1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 static Value *SimplifySelectInst(Value *, Value *, Value *, 72 const SimplifyQuery &, unsigned); 73 74 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 75 Value *FalseVal) { 76 BinaryOperator::BinaryOps BinOpCode; 77 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 78 BinOpCode = BO->getOpcode(); 79 else 80 return nullptr; 81 82 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 83 if (BinOpCode == BinaryOperator::Or) { 84 ExpectedPred = ICmpInst::ICMP_NE; 85 } else if (BinOpCode == BinaryOperator::And) { 86 ExpectedPred = ICmpInst::ICMP_EQ; 87 } else 88 return nullptr; 89 90 // %A = icmp eq %TV, %FV 91 // %B = icmp eq %X, %Y (and one of these is a select operand) 92 // %C = and %A, %B 93 // %D = select %C, %TV, %FV 94 // --> 95 // %FV 96 97 // %A = icmp ne %TV, %FV 98 // %B = icmp ne %X, %Y (and one of these is a select operand) 99 // %C = or %A, %B 100 // %D = select %C, %TV, %FV 101 // --> 102 // %TV 103 Value *X, *Y; 104 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 105 m_Specific(FalseVal)), 106 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 107 Pred1 != Pred2 || Pred1 != ExpectedPred) 108 return nullptr; 109 110 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 111 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 112 113 return nullptr; 114 } 115 116 /// For a boolean type or a vector of boolean type, return false or a vector 117 /// with every element false. 118 static Constant *getFalse(Type *Ty) { 119 return ConstantInt::getFalse(Ty); 120 } 121 122 /// For a boolean type or a vector of boolean type, return true or a vector 123 /// with every element true. 124 static Constant *getTrue(Type *Ty) { 125 return ConstantInt::getTrue(Ty); 126 } 127 128 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 129 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 130 Value *RHS) { 131 CmpInst *Cmp = dyn_cast<CmpInst>(V); 132 if (!Cmp) 133 return false; 134 CmpInst::Predicate CPred = Cmp->getPredicate(); 135 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 136 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 137 return true; 138 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 139 CRHS == LHS; 140 } 141 142 /// Simplify comparison with true or false branch of select: 143 /// %sel = select i1 %cond, i32 %tv, i32 %fv 144 /// %cmp = icmp sle i32 %sel, %rhs 145 /// Compose new comparison by substituting %sel with either %tv or %fv 146 /// and see if it simplifies. 147 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 148 Value *RHS, Value *Cond, 149 const SimplifyQuery &Q, unsigned MaxRecurse, 150 Constant *TrueOrFalse) { 151 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 152 if (SimplifiedCmp == Cond) { 153 // %cmp simplified to the select condition (%cond). 154 return TrueOrFalse; 155 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 156 // It didn't simplify. However, if composed comparison is equivalent 157 // to the select condition (%cond) then we can replace it. 158 return TrueOrFalse; 159 } 160 return SimplifiedCmp; 161 } 162 163 /// Simplify comparison with true branch of select 164 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 165 Value *RHS, Value *Cond, 166 const SimplifyQuery &Q, 167 unsigned MaxRecurse) { 168 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 169 getTrue(Cond->getType())); 170 } 171 172 /// Simplify comparison with false branch of select 173 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 174 Value *RHS, Value *Cond, 175 const SimplifyQuery &Q, 176 unsigned MaxRecurse) { 177 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 178 getFalse(Cond->getType())); 179 } 180 181 /// We know comparison with both branches of select can be simplified, but they 182 /// are not equal. This routine handles some logical simplifications. 183 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 184 Value *Cond, 185 const SimplifyQuery &Q, 186 unsigned MaxRecurse) { 187 // If the false value simplified to false, then the result of the compare 188 // is equal to "Cond && TCmp". This also catches the case when the false 189 // value simplified to false and the true value to true, returning "Cond". 190 if (match(FCmp, m_Zero())) 191 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 192 return V; 193 // If the true value simplified to true, then the result of the compare 194 // is equal to "Cond || FCmp". 195 if (match(TCmp, m_One())) 196 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 197 return V; 198 // Finally, if the false value simplified to true and the true value to 199 // false, then the result of the compare is equal to "!Cond". 200 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 201 if (Value *V = SimplifyXorInst( 202 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 203 return V; 204 return nullptr; 205 } 206 207 /// Does the given value dominate the specified phi node? 208 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 209 Instruction *I = dyn_cast<Instruction>(V); 210 if (!I) 211 // Arguments and constants dominate all instructions. 212 return true; 213 214 // If we are processing instructions (and/or basic blocks) that have not been 215 // fully added to a function, the parent nodes may still be null. Simply 216 // return the conservative answer in these cases. 217 if (!I->getParent() || !P->getParent() || !I->getFunction()) 218 return false; 219 220 // If we have a DominatorTree then do a precise test. 221 if (DT) 222 return DT->dominates(I, P); 223 224 // Otherwise, if the instruction is in the entry block and is not an invoke, 225 // then it obviously dominates all phi nodes. 