1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 73 74 /// For a boolean type, or a vector of boolean type, return false, or 75 /// a vector with every element false, as appropriate for the type. 76 static Constant *getFalse(Type *Ty) { 77 assert(Ty->getScalarType()->isIntegerTy(1) && 78 "Expected i1 type or a vector of i1!"); 79 return Constant::getNullValue(Ty); 80 } 81 82 /// For a boolean type, or a vector of boolean type, return true, or 83 /// a vector with every element true, as appropriate for the type. 84 static Constant *getTrue(Type *Ty) { 85 assert(Ty->getScalarType()->isIntegerTy(1) && 86 "Expected i1 type or a vector of i1!"); 87 return Constant::getAllOnesValue(Ty); 88 } 89 90 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 91 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 92 Value *RHS) { 93 CmpInst *Cmp = dyn_cast<CmpInst>(V); 94 if (!Cmp) 95 return false; 96 CmpInst::Predicate CPred = Cmp->getPredicate(); 97 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 98 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 99 return true; 100 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 101 CRHS == LHS; 102 } 103 104 /// Does the given value dominate the specified phi node? 105 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 106 Instruction *I = dyn_cast<Instruction>(V); 107 if (!I) 108 // Arguments and constants dominate all instructions. 109 return true; 110 111 // If we are processing instructions (and/or basic blocks) that have not been 112 // fully added to a function, the parent nodes may still be null. Simply 113 // return the conservative answer in these cases. 114 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 115 return false; 116 117 // If we have a DominatorTree then do a precise test. 118 if (DT) { 119 if (!DT->isReachableFromEntry(P->getParent())) 120 return true; 121 if (!DT->isReachableFromEntry(I->getParent())) 122 return false; 123 return DT->dominates(I, P); 124 } 125 126 // Otherwise, if the instruction is in the entry block and is not an invoke, 127 // then it obviously dominates all phi nodes. 128 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 129 !isa<InvokeInst>(I)) 130 return true; 131 132 return false; 133 } 134 135 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 136 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 137 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 138 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 139 /// Returns the simplified value, or null if no simplification was performed. 140 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 141 unsigned OpcToExpand, const Query &Q, 142 unsigned MaxRecurse) { 143 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 144 // Recursion is always used, so bail out at once if we already hit the limit. 145 if (!MaxRecurse--) 146 return nullptr; 147 148 // Check whether the expression has the form "(A op' B) op C". 149 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 150 if (Op0->getOpcode() == OpcodeToExpand) { 151 // It does! Try turning it into "(A op C) op' (B op C)". 152 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 153 // Do "A op C" and "B op C" both simplify? 154 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 155 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 156 // They do! Return "L op' R" if it simplifies or is already available. 157 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 158 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 159 && L == B && R == A)) { 160 ++NumExpand; 161 return LHS; 162 } 163 // Otherwise return "L op' R" if it simplifies. 164 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 165 ++NumExpand; 166 return V; 167 } 168 } 169 } 170 171 // Check whether the expression has the form "A op (B op' C)". 172 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 173 if (Op1->getOpcode() == OpcodeToExpand) { 174 // It does! Try turning it into "(A op B) op' (A op C)". 175 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 176 // Do "A op B" and "A op C" both simplify? 177 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 178 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 179 // They do! Return "L op' R" if it simplifies or is already available. 180 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 181 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 182 && L == C && R == B)) { 183 ++NumExpand; 184 return RHS; 185 } 186 // Otherwise return "L op' R" if it simplifies. 187 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 188 ++NumExpand; 189 return V; 190 } 191 } 192 } 193 194 return nullptr; 195 } 196 197 /// Generic simplifications for associative binary operations. 198 /// Returns the simpler value, or null if none was found. 199 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 200 const Query &Q, unsigned MaxRecurse) { 201 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 202 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 203 204 // Recursion is always used, so bail out at once if we already hit the limit. 205 if (!MaxRecurse--) 206 return nullptr; 207 208 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 209 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 210 211 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 212 if (Op0 && Op0->getOpcode() == Opcode) { 213 Value *A = Op0->getOperand(0); 214 Value *B = Op0->getOperand(1); 215 Value *C = RHS; 216 217 // Does "B op C" simplify? 218 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 219 // It does! Return "A op V" if it simplifies or is already available. 220 // If V equals B then "A op V" is just the LHS. 221 if (V == B) return LHS; 222 // Otherwise return "A op V" if it simplifies. 223 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 224 ++NumReassoc; 225 return W; 226 } 227 } 228 } 229 230 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 231 if (Op1 && Op1->getOpcode() == Opcode) { 232 Value *A = LHS; 233 Value *B = Op1->getOperand(0); 234 Value *C = Op1->getOperand(1); 235 236 // Does "A op B" simplify? 237 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 238 // It does! Return "V op C" if it simplifies or is already available. 239 // If V equals B then "V op C" is just the RHS. 240 if (V == B) return RHS; 241 // Otherwise return "V op C" if it simplifies. 242 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 243 ++NumReassoc; 244 return W; 245 } 246 } 247 } 248 249 // The remaining transforms require commutativity as well as associativity. 250 if (!Instruction::isCommutative(Opcode)) 251 return nullptr; 252 253 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 254 if (Op0 && Op0->getOpcode() == Opcode) { 255 Value *A = Op0->getOperand(0); 256 Value *B = Op0->getOperand(1); 257 Value *C = RHS; 258 259 // Does "C op A" simplify? 260 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 261 // It does! Return "V op B" if it simplifies or is already available. 262 // If V equals A then "V op B" is just the LHS. 263 if (V == A) return LHS; 264 // Otherwise return "V op B" if it simplifies. 265 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 266 ++NumReassoc; 267 return W; 268 } 269 } 270 } 271 272 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 273 if (Op1 && Op1->getOpcode() == Opcode) { 274 Value *A = LHS; 275 Value *B = Op1->getOperand(0); 276 Value *C = Op1->getOperand(1); 277 278 // Does "C op A" simplify? 279 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 280 // It does! Return "B op V" if it simplifies or is already available. 281 // If V equals C then "B op V" is just the RHS. 282 if (V == C) return RHS; 283 // Otherwise return "B op V" if it simplifies. 284 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 285 ++NumReassoc; 286 return W; 287 } 288 } 289 } 290 291 return nullptr; 292 } 293 294 /// In the case of a binary operation with a select instruction as an operand, 295 /// try to simplify the binop by seeing whether evaluating it on both branches 296 /// of the select results in the same value. Returns the common value if so, 297 /// otherwise returns null. 298 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 299 const Query &Q, unsigned MaxRecurse) { 300 // Recursion is always used, so bail out at once if we already hit the limit. 301 if (!MaxRecurse--) 302 return nullptr; 303 304 SelectInst *SI; 305 if (isa<SelectInst>(LHS)) { 306 SI = cast<SelectInst>(LHS); 307 } else { 308 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 309 SI = cast<SelectInst>(RHS); 310 } 311 312 // Evaluate the BinOp on the true and false branches of the select. 313 Value *TV; 314 Value *FV; 315 if (SI == LHS) { 316 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 317 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 318 } else { 319 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 320 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 321 } 322 323 // If they simplified to the same value, then return the common value. 324 // If they both failed to simplify then return null. 325 if (TV == FV) 326 return TV; 327 328 // If one branch simplified to undef, return the other one. 329 if (TV && isa<UndefValue>(TV)) 330 return FV; 331 if (FV && isa<UndefValue>(FV)) 332 return TV; 333 334 // If applying the operation did not change the true and false select values, 335 // then the result of the binop is the select itself. 336 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 337 return SI; 338 339 // If one branch simplified and the other did not, and the simplified 340 // value is equal to the unsimplified one, return the simplified value. 341 // For example, select (cond, X, X & Z) & Z -> X & Z. 342 if ((FV && !TV) || (TV && !FV)) { 343 // Check that the simplified value has the form "X op Y" where "op" is the 344 // same as the original operation. 345 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 346 if (Simplified && Simplified->getOpcode() == Opcode) { 347 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 348 // We already know that "op" is the same as for the simplified value. See 349 // if the operands match too. If so, return the simplified value. 350 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 351 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 352 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 353 if (Simplified->getOperand(0) == UnsimplifiedLHS && 354 Simplified->getOperand(1) == UnsimplifiedRHS) 355 return Simplified; 356 if (Simplified->isCommutative() && 357 Simplified->getOperand(1) == UnsimplifiedLHS && 358 Simplified->getOperand(0) == UnsimplifiedRHS) 359 return Simplified; 360 } 361 } 362 363 return nullptr; 364 } 365 366 /// In the case of a comparison with a select instruction, try to simplify the 367 /// comparison by seeing whether both branches of the select result in the same 368 /// value. Returns the common value if so, otherwise returns null. 369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 370 Value *RHS, const Query &Q, 371 unsigned MaxRecurse) { 372 // Recursion is always used, so bail out at once if we already hit the limit. 373 if (!MaxRecurse--) 374 return nullptr; 375 376 // Make sure the select is on the LHS. 377 if (!isa<SelectInst>(LHS)) { 378 std::swap(LHS, RHS); 379 Pred = CmpInst::getSwappedPredicate(Pred); 380 } 381 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 382 SelectInst *SI = cast<SelectInst>(LHS); 383 Value *Cond = SI->getCondition(); 384 Value *TV = SI->getTrueValue(); 385 Value *FV = SI->getFalseValue(); 386 387 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 388 // Does "cmp TV, RHS" simplify? 389 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 390 if (TCmp == Cond) { 391 // It not only simplified, it simplified to the select condition. Replace 392 // it with 'true'. 393 TCmp = getTrue(Cond->getType()); 394 } else if (!TCmp) { 395 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 396 // condition then we can replace it with 'true'. Otherwise give up. 397 if (!isSameCompare(Cond, Pred, TV, RHS)) 398 return nullptr; 399 TCmp = getTrue(Cond->getType()); 400 } 401 402 // Does "cmp FV, RHS" simplify? 403 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 404 if (FCmp == Cond) { 405 // It not only simplified, it simplified to the select condition. Replace 406 // it with 'false'. 407 FCmp = getFalse(Cond->getType()); 408 } else if (!FCmp) { 409 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 410 // condition then we can replace it with 'false'. Otherwise give up. 411 if (!isSameCompare(Cond, Pred, FV, RHS)) 412 return nullptr; 413 FCmp = getFalse(Cond->getType()); 414 } 415 416 // If both sides simplified to the same value, then use it as the result of 417 // the original comparison. 418 if (TCmp == FCmp) 419 return TCmp; 420 421 // The remaining cases only make sense if the select condition has the same 422 // type as the result of the comparison, so bail out if this is not so. 423 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 424 return nullptr; 425 // If the false value simplified to false, then the result of the compare 426 // is equal to "Cond && TCmp". This also catches the case when the false 427 // value simplified to false and the true value to true, returning "Cond". 428 if (match(FCmp, m_Zero())) 429 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 430 return V; 431 // If the true value simplified to true, then the result of the compare 432 // is equal to "Cond || FCmp". 433 if (match(TCmp, m_One())) 434 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 435 return V; 436 // Finally, if the false value simplified to true and the true value to 437 // false, then the result of the compare is equal to "!Cond". 438 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 439 if (Value *V = 440 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 441 Q, MaxRecurse)) 442 return V; 443 444 return nullptr; 445 } 446 447 /// In the case of a binary operation with an operand that is a PHI instruction, 448 /// try to simplify the binop by seeing whether evaluating it on the incoming 449 /// phi values yields the same result for every value. If so returns the common 450 /// value, otherwise returns null. 451 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 452 const Query &Q, unsigned MaxRecurse) { 453 // Recursion is always used, so bail out at once if we already hit the limit. 454 if (!MaxRecurse--) 455 return nullptr; 456 457 PHINode *PI; 458 if (isa<PHINode>(LHS)) { 459 PI = cast<PHINode>(LHS); 460 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 461 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 462 return nullptr; 463 } else { 464 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 465 PI = cast<PHINode>(RHS); 466 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 467 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 468 return nullptr; 469 } 470 471 // Evaluate the BinOp on the incoming phi values. 472 Value *CommonValue = nullptr; 473 for (Value *Incoming : PI->incoming_values()) { 474 // If the incoming value is the phi node itself, it can safely be skipped. 475 if (Incoming == PI) continue; 476 Value *V = PI == LHS ? 477 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 478 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 479 // If the operation failed to simplify, or simplified to a different value 480 // to previously, then give up. 481 if (!V || (CommonValue && V != CommonValue)) 482 return nullptr; 483 CommonValue = V; 484 } 485 486 return CommonValue; 487 } 488 489 /// In the case of a comparison with a PHI instruction, try to simplify the 490 /// comparison by seeing whether comparing with all of the incoming phi values 491 /// yields the same result every time. If so returns the common result, 492 /// otherwise returns null. 493 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 494 const Query &Q, unsigned MaxRecurse) { 495 // Recursion is always used, so bail out at once if we already hit the limit. 496 if (!MaxRecurse--) 497 return nullptr; 498 499 // Make sure the phi is on the LHS. 500 if (!isa<PHINode>(LHS)) { 501 std::swap(LHS, RHS); 502 Pred = CmpInst::getSwappedPredicate(Pred); 503 } 504 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 505 PHINode *PI = cast<PHINode>(LHS); 506 507 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 508 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 509 return nullptr; 510 511 // Evaluate the BinOp on the incoming phi values. 512 Value *CommonValue = nullptr; 513 for (Value *Incoming : PI->incoming_values()) { 514 // If the incoming value is the phi node itself, it can safely be skipped. 515 if (Incoming == PI) continue; 516 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 517 // If the operation failed to simplify, or simplified to a different value 518 // to previously, then give up. 519 if (!V || (CommonValue && V != CommonValue)) 520 return nullptr; 521 CommonValue = V; 522 } 523 524 return CommonValue; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const Query &Q, unsigned MaxRecurse) { 531 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 532 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 533 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 534 535 // Canonicalize the constant to the RHS. 536 std::swap(Op0, Op1); 537 } 538 539 // X + undef -> undef 540 if (match(Op1, m_Undef())) 541 return Op1; 542 543 // X + 0 -> X 544 if (match(Op1, m_Zero())) 545 return Op0; 546 547 // X + (Y - X) -> Y 548 // (Y - X) + X -> Y 549 // Eg: X + -X -> 0 550 Value *Y = nullptr; 551 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 552 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 553 return Y; 554 555 // X + ~X -> -1 since ~X = -X-1 556 if (match(Op0, m_Not(m_Specific(Op1))) || 557 match(Op1, m_Not(m_Specific(Op0)))) 558 return Constant::getAllOnesValue(Op0->getType()); 559 560 /// i1 add -> xor. 561 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 562 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 563 return V; 564 565 // Try some generic simplifications for associative operations. 566 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 567 MaxRecurse)) 568 return V; 569 570 // Threading Add over selects and phi nodes is pointless, so don't bother. 