1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. For example, this does 12 // constant folding, and can handle identities like (X&0)->0. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ConstantFolding.h" 18 #include "llvm/Support/ValueHandle.h" 19 #include "llvm/Instructions.h" 20 #include "llvm/Support/PatternMatch.h" 21 using namespace llvm; 22 using namespace llvm::PatternMatch; 23 24 /// SimplifyAddInst - Given operands for an Add, see if we can 25 /// fold the result. If not, this returns null. 26 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 27 const TargetData *TD) { 28 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 29 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 30 Constant *Ops[] = { CLHS, CRHS }; 31 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), 32 Ops, 2, TD); 33 } 34 35 // Canonicalize the constant to the RHS. 36 std::swap(Op0, Op1); 37 } 38 39 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 40 // X + undef -> undef 41 if (isa<UndefValue>(Op1C)) 42 return Op1C; 43 44 // X + 0 --> X 45 if (Op1C->isNullValue()) 46 return Op0; 47 } 48 49 // FIXME: Could pull several more out of instcombine. 50 return 0; 51 } 52 53 /// SimplifyAndInst - Given operands for an And, see if we can 54 /// fold the result. If not, this returns null. 55 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const TargetData *TD) { 56 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 57 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 58 Constant *Ops[] = { CLHS, CRHS }; 59 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 60 Ops, 2, TD); 61 } 62 63 // Canonicalize the constant to the RHS. 64 std::swap(Op0, Op1); 65 } 66 67 // X & undef -> 0 68 if (isa<UndefValue>(Op1)) 69 return Constant::getNullValue(Op0->getType()); 70 71 // X & X = X 72 if (Op0 == Op1) 73 return Op0; 74 75 // X & <0,0> = <0,0> 76 if (isa<ConstantAggregateZero>(Op1)) 77 return Op1; 78 79 // X & <-1,-1> = X 80 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) 81 if (CP->isAllOnesValue()) 82 return Op0; 83 84 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { 85 // X & 0 = 0 86 if (Op1CI->isZero()) 87 return Op1CI; 88 // X & -1 = X 89 if (Op1CI->isAllOnesValue()) 90 return Op0; 91 } 92 93 // A & ~A = ~A & A = 0 94 Value *A, *B; 95 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || 96 (match(Op1, m_Not(m_Value(A))) && A == Op0)) 97 return Constant::getNullValue(Op0->getType()); 98 99 // (A | ?) & A = A 100 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 101 (A == Op1 || B == Op1)) 102 return Op1; 103 104 // A & (A | ?) = A 105 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 106 (A == Op0 || B == Op0)) 107 return Op0; 108 109 return 0; 110 } 111 112 /// SimplifyOrInst - Given operands for an Or, see if we can 113 /// fold the result. If not, this returns null. 114 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const TargetData *TD) { 115 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 116 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 117 Constant *Ops[] = { CLHS, CRHS }; 118 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 119 Ops, 2, TD); 120 } 121 122 // Canonicalize the constant to the RHS. 123 std::swap(Op0, Op1); 124 } 125 126 // X | undef -> -1 127 if (isa<UndefValue>(Op1)) 128 return Constant::getAllOnesValue(Op0->getType()); 129 130 // X | X = X 131 if (Op0 == Op1) 132 return Op0; 133 134 // X | <0,0> = X 135 if (isa<ConstantAggregateZero>(Op1)) 136 return Op0; 137 138 // X | <-1,-1> = <-1,-1> 139 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) 140 if (CP->isAllOnesValue()) 141 return Op1; 142 143 if (ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1)) { 144 // X | 0 = X 145 if (Op1CI->isZero()) 146 return Op0; 147 // X | -1 = -1 148 if (Op1CI->isAllOnesValue()) 149 return Op1CI; 150 } 151 152 // A | ~A = ~A | A = -1 153 Value *A, *B; 154 if ((match(Op0, m_Not(m_Value(A))) && A == Op1) || 155 (match(Op1, m_Not(m_Value(A))) && A == Op0)) 156 return Constant::getAllOnesValue(Op0->getType()); 157 158 // (A & ?) | A = A 159 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 160 (A == Op1 || B == Op1)) 161 return Op1; 162 163 // A | (A & ?) = A 164 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 165 (A == Op0 || B == Op0)) 166 return Op0; 167 168 return 0; 169 } 170 171 172 static const Type *GetCompareTy(Value *Op) { 173 return CmpInst::makeCmpResultType(Op->getType()); 174 } 175 176 177 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 178 /// fold the result. If not, this returns null. 179 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 180 const TargetData *TD) { 181 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 182 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 183 184 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 185 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 186 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 187 188 // If we have a constant, make sure it is on the RHS. 189 std::swap(LHS, RHS); 190 Pred = CmpInst::getSwappedPredicate(Pred); 191 } 192 193 // ITy - This is the return type of the compare we're considering. 