226 if (I->getParent() == &I->getFunction()->getEntryBlock() && 227 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 228 return true; 229 230 return false; 231 } 232 233 /// Try to simplify a binary operator of form "V op OtherOp" where V is 234 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 235 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 236 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 237 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 238 const SimplifyQuery &Q, unsigned MaxRecurse) { 239 auto *B = dyn_cast<BinaryOperator>(V); 240 if (!B || B->getOpcode() != OpcodeToExpand) 241 return nullptr; 242 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 243 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 244 MaxRecurse); 245 if (!L) 246 return nullptr; 247 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 248 MaxRecurse); 249 if (!R) 250 return nullptr; 251 252 // Does the expanded pair of binops simplify to the existing binop? 253 if ((L == B0 && R == B1) || 254 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 255 ++NumExpand; 256 return B; 257 } 258 259 // Otherwise, return "L op' R" if it simplifies. 260 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 261 if (!S) 262 return nullptr; 263 264 ++NumExpand; 265 return S; 266 } 267 268 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 269 /// distributing op over op'. 270 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 271 Value *L, Value *R, 272 Instruction::BinaryOps OpcodeToExpand, 273 const SimplifyQuery &Q, 274 unsigned MaxRecurse) { 275 // Recursion is always used, so bail out at once if we already hit the limit. 276 if (!MaxRecurse--) 277 return nullptr; 278 279 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 return nullptr; 284 } 285 286 /// Generic simplifications for associative binary operations. 287 /// Returns the simpler value, or null if none was found. 288 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 289 Value *LHS, Value *RHS, 290 const SimplifyQuery &Q, 291 unsigned MaxRecurse) { 292 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 293 294 // Recursion is always used, so bail out at once if we already hit the limit. 295 if (!MaxRecurse--) 296 return nullptr; 297 298 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 299 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 300 301 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 302 if (Op0 && Op0->getOpcode() == Opcode) { 303 Value *A = Op0->getOperand(0); 304 Value *B = Op0->getOperand(1); 305 Value *C = RHS; 306 307 // Does "B op C" simplify? 308 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 309 // It does! Return "A op V" if it simplifies or is already available. 310 // If V equals B then "A op V" is just the LHS. 311 if (V == B) return LHS; 312 // Otherwise return "A op V" if it simplifies. 313 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 314 ++NumReassoc; 315 return W; 316 } 317 } 318 } 319 320 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 321 if (Op1 && Op1->getOpcode() == Opcode) { 322 Value *A = LHS; 323 Value *B = Op1->getOperand(0); 324 Value *C = Op1->getOperand(1); 325 326 // Does "A op B" simplify? 327 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 328 // It does! Return "V op C" if it simplifies or is already available. 329 // If V equals B then "V op C" is just the RHS. 330 if (V == B) return RHS; 331 // Otherwise return "V op C" if it simplifies. 332 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 333 ++NumReassoc; 334 return W; 335 } 336 } 337 } 338 339 // The remaining transforms require commutativity as well as associativity. 340 if (!Instruction::isCommutative(Opcode)) 341 return nullptr; 342 343 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 344 if (Op0 && Op0->getOpcode() == Opcode) { 345 Value *A = Op0->getOperand(0); 346 Value *B = Op0->getOperand(1); 347 Value *C = RHS; 348 349 // Does "C op A" simplify? 350 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 351 // It does! Return "V op B" if it simplifies or is already available. 352 // If V equals A then "V op B" is just the LHS. 353 if (V == A) return LHS; 354 // Otherwise return "V op B" if it simplifies. 355 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 356 ++NumReassoc; 357 return W; 358 } 359 } 360 } 361 362 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 363 if (Op1 && Op1->getOpcode() == Opcode) { 364 Value *A = LHS; 365 Value *B = Op1->getOperand(0); 366 Value *C = Op1->getOperand(1); 367 368 // Does "C op A" simplify? 369 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 370 // It does! Return "B op V" if it simplifies or is already available. 371 // If V equals C then "B op V" is just the RHS. 372 if (V == C) return RHS; 373 // Otherwise return "B op V" if it simplifies. 374 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 375 ++NumReassoc; 376 return W; 377 } 378 } 379 } 380 381 return nullptr; 382 } 383 384 /// In the case of a binary operation with a select instruction as an operand, 385 /// try to simplify the binop by seeing whether evaluating it on both branches 386 /// of the select results in the same value. Returns the common value if so, 387 /// otherwise returns null. 388 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 389 Value *RHS, const SimplifyQuery &Q, 390 unsigned MaxRecurse) { 391 // Recursion is always used, so bail out at once if we already hit the limit. 392 if (!MaxRecurse--) 393 return nullptr; 394 395 SelectInst *SI; 396 if (isa<SelectInst>(LHS)) { 397 SI = cast<SelectInst>(LHS); 398 } else { 399 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 400 SI = cast<SelectInst>(RHS); 401 } 402 403 // Evaluate the BinOp on the true and false branches of the select. 404 Value *TV; 405 Value *FV; 406 if (SI == LHS) { 407 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 408 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 409 } else { 410 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 411 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 412 } 413 414 // If they simplified to the same value, then return the common value. 415 // If they both failed to simplify then return null. 416 if (TV == FV) 417 return TV; 418 419 // If one branch simplified to undef, return the other one. 420 if (TV && Q.isUndefValue(TV)) 421 return FV; 422 if (FV && Q.isUndefValue(FV)) 423 return TV; 424 425 // If applying the operation did not change the true and false select values, 426 // then the result of the binop is the select itself. 