571 // Threading over the select in "A + select(cond, B, C)" means evaluating 572 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 573 // only if B and C are equal. If B and C are equal then (since we assume 574 // that operands have already been simplified) "select(cond, B, C)" should 575 // have been simplified to the common value of B and C already. Analysing 576 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 577 // for threading over phi nodes. 578 579 return nullptr; 580 } 581 582 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 583 const DataLayout &DL, const TargetLibraryInfo *TLI, 584 const DominatorTree *DT, AssumptionCache *AC, 585 const Instruction *CxtI) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 587 RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->getScalarType()->isPointerTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 break; 625 } 626 assert(V->getType()->getScalarType()->isPointerTy() && 627 "Unexpected operand type!"); 628 } while (Visited.insert(V).second); 629 630 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 631 if (V->getType()->isVectorTy()) 632 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 633 OffsetIntPtr); 634 return OffsetIntPtr; 635 } 636 637 /// \brief Compute the constant difference between two pointer values. 638 /// If the difference is not a constant, returns zero. 639 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 640 Value *RHS) { 641 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 642 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 643 644 // If LHS and RHS are not related via constant offsets to the same base 645 // value, there is nothing we can do here. 646 if (LHS != RHS) 647 return nullptr; 648 649 // Otherwise, the difference of LHS - RHS can be computed as: 650 // LHS - RHS 651 // = (LHSOffset + Base) - (RHSOffset + Base) 652 // = LHSOffset - RHSOffset 653 return ConstantExpr::getSub(LHSOffset, RHSOffset); 654 } 655 656 /// Given operands for a Sub, see if we can fold the result. 657 /// If not, this returns null. 658 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 659 const Query &Q, unsigned MaxRecurse) { 660 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 661 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 662 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 663 664 // X - undef -> undef 665 // undef - X -> undef 666 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 667 return UndefValue::get(Op0->getType()); 668 669 // X - 0 -> X 670 if (match(Op1, m_Zero())) 671 return Op0; 672 673 // X - X -> 0 674 if (Op0 == Op1) 675 return Constant::getNullValue(Op0->getType()); 676 677 // 0 - X -> 0 if the sub is NUW. 678 if (isNUW && match(Op0, m_Zero())) 679 return Op0; 680 681 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 682 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 683 Value *X = nullptr, *Y = nullptr, *Z = Op1; 684 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 685 // See if "V === Y - Z" simplifies. 686 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 687 // It does! Now see if "X + V" simplifies. 688 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 689 // It does, we successfully reassociated! 690 ++NumReassoc; 691 return W; 692 } 693 // See if "V === X - Z" simplifies. 694 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 695 // It does! Now see if "Y + V" simplifies. 696 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 697 // It does, we successfully reassociated! 698 ++NumReassoc; 699 return W; 700 } 701 } 702 703 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 704 // For example, X - (X + 1) -> -1 705 X = Op0; 706 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 707 // See if "V === X - Y" simplifies. 708 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 709 // It does! Now see if "V - Z" simplifies. 710 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 711 // It does, we successfully reassociated! 712 ++NumReassoc; 713 return W; 714 } 715 // See if "V === X - Z" simplifies. 716 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 717 // It does! Now see if "V - Y" simplifies. 718 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 719 // It does, we successfully reassociated! 720 ++NumReassoc; 721 return W; 722 } 723 } 724 725 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 726 // For example, X - (X - Y) -> Y. 727 Z = Op0; 728 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 729 // See if "V === Z - X" simplifies. 730 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 731 // It does! Now see if "V + Y" simplifies. 732 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 733 // It does, we successfully reassociated! 734 ++NumReassoc; 735 return W; 736 } 737 738 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 739 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 740 match(Op1, m_Trunc(m_Value(Y)))) 741 if (X->getType() == Y->getType()) 742 // See if "V === X - Y" simplifies. 743 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 744 // It does! Now see if "trunc V" simplifies. 745 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 746 // It does, return the simplified "trunc V". 747 return W; 748 749 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 750 if (match(Op0, m_PtrToInt(m_Value(X))) && 751 match(Op1, m_PtrToInt(m_Value(Y)))) 752 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 753 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 754 755 // i1 sub -> xor. 756 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 757 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 758 return V; 759 760 // Threading Sub over selects and phi nodes is pointless, so don't bother. 761 // Threading over the select in "A - select(cond, B, C)" means evaluating 762 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 763 // only if B and C are equal. If B and C are equal then (since we assume 764 // that operands have already been simplified) "select(cond, B, C)" should 765 // have been simplified to the common value of B and C already. Analysing 766 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 767 // for threading over phi nodes. 768 769 return nullptr; 770 } 771 772 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 773 const DataLayout &DL, const TargetLibraryInfo *TLI, 774 const DominatorTree *DT, AssumptionCache *AC, 775 const Instruction *CxtI) { 776 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 777 RecursionLimit); 778 } 779 780 /// Given operands for an FAdd, see if we can fold the result. If not, this 781 /// returns null. 782 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 783 const Query &Q, unsigned MaxRecurse) { 784 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 785 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 786 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 787 788 // Canonicalize the constant to the RHS. 789 std::swap(Op0, Op1); 790 } 791 792 // fadd X, -0 ==> X 793 if (match(Op1, m_NegZero())) 794 return Op0; 795 796 // fadd X, 0 ==> X, when we know X is not -0 797 if (match(Op1, m_Zero()) && 798 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 799 return Op0; 800 801 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 802 // where nnan and ninf have to occur at least once somewhere in this 803 // expression 804 Value *SubOp = nullptr; 805 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 806 SubOp = Op1; 807 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 808 SubOp = Op0; 809 if (SubOp) { 810 Instruction *FSub = cast<Instruction>(SubOp); 811 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 812 (FMF.noInfs() || FSub->hasNoInfs())) 813 return Constant::getNullValue(Op0->getType()); 814 } 815 816 return nullptr; 817 } 818 819 /// Given operands for an FSub, see if we can fold the result. If not, this 820 /// returns null. 821 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 822 const Query &Q, unsigned MaxRecurse) { 823 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 824 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 825 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 826 } 827 828 // fsub X, 0 ==> X 829 if (match(Op1, m_Zero())) 830 return Op0; 831 832 // fsub X, -0 ==> X, when we know X is not -0 833 if (match(Op1, m_NegZero()) && 834 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 835 return Op0; 836 837 // fsub -0.0, (fsub -0.0, X) ==> X 838 Value *X; 839 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 840 return X; 841 842 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 843 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 844 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 845 return X; 846 847 // fsub nnan x, x ==> 0.0 848 if (FMF.noNaNs() && Op0 == Op1) 849 return Constant::getNullValue(Op0->getType()); 850 851 return nullptr; 852 } 853 854 /// Given the operands for an FMul, see if we can fold the result 855 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 856 FastMathFlags FMF, 857 const Query &Q, 858 unsigned MaxRecurse) { 859 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 860 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 861 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 862 863 // Canonicalize the constant to the RHS. 864 std::swap(Op0, Op1); 865 } 866 867 // fmul X, 1.0 ==> X 868 if (match(Op1, m_FPOne())) 869 return Op0; 870 871 // fmul nnan nsz X, 0 ==> 0 872 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 873 return Op1; 874 875 return nullptr; 876 } 877 878 /// Given operands for a Mul, see if we can fold the result. 879 /// If not, this returns null. 880 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 881 unsigned MaxRecurse) { 882 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 883 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 884 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 885 886 // Canonicalize the constant to the RHS. 887 std::swap(Op0, Op1); 888 } 889 890 // X * undef -> 0 891 if (match(Op1, m_Undef())) 892 return Constant::getNullValue(Op0->getType()); 893 894 // X * 0 -> 0 895 if (match(Op1, m_Zero())) 896 return Op1; 897 898 // X * 1 -> X 899 if (match(Op1, m_One())) 900 return Op0; 901 902 // (X / Y) * Y -> X if the division is exact. 903 Value *X = nullptr; 904 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 905 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 906 return X; 907 908 // i1 mul -> and. 909 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 910 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 911 return V; 912 913 // Try some generic simplifications for associative operations. 914 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 915 MaxRecurse)) 916 return V; 917 918 // Mul distributes over Add. Try some generic simplifications based on this. 919 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 920 Q, MaxRecurse)) 921 return V; 922 923 // If the operation is with the result of a select instruction, check whether 924 // operating on either branch of the select always yields the same value. 925 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 926 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 927 MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a phi instruction, check whether 931 // operating on all incoming values of the phi always yields the same value. 932 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 933 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 934 MaxRecurse)) 935 return V; 936 937 return nullptr; 938 } 939 940 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 941 const DataLayout &DL, 942 const TargetLibraryInfo *TLI, 943 const DominatorTree *DT, AssumptionCache *AC, 944 const Instruction *CxtI) { 945 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 946 RecursionLimit); 947 } 948 949 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 950 const DataLayout &DL, 951 const TargetLibraryInfo *TLI, 952 const DominatorTree *DT, AssumptionCache *AC, 953 const Instruction *CxtI) { 954 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 955 RecursionLimit); 956 } 957 958 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 959 const DataLayout &DL, 960 const TargetLibraryInfo *TLI, 961 const DominatorTree *DT, AssumptionCache *AC, 962 const Instruction *CxtI) { 963 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 964 RecursionLimit); 965 } 966 967 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 968 const TargetLibraryInfo *TLI, 969 const DominatorTree *DT, AssumptionCache *AC, 970 const Instruction *CxtI) { 971 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 972 RecursionLimit); 973 } 974 975 /// Given operands for an SDiv or UDiv, see if we can fold the result. 976 /// If not, this returns null. 977 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 978 const Query &Q, unsigned MaxRecurse) { 979 if (Constant *C0 = dyn_cast<Constant>(Op0)) 980 if (Constant *C1 = dyn_cast<Constant>(Op1)) 981 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 982 983 bool isSigned = Opcode == Instruction::SDiv; 984 985 // X / undef -> undef 986 if (match(Op1, m_Undef())) 987 return Op1; 988 989 // X / 0 -> undef, we don't need to preserve faults! 990 if (match(Op1, m_Zero())) 991 return UndefValue::get(Op1->getType()); 992 993 // undef / X -> 0 994 if (match(Op0, m_Undef())) 995 return Constant::getNullValue(Op0->getType()); 996 997 // 0 / X -> 0, we don't need to preserve faults! 998 if (match(Op0, m_Zero())) 999 return Op0; 1000 1001 // X / 1 -> X 1002 if (match(Op1, m_One())) 1003 return Op0; 1004 1005 if (Op0->getType()->isIntegerTy(1)) 1006 // It can't be division by zero, hence it must be division by one. 1007 return Op0; 1008 1009 // X / X -> 1 1010 if (Op0 == Op1) 1011 return ConstantInt::get(Op0->getType(), 1); 1012 1013 // (X * Y) / Y -> X if the multiplication does not overflow. 1014 Value *X = nullptr, *Y = nullptr; 1015 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1016 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1017 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1018 // If the Mul knows it does not overflow, then we are good to go. 1019 if ((isSigned && Mul->hasNoSignedWrap()) || 1020 (!isSigned && Mul->hasNoUnsignedWrap())) 1021 return X; 1022 // If X has the form X = A / Y then X * Y cannot overflow. 1023 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1024 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1025 return X; 1026 } 1027 1028 // (X rem Y) / Y -> 0 1029 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1030 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1031 return Constant::getNullValue(Op0->getType()); 1032 1033 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1034 ConstantInt *C1, *C2; 1035 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1036 match(Op1, m_ConstantInt(C2))) { 1037 bool Overflow; 1038 C1->getValue().umul_ov(C2->getValue(), Overflow); 1039 if (Overflow) 1040 return Constant::getNullValue(Op0->getType()); 1041 } 1042 1043 // If the operation is with the result of a select instruction, check whether 1044 // operating on either branch of the select always yields the same value. 1045 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1046 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1047 return V; 1048 1049 // If the operation is with the result of a phi instruction, check whether 1050 // operating on all incoming values of the phi always yields the same value. 1051 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1052 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1053 return V; 1054 1055 return nullptr; 1056 } 1057 1058 /// Given operands for an SDiv, see if we can fold the result. 1059 /// If not, this returns null. 1060 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1061 unsigned MaxRecurse) { 1062 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1063 return V; 1064 1065 return nullptr; 1066 } 1067 1068 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1069 const TargetLibraryInfo *TLI, 1070 const DominatorTree *DT, AssumptionCache *AC, 1071 const Instruction *CxtI) { 1072 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1073 RecursionLimit); 1074 } 1075 1076 /// Given operands for a UDiv, see if we can fold the result. 1077 /// If not, this returns null. 1078 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1079 unsigned MaxRecurse) { 1080 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1081 return V; 1082 1083 return nullptr; 1084 } 1085 1086 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1087 const TargetLibraryInfo *TLI, 1088 const DominatorTree *DT, AssumptionCache *AC, 1089 const Instruction *CxtI) { 1090 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1091 RecursionLimit); 1092 } 1093 1094 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1095 const Query &Q, unsigned) { 1096 // undef / X -> undef (the undef could be a snan). 1097 if (match(Op0, m_Undef())) 1098 return Op0; 1099 1100 // X / undef -> undef 1101 if (match(Op1, m_Undef())) 1102 return Op1; 1103 1104 // 0 / X -> 0 1105 // Requires that NaNs are off (X could be zero) and signed zeroes are 1106 // ignored (X could be positive or negative, so the output sign is unknown). 1107 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1108 return Op0; 1109 1110 if (FMF.noNaNs()) { 1111 // X / X -> 1.0 is legal when NaNs are ignored. 1112 if (Op0 == Op1) 1113 return ConstantFP::get(Op0->getType(), 1.0); 1114 1115 // -X / X -> -1.0 and 1116 // X / -X -> -1.0 are legal when NaNs are ignored. 1117 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1118 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1119 BinaryOperator::getFNegArgument(Op0) == Op1) || 1120 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1121 BinaryOperator::getFNegArgument(Op1) == Op0)) 1122 return ConstantFP::get(Op0->getType(), -1.0); 1123 } 1124 1125 return nullptr; 1126 } 1127 1128 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1129 const DataLayout &DL, 1130 const TargetLibraryInfo *TLI, 1131 const DominatorTree *DT, AssumptionCache *AC, 1132 const Instruction *CxtI) { 1133 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1134 RecursionLimit); 1135 } 1136 1137 /// Given operands for an SRem or URem, see if we can fold the result. 1138 /// If not, this returns null. 1139 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1140 const Query &Q, unsigned MaxRecurse) { 1141 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1142 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1143 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1144 1145 // X % undef -> undef 1146 if (match(Op1, m_Undef())) 1147 return Op1; 1148 1149 // undef % X -> 0 1150 if (match(Op0, m_Undef())) 1151 return Constant::getNullValue(Op0->getType()); 1152 1153 // 0 % X -> 0, we don't need to preserve faults! 