan x, inf) -> x 4850 // TODO: minnum(nnan ninf x, flt_max) -> x 4851 // TODO: maxnum(nnan x, -inf) -> x 4852 // TODO: maxnum(nnan ninf x, -flt_max) -> x 4853 break; 4854 } 4855 default: 4856 break; 4857 } 4858 4859 return nullptr; 4860 } 4861 4862 template <typename IterTy> 4863 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4864 const SimplifyQuery &Q) { 4865 // Intrinsics with no operands have some kind of side effect. Don't simplify. 4866 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4867 if (NumOperands == 0) 4868 return nullptr; 4869 4870 Intrinsic::ID IID = F->getIntrinsicID(); 4871 if (NumOperands == 1) 4872 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 4873 4874 if (NumOperands == 2) 4875 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 4876 4877 // Handle intrinsics with 3 or more arguments. 4878 switch (IID) { 4879 case Intrinsic::masked_load: { 4880 Value *MaskArg = ArgBegin[2]; 4881 Value *PassthruArg = ArgBegin[3]; 4882 // If the mask is all zeros or undef, the "passthru" argument is the result. 4883 if (maskIsAllZeroOrUndef(MaskArg)) 4884 return PassthruArg; 4885 return nullptr; 4886 } 4887 case Intrinsic::fshl: 4888 case Intrinsic::fshr: { 4889 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; 4890 4891 // If both operands are undef, the result is undef. 4892 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 4893 return UndefValue::get(F->getReturnType()); 4894 4895 // If shift amount is undef, assume it is zero. 4896 if (match(ShAmtArg, m_Undef())) 4897 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 4898 4899 const APInt *ShAmtC; 4900 if (match(ShAmtArg, m_APInt(ShAmtC))) { 4901 // If there's effectively no shift, return the 1st arg or 2nd arg. 4902 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 4903 if (ShAmtC->urem(BitWidth).isNullValue()) 4904 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 4905 } 4906 return nullptr; 4907 } 4908 default: 4909 return nullptr; 4910 } 4911 } 4912 4913 template <typename IterTy> 4914 static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin, 4915 IterTy ArgEnd, const SimplifyQuery &Q, 4916 unsigned MaxRecurse) { 4917 Type *Ty = V->getType(); 4918 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4919 Ty = PTy->getElementType(); 4920 FunctionType *FTy = cast<FunctionType>(Ty); 4921 4922 // call undef -> undef 4923 // call null -> undef 4924 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4925 return UndefValue::get(FTy->getReturnType()); 4926 4927 Function *F = dyn_cast<Function>(V); 4928 if (!F) 4929 return nullptr; 4930 4931 if (F->isIntrinsic()) 4932 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 4933 return Ret; 4934 4935 if (!canConstantFoldCallTo(Call, F)) 4936 return nullptr; 4937 4938 SmallVector<Constant *, 4> ConstantArgs; 4939 ConstantArgs.reserve(ArgEnd - ArgBegin); 4940 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4941 Constant *C = dyn_cast<Constant>(*I); 4942 if (!C) 4943 return nullptr; 4944 ConstantArgs.push_back(C); 4945 } 4946 4947 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 4948 } 4949 4950 Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin, 4951 User::op_iterator ArgEnd, const SimplifyQuery &Q) { 4952 return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4953 } 4954 4955 Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args, 4956 const SimplifyQuery &Q) { 4957 return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit); 4958 } 4959 4960 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 4961 return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(), 4962 Call->arg_end(), Q, RecursionLimit); 4963 } 4964 4965 /// See if we can compute a simplified version of this instruction. 4966 /// If not, this returns null. 4967 4968 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4969 OptimizationRemarkEmitter *ORE) { 4970 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4971 Value *Result; 4972 4973 switch (I->getOpcode()) { 4974 default: 4975 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4976 break; 4977 case Instruction::FAdd: 4978 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4979 I->getFastMathFlags(), Q); 4980 break; 4981 case Instruction::Add: 4982 Result = 4983 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4984 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 4985 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 4986 break; 4987 case Instruction::FSub: 4988 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4989 I->getFastMathFlags(), Q); 4990 break; 4991 case Instruction::Sub: 4992 Result = 4993 SimplifySubInst(I->getOperand(0), I->getOperand(1), 4994 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 4995 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 4996 break; 4997 case Instruction::FMul: 4998 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4999 I->getFastMathFlags(), Q); 5000 break; 5001 case Instruction::Mul: 5002 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5003 break; 5004 case Instruction::SDiv: 5005 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5006 break; 5007 case Instruction::UDiv: 5008 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5009 break; 5010 case Instruction::FDiv: 5011 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5012 I->getFastMathFlags(), Q); 5013 break; 5014 case Instruction::SRem: 5015 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5016 break; 5017 case Instruction::URem: 5018 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5019 break; 5020 case Instruction::FRem: 5021 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5022 I->getFastMathFlags(), Q); 5023 break; 5024 case Instruction::Shl: 5025 Result = 5026 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5027 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5028 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5029 break; 5030 case Instruction::LShr: 5031 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5032 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5033 break; 5034 case Instruction::AShr: 5035 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5036 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5037 break; 5038 case Instruction::And: 5039 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5040 break; 5041 case Instruction::Or: 5042 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5043 break; 5044 case Instruction::Xor: 5045 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5046 break; 5047 case Instruction::ICmp: 5048 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5049 I->getOperand(0), I->getOperand(1), Q); 5050 break; 5051 case Instruction::FCmp: 5052 Result = 5053 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5054 