427 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 428 return SI; 429 430 // If one branch simplified and the other did not, and the simplified 431 // value is equal to the unsimplified one, return the simplified value. 432 // For example, select (cond, X, X & Z) & Z -> X & Z. 433 if ((FV && !TV) || (TV && !FV)) { 434 // Check that the simplified value has the form "X op Y" where "op" is the 435 // same as the original operation. 436 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 437 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 438 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 439 // We already know that "op" is the same as for the simplified value. See 440 // if the operands match too. If so, return the simplified value. 441 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 442 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 443 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 444 if (Simplified->getOperand(0) == UnsimplifiedLHS && 445 Simplified->getOperand(1) == UnsimplifiedRHS) 446 return Simplified; 447 if (Simplified->isCommutative() && 448 Simplified->getOperand(1) == UnsimplifiedLHS && 449 Simplified->getOperand(0) == UnsimplifiedRHS) 450 return Simplified; 451 } 452 } 453 454 return nullptr; 455 } 456 457 /// In the case of a comparison with a select instruction, try to simplify the 458 /// comparison by seeing whether both branches of the select result in the same 459 /// value. Returns the common value if so, otherwise returns null. 460 /// For example, if we have: 461 /// %tmp = select i1 %cmp, i32 1, i32 2 462 /// %cmp1 = icmp sle i32 %tmp, 3 463 /// We can simplify %cmp1 to true, because both branches of select are 464 /// less than 3. We compose new comparison by substituting %tmp with both 465 /// branches of select and see if it can be simplified. 466 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 467 Value *RHS, const SimplifyQuery &Q, 468 unsigned MaxRecurse) { 469 // Recursion is always used, so bail out at once if we already hit the limit. 470 if (!MaxRecurse--) 471 return nullptr; 472 473 // Make sure the select is on the LHS. 474 if (!isa<SelectInst>(LHS)) { 475 std::swap(LHS, RHS); 476 Pred = CmpInst::getSwappedPredicate(Pred); 477 } 478 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 479 SelectInst *SI = cast<SelectInst>(LHS); 480 Value *Cond = SI->getCondition(); 481 Value *TV = SI->getTrueValue(); 482 Value *FV = SI->getFalseValue(); 483 484 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 485 // Does "cmp TV, RHS" simplify? 486 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 487 if (!TCmp) 488 return nullptr; 489 490 // Does "cmp FV, RHS" simplify? 491 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 492 if (!FCmp) 493 return nullptr; 494 495 // If both sides simplified to the same value, then use it as the result of 496 // the original comparison. 497 if (TCmp == FCmp) 498 return TCmp; 499 500 // The remaining cases only make sense if the select condition has the same 501 // type as the result of the comparison, so bail out if this is not so. 502 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 503 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 504 505 return nullptr; 506 } 507 508 /// In the case of a binary operation with an operand that is a PHI instruction, 509 /// try to simplify the binop by seeing whether evaluating it on the incoming 510 /// phi values yields the same result for every value. If so returns the common 511 /// value, otherwise returns null. 512 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 513 Value *RHS, const SimplifyQuery &Q, 514 unsigned MaxRecurse) { 515 // Recursion is always used, so bail out at once if we already hit the limit. 516 if (!MaxRecurse--) 517 return nullptr; 518 519 PHINode *PI; 520 if (isa<PHINode>(LHS)) { 521 PI = cast<PHINode>(LHS); 522 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 523 if (!valueDominatesPHI(RHS, PI, Q.DT)) 524 return nullptr; 525 } else { 526 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 527 PI = cast<PHINode>(RHS); 528 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 529 if (!valueDominatesPHI(LHS, PI, Q.DT)) 530 return nullptr; 531 } 532 533 // Evaluate the BinOp on the incoming phi values. 534 Value *CommonValue = nullptr; 535 for (Value *Incoming : PI->incoming_values()) { 536 // If the incoming value is the phi node itself, it can safely be skipped. 537 if (Incoming == PI) continue; 538 Value *V = PI == LHS ? 539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 541 // If the operation failed to simplify, or simplified to a different value 542 // to previously, then give up. 543 if (!V || (CommonValue && V != CommonValue)) 544 return nullptr; 545 CommonValue = V; 546 } 547 548 return CommonValue; 549 } 550 551 /// In the case of a comparison with a PHI instruction, try to simplify the 552 /// comparison by seeing whether comparing with all of the incoming phi values 553 /// yields the same result every time. If so returns the common result, 554 /// otherwise returns null. 555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 556 const SimplifyQuery &Q, unsigned MaxRecurse) { 557 // Recursion is always used, so bail out at once if we already hit the limit. 558 if (!MaxRecurse--) 559 return nullptr; 560 561 // Make sure the phi is on the LHS. 562 if (!isa<PHINode>(LHS)) { 563 std::swap(LHS, RHS); 564 Pred = CmpInst::getSwappedPredicate(Pred); 565 } 566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 567 PHINode *PI = cast<PHINode>(LHS); 568 569 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 570 if (!valueDominatesPHI(RHS, PI, Q.DT)) 571 return nullptr; 572 573 // Evaluate the BinOp on the incoming phi values. 574 Value *CommonValue = nullptr; 575 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 576 Value *Incoming = PI->getIncomingValue(u); 577 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 578 // If the incoming value is the phi node itself, it can safely be skipped. 