1154 if (match(Op0, m_Zero())) 1155 return Op0; 1156 1157 // X % 0 -> undef, we don't need to preserve faults! 1158 if (match(Op1, m_Zero())) 1159 return UndefValue::get(Op0->getType()); 1160 1161 // X % 1 -> 0 1162 if (match(Op1, m_One())) 1163 return Constant::getNullValue(Op0->getType()); 1164 1165 if (Op0->getType()->isIntegerTy(1)) 1166 // It can't be remainder by zero, hence it must be remainder by one. 1167 return Constant::getNullValue(Op0->getType()); 1168 1169 // X % X -> 0 1170 if (Op0 == Op1) 1171 return Constant::getNullValue(Op0->getType()); 1172 1173 // (X % Y) % Y -> X % Y 1174 if ((Opcode == Instruction::SRem && 1175 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1176 (Opcode == Instruction::URem && 1177 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1178 return Op0; 1179 1180 // If the operation is with the result of a select instruction, check whether 1181 // operating on either branch of the select always yields the same value. 1182 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1183 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1184 return V; 1185 1186 // If the operation is with the result of a phi instruction, check whether 1187 // operating on all incoming values of the phi always yields the same value. 1188 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1189 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1190 return V; 1191 1192 return nullptr; 1193 } 1194 1195 /// Given operands for an SRem, see if we can fold the result. 1196 /// If not, this returns null. 1197 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1198 unsigned MaxRecurse) { 1199 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1200 return V; 1201 1202 return nullptr; 1203 } 1204 1205 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1206 const TargetLibraryInfo *TLI, 1207 const DominatorTree *DT, AssumptionCache *AC, 1208 const Instruction *CxtI) { 1209 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1210 RecursionLimit); 1211 } 1212 1213 /// Given operands for a URem, see if we can fold the result. 1214 /// If not, this returns null. 1215 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1216 unsigned MaxRecurse) { 1217 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1218 return V; 1219 1220 return nullptr; 1221 } 1222 1223 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1224 const TargetLibraryInfo *TLI, 1225 const DominatorTree *DT, AssumptionCache *AC, 1226 const Instruction *CxtI) { 1227 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1228 RecursionLimit); 1229 } 1230 1231 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1232 const Query &, unsigned) { 1233 // undef % X -> undef (the undef could be a snan). 1234 if (match(Op0, m_Undef())) 1235 return Op0; 1236 1237 // X % undef -> undef 1238 if (match(Op1, m_Undef())) 1239 return Op1; 1240 1241 // 0 % X -> 0 1242 // Requires that NaNs are off (X could be zero) and signed zeroes are 1243 // ignored (X could be positive or negative, so the output sign is unknown). 1244 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1245 return Op0; 1246 1247 return nullptr; 1248 } 1249 1250 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1251 const DataLayout &DL, 1252 const TargetLibraryInfo *TLI, 1253 const DominatorTree *DT, AssumptionCache *AC, 1254 const Instruction *CxtI) { 1255 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1256 RecursionLimit); 1257 } 1258 1259 /// Returns true if a shift by \c Amount always yields undef. 1260 static bool isUndefShift(Value *Amount) { 1261 Constant *C = dyn_cast<Constant>(Amount); 1262 if (!C) 1263 return false; 1264 1265 // X shift by undef -> undef because it may shift by the bitwidth. 1266 if (isa<UndefValue>(C)) 1267 return true; 1268 1269 // Shifting by the bitwidth or more is undefined. 1270 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1271 if (CI->getValue().getLimitedValue() >= 1272 CI->getType()->getScalarSizeInBits()) 1273 return true; 1274 1275 // If all lanes of a vector shift are undefined the whole shift is. 1276 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1277 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1278 if (!isUndefShift(C->getAggregateElement(I))) 1279 return false; 1280 return true; 1281 } 1282 1283 return false; 1284 } 1285 1286 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1287 /// If not, this returns null. 1288 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1289 const Query &Q, unsigned MaxRecurse) { 1290 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1291 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1292 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1293 1294 // 0 shift by X -> 0 1295 if (match(Op0, m_Zero())) 1296 return Op0; 1297 1298 // X shift by 0 -> X 1299 if (match(Op1, m_Zero())) 1300 return Op0; 1301 1302 // Fold undefined shifts. 1303 if (isUndefShift(Op1)) 1304 return UndefValue::get(Op0->getType()); 1305 1306 // If the operation is with the result of a select instruction, check whether 1307 // operating on either branch of the select always yields the same value. 1308 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1309 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1310 return V; 1311 1312 // If the operation is with the result of a phi instruction, check whether 1313 // operating on all incoming values of the phi always yields the same value. 1314 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1315 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1316 return V; 1317 1318 // If any bits in the shift amount make that value greater than or equal to 1319 // the number of bits in the type, the shift is undefined. 1320 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1321 APInt KnownZero(BitWidth, 0); 1322 APInt KnownOne(BitWidth, 0); 1323 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1324 if (KnownOne.getLimitedValue() >= BitWidth) 1325 return UndefValue::get(Op0->getType()); 1326 1327 // If all valid bits in the shift amount are known zero, the first operand is 1328 // unchanged. 1329 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1330 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1331 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1332 return Op0; 1333 1334 return nullptr; 1335 } 1336 1337 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1338 /// fold the result. If not, this returns null. 1339 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1340 bool isExact, const Query &Q, 1341 unsigned MaxRecurse) { 1342 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1343 return V; 1344 1345 // X >> X -> 0 1346 if (Op0 == Op1) 1347 return Constant::getNullValue(Op0->getType()); 1348 1349 // undef >> X -> 0 1350 // undef >> X -> undef (if it's exact) 1351 if (match(Op0, m_Undef())) 1352 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1353 1354 // The low bit cannot be shifted out of an exact shift if it is set. 1355 if (isExact) { 1356 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1357 APInt Op0KnownZero(BitWidth, 0); 1358 APInt Op0KnownOne(BitWidth, 0); 1359 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1360 Q.CxtI, Q.DT); 1361 if (Op0KnownOne[0]) 1362 return Op0; 1363 } 1364 1365 return nullptr; 1366 } 1367 1368 /// Given operands for an Shl, see if we can fold the result. 1369 /// If not, this returns null. 1370 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1371 const Query &Q, unsigned MaxRecurse) { 1372 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1373 return V; 1374 1375 // undef << X -> 0 1376 // undef << X -> undef if (if it's NSW/NUW) 1377 if (match(Op0, m_Undef())) 1378 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1379 1380 // (X >> A) << A -> X 1381 Value *X; 1382 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1383 return X; 1384 return nullptr; 1385 } 1386 1387 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1388 const DataLayout &DL, const TargetLibraryInfo *TLI, 1389 const DominatorTree *DT, AssumptionCache *AC, 1390 const Instruction *CxtI) { 1391 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1392 RecursionLimit); 1393 } 1394 1395 /// Given operands for an LShr, see if we can fold the result. 1396 /// If not, this returns null. 1397 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1398 const Query &Q, unsigned MaxRecurse) { 1399 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1400 MaxRecurse)) 1401 return V; 1402 1403 // (X << A) >> A -> X 1404 Value *X; 1405 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1406 return X; 1407 1408 return nullptr; 1409 } 1410 1411 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1412 const DataLayout &DL, 1413 const TargetLibraryInfo *TLI, 1414 const DominatorTree *DT, AssumptionCache *AC, 1415 const Instruction *CxtI) { 1416 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1417 RecursionLimit); 1418 } 1419 1420 /// Given operands for an AShr, see if we can fold the result. 1421 /// If not, this returns null. 1422 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1423 const Query &Q, unsigned MaxRecurse) { 1424 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1425 MaxRecurse)) 1426 return V; 1427 1428 // all ones >>a X -> all ones 1429 if (match(Op0, m_AllOnes())) 1430 return Op0; 1431 1432 // (X << A) >> A -> X 1433 Value *X; 1434 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1435 return X; 1436 1437 // Arithmetic shifting an all-sign-bit value is a no-op. 1438 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1439 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1440 return Op0; 1441 1442 return nullptr; 1443 } 1444 1445 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1446 const DataLayout &DL, 1447 const TargetLibraryInfo *TLI, 1448 const DominatorTree *DT, AssumptionCache *AC, 1449 const Instruction *CxtI) { 1450 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1451 RecursionLimit); 1452 } 1453 1454 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1455 ICmpInst *UnsignedICmp, bool IsAnd) { 1456 Value *X, *Y; 1457 1458 ICmpInst::Predicate EqPred; 1459 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1460 !ICmpInst::isEquality(EqPred)) 1461 return nullptr; 1462 1463 ICmpInst::Predicate UnsignedPred; 1464 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1465 ICmpInst::isUnsigned(UnsignedPred)) 1466 ; 1467 else if (match(UnsignedICmp, 1468 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1469 ICmpInst::isUnsigned(UnsignedPred)) 1470 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1471 else 1472 return nullptr; 1473 1474 // X < Y && Y != 0 --> X < Y 1475 // X < Y || Y != 0 --> Y != 0 1476 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1477 return IsAnd ? UnsignedICmp : ZeroICmp; 1478 1479 // X >= Y || Y != 0 --> true 1480 // X >= Y || Y == 0 --> X >= Y 1481 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1482 if (EqPred == ICmpInst::ICMP_NE) 1483 return getTrue(UnsignedICmp->getType()); 1484 return UnsignedICmp; 1485 } 1486 1487 // X < Y && Y == 0 --> false 1488 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1489 IsAnd) 1490 return getFalse(UnsignedICmp->getType()); 1491 1492 return nullptr; 1493 } 1494 1495 /// Simplify (and (icmp ...) (icmp ...)) to true when we can tell that the range 1496 /// of possible values cannot be satisfied. 1497 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1498 ICmpInst::Predicate Pred0, Pred1; 1499 ConstantInt *CI1, *CI2; 1500 Value *V; 1501 1502 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1503 return X; 1504 1505 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1506 m_ConstantInt(CI2)))) 1507 return nullptr; 1508 1509 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1510 return nullptr; 1511 1512 Type *ITy = Op0->getType(); 1513 1514 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1515 bool isNSW = AddInst->hasNoSignedWrap(); 1516 bool isNUW = AddInst->hasNoUnsignedWrap(); 1517 1518 const APInt &CI1V = CI1->getValue(); 1519 const APInt &CI2V = CI2->getValue(); 1520 const APInt Delta = CI2V - CI1V; 1521 if (CI1V.isStrictlyPositive()) { 1522 if (Delta == 2) { 1523 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1524 return getFalse(ITy); 1525 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1526 return getFalse(ITy); 1527 } 1528 if (Delta == 1) { 1529 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1530 return getFalse(ITy); 1531 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1532 return getFalse(ITy); 1533 } 1534 } 1535 if (CI1V.getBoolValue() && isNUW) { 1536 if (Delta == 2) 1537 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1538 return getFalse(ITy); 1539 if (Delta == 1) 1540 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1541 return getFalse(ITy); 1542 } 1543 1544 return nullptr; 1545 } 1546 1547 /// Given operands for an And, see if we can fold the result. 1548 /// If not, this returns null. 1549 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1550 unsigned MaxRecurse) { 1551 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1552 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1553 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1554 1555 // Canonicalize the constant to the RHS. 1556 std::swap(Op0, Op1); 1557 } 1558 1559 // X & undef -> 0 1560 if (match(Op1, m_Undef())) 1561 return Constant::getNullValue(Op0->getType()); 1562 1563 // X & X = X 1564 if (Op0 == Op1) 1565 return Op0; 1566 1567 // X & 0 = 0 1568 if (match(Op1, m_Zero())) 1569 return Op1; 1570 1571 // X & -1 = X 1572 if (match(Op1, m_AllOnes())) 1573 return Op0; 1574 1575 // A & ~A = ~A & A = 0 1576 if (match(Op0, m_Not(m_Specific(Op1))) || 1577 match(Op1, m_Not(m_Specific(Op0)))) 1578 return Constant::getNullValue(Op0->getType()); 1579 1580 // (A | ?) & A = A 1581 Value *A = nullptr, *B = nullptr; 1582 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1583 (A == Op1 || B == Op1)) 1584 return Op1; 1585 1586 // A & (A | ?) = A 1587 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1588 (A == Op0 || B == Op0)) 1589 return Op0; 1590 1591 // A & (-A) = A if A is a power of two or zero. 1592 if (match(Op0, m_Neg(m_Specific(Op1))) || 1593 match(Op1, m_Neg(m_Specific(Op0)))) { 1594 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1595 Q.DT)) 1596 return Op0; 1597 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1598 Q.DT)) 1599 return Op1; 1600 } 1601 1602 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1603 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1604 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1605 return V; 1606 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1607 return V; 1608 } 1609 } 1610 1611 // Try some generic simplifications for associative operations. 1612 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1613 MaxRecurse)) 1614 return V; 1615 1616 // And distributes over Or. Try some generic simplifications based on this. 1617 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1618 Q, MaxRecurse)) 1619 return V; 1620 1621 // And distributes over Xor. Try some generic simplifications based on this. 1622 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1623 Q, MaxRecurse)) 1624 return V; 1625 1626 // If the operation is with the result of a select instruction, check whether 1627 // operating on either branch of the select always yields the same value. 1628 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1629 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1630 MaxRecurse)) 1631 return V; 1632 1633 // If the operation is with the result of a phi instruction, check whether 1634 // operating on all incoming values of the phi always yields the same value. 1635 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1636 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1637 MaxRecurse)) 1638 return V; 1639 1640 return nullptr; 1641 } 1642 1643 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1644 const TargetLibraryInfo *TLI, 1645 const DominatorTree *DT, AssumptionCache *AC, 1646 const Instruction *CxtI) { 1647 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1648 RecursionLimit); 1649 } 1650 1651 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1652 /// contains all possible values. 1653 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1654 ICmpInst::Predicate Pred0, Pred1; 1655 ConstantInt *CI1, *CI2; 1656 Value *V; 1657 1658 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1659 return X; 1660 1661 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1662 m_ConstantInt(CI2)))) 1663 return nullptr; 1664 1665 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1666 return nullptr; 1667 1668 Type *ITy = Op0->getType(); 1669 1670 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1671 bool isNSW = AddInst->hasNoSignedWrap(); 1672 bool isNUW = AddInst->hasNoUnsignedWrap(); 1673 1674 const APInt &CI1V = CI1->getValue(); 1675 const APInt &CI2V = CI2->getValue(); 1676 const APInt Delta = CI2V - CI1V; 1677 if (CI1V.isStrictlyPositive()) { 1678 if (Delta == 2) { 1679 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1680 return getTrue(ITy); 1681 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1682 return getTrue(ITy); 1683 } 1684 if (Delta == 1) { 1685 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1686 return getTrue(ITy); 1687 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1688 return getTrue(ITy); 1689 } 1690 } 1691 if (CI1V.getBoolValue() && isNUW) { 1692 if (Delta == 2) 1693 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1694 return getTrue(ITy); 1695 if (Delta == 1) 1696 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1697 return getTrue(ITy); 1698 } 1699 1700 return nullptr; 1701 } 1702 1703 /// Given operands for an Or, see if we can fold the result. 