194 const Type *ITy = GetCompareTy(LHS); 195 196 // icmp X, X -> true/false 197 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 198 // because X could be 0. 199 if (LHS == RHS || isa<UndefValue>(RHS)) 200 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 201 202 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value 203 // addresses never equal each other! We already know that Op0 != Op1. 204 if ((isa<GlobalValue>(LHS) || isa<AllocaInst>(LHS) || 205 isa<ConstantPointerNull>(LHS)) && 206 (isa<GlobalValue>(RHS) || isa<AllocaInst>(RHS) || 207 isa<ConstantPointerNull>(RHS))) 208 return ConstantInt::get(ITy, CmpInst::isFalseWhenEqual(Pred)); 209 210 // See if we are doing a comparison with a constant. 211 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 212 // If we have an icmp le or icmp ge instruction, turn it into the 213 // appropriate icmp lt or icmp gt instruction. This allows us to rely on 214 // them being folded in the code below. 215 switch (Pred) { 216 default: break; 217 case ICmpInst::ICMP_ULE: 218 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE 219 return ConstantInt::getTrue(CI->getContext()); 220 break; 221 case ICmpInst::ICMP_SLE: 222 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE 223 return ConstantInt::getTrue(CI->getContext()); 224 break; 225 case ICmpInst::ICMP_UGE: 226 if (CI->isMinValue(false)) // A >=u MIN -> TRUE 227 return ConstantInt::getTrue(CI->getContext()); 228 break; 229 case ICmpInst::ICMP_SGE: 230 if (CI->isMinValue(true)) // A >=s MIN -> TRUE 231 return ConstantInt::getTrue(CI->getContext()); 232 break; 233 } 234 } 235 236 237 return 0; 238 } 239 240 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 241 /// fold the result. If not, this returns null. 242 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 243 const TargetData *TD) { 244 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 245 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 246 247 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 248 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 249 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, TD); 250 251 // If we have a constant, make sure it is on the RHS. 252 std::swap(LHS, RHS); 253 Pred = CmpInst::getSwappedPredicate(Pred); 254 } 255 256 // Fold trivial predicates. 257 if (Pred == FCmpInst::FCMP_FALSE) 258 return ConstantInt::get(GetCompareTy(LHS), 0); 259 if (Pred == FCmpInst::FCMP_TRUE) 260 return ConstantInt::get(GetCompareTy(LHS), 1); 261 262 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 263 return UndefValue::get(GetCompareTy(LHS)); 264 265 // fcmp x,x -> true/false. Not all compares are foldable. 266 if (LHS == RHS) { 267 if (CmpInst::isTrueWhenEqual(Pred)) 268 return ConstantInt::get(GetCompareTy(LHS), 1); 269 if (CmpInst::isFalseWhenEqual(Pred)) 270 return ConstantInt::get(GetCompareTy(LHS), 0); 271 } 272 273 // Handle fcmp with constant RHS 274 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 275 // If the constant is a nan, see if we can fold the comparison based on it. 276 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 277 if (CFP->getValueAPF().isNaN()) { 278 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 279 return ConstantInt::getFalse(CFP->getContext()); 280 assert(FCmpInst::isUnordered(Pred) && 281 "Comparison must be either ordered or unordered!"); 282 // True if unordered. 283 return ConstantInt::getTrue(CFP->getContext()); 284 } 285 // Check whether the constant is an infinity. 286 if (CFP->getValueAPF().isInfinity()) { 287 if (CFP->getValueAPF().isNegative()) { 288 switch (Pred) { 289 case FCmpInst::FCMP_OLT: 290 // No value is ordered and less than negative infinity. 291 return ConstantInt::getFalse(CFP->getContext()); 292 case FCmpInst::FCMP_UGE: 293 // All values are unordered with or at least negative infinity. 294 return ConstantInt::getTrue(CFP->getContext()); 295 default: 296 break; 297 } 298 } else { 299 switch (Pred) { 300 case FCmpInst::FCMP_OGT: 301 // No value is ordered and greater than infinity. 302 return ConstantInt::getFalse(CFP->getContext()); 303 case FCmpInst::FCMP_ULE: 304 // All values are unordered with and at most infinity. 