579 if (Incoming == PI) continue; 580 // Change the context instruction to the "edge" that flows into the phi. 581 // This is important because that is where incoming is actually "evaluated" 582 // even though it is used later somewhere else. 583 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 584 MaxRecurse); 585 // If the operation failed to simplify, or simplified to a different value 586 // to previously, then give up. 587 if (!V || (CommonValue && V != CommonValue)) 588 return nullptr; 589 CommonValue = V; 590 } 591 592 return CommonValue; 593 } 594 595 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 596 Value *&Op0, Value *&Op1, 597 const SimplifyQuery &Q) { 598 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 599 if (auto *CRHS = dyn_cast<Constant>(Op1)) 600 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 601 602 // Canonicalize the constant to the RHS if this is a commutative operation. 603 if (Instruction::isCommutative(Opcode)) 604 std::swap(Op0, Op1); 605 } 606 return nullptr; 607 } 608 609 /// Given operands for an Add, see if we can fold the result. 610 /// If not, this returns null. 611 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 612 const SimplifyQuery &Q, unsigned MaxRecurse) { 613 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 614 return C; 615 616 // X + undef -> undef 617 if (Q.isUndefValue(Op1)) 618 return Op1; 619 620 // X + 0 -> X 621 if (match(Op1, m_Zero())) 622 return Op0; 623 624 // If two operands are negative, return 0. 625 if (isKnownNegation(Op0, Op1)) 626 return Constant::getNullValue(Op0->getType()); 627 628 // X + (Y - X) -> Y 629 // (Y - X) + X -> Y 630 // Eg: X + -X -> 0 631 Value *Y = nullptr; 632 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 633 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 634 return Y; 635 636 // X + ~X -> -1 since ~X = -X-1 637 Type *Ty = Op0->getType(); 638 if (match(Op0, m_Not(m_Specific(Op1))) || 639 match(Op1, m_Not(m_Specific(Op0)))) 640 return Constant::getAllOnesValue(Ty); 641 642 // add nsw/nuw (xor Y, signmask), signmask --> Y 643 // The no-wrapping add guarantees that the top bit will be set by the add. 644 // Therefore, the xor must be clearing the already set sign bit of Y. 645 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 646 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 647 return Y; 648 649 // add nuw %x, -1 -> -1, because %x can only be 0. 650 if (IsNUW && match(Op1, m_AllOnes())) 651 return Op1; // Which is -1. 652 653 /// i1 add -> xor. 654 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 655 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 656 return V; 657 658 // Try some generic simplifications for associative operations. 659 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 660 MaxRecurse)) 661 return V; 662 663 // Threading Add over selects and phi nodes is pointless, so don't bother. 664 // Threading over the select in "A + select(cond, B, C)" means evaluating 665 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 666 // only if B and C are equal. If B and C are equal then (since we assume 667 // that operands have already been simplified) "select(cond, B, C)" should 668 // have been simplified to the common value of B and C already. Analysing 669 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 670 // for threading over phi nodes. 671 672 return nullptr; 673 } 674 675 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 676 const SimplifyQuery &Query) { 677 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 678 } 679 680 /// Compute the base pointer and cumulative constant offsets for V. 681 /// 682 /// This strips all constant offsets off of V, leaving it the base pointer, and 683 /// accumulates the total constant offset applied in the returned constant. It 684 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 685 /// no constant offsets applied. 686 /// 687 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 688 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 689 /// folding. 690 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 691 bool AllowNonInbounds = false) { 692 assert(V->getType()->isPtrOrPtrVectorTy()); 693 694 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 695 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 696 697 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 698 // As that strip may trace through `addrspacecast`, need to sext or trunc 699 // the offset calculated. 700 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 701 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 702 703 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 704 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 705 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 706 return OffsetIntPtr; 707 } 708 709 /// Compute the constant difference between two pointer values. 710 /// If the difference is not a constant, returns zero. 711 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 712 Value *RHS) { 713 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 714 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 715 716 // If LHS and RHS are not related via constant offsets to the same base 717 // value, there is nothing we can do here. 718 if (LHS != RHS) 719 return nullptr; 720 721 // Otherwise, the difference of LHS - RHS can be computed as: 722 // LHS - RHS 723 // = (LHSOffset + Base) - (RHSOffset + Base) 724 // = LHSOffset - RHSOffset 725 return ConstantExpr::getSub(LHSOffset, RHSOffset); 726 } 727 728 /// Given operands for a Sub, see if we can fold the result. 729 /// If not, this returns null. 730 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 731 const SimplifyQuery &Q, unsigned MaxRecurse) { 732 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 733 return C; 734 735 // X - undef -> undef 736 // undef - X -> undef 737 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 738 return UndefValue::get(Op0->getType()); 739 740 // X - 0 -> X 741 if (match(Op1, m_Zero())) 742 return Op0; 743 744 // X - X -> 0 745 if (Op0 == Op1) 746 return Constant::getNullValue(Op0->getType()); 747 748 // Is this a negation? 