1704 /// If not, this returns null. 1705 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1706 unsigned MaxRecurse) { 1707 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1708 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1709 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1710 1711 // Canonicalize the constant to the RHS. 1712 std::swap(Op0, Op1); 1713 } 1714 1715 // X | undef -> -1 1716 if (match(Op1, m_Undef())) 1717 return Constant::getAllOnesValue(Op0->getType()); 1718 1719 // X | X = X 1720 if (Op0 == Op1) 1721 return Op0; 1722 1723 // X | 0 = X 1724 if (match(Op1, m_Zero())) 1725 return Op0; 1726 1727 // X | -1 = -1 1728 if (match(Op1, m_AllOnes())) 1729 return Op1; 1730 1731 // A | ~A = ~A | A = -1 1732 if (match(Op0, m_Not(m_Specific(Op1))) || 1733 match(Op1, m_Not(m_Specific(Op0)))) 1734 return Constant::getAllOnesValue(Op0->getType()); 1735 1736 // (A & ?) | A = A 1737 Value *A = nullptr, *B = nullptr; 1738 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1739 (A == Op1 || B == Op1)) 1740 return Op1; 1741 1742 // A | (A & ?) = A 1743 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1744 (A == Op0 || B == Op0)) 1745 return Op0; 1746 1747 // ~(A & ?) | A = -1 1748 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1749 (A == Op1 || B == Op1)) 1750 return Constant::getAllOnesValue(Op1->getType()); 1751 1752 // A | ~(A & ?) = -1 1753 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1754 (A == Op0 || B == Op0)) 1755 return Constant::getAllOnesValue(Op0->getType()); 1756 1757 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1758 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1759 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1760 return V; 1761 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1762 return V; 1763 } 1764 } 1765 1766 // Try some generic simplifications for associative operations. 1767 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1768 MaxRecurse)) 1769 return V; 1770 1771 // Or distributes over And. Try some generic simplifications based on this. 1772 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1773 MaxRecurse)) 1774 return V; 1775 1776 // If the operation is with the result of a select instruction, check whether 1777 // operating on either branch of the select always yields the same value. 1778 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1779 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1780 MaxRecurse)) 1781 return V; 1782 1783 // (A & C)|(B & D) 1784 Value *C = nullptr, *D = nullptr; 1785 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1786 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1787 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1788 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1789 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1790 // (A & C1)|(B & C2) 1791 // If we have: ((V + N) & C1) | (V & C2) 1792 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1793 // replace with V+N. 1794 Value *V1, *V2; 1795 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1796 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1797 // Add commutes, try both ways. 1798 if (V1 == B && 1799 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1800 return A; 1801 if (V2 == B && 1802 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1803 return A; 1804 } 1805 // Or commutes, try both ways. 1806 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1807 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1808 // Add commutes, try both ways. 1809 if (V1 == A && 1810 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1811 return B; 1812 if (V2 == A && 1813 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1814 return B; 1815 } 1816 } 1817 } 1818 1819 // If the operation is with the result of a phi instruction, check whether 1820 // operating on all incoming values of the phi always yields the same value. 1821 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1822 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1823 return V; 1824 1825 return nullptr; 1826 } 1827 1828 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1829 const TargetLibraryInfo *TLI, 1830 const DominatorTree *DT, AssumptionCache *AC, 1831 const Instruction *CxtI) { 1832 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1833 RecursionLimit); 1834 } 1835 1836 /// Given operands for a Xor, see if we can fold the result. 1837 /// If not, this returns null. 1838 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1839 unsigned MaxRecurse) { 1840 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1841 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1842 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1843 1844 // Canonicalize the constant to the RHS. 1845 std::swap(Op0, Op1); 1846 } 1847 1848 // A ^ undef -> undef 1849 if (match(Op1, m_Undef())) 1850 return Op1; 1851 1852 // A ^ 0 = A 1853 if (match(Op1, m_Zero())) 1854 return Op0; 1855 1856 // A ^ A = 0 1857 if (Op0 == Op1) 1858 return Constant::getNullValue(Op0->getType()); 1859 1860 // A ^ ~A = ~A ^ A = -1 1861 if (match(Op0, m_Not(m_Specific(Op1))) || 1862 match(Op1, m_Not(m_Specific(Op0)))) 1863 return Constant::getAllOnesValue(Op0->getType()); 1864 1865 // Try some generic simplifications for associative operations. 1866 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1867 MaxRecurse)) 1868 return V; 1869 1870 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1871 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1872 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1873 // only if B and C are equal. If B and C are equal then (since we assume 1874 // that operands have already been simplified) "select(cond, B, C)" should 1875 // have been simplified to the common value of B and C already. Analysing 1876 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1877 // for threading over phi nodes. 1878 1879 return nullptr; 1880 } 1881 1882 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1883 const TargetLibraryInfo *TLI, 1884 const DominatorTree *DT, AssumptionCache *AC, 1885 const Instruction *CxtI) { 1886 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1887 RecursionLimit); 1888 } 1889 1890 static Type *GetCompareTy(Value *Op) { 1891 return CmpInst::makeCmpResultType(Op->getType()); 1892 } 1893 1894 /// Rummage around inside V looking for something equivalent to the comparison 1895 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1896 /// Helper function for analyzing max/min idioms. 1897 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1898 Value *LHS, Value *RHS) { 1899 SelectInst *SI = dyn_cast<SelectInst>(V); 1900 if (!SI) 1901 return nullptr; 1902 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1903 if (!Cmp) 1904 return nullptr; 1905 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1906 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1907 return Cmp; 1908 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1909 LHS == CmpRHS && RHS == CmpLHS) 1910 return Cmp; 1911 return nullptr; 1912 } 1913 1914 // A significant optimization not implemented here is assuming that alloca 1915 // addresses are not equal to incoming argument values. They don't *alias*, 1916 // as we say, but that doesn't mean they aren't equal, so we take a 1917 // conservative approach. 1918 // 1919 // This is inspired in part by C++11 5.10p1: 1920 // "Two pointers of the same type compare equal if and only if they are both 1921 // null, both point to the same function, or both represent the same 1922 // address." 1923 // 1924 // This is pretty permissive. 1925 // 1926 // It's also partly due to C11 6.5.9p6: 1927 // "Two pointers compare equal if and only if both are null pointers, both are 1928 // pointers to the same object (including a pointer to an object and a 1929 // subobject at its beginning) or function, both are pointers to one past the 1930 // last element of the same array object, or one is a pointer to one past the 1931 // end of one array object and the other is a pointer to the start of a 1932 // different array object that happens to immediately follow the first array 1933 // object in the address space.) 1934 // 1935 // C11's version is more restrictive, however there's no reason why an argument 1936 // couldn't be a one-past-the-end value for a stack object in the caller and be 1937 // equal to the beginning of a stack object in the callee. 1938 // 1939 // If the C and C++ standards are ever made sufficiently restrictive in this 1940 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1941 // this optimization. 1942 static Constant * 1943 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1944 const DominatorTree *DT, CmpInst::Predicate Pred, 1945 const Instruction *CxtI, Value *LHS, Value *RHS) { 1946 // First, skip past any trivial no-ops. 1947 LHS = LHS->stripPointerCasts(); 1948 RHS = RHS->stripPointerCasts(); 1949 1950 // A non-null pointer is not equal to a null pointer. 1951 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1952 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1953 return ConstantInt::get(GetCompareTy(LHS), 1954 !CmpInst::isTrueWhenEqual(Pred)); 1955 1956 // We can only fold certain predicates on pointer comparisons. 1957 switch (Pred) { 1958 default: 1959 return nullptr; 1960 1961 // Equality comaprisons are easy to fold. 1962 case CmpInst::ICMP_EQ: 1963 case CmpInst::ICMP_NE: 1964 break; 1965 1966 // We can only handle unsigned relational comparisons because 'inbounds' on 1967 // a GEP only protects against unsigned wrapping. 1968 case CmpInst::ICMP_UGT: 1969 case CmpInst::ICMP_UGE: 1970 case CmpInst::ICMP_ULT: 1971 case CmpInst::ICMP_ULE: 1972 // However, we have to switch them to their signed variants to handle 1973 // negative indices from the base pointer. 1974 Pred = ICmpInst::getSignedPredicate(Pred); 1975 break; 1976 } 1977 1978 // Strip off any constant offsets so that we can reason about them. 1979 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1980 // here and compare base addresses like AliasAnalysis does, however there are 1981 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1982 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1983 // doesn't need to guarantee pointer inequality when it says NoAlias. 1984 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 1985 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 1986 1987 // If LHS and RHS are related via constant offsets to the same base 1988 // value, we can replace it with an icmp which just compares the offsets. 1989 if (LHS == RHS) 1990 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1991 1992 // Various optimizations for (in)equality comparisons. 1993 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1994 // Different non-empty allocations that exist at the same time have 1995 // different addresses (if the program can tell). Global variables always 1996 // exist, so they always exist during the lifetime of each other and all 1997 // allocas. Two different allocas usually have different addresses... 1998 // 1999 // However, if there's an @llvm.stackrestore dynamically in between two 2000 // allocas, they may have the same address. It's tempting to reduce the 2001 // scope of the problem by only looking at *static* allocas here. That would 2002 // cover the majority of allocas while significantly reducing the likelihood 2003 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2004 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2005 // an entry block. Also, if we have a block that's not attached to a 2006 // function, we can't tell if it's "static" under the current definition. 2007 // Theoretically, this problem could be fixed by creating a new kind of 2008 // instruction kind specifically for static allocas. Such a new instruction 2009 // could be required to be at the top of the entry block, thus preventing it 2010 // from being subject to a @llvm.stackrestore. Instcombine could even 2011 // convert regular allocas into these special allocas. It'd be nifty. 2012 // However, until then, this problem remains open. 2013 // 2014 // So, we'll assume that two non-empty allocas have different addresses 2015 // for now. 2016 // 2017 // With all that, if the offsets are within the bounds of their allocations 2018 // (and not one-past-the-end! so we can't use inbounds!), and their 2019 // allocations aren't the same, the pointers are not equal. 2020 // 2021 // Note that it's not necessary to check for LHS being a global variable 2022 // address, due to canonicalization and constant folding. 2023 if (isa<AllocaInst>(LHS) && 2024 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2025 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2026 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2027 uint64_t LHSSize, RHSSize; 2028 if (LHSOffsetCI && RHSOffsetCI && 2029 getObjectSize(LHS, LHSSize, DL, TLI) && 2030 getObjectSize(RHS, RHSSize, DL, TLI)) { 2031 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2032 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2033 if (!LHSOffsetValue.isNegative() && 2034 !RHSOffsetValue.isNegative() && 2035 LHSOffsetValue.ult(LHSSize) && 2036 RHSOffsetValue.ult(RHSSize)) { 2037 return ConstantInt::get(GetCompareTy(LHS), 2038 !CmpInst::isTrueWhenEqual(Pred)); 2039 } 2040 } 2041 2042 // Repeat the above check but this time without depending on DataLayout 2043 // or being able to compute a precise size. 2044 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2045 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2046 LHSOffset->isNullValue() && 2047 RHSOffset->isNullValue()) 2048 return ConstantInt::get(GetCompareTy(LHS), 2049 !CmpInst::isTrueWhenEqual(Pred)); 2050 } 2051 2052 // Even if an non-inbounds GEP occurs along the path we can still optimize 2053 // equality comparisons concerning the result. We avoid walking the whole 2054 // chain again by starting where the last calls to 2055 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2056 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2057 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2058 if (LHS == RHS) 2059 return ConstantExpr::getICmp(Pred, 2060 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2061 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2062 2063 // If one side of the equality comparison must come from a noalias call 2064 // (meaning a system memory allocation function), and the other side must 2065 // come from a pointer that cannot overlap with dynamically-allocated 2066 // memory within the lifetime of the current function (allocas, byval 2067 // arguments, globals), then determine the comparison result here. 2068 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2069 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2070 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2071 2072 // Is the set of underlying objects all noalias calls? 2073 auto IsNAC = [](SmallVectorImpl<Value *> &Objects) { 2074 return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall); 2075 }; 2076 2077 // Is the set of underlying objects all things which must be disjoint from 2078 // noalias calls. For allocas, we consider only static ones (dynamic 2079 // allocas might be transformed into calls to malloc not simultaneously 2080 // live with the compared-to allocation). For globals, we exclude symbols 2081 // that might be resolve lazily to symbols in another dynamically-loaded 2082 // library (and, thus, could be malloc'ed by the implementation). 2083 auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) { 2084 return std::all_of(Objects.begin(), Objects.end(), [](Value *V) { 2085 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2086 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2087 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2088 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2089 GV->hasProtectedVisibility() || GV->hasUnnamedAddr()) && 2090 !GV->isThreadLocal(); 2091 if (const Argument *A = dyn_cast<Argument>(V)) 2092 return A->hasByValAttr(); 2093 return false; 2094 }); 2095 }; 2096 2097 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2098 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2099 return ConstantInt::get(GetCompareTy(LHS), 2100 !CmpInst::isTrueWhenEqual(Pred)); 2101 2102 // Fold comparisons for non-escaping pointer even if the allocation call 2103 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2104 // dynamic allocation call could be either of the operands. 2105 Value *MI = nullptr; 2106 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT, TLI)) 2107 MI = LHS; 2108 else if (isAllocLikeFn(RHS, TLI) && 2109 llvm::isKnownNonNullAt(LHS, CxtI, DT, TLI)) 2110 MI = RHS; 2111 // FIXME: We should also fold the compare when the pointer escapes, but the 2112 // compare dominates the pointer escape 2113 if (MI && !PointerMayBeCaptured(MI, true, true)) 2114 return ConstantInt::get(GetCompareTy(LHS), 2115 CmpInst::isFalseWhenEqual(Pred)); 2116 } 2117 2118 // Otherwise, fail. 2119 return nullptr; 2120 } 2121 2122 /// Given operands for an ICmpInst, see if we can fold the result. 2123 /// If not, this returns null. 2124 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2125 const Query &Q, unsigned MaxRecurse) { 2126 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2127 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2128 2129 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2130 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2131 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2132 2133 // If we have a constant, make sure it is on the RHS. 2134 std::swap(LHS, RHS); 2135 Pred = CmpInst::getSwappedPredicate(Pred); 2136 } 2137 2138 Type *ITy = GetCompareTy(LHS); // The return type. 2139 Type *OpTy = LHS->getType(); // The operand type. 2140 2141 // icmp X, X -> true/false 2142 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2143 // because X could be 0. 