I->getOperand(1), I->getFastMathFlags(), Q); 5055 break; 5056 case Instruction::Select: 5057 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5058 I->getOperand(2), Q); 5059 break; 5060 case Instruction::GetElementPtr: { 5061 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5062 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5063 Ops, Q); 5064 break; 5065 } 5066 case Instruction::InsertValue: { 5067 InsertValueInst *IV = cast<InsertValueInst>(I); 5068 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5069 IV->getInsertedValueOperand(), 5070 IV->getIndices(), Q); 5071 break; 5072 } 5073 case Instruction::InsertElement: { 5074 auto *IE = cast<InsertElementInst>(I); 5075 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5076 IE->getOperand(2), Q); 5077 break; 5078 } 5079 case Instruction::ExtractValue: { 5080 auto *EVI = cast<ExtractValueInst>(I); 5081 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5082 EVI->getIndices(), Q); 5083 break; 5084 } 5085 case Instruction::ExtractElement: { 5086 auto *EEI = cast<ExtractElementInst>(I); 5087 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5088 EEI->getIndexOperand(), Q); 5089 break; 5090 } 5091 case Instruction::ShuffleVector: { 5092 auto *SVI = cast<ShuffleVectorInst>(I); 5093 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5094 SVI->getMask(), SVI->getType(), Q); 5095 break; 5096 } 5097 case Instruction::PHI: 5098 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5099 break; 5100 case Instruction::Call: { 5101 Result = SimplifyCall(cast<CallInst>(I), Q); 5102 break; 5103 } 5104 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5105 #include "llvm/IR/Instruction.def" 5106 #undef HANDLE_CAST_INST 5107 Result = 5108 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5109 break; 5110 case Instruction::Alloca: 5111 // No simplifications for Alloca and it can't be constant folded. 5112 Result = nullptr; 5113 break; 5114 } 5115 5116 // In general, it is possible for computeKnownBits to determine all bits in a 5117 // value even when the operands are not all constants. 5118 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5119 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5120 if (Known.isConstant()) 5121 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5122 } 5123 5124 /// If called on unreachable code, the above logic may report that the 5125 /// instruction simplified to itself. Make life easier for users by 5126 /// detecting that case here, returning a safe value instead. 5127 return Result == I ? UndefValue::get(I->getType()) : Result; 5128 } 5129 5130 /// Implementation of recursive simplification through an instruction's 5131 /// uses. 5132 /// 5133 /// This is the common implementation of the recursive simplification routines. 5134 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5135 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5136 /// instructions to process and attempt to simplify it using 5137 /// InstructionSimplify. 5138 /// 5139 /// This routine returns 'true' only when *it* simplifies something. The passed 5140 /// in simplified value does not count toward this. 5141 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5142 const TargetLibraryInfo *TLI, 5143 const DominatorTree *DT, 5144 AssumptionCache *AC) { 5145 bool Simplified = false; 5146 SmallSetVector<Instruction *, 8> Worklist; 5147 const DataLayout &DL = I->getModule()->getDataLayout(); 5148 5149 // If we have an explicit value to collapse to, do that round of the 5150 // simplification loop by hand initially. 5151 if (SimpleV) { 5152 for (User *U : I->users()) 5153 if (U != I) 5154 Worklist.insert(cast<Instruction>(U)); 5155 5156 // Replace the instruction with its simplified value. 5157 I->replaceAllUsesWith(SimpleV); 5158 5159 // Gracefully handle edge cases where the instruction is not wired into any 5160 // parent block. 5161 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5162 !I->mayHaveSideEffects()) 5163 I->eraseFromParent(); 5164 } else { 5165 Worklist.insert(I); 5166 } 5167 5168 // Note that we must test the size on each iteration, the worklist can grow. 5169 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5170 I = Worklist[Idx]; 5171 5172 // See if this instruction simplifies. 5173 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5174 if (!SimpleV) 5175 continue; 5176 5177 Simplified = true; 5178 5179 // Stash away all the uses of the old instruction so we can check them for 5180 // recursive simplifications after a RAUW. This is cheaper than checking all 5181 // uses of To on the recursive step in most cases. 5182 for (User *U : I->users()) 5183 Worklist.insert(cast<Instruction>(U)); 5184 5185 // Replace the instruction with its simplified value. 5186 I->replaceAllUsesWith(SimpleV); 5187 5188 // Gracefully handle edge cases where the instruction is not wired into any 5189 // parent block. 5190 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5191 !I->mayHaveSideEffects()) 5192 I->eraseFromParent(); 5193 } 5194 return Simplified; 5195 } 5196 5197 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5198 const TargetLibraryInfo *TLI, 5199 const DominatorTree *DT, 5200 AssumptionCache *AC) { 5201 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5202 } 5203 5204 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5205 const TargetLibraryInfo *TLI, 5206 const DominatorTree *DT, 5207 AssumptionCache *AC) { 5208 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5209 assert(SimpleV && "Must provide a simplified value."); 5210 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5211 } 5212 5213 namespace llvm { 5214 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5215 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5216 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5217 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5218 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5219 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5220 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5221 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5222 } 5223 5224 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5225 const DataLayout &DL) { 5226 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5227 } 5228 5229 template <class T, class... TArgs> 5230 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5231 Function &F) { 5232 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5233 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5234 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5235 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5236 } 5237 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5238 Function &); 5239 } 5240