749 if (match(Op0, m_Zero())) { 750 // 0 - X -> 0 if the sub is NUW. 751 if (isNUW) 752 return Constant::getNullValue(Op0->getType()); 753 754 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 755 if (Known.Zero.isMaxSignedValue()) { 756 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 757 // Op1 must be 0 because negating the minimum signed value is undefined. 758 if (isNSW) 759 return Constant::getNullValue(Op0->getType()); 760 761 // 0 - X -> X if X is 0 or the minimum signed value. 762 return Op1; 763 } 764 } 765 766 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 767 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 768 Value *X = nullptr, *Y = nullptr, *Z = Op1; 769 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 770 // See if "V === Y - Z" simplifies. 771 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 772 // It does! Now see if "X + V" simplifies. 773 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 774 // It does, we successfully reassociated! 775 ++NumReassoc; 776 return W; 777 } 778 // See if "V === X - Z" simplifies. 779 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 780 // It does! Now see if "Y + V" simplifies. 781 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 782 // It does, we successfully reassociated! 783 ++NumReassoc; 784 return W; 785 } 786 } 787 788 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 789 // For example, X - (X + 1) -> -1 790 X = Op0; 791 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 792 // See if "V === X - Y" simplifies. 793 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 794 // It does! Now see if "V - Z" simplifies. 795 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 796 // It does, we successfully reassociated! 797 ++NumReassoc; 798 return W; 799 } 800 // See if "V === X - Z" simplifies. 801 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 802 // It does! Now see if "V - Y" simplifies. 803 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 804 // It does, we successfully reassociated! 805 ++NumReassoc; 806 return W; 807 } 808 } 809 810 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 811 // For example, X - (X - Y) -> Y. 812 Z = Op0; 813 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 814 // See if "V === Z - X" simplifies. 815 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 816 // It does! Now see if "V + Y" simplifies. 817 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 818 // It does, we successfully reassociated! 819 ++NumReassoc; 820 return W; 821 } 822 823 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 824 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 825 match(Op1, m_Trunc(m_Value(Y)))) 826 if (X->getType() == Y->getType()) 827 // See if "V === X - Y" simplifies. 828 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 829 // It does! Now see if "trunc V" simplifies. 830 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 831 Q, MaxRecurse - 1)) 832 // It does, return the simplified "trunc V". 833 return W; 834 835 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 836 if (match(Op0, m_PtrToInt(m_Value(X))) && 837 match(Op1, m_PtrToInt(m_Value(Y)))) 838 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 839 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 840 841 // i1 sub -> xor. 842 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 843 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 844 return V; 845 846 // Threading Sub over selects and phi nodes is pointless, so don't bother. 847 // Threading over the select in "A - select(cond, B, C)" means evaluating 848 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 849 // only if B and C are equal. If B and C are equal then (since we assume 850 // that operands have already been simplified) "select(cond, B, C)" should 851 // have been simplified to the common value of B and C already. Analysing 852 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 853 // for threading over phi nodes. 854 855 return nullptr; 856 } 857 858 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 859 const SimplifyQuery &Q) { 860 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 861 } 862 863 /// Given operands for a Mul, see if we can fold the result. 864 /// If not, this returns null. 865 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 866 unsigned MaxRecurse) { 867 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 868 return C; 869 870 // X * undef -> 0 871 // X * 0 -> 0 872 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 873 return Constant::getNullValue(Op0->getType()); 874 875 // X * 1 -> X 876 if (match(Op1, m_One())) 877 return Op0; 878 879 // (X / Y) * Y -> X if the division is exact. 880 Value *X = nullptr; 881 if (Q.IIQ.UseInstrInfo && 882 (match(Op0, 883 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 884 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 885 return X; 886 887 // i1 mul -> and. 888 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 889 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 890 return V; 891 892 // Try some generic simplifications for associative operations. 893 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 894 MaxRecurse)) 895 return V; 896 897 // Mul distributes over Add. Try some generic simplifications based on this. 898 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 899 Instruction::Add, Q, MaxRecurse)) 900 return V; 901 902 // If the operation is with the result of a select instruction, check whether 903 // operating on either branch of the select always yields the same value. 904 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 905 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 906 MaxRecurse)) 907 return V; 908 909 // If the operation is with the result of a phi instruction, check whether 910 // operating on all incoming values of the phi always yields the same value. 911 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 912 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 913 MaxRecurse)) 914 return V; 915 916 return nullptr; 917 } 918 919 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 920 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 921 } 922 923 /// Check for common or similar folds of integer division or integer remainder. 