2144 if (LHS == RHS || isa<UndefValue>(RHS)) 2145 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2146 2147 // Special case logic when the operands have i1 type. 2148 if (OpTy->getScalarType()->isIntegerTy(1)) { 2149 switch (Pred) { 2150 default: break; 2151 case ICmpInst::ICMP_EQ: 2152 // X == 1 -> X 2153 if (match(RHS, m_One())) 2154 return LHS; 2155 break; 2156 case ICmpInst::ICMP_NE: 2157 // X != 0 -> X 2158 if (match(RHS, m_Zero())) 2159 return LHS; 2160 break; 2161 case ICmpInst::ICMP_UGT: 2162 // X >u 0 -> X 2163 if (match(RHS, m_Zero())) 2164 return LHS; 2165 break; 2166 case ICmpInst::ICMP_UGE: { 2167 // X >=u 1 -> X 2168 if (match(RHS, m_One())) 2169 return LHS; 2170 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2171 return getTrue(ITy); 2172 break; 2173 } 2174 case ICmpInst::ICMP_SGE: { 2175 /// For signed comparison, the values for an i1 are 0 and -1 2176 /// respectively. This maps into a truth table of: 2177 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2178 /// 0 | 0 | 1 (0 >= 0) | 1 2179 /// 0 | 1 | 1 (0 >= -1) | 1 2180 /// 1 | 0 | 0 (-1 >= 0) | 0 2181 /// 1 | 1 | 1 (-1 >= -1) | 1 2182 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2183 return getTrue(ITy); 2184 break; 2185 } 2186 case ICmpInst::ICMP_SLT: 2187 // X <s 0 -> X 2188 if (match(RHS, m_Zero())) 2189 return LHS; 2190 break; 2191 case ICmpInst::ICMP_SLE: 2192 // X <=s -1 -> X 2193 if (match(RHS, m_One())) 2194 return LHS; 2195 break; 2196 case ICmpInst::ICMP_ULE: { 2197 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2198 return getTrue(ITy); 2199 break; 2200 } 2201 } 2202 } 2203 2204 // If we are comparing with zero then try hard since this is a common case. 2205 if (match(RHS, m_Zero())) { 2206 bool LHSKnownNonNegative, LHSKnownNegative; 2207 switch (Pred) { 2208 default: llvm_unreachable("Unknown ICmp predicate!"); 2209 case ICmpInst::ICMP_ULT: 2210 return getFalse(ITy); 2211 case ICmpInst::ICMP_UGE: 2212 return getTrue(ITy); 2213 case ICmpInst::ICMP_EQ: 2214 case ICmpInst::ICMP_ULE: 2215 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2216 return getFalse(ITy); 2217 break; 2218 case ICmpInst::ICMP_NE: 2219 case ICmpInst::ICMP_UGT: 2220 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2221 return getTrue(ITy); 2222 break; 2223 case ICmpInst::ICMP_SLT: 2224 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2225 Q.CxtI, Q.DT); 2226 if (LHSKnownNegative) 2227 return getTrue(ITy); 2228 if (LHSKnownNonNegative) 2229 return getFalse(ITy); 2230 break; 2231 case ICmpInst::ICMP_SLE: 2232 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2233 Q.CxtI, Q.DT); 2234 if (LHSKnownNegative) 2235 return getTrue(ITy); 2236 if (LHSKnownNonNegative && 2237 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2238 return getFalse(ITy); 2239 break; 2240 case ICmpInst::ICMP_SGE: 2241 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2242 Q.CxtI, Q.DT); 2243 if (LHSKnownNegative) 2244 return getFalse(ITy); 2245 if (LHSKnownNonNegative) 2246 return getTrue(ITy); 2247 break; 2248 case ICmpInst::ICMP_SGT: 2249 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2250 Q.CxtI, Q.DT); 2251 if (LHSKnownNegative) 2252 return getFalse(ITy); 2253 if (LHSKnownNonNegative && 2254 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2255 return getTrue(ITy); 2256 break; 2257 } 2258 } 2259 2260 // See if we are doing a comparison with a constant integer. 2261 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2262 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2263 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 2264 if (RHS_CR.isEmptySet()) 2265 return ConstantInt::getFalse(CI->getContext()); 2266 if (RHS_CR.isFullSet()) 2267 return ConstantInt::getTrue(CI->getContext()); 2268 2269 // Many binary operators with constant RHS have easy to compute constant 2270 // range. Use them to check whether the comparison is a tautology. 2271 unsigned Width = CI->getBitWidth(); 2272 APInt Lower = APInt(Width, 0); 2273 APInt Upper = APInt(Width, 0); 2274 ConstantInt *CI2; 2275 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2276 // 'urem x, CI2' produces [0, CI2). 2277 Upper = CI2->getValue(); 2278 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2279 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2280 Upper = CI2->getValue().abs(); 2281 Lower = (-Upper) + 1; 2282 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2283 // 'udiv CI2, x' produces [0, CI2]. 2284 Upper = CI2->getValue() + 1; 2285 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2286 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2287 APInt NegOne = APInt::getAllOnesValue(Width); 2288 if (!CI2->isZero()) 2289 Upper = NegOne.udiv(CI2->getValue()) + 1; 2290 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 2291 if (CI2->isMinSignedValue()) { 2292 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2293 Lower = CI2->getValue(); 2294 Upper = Lower.lshr(1) + 1; 2295 } else { 2296 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 2297 Upper = CI2->getValue().abs() + 1; 2298 Lower = (-Upper) + 1; 2299 } 2300 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2301 APInt IntMin = APInt::getSignedMinValue(Width); 2302 APInt IntMax = APInt::getSignedMaxValue(Width); 2303 APInt Val = CI2->getValue(); 2304 if (Val.isAllOnesValue()) { 2305 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2306 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2307 Lower = IntMin + 1; 2308 Upper = IntMax + 1; 2309 } else if (Val.countLeadingZeros() < Width - 1) { 2310 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] 2311 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2312 Lower = IntMin.sdiv(Val); 2313 Upper = IntMax.sdiv(Val); 2314 if (Lower.sgt(Upper)) 2315 std::swap(Lower, Upper); 2316 Upper = Upper + 1; 2317 assert(Upper != Lower && "Upper part of range has wrapped!"); 2318 } 2319 } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { 2320 // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] 2321 Lower = CI2->getValue(); 2322 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2323 } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { 2324 if (CI2->isNegative()) { 2325 // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] 2326 unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; 2327 Lower = CI2->getValue().shl(ShiftAmount); 2328 Upper = CI2->getValue() + 1; 2329 } else { 2330 // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] 2331 unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; 2332 Lower = CI2->getValue(); 2333 Upper = CI2->getValue().shl(ShiftAmount) + 1; 2334 } 2335 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2336 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2337 APInt NegOne = APInt::getAllOnesValue(Width); 2338 if (CI2->getValue().ult(Width)) 2339 Upper = NegOne.lshr(CI2->getValue()) + 1; 2340 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 2341 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 2342 unsigned ShiftAmount = Width - 1; 2343 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2344 ShiftAmount = CI2->getValue().countTrailingZeros(); 2345 Lower = CI2->getValue().lshr(ShiftAmount); 2346 Upper = CI2->getValue() + 1; 2347 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2348 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2349 APInt IntMin = APInt::getSignedMinValue(Width); 2350 APInt IntMax = APInt::getSignedMaxValue(Width); 2351 if (CI2->getValue().ult(Width)) { 2352 Lower = IntMin.ashr(CI2->getValue()); 2353 Upper = IntMax.ashr(CI2->getValue()) + 1; 2354 } 2355 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 2356 unsigned ShiftAmount = Width - 1; 2357 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2358 ShiftAmount = CI2->getValue().countTrailingZeros(); 2359 if (CI2->isNegative()) { 2360 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 2361 Lower = CI2->getValue(); 2362 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 2363 } else { 2364 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 2365 Lower = CI2->getValue().ashr(ShiftAmount); 2366 Upper = CI2->getValue() + 1; 2367 } 2368 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2369 // 'or x, CI2' produces [CI2, UINT_MAX]. 2370 Lower = CI2->getValue(); 2371 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2372 // 'and x, CI2' produces [0, CI2]. 2373 Upper = CI2->getValue() + 1; 2374 } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) { 2375 // 'add nuw x, CI2' produces [CI2, UINT_MAX]. 2376 Lower = CI2->getValue(); 2377 } 2378 2379 ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper) 2380 : ConstantRange(Width, true); 2381 2382 if (auto *I = dyn_cast<Instruction>(LHS)) 2383 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2384 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2385 2386 if (!LHS_CR.isFullSet()) { 2387 if (RHS_CR.contains(LHS_CR)) 2388 return ConstantInt::getTrue(RHS->getContext()); 2389 if (RHS_CR.inverse().contains(LHS_CR)) 2390 return ConstantInt::getFalse(RHS->getContext()); 2391 } 2392 } 2393 2394 // If both operands have range metadata, use the metadata 2395 // to simplify the comparison. 2396 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2397 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2398 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2399 2400 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2401 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2402 auto RHS_CR = getConstantRangeFromMetadata( 2403 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2404 auto LHS_CR = getConstantRangeFromMetadata( 2405 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2406 2407 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2408 if (Satisfied_CR.contains(LHS_CR)) 2409 return ConstantInt::getTrue(RHS->getContext()); 2410 2411 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2412 CmpInst::getInversePredicate(Pred), RHS_CR); 2413 if (InversedSatisfied_CR.contains(LHS_CR)) 2414 return ConstantInt::getFalse(RHS->getContext()); 2415 } 2416 } 2417 2418 // Compare of cast, for example (zext X) != 0 -> X != 0 2419 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2420 Instruction *LI = cast<CastInst>(LHS); 2421 Value *SrcOp = LI->getOperand(0); 2422 Type *SrcTy = SrcOp->getType(); 2423 Type *DstTy = LI->getType(); 2424 2425 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2426 // if the integer type is the same size as the pointer type. 2427 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2428 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2429 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2430 // Transfer the cast to the constant. 2431 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2432 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2433 Q, MaxRecurse-1)) 2434 return V; 2435 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2436 if (RI->getOperand(0)->getType() == SrcTy) 2437 // Compare without the cast. 2438 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2439 Q, MaxRecurse-1)) 2440 return V; 2441 } 2442 } 2443 2444 if (isa<ZExtInst>(LHS)) { 2445 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2446 // same type. 2447 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2448 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2449 // Compare X and Y. Note that signed predicates become unsigned. 2450 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2451 SrcOp, RI->getOperand(0), Q, 2452 MaxRecurse-1)) 2453 return V; 2454 } 2455 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2456 // too. If not, then try to deduce the result of the comparison. 2457 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2458 // Compute the constant that would happen if we truncated to SrcTy then 2459 // reextended to DstTy. 2460 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2461 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2462 2463 // If the re-extended constant didn't change then this is effectively 2464 // also a case of comparing two zero-extended values. 2465 if (RExt == CI && MaxRecurse) 2466 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2467 SrcOp, Trunc, Q, MaxRecurse-1)) 2468 return V; 2469 2470 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2471 // there. Use this to work out the result of the comparison. 2472 if (RExt != CI) { 2473 switch (Pred) { 2474 default: llvm_unreachable("Unknown ICmp predicate!"); 2475 // LHS <u RHS. 2476 case ICmpInst::ICMP_EQ: 2477 case ICmpInst::ICMP_UGT: 2478 case ICmpInst::ICMP_UGE: 2479 return ConstantInt::getFalse(CI->getContext()); 2480 2481 case ICmpInst::ICMP_NE: 2482 case ICmpInst::ICMP_ULT: 2483 case ICmpInst::ICMP_ULE: 2484 return ConstantInt::getTrue(CI->getContext()); 2485 2486 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2487 // is non-negative then LHS <s RHS. 2488 case ICmpInst::ICMP_SGT: 2489 case ICmpInst::ICMP_SGE: 2490 return CI->getValue().isNegative() ? 2491 ConstantInt::getTrue(CI->getContext()) : 2492 ConstantInt::getFalse(CI->getContext()); 2493 2494 case ICmpInst::ICMP_SLT: 2495 case ICmpInst::ICMP_SLE: 2496 return CI->getValue().isNegative() ? 2497 ConstantInt::getFalse(CI->getContext()) : 2498 ConstantInt::getTrue(CI->getContext()); 2499 } 2500 } 2501 } 2502 } 2503 2504 if (isa<SExtInst>(LHS)) { 2505 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2506 // same type. 2507 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2508 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2509 // Compare X and Y. Note that the predicate does not change. 2510 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2511 Q, MaxRecurse-1)) 2512 return V; 2513 } 2514 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2515 // too. If not, then try to deduce the result of the comparison. 2516 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2517 // Compute the constant that would happen if we truncated to SrcTy then 2518 // reextended to DstTy. 2519 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2520 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2521 2522 // If the re-extended constant didn't change then this is effectively 2523 // also a case of comparing two sign-extended values. 2524 if (RExt == CI && MaxRecurse) 2525 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2526 return V; 2527 2528 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2529 // bits there. Use this to work out the result of the comparison. 2530 if (RExt != CI) { 2531 switch (Pred) { 2532 default: llvm_unreachable("Unknown ICmp predicate!"); 2533 case ICmpInst::ICMP_EQ: 2534 return ConstantInt::getFalse(CI->getContext()); 2535 case ICmpInst::ICMP_NE: 2536 return ConstantInt::getTrue(CI->getContext()); 2537 2538 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2539 // LHS >s RHS. 2540 case ICmpInst::ICMP_SGT: 2541 case ICmpInst::ICMP_SGE: 2542 return CI->getValue().isNegative() ? 2543 ConstantInt::getTrue(CI->getContext()) : 2544 ConstantInt::getFalse(CI->getContext()); 2545 case ICmpInst::ICMP_SLT: 2546 case ICmpInst::ICMP_SLE: 2547 return CI->getValue().isNegative() ? 2548 ConstantInt::getFalse(CI->getContext()) : 2549 ConstantInt::getTrue(CI->getContext()); 2550 2551 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2552 // LHS >u RHS. 2553 case ICmpInst::ICMP_UGT: 2554 case ICmpInst::ICMP_UGE: 2555 // Comparison is true iff the LHS <s 0. 2556 if (MaxRecurse) 2557 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2558 Constant::getNullValue(SrcTy), 2559 Q, MaxRecurse-1)) 2560 return V; 2561 break; 2562 case ICmpInst::ICMP_ULT: 2563 case ICmpInst::ICMP_ULE: 2564 // Comparison is true iff the LHS >=s 0. 2565 if (MaxRecurse) 2566 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2567 Constant::getNullValue(SrcTy), 2568 Q, MaxRecurse-1)) 2569 return V; 2570 break; 2571 } 2572 } 2573 } 2574 } 2575 } 2576 2577 // icmp eq|ne X, Y -> false|true if X != Y 2578 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2579 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2580 LLVMContext &Ctx = LHS->getType()->getContext(); 2581 return Pred == ICmpInst::ICMP_NE ? 2582 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2583 } 2584 2585 // Special logic for binary operators. 2586 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2587 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2588 if (MaxRecurse && (LBO || RBO)) { 2589 // Analyze the case when either LHS or RHS is an add instruction. 2590 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2591 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2592 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2593 if (LBO && LBO->getOpcode() == Instruction::Add) { 2594 A = LBO->getOperand(0); B = LBO->getOperand(1); 2595 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2596 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2597 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2598 } 2599 if (RBO && RBO->getOpcode() == Instruction::Add) { 2600 C = RBO->getOperand(0); D = RBO->getOperand(1); 2601 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2602 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2603 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2604 } 2605 2606 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2607 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2608 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2609 Constant::getNullValue(RHS->getType()), 2610 Q, MaxRecurse-1)) 2611 return V; 2612 2613 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2614 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2615 if (Value *V = SimplifyICmpInst(Pred, 2616 Constant::getNullValue(LHS->getType()), 2617 C == LHS ? D : C, Q, MaxRecurse-1)) 2618 return V; 2619 2620 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2621 if (A && C && (A == C || A == D || B == C || B == D) && 2622 NoLHSWrapProblem && NoRHSWrapProblem) { 2623 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2624 Value *Y, *Z; 2625 if (A == C) { 2626 // C + B == C + D -> B == D 2627 Y = B; 2628 Z = D; 2629 } else if (A == D) { 2630 // D + B == C + D -> B == C 2631 Y = B; 2632 Z = C; 2633 } else if (B == C) { 2634 // A + C == C + D -> A == D 2635 Y = A; 2636 Z = D; 2637 } else { 2638 assert(B == D); 2639 // A + D == C + D -> A == C 2640 Y = A; 2641 Z = C; 2642 } 2643 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2644 return V; 2645 } 2646 } 2647 2648 { 2649 Value *Y = nullptr; 2650 // icmp pred (or X, Y), X 2651 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2652 if (Pred == ICmpInst::ICMP_ULT) 2653 return getFalse(ITy); 2654 if (Pred == ICmpInst::ICMP_UGE) 2655 return getTrue(ITy); 2656 2657 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2658 bool RHSKnownNonNegative, RHSKnownNegative; 2659 bool YKnownNonNegative, YKnownNegative; 2660 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2661 Q.AC, Q.CxtI, Q.DT); 2662 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2663 Q.CxtI, Q.DT); 2664 if (RHSKnownNonNegative && YKnownNegative) 2665 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2666 if (RHSKnownNegative || YKnownNonNegative) 2667 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2668 } 2669 } 2670 // icmp pred X, (or X, Y) 2671 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2672 if (Pred == ICmpInst::ICMP_ULE) 2673 return getTrue(ITy); 2674 if (Pred == ICmpInst::ICMP_UGT) 2675 return getFalse(ITy); 2676 2677 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2678 bool LHSKnownNonNegative, LHSKnownNegative; 