305 return ConstantInt::getTrue(CFP->getContext()); 306 default: 307 break; 308 } 309 } 310 } 311 } 312 } 313 314 return 0; 315 } 316 317 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 318 /// the result. If not, this returns null. 319 Value *llvm::SimplifySelectInst(Value *CondVal, Value *TrueVal, Value *FalseVal, 320 const TargetData *TD) { 321 // select true, X, Y -> X 322 // select false, X, Y -> Y 323 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) 324 return CB->getZExtValue() ? TrueVal : FalseVal; 325 326 // select C, X, X -> X 327 if (TrueVal == FalseVal) 328 return TrueVal; 329 330 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 331 return FalseVal; 332 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 333 return TrueVal; 334 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 335 if (isa<Constant>(TrueVal)) 336 return TrueVal; 337 return FalseVal; 338 } 339 340 341 342 return 0; 343 } 344 345 346 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 347 /// fold the result. If not, this returns null. 348 Value *llvm::SimplifyGEPInst(Value *const *Ops, unsigned NumOps, 349 const TargetData *TD) { 350 // getelementptr P -> P. 351 if (NumOps == 1) 352 return Ops[0]; 353 354 // TODO. 355 //if (isa<UndefValue>(Ops[0])) 356 // return UndefValue::get(GEP.getType()); 357 358 // getelementptr P, 0 -> P. 359 if (NumOps == 2) 360 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) 361 if (C->isZero()) 362 return Ops[0]; 363 364 // Check to see if this is constant foldable. 365 for (unsigned i = 0; i != NumOps; ++i) 366 if (!isa<Constant>(Ops[i])) 367 return 0; 368 369 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), 370 (Constant *const*)Ops+1, NumOps-1); 371 } 372 373 374 //=== Helper functions for higher up the class hierarchy. 375 376 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 377 /// fold the result. If not, this returns null. 378 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 379 const TargetData *TD) { 380 switch (Opcode) { 381 case Instruction::And: return SimplifyAndInst(LHS, RHS, TD); 382 case Instruction::Or: return SimplifyOrInst(LHS, RHS, TD); 383 default: 384 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 385 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 386 Constant *COps[] = {CLHS, CRHS}; 387 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, 2, TD); 388 } 389 return 0; 390 } 391 } 392 393 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 394 /// fold the result. 395 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 396 const TargetData *TD) { 397 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 398 return SimplifyICmpInst(Predicate, LHS, RHS, TD); 399 return SimplifyFCmpInst(Predicate, LHS, RHS, TD); 400 } 401 402 403 /// SimplifyInstruction - See if we can compute a simplified version of this 404 /// instruction. If not, this returns null. 405 Value *llvm::SimplifyInstruction(Instruction *I, const TargetData *TD) { 406 switch (I->getOpcode()) { 407 default: 408 return ConstantFoldInstruction(I, TD); 409 case Instruction::Add: 410 return SimplifyAddInst(I->getOperand(0), I->getOperand(1), 411 cast<BinaryOperator>(I)->hasNoSignedWrap(), 412 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), TD); 413 case Instruction::And: 414 return SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD); 415 case Instruction::Or: 416 return SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD); 417 case Instruction::ICmp: 418 return SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 419 I->getOperand(0), I->getOperand(1), TD); 420 case Instruction::FCmp: 421 return SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 422 I->getOperand(0), I->getOperand(1), TD); 423 case Instruction::Select: 424 return SimplifySelectInst(I->getOperand(0), I->getOperand(1), 425 I->getOperand(2), TD); 426 case Instruction::GetElementPtr: { 427 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 428 return SimplifyGEPInst(&Ops[0], Ops.size(), TD); 429 } 430 } 431 } 432 433 /// ReplaceAndSimplifyAllUses - Perform From->replaceAllUsesWith(To) and then 434 /// delete the From instruction. In addition to a basic RAUW, this does a 435 /// recursive simplification of the newly formed instructions. This catches 436 /// things where one simplification exposes other opportunities. This only 437 /// simplifies and deletes scalar operations, it does not change the CFG. 438 /// 439 void llvm::ReplaceAndSimplifyAllUses(Instruction *From, Value *To, 440 const TargetData *TD) { 441 assert(From != To && "ReplaceAndSimplifyAllUses(X,X) is not valid!"); 442 443 // FromHandle - This keeps a weakvh on the from value so that we can know if 444 // it gets deleted out from under us in a recursive simplification. 445 WeakVH FromHandle(From); 446 447 while (!From->use_empty()) { 448 // Update the instruction to use the new value. 449 Use &U = From->use_begin().getUse(); 450 Instruction *User = cast<Instruction>(U.getUser()); 451 U = To; 452 453 // See if we can simplify it. 454 if (Value *V = SimplifyInstruction(User, TD)) { 455 // Recursively simplify this. 456 ReplaceAndSimplifyAllUses(User, V, TD); 457 458 // If the recursive simplification ended up revisiting and deleting 'From' 459 // then we're done. 460 if (FromHandle == 0) 461 return; 462 } 463 } 464 From->eraseFromParent(); 465 } 466 467