924 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 925 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 926 const SimplifyQuery &Q) { 927 Type *Ty = Op0->getType(); 928 929 // X / undef -> poison 930 // X % undef -> poison 931 if (Q.isUndefValue(Op1)) 932 return PoisonValue::get(Ty); 933 934 // X / 0 -> poison 935 // X % 0 -> poison 936 // We don't need to preserve faults! 937 if (match(Op1, m_Zero())) 938 return PoisonValue::get(Ty); 939 940 // If any element of a constant divisor fixed width vector is zero or undef 941 // the behavior is undefined and we can fold the whole op to poison. 942 auto *Op1C = dyn_cast<Constant>(Op1); 943 auto *VTy = dyn_cast<FixedVectorType>(Ty); 944 if (Op1C && VTy) { 945 unsigned NumElts = VTy->getNumElements(); 946 for (unsigned i = 0; i != NumElts; ++i) { 947 Constant *Elt = Op1C->getAggregateElement(i); 948 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 949 return PoisonValue::get(Ty); 950 } 951 } 952 953 // undef / X -> 0 954 // undef % X -> 0 955 if (Q.isUndefValue(Op0)) 956 return Constant::getNullValue(Ty); 957 958 // 0 / X -> 0 959 // 0 % X -> 0 960 if (match(Op0, m_Zero())) 961 return Constant::getNullValue(Op0->getType()); 962 963 // X / X -> 1 964 // X % X -> 0 965 if (Op0 == Op1) 966 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 967 968 // X / 1 -> X 969 // X % 1 -> 0 970 // If this is a boolean op (single-bit element type), we can't have 971 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 972 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 973 Value *X; 974 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 975 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 976 return IsDiv ? Op0 : Constant::getNullValue(Ty); 977 978 return nullptr; 979 } 980 981 /// Given a predicate and two operands, return true if the comparison is true. 982 /// This is a helper for div/rem simplification where we return some other value 983 /// when we can prove a relationship between the operands. 984 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 985 const SimplifyQuery &Q, unsigned MaxRecurse) { 986 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 987 Constant *C = dyn_cast_or_null<Constant>(V); 988 return (C && C->isAllOnesValue()); 989 } 990 991 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 992 /// to simplify X % Y to X. 993 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 994 unsigned MaxRecurse, bool IsSigned) { 995 // Recursion is always used, so bail out at once if we already hit the limit. 996 if (!MaxRecurse--) 997 return false; 998 999 if (IsSigned) { 1000 // |X| / |Y| --> 0 1001 // 1002 // We require that 1 operand is a simple constant. That could be extended to 1003 // 2 variables if we computed the sign bit for each. 1004 // 1005 // Make sure that a constant is not the minimum signed value because taking 1006 // the abs() of that is undefined. 1007 Type *Ty = X->getType(); 1008 const APInt *C; 1009 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1010 // Is the variable divisor magnitude always greater than the constant 1011 // dividend magnitude? 1012 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1013 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1014 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1015 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1016 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1017 return true; 1018 } 1019 if (match(Y, m_APInt(C))) { 1020 // Special-case: we can't take the abs() of a minimum signed value. If 1021 // that's the divisor, then all we have to do is prove that the dividend 1022 // is also not the minimum signed value. 1023 if (C->isMinSignedValue()) 1024 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1025 1026 // Is the variable dividend magnitude always less than the constant 1027 // divisor magnitude? 1028 // |X| < |C| --> X > -abs(C) and X < abs(C) 1029 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1030 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1031 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1032 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1033 return true; 1034 } 1035 return false; 1036 } 1037 1038 // IsSigned == false. 1039 // Is the dividend unsigned less than the divisor? 1040 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1041 } 1042 1043 /// These are simplifications common to SDiv and UDiv. 1044 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1045 const SimplifyQuery &Q, unsigned MaxRecurse) { 1046 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1047 return C; 1048 1049 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1050 return V; 1051 1052 bool IsSigned = Opcode == Instruction::SDiv; 1053 1054 // (X * Y) / Y -> X if the multiplication does not overflow. 1055 Value *X; 1056 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1057 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1058 // If the Mul does not overflow, then we are good to go. 1059 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1060 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1061 return X; 1062 // If X has the form X = A / Y, then X * Y cannot overflow. 1063 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1064 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1065 return X; 1066 } 1067 1068 // (X rem Y) / Y -> 0 1069 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1070 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1071 return Constant::getNullValue(Op0->getType()); 1072 1073 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1074 ConstantInt *C1, *C2; 1075 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1076 match(Op1, m_ConstantInt(C2))) { 1077 bool Overflow; 1078 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1079 if (Overflow) 1080 return Constant::getNullValue(Op0->getType()); 1081 } 1082 1083 // If the operation is with the result of a select instruction, check whether 1084 // operating on either branch of the select always yields the same value. 