2679 bool YKnownNonNegative, YKnownNegative; 2680 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2681 Q.AC, Q.CxtI, Q.DT); 2682 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2683 Q.CxtI, Q.DT); 2684 if (LHSKnownNonNegative && YKnownNegative) 2685 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2686 if (LHSKnownNegative || YKnownNonNegative) 2687 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2688 } 2689 } 2690 } 2691 2692 // icmp pred (and X, Y), X 2693 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2694 m_And(m_Specific(RHS), m_Value())))) { 2695 if (Pred == ICmpInst::ICMP_UGT) 2696 return getFalse(ITy); 2697 if (Pred == ICmpInst::ICMP_ULE) 2698 return getTrue(ITy); 2699 } 2700 // icmp pred X, (and X, Y) 2701 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2702 m_And(m_Specific(LHS), m_Value())))) { 2703 if (Pred == ICmpInst::ICMP_UGE) 2704 return getTrue(ITy); 2705 if (Pred == ICmpInst::ICMP_ULT) 2706 return getFalse(ITy); 2707 } 2708 2709 // 0 - (zext X) pred C 2710 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2711 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2712 if (RHSC->getValue().isStrictlyPositive()) { 2713 if (Pred == ICmpInst::ICMP_SLT) 2714 return ConstantInt::getTrue(RHSC->getContext()); 2715 if (Pred == ICmpInst::ICMP_SGE) 2716 return ConstantInt::getFalse(RHSC->getContext()); 2717 if (Pred == ICmpInst::ICMP_EQ) 2718 return ConstantInt::getFalse(RHSC->getContext()); 2719 if (Pred == ICmpInst::ICMP_NE) 2720 return ConstantInt::getTrue(RHSC->getContext()); 2721 } 2722 if (RHSC->getValue().isNonNegative()) { 2723 if (Pred == ICmpInst::ICMP_SLE) 2724 return ConstantInt::getTrue(RHSC->getContext()); 2725 if (Pred == ICmpInst::ICMP_SGT) 2726 return ConstantInt::getFalse(RHSC->getContext()); 2727 } 2728 } 2729 } 2730 2731 // icmp pred (urem X, Y), Y 2732 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2733 bool KnownNonNegative, KnownNegative; 2734 switch (Pred) { 2735 default: 2736 break; 2737 case ICmpInst::ICMP_SGT: 2738 case ICmpInst::ICMP_SGE: 2739 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2740 Q.CxtI, Q.DT); 2741 if (!KnownNonNegative) 2742 break; 2743 // fall-through 2744 case ICmpInst::ICMP_EQ: 2745 case ICmpInst::ICMP_UGT: 2746 case ICmpInst::ICMP_UGE: 2747 return getFalse(ITy); 2748 case ICmpInst::ICMP_SLT: 2749 case ICmpInst::ICMP_SLE: 2750 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2751 Q.CxtI, Q.DT); 2752 if (!KnownNonNegative) 2753 break; 2754 // fall-through 2755 case ICmpInst::ICMP_NE: 2756 case ICmpInst::ICMP_ULT: 2757 case ICmpInst::ICMP_ULE: 2758 return getTrue(ITy); 2759 } 2760 } 2761 2762 // icmp pred X, (urem Y, X) 2763 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2764 bool KnownNonNegative, KnownNegative; 2765 switch (Pred) { 2766 default: 2767 break; 2768 case ICmpInst::ICMP_SGT: 2769 case ICmpInst::ICMP_SGE: 2770 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2771 Q.CxtI, Q.DT); 2772 if (!KnownNonNegative) 2773 break; 2774 // fall-through 2775 case ICmpInst::ICMP_NE: 2776 case ICmpInst::ICMP_UGT: 2777 case ICmpInst::ICMP_UGE: 2778 return getTrue(ITy); 2779 case ICmpInst::ICMP_SLT: 2780 case ICmpInst::ICMP_SLE: 2781 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2782 Q.CxtI, Q.DT); 2783 if (!KnownNonNegative) 2784 break; 2785 // fall-through 2786 case ICmpInst::ICMP_EQ: 2787 case ICmpInst::ICMP_ULT: 2788 case ICmpInst::ICMP_ULE: 2789 return getFalse(ITy); 2790 } 2791 } 2792 2793 // x >> y <=u x 2794 // x udiv y <=u x. 2795 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2796 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2797 // icmp pred (X op Y), X 2798 if (Pred == ICmpInst::ICMP_UGT) 2799 return getFalse(ITy); 2800 if (Pred == ICmpInst::ICMP_ULE) 2801 return getTrue(ITy); 2802 } 2803 2804 // handle: 2805 // CI2 << X == CI 2806 // CI2 << X != CI 2807 // 2808 // where CI2 is a power of 2 and CI isn't 2809 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2810 const APInt *CI2Val, *CIVal = &CI->getValue(); 2811 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2812 CI2Val->isPowerOf2()) { 2813 if (!CIVal->isPowerOf2()) { 2814 // CI2 << X can equal zero in some circumstances, 2815 // this simplification is unsafe if CI is zero. 2816 // 2817 // We know it is safe if: 2818 // - The shift is nsw, we can't shift out the one bit. 2819 // - The shift is nuw, we can't shift out the one bit. 2820 // - CI2 is one 2821 // - CI isn't zero 2822 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2823 *CI2Val == 1 || !CI->isZero()) { 2824 if (Pred == ICmpInst::ICMP_EQ) 2825 return ConstantInt::getFalse(RHS->getContext()); 2826 if (Pred == ICmpInst::ICMP_NE) 2827 return ConstantInt::getTrue(RHS->getContext()); 2828 } 2829 } 2830 if (CIVal->isSignBit() && *CI2Val == 1) { 2831 if (Pred == ICmpInst::ICMP_UGT) 2832 return ConstantInt::getFalse(RHS->getContext()); 2833 if (Pred == ICmpInst::ICMP_ULE) 2834 return ConstantInt::getTrue(RHS->getContext()); 2835 } 2836 } 2837 } 2838 2839 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2840 LBO->getOperand(1) == RBO->getOperand(1)) { 2841 switch (LBO->getOpcode()) { 2842 default: break; 2843 case Instruction::UDiv: 2844 case Instruction::LShr: 2845 if (ICmpInst::isSigned(Pred)) 2846 break; 2847 // fall-through 2848 case Instruction::SDiv: 2849 case Instruction::AShr: 2850 if (!LBO->isExact() || !RBO->isExact()) 2851 break; 2852 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2853 RBO->getOperand(0), Q, MaxRecurse-1)) 2854 return V; 2855 break; 2856 case Instruction::Shl: { 2857 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2858 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2859 if (!NUW && !NSW) 2860 break; 2861 if (!NSW && ICmpInst::isSigned(Pred)) 2862 break; 2863 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2864 RBO->getOperand(0), Q, MaxRecurse-1)) 2865 return V; 2866 break; 2867 } 2868 } 2869 } 2870 2871 // Simplify comparisons involving max/min. 2872 Value *A, *B; 2873 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2874 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2875 2876 // Signed variants on "max(a,b)>=a -> true". 2877 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2878 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2879 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2880 // We analyze this as smax(A, B) pred A. 2881 P = Pred; 2882 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2883 (A == LHS || B == LHS)) { 2884 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2885 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2886 // We analyze this as smax(A, B) swapped-pred A. 2887 P = CmpInst::getSwappedPredicate(Pred); 2888 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2889 (A == RHS || B == RHS)) { 2890 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2891 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2892 // We analyze this as smax(-A, -B) swapped-pred -A. 2893 // Note that we do not need to actually form -A or -B thanks to EqP. 2894 P = CmpInst::getSwappedPredicate(Pred); 2895 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2896 (A == LHS || B == LHS)) { 2897 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2898 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2899 // We analyze this as smax(-A, -B) pred -A. 2900 // Note that we do not need to actually form -A or -B thanks to EqP. 2901 P = Pred; 2902 } 2903 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2904 // Cases correspond to "max(A, B) p A". 2905 switch (P) { 2906 default: 2907 break; 2908 case CmpInst::ICMP_EQ: 2909 case CmpInst::ICMP_SLE: 2910 // Equivalent to "A EqP B". This may be the same as the condition tested 2911 // in the max/min; if so, we can just return that. 2912 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2913 return V; 2914 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2915 return V; 2916 // Otherwise, see if "A EqP B" simplifies. 2917 if (MaxRecurse) 2918 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2919 return V; 2920 break; 2921 case CmpInst::ICMP_NE: 2922 case CmpInst::ICMP_SGT: { 2923 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2924 // Equivalent to "A InvEqP B". This may be the same as the condition 2925 // tested in the max/min; if so, we can just return that. 2926 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2927 return V; 2928 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2929 return V; 2930 // Otherwise, see if "A InvEqP B" simplifies. 2931 if (MaxRecurse) 2932 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2933 return V; 2934 break; 2935 } 2936 case CmpInst::ICMP_SGE: 2937 // Always true. 2938 return getTrue(ITy); 2939 case CmpInst::ICMP_SLT: 2940 // Always false. 2941 return getFalse(ITy); 2942 } 2943 } 2944 2945 // Unsigned variants on "max(a,b)>=a -> true". 2946 P = CmpInst::BAD_ICMP_PREDICATE; 2947 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2948 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2949 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2950 // We analyze this as umax(A, B) pred A. 2951 P = Pred; 2952 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2953 (A == LHS || B == LHS)) { 2954 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2955 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2956 // We analyze this as umax(A, B) swapped-pred A. 2957 P = CmpInst::getSwappedPredicate(Pred); 2958 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2959 (A == RHS || B == RHS)) { 2960 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2961 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2962 // We analyze this as umax(-A, -B) swapped-pred -A. 2963 // Note that we do not need to actually form -A or -B thanks to EqP. 2964 P = CmpInst::getSwappedPredicate(Pred); 2965 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2966 (A == LHS || B == LHS)) { 2967 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2968 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2969 // We analyze this as umax(-A, -B) pred -A. 2970 // Note that we do not need to actually form -A or -B thanks to EqP. 2971 P = Pred; 2972 } 2973 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2974 // Cases correspond to "max(A, B) p A". 2975 switch (P) { 2976 default: 2977 break; 2978 case CmpInst::ICMP_EQ: 2979 case CmpInst::ICMP_ULE: 2980 // Equivalent to "A EqP B". This may be the same as the condition tested 2981 // in the max/min; if so, we can just return that. 2982 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2983 return V; 2984 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2985 return V; 2986 // Otherwise, see if "A EqP B" simplifies. 2987 if (MaxRecurse) 2988 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2989 return V; 2990 break; 2991 case CmpInst::ICMP_NE: 2992 case CmpInst::ICMP_UGT: { 2993 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2994 // Equivalent to "A InvEqP B". This may be the same as the condition 2995 // tested in the max/min; if so, we can just return that. 2996 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2997 return V; 2998 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2999 return V; 3000 // Otherwise, see if "A InvEqP B" simplifies. 3001 if (MaxRecurse) 3002 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3003 return V; 3004 break; 3005 } 3006 case CmpInst::ICMP_UGE: 3007 // Always true. 3008 return getTrue(ITy); 3009 case CmpInst::ICMP_ULT: 3010 // Always false. 3011 return getFalse(ITy); 3012 } 3013 } 3014 3015 // Variants on "max(x,y) >= min(x,z)". 3016 Value *C, *D; 3017 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3018 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3019 (A == C || A == D || B == C || B == D)) { 3020 // max(x, ?) pred min(x, ?). 3021 if (Pred == CmpInst::ICMP_SGE) 3022 // Always true. 3023 return getTrue(ITy); 3024 if (Pred == CmpInst::ICMP_SLT) 3025 // Always false. 3026 return getFalse(ITy); 3027 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3028 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3029 (A == C || A == D || B == C || B == D)) { 3030 // min(x, ?) pred max(x, ?). 3031 if (Pred == CmpInst::ICMP_SLE) 3032 // Always true. 3033 return getTrue(ITy); 3034 if (Pred == CmpInst::ICMP_SGT) 3035 // Always false. 3036 return getFalse(ITy); 3037 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3038 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3039 (A == C || A == D || B == C || B == D)) { 3040 // max(x, ?) pred min(x, ?). 3041 if (Pred == CmpInst::ICMP_UGE) 3042 // Always true. 3043 return getTrue(ITy); 3044 if (Pred == CmpInst::ICMP_ULT) 3045 // Always false. 3046 return getFalse(ITy); 3047 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3048 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3049 (A == C || A == D || B == C || B == D)) { 3050 // min(x, ?) pred max(x, ?). 3051 if (Pred == CmpInst::ICMP_ULE) 3052 // Always true. 3053 return getTrue(ITy); 3054 if (Pred == CmpInst::ICMP_UGT) 3055 // Always false. 3056 return getFalse(ITy); 3057 } 3058 3059 // Simplify comparisons of related pointers using a powerful, recursive 3060 // GEP-walk when we have target data available.. 3061 if (LHS->getType()->isPointerTy()) 3062 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3063 return C; 3064 3065 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3066 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3067 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3068 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3069 (ICmpInst::isEquality(Pred) || 3070 (GLHS->isInBounds() && GRHS->isInBounds() && 3071 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3072 // The bases are equal and the indices are constant. Build a constant 3073 // expression GEP with the same indices and a null base pointer to see 3074 // what constant folding can make out of it. 3075 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3076 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3077 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3078 GLHS->getSourceElementType(), Null, IndicesLHS); 3079 3080 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3081 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3082 GLHS->getSourceElementType(), Null, IndicesRHS); 3083 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3084 } 3085 } 3086 } 3087 3088 // If a bit is known to be zero for A and known to be one for B, 3089 // then A and B cannot be equal. 3090 if (ICmpInst::isEquality(Pred)) { 3091 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3092 uint32_t BitWidth = CI->getBitWidth(); 3093 APInt LHSKnownZero(BitWidth, 0); 3094 APInt LHSKnownOne(BitWidth, 0); 3095 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3096 Q.CxtI, Q.DT); 3097 const APInt &RHSVal = CI->getValue(); 3098 if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) 3099 return Pred == ICmpInst::ICMP_EQ 3100 ? ConstantInt::getFalse(CI->getContext()) 3101 : ConstantInt::getTrue(CI->getContext()); 3102 } 3103 } 3104 3105 // If the comparison is with the result of a select instruction, check whether 3106 // comparing with either branch of the select always yields the same value. 3107 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3108 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3109 return V; 3110 3111 // If the comparison is with the result of a phi instruction, check whether 3112 // doing the compare with each incoming phi value yields a common result. 3113 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3114 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3115 return V; 3116 3117 return nullptr; 3118 } 3119 3120 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3121 const DataLayout &DL, 3122 const TargetLibraryInfo *TLI, 3123 const DominatorTree *DT, AssumptionCache *AC, 3124 const Instruction *CxtI) { 3125 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3126 RecursionLimit); 3127 } 3128 3129 /// Given operands for an FCmpInst, see if we can fold the result. 3130 /// If not, this returns null. 3131 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3132 FastMathFlags FMF, const Query &Q, 3133 unsigned MaxRecurse) { 3134 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3135 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3136 3137 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3138 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3139 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3140 3141 // If we have a constant, make sure it is on the RHS. 3142 std::swap(LHS, RHS); 3143 Pred = CmpInst::getSwappedPredicate(Pred); 3144 } 3145 3146 // Fold trivial predicates. 3147 if (Pred == FCmpInst::FCMP_FALSE) 3148 return ConstantInt::get(GetCompareTy(LHS), 0); 3149 if (Pred == FCmpInst::FCMP_TRUE) 3150 return ConstantInt::get(GetCompareTy(LHS), 1); 3151 3152 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3153 if (FMF.noNaNs()) { 3154 if (Pred == FCmpInst::FCMP_UNO) 3155 return ConstantInt::get(GetCompareTy(LHS), 0); 3156 if (Pred == FCmpInst::FCMP_ORD) 3157 return ConstantInt::get(GetCompareTy(LHS), 1); 3158 } 3159 3160 // fcmp pred x, undef and fcmp pred undef, x 3161 // fold to true if unordered, false if ordered 3162 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3163 // Choosing NaN for the undef will always make unordered comparison succeed 3164 // and ordered comparison fail. 3165 return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred)); 3166 } 3167 3168 // fcmp x,x -> true/false. Not all compares are foldable. 3169 if (LHS == RHS) { 3170 if (CmpInst::isTrueWhenEqual(Pred)) 3171 return ConstantInt::get(GetCompareTy(LHS), 1); 3172 if (CmpInst::isFalseWhenEqual(Pred)) 3173 return ConstantInt::get(GetCompareTy(LHS), 0); 3174 } 3175 3176 // Handle fcmp with constant RHS 3177 const ConstantFP *CFP = nullptr; 3178 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3179 if (RHS->getType()->isVectorTy()) 3180 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3181 else 3182 CFP = dyn_cast<ConstantFP>(RHSC); 3183 } 3184 if (CFP) { 3185 // If the constant is a nan, see if we can fold the comparison based on it. 3186 if (CFP->getValueAPF().isNaN()) { 3187 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3188 return ConstantInt::getFalse(CFP->getContext()); 3189 assert(FCmpInst::isUnordered(Pred) && 3190 "Comparison must be either ordered or unordered!"); 3191 // True if unordered. 3192 return ConstantInt::get(GetCompareTy(LHS), 1); 3193 } 3194 // Check whether the constant is an infinity. 3195 if (CFP->getValueAPF().isInfinity()) { 3196 if (CFP->getValueAPF().isNegative()) { 3197 switch (Pred) { 3198 case FCmpInst::FCMP_OLT: 3199 // No value is ordered and less than negative infinity. 3200 return ConstantInt::get(GetCompareTy(LHS), 0); 3201 case FCmpInst::FCMP_UGE: 3202 // All values are unordered with or at least negative infinity. 3203 return ConstantInt::get(GetCompareTy(LHS), 1); 3204 default: 3205 break; 3206 } 3207 } else { 3208 switch (Pred) { 3209 case FCmpInst::FCMP_OGT: 3210 // No value is ordered and greater than infinity. 3211 return ConstantInt::get(GetCompareTy(LHS), 0); 3212 case FCmpInst::FCMP_ULE: 3213 // All values are unordered with and at most infinity. 3214 return ConstantInt::get(GetCompareTy(LHS), 1); 3215 default: 3216 break; 3217 } 3218 } 3219 } 3220 if (CFP->getValueAPF().isZero()) { 3221 switch (Pred) { 3222 case FCmpInst::FCMP_UGE: 3223 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3224 return ConstantInt::get(GetCompareTy(LHS), 1); 3225 break; 3226 case FCmpInst::FCMP_OLT: 3227 // X < 0 3228 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3229 return ConstantInt::get(GetCompareTy(LHS), 0); 3230 break; 3231 default: 3232 break; 3233 } 3234 } 3235 } 3236 3237 // If the comparison is with the result of a select instruction, check whether 3238 // comparing with either branch of the select always yields the same value. 3239 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3240 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3241 return V; 3242 3243 // If the comparison is with the result of a phi instruction, check whether 3244 // doing the compare with each incoming phi value yields a common result. 3245 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3246 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3247 return V; 3248 3249 return nullptr; 3250 } 3251 3252 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3253 FastMathFlags FMF, const DataLayout &DL, 3254 const TargetLibraryInfo *TLI, 3255 const DominatorTree *DT, AssumptionCache *AC, 3256 const Instruction *CxtI) { 3257 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3258 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3259 } 3260 3261 /// See if V simplifies when its operand Op is replaced with RepOp. 3262 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3263 const Query &Q, 3264 unsigned MaxRecurse) { 3265 // Trivial replacement. 3266 if (V == Op) 3267 return RepOp; 3268 3269 auto *I = dyn_cast<Instruction>(V); 3270 if (!I) 3271 return nullptr; 3272 3273 // If this is a binary operator, try to simplify it with the replaced op. 3274 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3275 // Consider: 3276 // %cmp = icmp eq i32 %x, 2147483647 3277 // %add = add nsw i32 %x, 1 3278 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3279 // 3280 // We can't replace %sel with %add unless we strip away the flags. 3281 if (isa<OverflowingBinaryOperator>(B)) 3282 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3283 return nullptr; 3284 if (isa<PossiblyExactOperator>(B)) 3285 if (B->isExact()) 3286 return nullptr; 3287 3288 if (MaxRecurse) { 3289 if (B->getOperand(0) == Op) 3290 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3291 MaxRecurse - 1); 3292 if (B->getOperand(1) == Op) 3293 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3294 MaxRecurse - 1); 3295 } 3296 } 3297 3298 // Same for CmpInsts. 3299 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3300 if (MaxRecurse) { 3301 if (C->getOperand(0) == Op) 3302 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3303 MaxRecurse - 1); 3304 if (C->getOperand(1) == Op) 3305 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3306 MaxRecurse - 1); 3307 } 3308 } 3309 3310 // TODO: We could hand off more cases to instsimplify here. 3311 3312 // If all operands are constant after substituting Op for RepOp then we can 3313 // constant fold the instruction. 3314 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3315 // Build a list of all constant operands. 3316 SmallVector<Constant *, 8> ConstOps; 3317 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3318 if (I->getOperand(i) == Op) 3319 ConstOps.push_back(CRepOp); 3320 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3321 ConstOps.push_back(COp); 3322 else 3323 break; 3324 } 3325 3326 // All operands were constants, fold it. 3327 if (ConstOps.size() == I->getNumOperands()) { 3328 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3329 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3330 ConstOps[1], Q.DL, Q.TLI); 3331 3332 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3333 if (!LI->isVolatile()) 3334 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3335 3336 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3337 } 3338 } 3339 3340 return nullptr; 3341 } 3342 3343 /// Given operands for a SelectInst, see if we can fold the result. 3344 /// If not, this returns null. 3345 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3346 Value *FalseVal, const Query &Q, 3347 unsigned MaxRecurse) { 3348 // select true, X, Y -> X 3349 // select false, X, Y -> Y 3350 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3351 if (CB->isAllOnesValue()) 3352 return TrueVal; 3353 if (CB->isNullValue()) 3354 return FalseVal; 3355 } 3356 3357 // select C, X, X -> X 3358 if (TrueVal == FalseVal) 3359 return TrueVal; 3360 3361 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3362 if (isa<Constant>(TrueVal)) 3363 return TrueVal; 3364 return FalseVal; 3365 } 3366 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3367 return FalseVal; 3368 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3369 return TrueVal; 3370 3371 if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) { 3372 unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType()); 3373 ICmpInst::Predicate Pred = ICI->getPredicate(); 3374 Value *CmpLHS = ICI->getOperand(0); 3375 Value *CmpRHS = ICI->getOperand(1); 3376 APInt MinSignedValue = APInt::getSignBit(BitWidth); 3377 Value *X; 3378 const APInt *Y; 3379 bool TrueWhenUnset; 3380 bool IsBitTest = false; 3381 if (ICmpInst::isEquality(Pred) && 3382 match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) && 3383 match(CmpRHS, m_Zero())) { 3384 IsBitTest = true; 3385 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 3386 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3387 X = CmpLHS; 3388 Y = &MinSignedValue; 3389 IsBitTest = true; 3390 TrueWhenUnset = false; 3391 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3392 X = CmpLHS; 3393 Y = &MinSignedValue; 3394 IsBitTest = true; 3395 TrueWhenUnset = true; 3396 } 3397 if (IsBitTest) { 3398 const APInt *C; 3399 // (X & Y) == 0 ? X & ~Y : X --> X 3400 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3401 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3402 *Y == ~*C) 3403 return TrueWhenUnset ? FalseVal : TrueVal; 3404 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3405 // (X & Y) != 0 ? X : X & ~Y --> X 3406 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3407 *Y == ~*C) 3408 return TrueWhenUnset ? FalseVal : TrueVal; 3409 3410 if (Y->isPowerOf2()) { 3411 // (X & Y) == 0 ? X | Y : X --> X | Y 3412 // (X & Y) != 0 ? X | Y : X --> X 3413 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3414 *Y == *C) 3415 return TrueWhenUnset ? TrueVal : FalseVal; 3416 // (X & Y) == 0 ? X : X | Y --> X 3417 // (X & Y) != 0 ? X : X | Y --> X | Y 3418 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3419 *Y == *C) 3420 return TrueWhenUnset ? TrueVal : FalseVal; 3421 } 3422 } 3423 if (ICI->hasOneUse()) { 3424 const APInt *C; 3425 if (match(CmpRHS, m_APInt(C))) { 3426 // X < MIN ? T : F --> F 3427 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3428 return FalseVal; 3429 // X < MIN ? T : F --> F 3430 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3431 return FalseVal; 3432 // X > MAX ? T : F --> F 3433 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3434 return FalseVal; 3435 // X > MAX ? T : F --> F 3436 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3437 return FalseVal; 3438 } 3439 } 3440 3441 // If we have an equality comparison then we know the value in one of the 3442 // arms of the select. See if substituting this value into the arm and 3443 // simplifying the result yields the same value as the other arm. 3444 if (Pred == ICmpInst::ICMP_EQ) { 3445 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3446 TrueVal || 3447 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3448 TrueVal) 3449 return FalseVal; 3450 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3451 FalseVal || 3452 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3453 FalseVal) 3454 return FalseVal; 3455 } else if (Pred == ICmpInst::ICMP_NE) { 3456 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3457 FalseVal || 3458 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3459 FalseVal) 3460 return TrueVal; 3461 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3462 TrueVal || 3463 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3464 TrueVal) 3465 return TrueVal; 3466 } 3467 } 3468 3469 return nullptr; 3470 } 3471 3472 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3473 const DataLayout &DL, 3474 const TargetLibraryInfo *TLI, 3475 const DominatorTree *DT, AssumptionCache *AC, 3476 const Instruction *CxtI) { 3477 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3478 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3479 } 3480 3481 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3482 /// If not, this returns null. 3483 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3484 const Query &Q, unsigned) { 3485 // The type of the GEP pointer operand. 3486 unsigned AS = 3487 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3488 3489 // getelementptr P -> P. 3490 if (Ops.size() == 1) 3491 return Ops[0]; 3492 3493 // Compute the (pointer) type returned by the GEP instruction. 3494 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3495 Type *GEPTy = PointerType::get(LastType, AS); 3496 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3497 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3498 3499 if (isa<UndefValue>(Ops[0])) 3500 return UndefValue::get(GEPTy); 3501 3502 if (Ops.size() == 2) { 3503 // getelementptr P, 0 -> P. 3504 if (match(Ops[1], m_Zero())) 3505 return Ops[0]; 3506 3507 Type *Ty = SrcTy; 3508 if (Ty->isSized()) { 3509 Value *P; 3510 uint64_t C; 3511 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3512 // getelementptr P, N -> P if P points to a type of zero size. 3513 if (TyAllocSize == 0) 3514 return Ops[0]; 3515 3516 // The following transforms are only safe if the ptrtoint cast 3517 // doesn't truncate the pointers. 3518 if (Ops[1]->getType()->getScalarSizeInBits() == 3519 Q.DL.getPointerSizeInBits(AS)) { 3520 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3521 if (match(P, m_Zero())) 3522 return Constant::getNullValue(GEPTy); 3523 Value *Temp; 3524 if (match(P, m_PtrToInt(m_Value(Temp)))) 3525 if (Temp->getType() == GEPTy) 3526 return Temp; 3527 return nullptr; 3528 }; 3529 3530 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3531 if (TyAllocSize == 1 && 3532 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3533 if (Value *R = PtrToIntOrZero(P)) 3534 return R; 3535 3536 // getelementptr V, (ashr (sub P, V), C) -> Q 3537 // if P points to a type of size 1 << C. 3538 if (match(Ops[1], 3539 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3540 m_ConstantInt(C))) && 3541 TyAllocSize == 1ULL << C) 3542 if (Value *R = PtrToIntOrZero(P)) 3543 return R; 3544 3545 // getelementptr V, (sdiv (sub P, V), C) -> Q 3546 // if P points to a type of size C. 3547 if (match(Ops[1], 3548 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3549 m_SpecificInt(TyAllocSize)))) 3550 if (Value *R = PtrToIntOrZero(P)) 3551 return R; 3552 } 3553 } 3554 } 3555 3556 // Check to see if this is constant foldable. 3557 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3558 if (!isa<Constant>(Ops[i])) 3559 return nullptr; 3560 3561 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3562 Ops.slice(1)); 3563 } 3564 3565 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3566 const DataLayout &DL, 3567 const TargetLibraryInfo *TLI, 3568 const DominatorTree *DT, AssumptionCache *AC, 3569 const Instruction *CxtI) { 3570 return ::SimplifyGEPInst(SrcTy, Ops, 3571 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3572 } 3573 3574 /// Given operands for an InsertValueInst, see if we can fold the result. 3575 /// If not, this returns null. 3576 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3577 ArrayRef<unsigned> Idxs, const Query &Q, 3578 unsigned) { 3579 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3580 if (Constant *CVal = dyn_cast<Constant>(Val)) 3581 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3582 3583 // insertvalue x, undef, n -> x 3584 if (match(Val, m_Undef())) 3585 return Agg; 3586 3587 // insertvalue x, (extractvalue y, n), n 3588 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3589 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3590 EV->getIndices() == Idxs) { 3591 // insertvalue undef, (extractvalue y, n), n -> y 3592 if (match(Agg, m_Undef())) 3593 return EV->getAggregateOperand(); 3594 3595 // insertvalue y, (extractvalue y, n), n -> y 3596 if (Agg == EV->getAggregateOperand()) 3597 return Agg; 3598 } 3599 3600 return nullptr; 3601 } 3602 3603 Value *llvm::SimplifyInsertValueInst( 3604 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3605 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3606 const Instruction *CxtI) { 3607 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3608 RecursionLimit); 3609 } 3610 3611 /// Given operands for an ExtractValueInst, see if we can fold the result. 3612 /// If not, this returns null. 3613 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3614 const Query &, unsigned) { 3615 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3616 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3617 3618 // extractvalue x, (insertvalue y, elt, n), n -> elt 3619 unsigned NumIdxs = Idxs.size(); 3620 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3621 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3622 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3623 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3624 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3625 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3626 Idxs.slice(0, NumCommonIdxs)) { 3627 if (NumIdxs == NumInsertValueIdxs) 3628 return IVI->getInsertedValueOperand(); 3629 break; 3630 } 3631 } 3632 3633 return nullptr; 3634 } 3635 3636 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3637 const DataLayout &DL, 3638 const TargetLibraryInfo *TLI, 3639 const DominatorTree *DT, 3640 AssumptionCache *AC, 3641 const Instruction *CxtI) { 3642 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3643 RecursionLimit); 3644 } 3645 3646 /// Given operands for an ExtractElementInst, see if we can fold the result. 3647 /// If not, this returns null. 3648 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3649 unsigned) { 3650 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3651 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3652 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3653 3654 // The index is not relevant if our vector is a splat. 3655 if (auto *Splat = CVec->getSplatValue()) 3656 return Splat; 3657 3658 if (isa<UndefValue>(Vec)) 3659 return UndefValue::get(Vec->getType()->getVectorElementType()); 3660 } 3661 3662 // If extracting a specified index from the vector, see if we can recursively 3663 // find a previously computed scalar that was inserted into the vector. 3664 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3665 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3666 return Elt; 3667 3668 return nullptr; 3669 } 3670 3671 Value *llvm::SimplifyExtractElementInst( 3672 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3673 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3674 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3675 RecursionLimit); 3676 } 3677 3678 /// See if we can fold the given phi. If not, returns null. 3679 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3680 // If all of the PHI's incoming values are the same then replace the PHI node 3681 // with the common value. 3682 Value *CommonValue = nullptr; 3683 bool HasUndefInput = false; 3684 for (Value *Incoming : PN->incoming_values()) { 3685 // If the incoming value is the phi node itself, it can safely be skipped. 3686 if (Incoming == PN) continue; 3687 if (isa<UndefValue>(Incoming)) { 3688 // Remember that we saw an undef value, but otherwise ignore them. 3689 HasUndefInput = true; 3690 continue; 3691 } 3692 if (CommonValue && Incoming != CommonValue) 3693 return nullptr; // Not the same, bail out. 3694 CommonValue = Incoming; 3695 } 3696 3697 // If CommonValue is null then all of the incoming values were either undef or 3698 // equal to the phi node itself. 3699 if (!CommonValue) 3700 return UndefValue::get(PN->getType()); 3701 3702 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3703 // instruction, we cannot return X as the result of the PHI node unless it 3704 // dominates the PHI block. 3705 if (HasUndefInput) 3706 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3707 3708 return CommonValue; 3709 } 3710 3711 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 3712 if (Constant *C = dyn_cast<Constant>(Op)) 3713 return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL); 3714 3715 return nullptr; 3716 } 3717 3718 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL, 3719 const TargetLibraryInfo *TLI, 3720 const DominatorTree *DT, AssumptionCache *AC, 3721 const Instruction *CxtI) { 3722 return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3723 RecursionLimit); 3724 } 3725 3726 //=== Helper functions for higher up the class hierarchy. 3727 3728 /// Given operands for a BinaryOperator, see if we can fold the result. 