1085 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1086 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1087 return V; 1088 1089 // If the operation is with the result of a phi instruction, check whether 1090 // operating on all incoming values of the phi always yields the same value. 1091 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1092 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1093 return V; 1094 1095 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1096 return Constant::getNullValue(Op0->getType()); 1097 1098 return nullptr; 1099 } 1100 1101 /// These are simplifications common to SRem and URem. 1102 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1103 const SimplifyQuery &Q, unsigned MaxRecurse) { 1104 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1105 return C; 1106 1107 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1108 return V; 1109 1110 // (X % Y) % Y -> X % Y 1111 if ((Opcode == Instruction::SRem && 1112 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1113 (Opcode == Instruction::URem && 1114 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1115 return Op0; 1116 1117 // (X << Y) % X -> 0 1118 if (Q.IIQ.UseInstrInfo && 1119 ((Opcode == Instruction::SRem && 1120 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1121 (Opcode == Instruction::URem && 1122 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1123 return Constant::getNullValue(Op0->getType()); 1124 1125 // If the operation is with the result of a select instruction, check whether 1126 // operating on either branch of the select always yields the same value. 1127 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1128 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1129 return V; 1130 1131 // If the operation is with the result of a phi instruction, check whether 1132 // operating on all incoming values of the phi always yields the same value. 1133 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1134 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1135 return V; 1136 1137 // If X / Y == 0, then X % Y == X. 1138 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1139 return Op0; 1140 1141 return nullptr; 1142 } 1143 1144 /// Given operands for an SDiv, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1147 unsigned MaxRecurse) { 1148 // If two operands are negated and no signed overflow, return -1. 1149 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1150 return Constant::getAllOnesValue(Op0->getType()); 1151 1152 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1153 } 1154 1155 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1156 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1157 } 1158 1159 /// Given operands for a UDiv, see if we can fold the result. 1160 /// If not, this returns null. 1161 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1162 unsigned MaxRecurse) { 1163 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1164 } 1165 1166 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1167 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1168 } 1169 1170 /// Given operands for an SRem, see if we can fold the result. 1171 /// If not, this returns null. 1172 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1173 unsigned MaxRecurse) { 1174 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1175 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1176 Value *X; 1177 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1178 return ConstantInt::getNullValue(Op0->getType()); 1179 1180 // If the two operands are negated, return 0. 1181 if (isKnownNegation(Op0, Op1)) 1182 return ConstantInt::getNullValue(Op0->getType()); 1183 1184 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1185 } 1186 1187 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1188 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1189 } 1190 1191 /// Given operands for a URem, see if we can fold the result. 1192 /// If not, this returns null. 1193 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1194 unsigned MaxRecurse) { 1195 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1196 } 1197 1198 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1199 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1200 } 1201 1202 /// Returns true if a shift by \c Amount always yields poison. 1203 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1204 Constant *C = dyn_cast<Constant>(Amount); 1205 if (!C) 1206 return false; 1207 1208 // X shift by undef -> poison because it may shift by the bitwidth. 1209 if (Q.isUndefValue(C)) 1210 return true; 1211 1212 // Shifting by the bitwidth or more is undefined. 1213 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1214 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1215 return true; 1216 1217 // If all lanes of a vector shift are undefined the whole shift is. 1218 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1219 for (unsigned I = 0, 1220 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1221 I != E; ++I) 1222 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1223 return false; 1224 return true; 1225 } 1226 1227 return false; 1228 } 1229 1230 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1231 /// If not, this returns null. 1232 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1233 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1234 unsigned MaxRecurse) { 1235 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1236 return C; 1237 1238 // 0 shift by X -> 0 1239 if (match(Op0, m_Zero())) 1240 return Constant::getNullValue(Op0->getType()); 1241 1242 // X shift by 0 -> X 1243 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1244 // would be poison. 1245 Value *X; 1246 if (match(Op1, m_Zero()) || 1247 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1248 return Op0; 1249 1250 // Fold undefined shifts. 1251 if (isPoisonShift(Op1, Q)) 1252 return PoisonValue::get(Op0->getType()); 1253 1254 // If the operation is with the result of a select instruction, check whether 1255 // operating on either branch of the select always yields the same value. 