3729 /// If not, this returns null. 3730 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3731 const Query &Q, unsigned MaxRecurse) { 3732 switch (Opcode) { 3733 case Instruction::Add: 3734 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3735 Q, MaxRecurse); 3736 case Instruction::FAdd: 3737 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3738 3739 case Instruction::Sub: 3740 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3741 Q, MaxRecurse); 3742 case Instruction::FSub: 3743 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3744 3745 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3746 case Instruction::FMul: 3747 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3748 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3749 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3750 case Instruction::FDiv: 3751 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3752 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3753 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3754 case Instruction::FRem: 3755 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3756 case Instruction::Shl: 3757 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3758 Q, MaxRecurse); 3759 case Instruction::LShr: 3760 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3761 case Instruction::AShr: 3762 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3763 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3764 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3765 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3766 default: 3767 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3768 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3769 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3770 3771 // If the operation is associative, try some generic simplifications. 3772 if (Instruction::isAssociative(Opcode)) 3773 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3774 return V; 3775 3776 // If the operation is with the result of a select instruction check whether 3777 // operating on either branch of the select always yields the same value. 3778 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3779 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3780 return V; 3781 3782 // If the operation is with the result of a phi instruction, check whether 3783 // operating on all incoming values of the phi always yields the same value. 3784 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3785 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3786 return V; 3787 3788 return nullptr; 3789 } 3790 } 3791 3792 /// Given operands for a BinaryOperator, see if we can fold the result. 3793 /// If not, this returns null. 3794 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3795 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3796 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3797 const FastMathFlags &FMF, const Query &Q, 3798 unsigned MaxRecurse) { 3799 switch (Opcode) { 3800 case Instruction::FAdd: 3801 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3802 case Instruction::FSub: 3803 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3804 case Instruction::FMul: 3805 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3806 default: 3807 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3808 } 3809 } 3810 3811 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3812 const DataLayout &DL, const TargetLibraryInfo *TLI, 3813 const DominatorTree *DT, AssumptionCache *AC, 3814 const Instruction *CxtI) { 3815 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3816 RecursionLimit); 3817 } 3818 3819 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3820 const FastMathFlags &FMF, const DataLayout &DL, 3821 const TargetLibraryInfo *TLI, 3822 const DominatorTree *DT, AssumptionCache *AC, 3823 const Instruction *CxtI) { 3824 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3825 RecursionLimit); 3826 } 3827 3828 /// Given operands for a CmpInst, see if we can fold the result. 3829 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3830 const Query &Q, unsigned MaxRecurse) { 3831 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3832 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3833 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3834 } 3835 3836 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3837 const DataLayout &DL, const TargetLibraryInfo *TLI, 3838 const DominatorTree *DT, AssumptionCache *AC, 3839 const Instruction *CxtI) { 3840 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3841 RecursionLimit); 3842 } 3843 3844 static bool IsIdempotent(Intrinsic::ID ID) { 3845 switch (ID) { 3846 default: return false; 3847 3848 // Unary idempotent: f(f(x)) = f(x) 3849 case Intrinsic::fabs: 3850 case Intrinsic::floor: 3851 case Intrinsic::ceil: 3852 case Intrinsic::trunc: 3853 case Intrinsic::rint: 3854 case Intrinsic::nearbyint: 3855 case Intrinsic::round: 3856 return true; 3857 } 3858 } 3859 3860 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 3861 const DataLayout &DL) { 3862 GlobalValue *PtrSym; 3863 APInt PtrOffset; 3864 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 3865 return nullptr; 3866 3867 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 3868 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 3869 Type *Int32PtrTy = Int32Ty->getPointerTo(); 3870 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 3871 3872 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 3873 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 3874 return nullptr; 3875 3876 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 3877 if (OffsetInt % 4 != 0) 3878 return nullptr; 3879 3880 Constant *C = ConstantExpr::getGetElementPtr( 3881 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 3882 ConstantInt::get(Int64Ty, OffsetInt / 4)); 3883 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 3884 if (!Loaded) 3885 return nullptr; 3886 3887 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 3888 if (!LoadedCE) 3889 return nullptr; 3890 3891 if (LoadedCE->getOpcode() == Instruction::Trunc) { 3892 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 3893 if (!LoadedCE) 3894 return nullptr; 3895 } 3896 3897 if (LoadedCE->getOpcode() != Instruction::Sub) 3898 return nullptr; 3899 3900 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 3901 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 3902 return nullptr; 3903 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 3904 3905 Constant *LoadedRHS = LoadedCE->getOperand(1); 3906 GlobalValue *LoadedRHSSym; 3907 APInt LoadedRHSOffset; 3908 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 3909 DL) || 3910 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 3911 return nullptr; 3912 3913 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 3914 } 3915 3916 template <typename IterTy> 3917 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 3918 const Query &Q, unsigned MaxRecurse) { 3919 Intrinsic::ID IID = F->getIntrinsicID(); 3920 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 3921 Type *ReturnType = F->getReturnType(); 3922 3923 // Binary Ops 3924 if (NumOperands == 2) { 3925 Value *LHS = *ArgBegin; 3926 Value *RHS = *(ArgBegin + 1); 3927 if (IID == Intrinsic::usub_with_overflow || 3928 IID == Intrinsic::ssub_with_overflow) { 3929 // X - X -> { 0, false } 3930 if (LHS == RHS) 3931 return Constant::getNullValue(ReturnType); 3932 3933 // X - undef -> undef 3934 // undef - X -> undef 3935 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 3936 return UndefValue::get(ReturnType); 3937 } 3938 3939 if (IID == Intrinsic::uadd_with_overflow || 3940 IID == Intrinsic::sadd_with_overflow) { 3941 // X + undef -> undef 3942 if (isa<UndefValue>(RHS)) 3943 return UndefValue::get(ReturnType); 3944 } 3945 3946 if (IID == Intrinsic::umul_with_overflow || 3947 IID == Intrinsic::smul_with_overflow) { 3948 // X * 0 -> { 0, false } 3949 if (match(RHS, m_Zero())) 3950 return Constant::getNullValue(ReturnType); 3951 3952 // X * undef -> { 0, false } 3953 if (match(RHS, m_Undef())) 3954 return Constant::getNullValue(ReturnType); 3955 } 3956 3957 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 3958 isa<Constant>(RHS)) 3959 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 3960 Q.DL); 3961 } 3962 3963 // Perform idempotent optimizations 3964 if (!IsIdempotent(IID)) 3965 return nullptr; 3966 3967 // Unary Ops 3968 if (NumOperands == 1) 3969 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 3970 if (II->getIntrinsicID() == IID) 3971 return II; 3972 3973 return nullptr; 3974 } 3975 3976 template <typename IterTy> 3977 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 3978 const Query &Q, unsigned MaxRecurse) { 3979 Type *Ty = V->getType(); 3980 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 3981 Ty = PTy->getElementType(); 3982 FunctionType *FTy = cast<FunctionType>(Ty); 3983 3984 // call undef -> undef 3985 if (isa<UndefValue>(V)) 3986 return UndefValue::get(FTy->getReturnType()); 3987 3988 Function *F = dyn_cast<Function>(V); 3989 if (!F) 3990 return nullptr; 3991 3992 if (F->isIntrinsic()) 3993 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 3994 return Ret; 3995 3996 if (!canConstantFoldCallTo(F)) 3997 return nullptr; 3998 3999 SmallVector<Constant *, 4> ConstantArgs; 4000 ConstantArgs.reserve(ArgEnd - ArgBegin); 4001 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4002 Constant *C = dyn_cast<Constant>(*I); 4003 if (!C) 4004 return nullptr; 4005 ConstantArgs.push_back(C); 4006 } 4007 4008 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4009 } 4010 4011 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4012 User::op_iterator ArgEnd, const DataLayout &DL, 4013 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4014 AssumptionCache *AC, const Instruction *CxtI) { 4015 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4016 RecursionLimit); 4017 } 4018 4019 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4020 const DataLayout &DL, const TargetLibraryInfo *TLI, 4021 const DominatorTree *DT, AssumptionCache *AC, 4022 const Instruction *CxtI) { 4023 return ::SimplifyCall(V, Args.begin(), Args.end(), 4024 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4025 } 4026 4027 /// See if we can compute a simplified version of this instruction. 4028 /// If not, this returns null. 4029 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4030 const TargetLibraryInfo *TLI, 4031 const DominatorTree *DT, AssumptionCache *AC) { 4032 Value *Result; 4033 4034 switch (I->getOpcode()) { 4035 default: 4036 Result = ConstantFoldInstruction(I, DL, TLI); 4037 break; 4038 case Instruction::FAdd: 4039 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4040 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4041 break; 4042 case Instruction::Add: 4043 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4044 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4045 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4046 TLI, DT, AC, I); 4047 break; 4048 case Instruction::FSub: 4049 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4050 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4051 break; 4052 case Instruction::Sub: 4053 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4054 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4055 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4056 TLI, DT, AC, I); 4057 break; 4058 case Instruction::FMul: 4059 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4060 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4061 break; 4062 case Instruction::Mul: 4063 Result = 4064 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4065 break; 4066 case Instruction::SDiv: 4067 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4068 AC, I); 4069 break; 4070 case Instruction::UDiv: 4071 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4072 AC, I); 4073 break; 4074 case Instruction::FDiv: 4075 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4076 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4077 break; 4078 case Instruction::SRem: 4079 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4080 AC, I); 4081 break; 4082 case Instruction::URem: 4083 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4084 AC, I); 4085 break; 4086 case Instruction::FRem: 4087 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4088 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4089 break; 4090 case Instruction::Shl: 4091 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4092 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4093 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4094 TLI, DT, AC, I); 4095 break; 4096 case Instruction::LShr: 4097 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4098 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4099 AC, I); 4100 break; 4101 case Instruction::AShr: 4102 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4103 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4104 AC, I); 4105 break; 4106 case Instruction::And: 4107 Result = 4108 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4109 break; 4110 case Instruction::Or: 4111 Result = 4112 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4113 break; 4114 case Instruction::Xor: 4115 Result = 4116 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4117 break; 4118 case Instruction::ICmp: 4119 Result = 4120 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4121 I->getOperand(1), DL, TLI, DT, AC, I); 4122 break; 4123 case Instruction::FCmp: 4124 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4125 I->getOperand(0), I->getOperand(1), 4126 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4127 break; 4128 case Instruction::Select: 4129 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4130 I->getOperand(2), DL, TLI, DT, AC, I); 4131 break; 4132 case Instruction::GetElementPtr: { 4133 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4134 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4135 Ops, DL, TLI, DT, AC, I); 4136 break; 4137 } 4138 case Instruction::InsertValue: { 4139 InsertValueInst *IV = cast<InsertValueInst>(I); 4140 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4141 IV->getInsertedValueOperand(), 4142 IV->getIndices(), DL, TLI, DT, AC, I); 4143 break; 4144 } 4145 case Instruction::ExtractValue: { 4146 auto *EVI = cast<ExtractValueInst>(I); 4147 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4148 EVI->getIndices(), DL, TLI, DT, AC, I); 4149 break; 4150 } 4151 case Instruction::ExtractElement: { 4152 auto *EEI = cast<ExtractElementInst>(I); 4153 Result = SimplifyExtractElementInst( 4154 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4155 break; 4156 } 4157 case Instruction::PHI: 4158 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4159 break; 4160 case Instruction::Call: { 4161 CallSite CS(cast<CallInst>(I)); 4162 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4163 TLI, DT, AC, I); 4164 break; 4165 } 4166 case Instruction::Trunc: 4167 Result = 4168 SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I); 4169 break; 4170 } 4171 4172 // In general, it is possible for computeKnownBits to determine all bits in a 4173 // value even when the operands are not all constants. 4174 if (!Result && I->getType()->isIntegerTy()) { 4175 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4176 APInt KnownZero(BitWidth, 0); 4177 APInt KnownOne(BitWidth, 0); 4178 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4179 if ((KnownZero | KnownOne).isAllOnesValue()) 4180 Result = ConstantInt::get(I->getContext(), KnownOne); 4181 } 4182 4183 /// If called on unreachable code, the above logic may report that the 4184 /// instruction simplified to itself. Make life easier for users by 4185 /// detecting that case here, returning a safe value instead. 4186 return Result == I ? UndefValue::get(I->getType()) : Result; 4187 } 4188 4189 /// \brief Implementation of recursive simplification through an instruction's 4190 /// uses. 4191 /// 4192 /// This is the common implementation of the recursive simplification routines. 4193 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4194 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4195 /// instructions to process and attempt to simplify it using 4196 /// InstructionSimplify. 4197 /// 4198 /// This routine returns 'true' only when *it* simplifies something. The passed 4199 /// in simplified value does not count toward this. 4200 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4201 const TargetLibraryInfo *TLI, 4202 const DominatorTree *DT, 4203 AssumptionCache *AC) { 4204 bool Simplified = false; 4205 SmallSetVector<Instruction *, 8> Worklist; 4206 const DataLayout &DL = I->getModule()->getDataLayout(); 4207 4208 // If we have an explicit value to collapse to, do that round of the 4209 // simplification loop by hand initially. 4210 if (SimpleV) { 4211 for (User *U : I->users()) 4212 if (U != I) 4213 Worklist.insert(cast<Instruction>(U)); 4214 4215 // Replace the instruction with its simplified value. 4216 I->replaceAllUsesWith(SimpleV); 4217 4218 // Gracefully handle edge cases where the instruction is not wired into any 4219 // parent block. 4220 if (I->getParent()) 4221 I->eraseFromParent(); 4222 } else { 4223 Worklist.insert(I); 4224 } 4225 4226 // Note that we must test the size on each iteration, the worklist can grow. 4227 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4228 I = Worklist[Idx]; 4229 4230 // See if this instruction simplifies. 4231 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4232 if (!SimpleV) 4233 continue; 4234 4235 Simplified = true; 4236 4237 // Stash away all the uses of the old instruction so we can check them for 4238 // recursive simplifications after a RAUW. This is cheaper than checking all 4239 // uses of To on the recursive step in most cases. 4240 for (User *U : I->users()) 4241 Worklist.insert(cast<Instruction>(U)); 4242 4243 // Replace the instruction with its simplified value. 4244 I->replaceAllUsesWith(SimpleV); 4245 4246 // Gracefully handle edge cases where the instruction is not wired into any 4247 // parent block. 4248 if (I->getParent()) 4249 I->eraseFromParent(); 4250 } 4251 return Simplified; 4252 } 4253 4254 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4255 const TargetLibraryInfo *TLI, 4256 const DominatorTree *DT, 4257 AssumptionCache *AC) { 4258 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4259 } 4260 4261 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4262 const TargetLibraryInfo *TLI, 4263 const DominatorTree *DT, 4264 AssumptionCache *AC) { 4265 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4266 assert(SimpleV && "Must provide a simplified value."); 4267 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4268 } 4269