1256 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1257 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1258 return V; 1259 1260 // If the operation is with the result of a phi instruction, check whether 1261 // operating on all incoming values of the phi always yields the same value. 1262 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1263 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1264 return V; 1265 1266 // If any bits in the shift amount make that value greater than or equal to 1267 // the number of bits in the type, the shift is undefined. 1268 KnownBits KnownAmt = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1269 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1270 return PoisonValue::get(Op0->getType()); 1271 1272 // If all valid bits in the shift amount are known zero, the first operand is 1273 // unchanged. 1274 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1275 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1276 return Op0; 1277 1278 // Check for nsw shl leading to a poison value. 1279 if (IsNSW) { 1280 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1281 KnownBits KnownVal = computeKnownBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1282 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1283 1284 if (KnownVal.Zero.isSignBitSet()) 1285 KnownShl.Zero.setSignBit(); 1286 if (KnownVal.One.isSignBitSet()) 1287 KnownShl.One.setSignBit(); 1288 1289 if (KnownShl.hasConflict()) 1290 return PoisonValue::get(Op0->getType()); 1291 } 1292 1293 return nullptr; 1294 } 1295 1296 /// Given operands for an Shl, LShr or AShr, see if we can 1297 /// fold the result. If not, this returns null. 1298 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1299 Value *Op1, bool isExact, const SimplifyQuery &Q, 1300 unsigned MaxRecurse) { 1301 if (Value *V = 1302 SimplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1303 return V; 1304 1305 // X >> X -> 0 1306 if (Op0 == Op1) 1307 return Constant::getNullValue(Op0->getType()); 1308 1309 // undef >> X -> 0 1310 // undef >> X -> undef (if it's exact) 1311 if (Q.isUndefValue(Op0)) 1312 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1313 1314 // The low bit cannot be shifted out of an exact shift if it is set. 1315 if (isExact) { 1316 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1317 if (Op0Known.One[0]) 1318 return Op0; 1319 } 1320 1321 return nullptr; 1322 } 1323 1324 /// Given operands for an Shl, see if we can fold the result. 1325 /// If not, this returns null. 1326 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1327 const SimplifyQuery &Q, unsigned MaxRecurse) { 1328 if (Value *V = 1329 SimplifyShift(Instruction::Shl, Op0, Op1, isNSW, Q, MaxRecurse)) 1330 return V; 1331 1332 // undef << X -> 0 1333 // undef << X -> undef if (if it's NSW/NUW) 1334 if (Q.isUndefValue(Op0)) 1335 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1336 1337 // (X >> A) << A -> X 1338 Value *X; 1339 if (Q.IIQ.UseInstrInfo && 1340 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1341 return X; 1342 1343 // shl nuw i8 C, %x -> C iff C has sign bit set. 1344 if (isNUW && match(Op0, m_Negative())) 1345 return Op0; 1346 // NOTE: could use computeKnownBits() / LazyValueInfo, 1347 // but the cost-benefit analysis suggests it isn't worth it. 1348 1349 return nullptr; 1350 } 1351 1352 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1353 const SimplifyQuery &Q) { 1354 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1355 } 1356 1357 /// Given operands for an LShr, see if we can fold the result. 1358 /// If not, this returns null. 1359 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1360 const SimplifyQuery &Q, unsigned MaxRecurse) { 1361 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1362 MaxRecurse)) 1363 return V; 1364 1365 // (X << A) >> A -> X 1366 Value *X; 1367 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1368 return X; 1369 1370 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1371 // We can return X as we do in the above case since OR alters no bits in X. 1372 // SimplifyDemandedBits in InstCombine can do more general optimization for 1373 // bit manipulation. This pattern aims to provide opportunities for other 1374 // optimizers by supporting a simple but common case in InstSimplify. 1375 Value *Y; 1376 const APInt *ShRAmt, *ShLAmt; 1377 if (match(Op1, m_APInt(ShRAmt)) && 1378 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1379 *ShRAmt == *ShLAmt) { 1380 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1381 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1382 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1383 if (ShRAmt->uge(EffWidthY)) 1384 return X; 1385 } 1386 1387 return nullptr; 1388 } 1389 1390 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1391 const SimplifyQuery &Q) { 1392 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1393 } 1394 1395 /// Given operands for an AShr, see if we can fold the result. 1396 /// If not, this returns null. 1397 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1398 const SimplifyQuery &Q, unsigned MaxRecurse) { 1399 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1400 MaxRecurse)) 1401 return V; 1402 1403 // all ones >>a X -> -1 1404 // Do not return Op0 because it may contain undef elements if it's a vector. 1405 if (match(Op0, m_AllOnes())) 1406 return Constant::getAllOnesValue(Op0->getType()); 1407 1408 // (X << A) >> A -> X 1409 Value *X; 1410 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1411 return X; 1412 1413 // Arithmetic shifting an all-sign-bit value is a no-op. 1414 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1415 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1416 return Op0; 1417 1418 return nullptr; 1419 } 1420 1421 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1422 const SimplifyQuery &Q) { 1423 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1424 } 1425 1426 /// Commuted variants are assumed to be handled by calling this function again 1427 /// with the parameters swapped. 1428 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1429 ICmpInst *UnsignedICmp, bool IsAnd, 1430 const SimplifyQuery &Q) { 1431 Value *X, *Y; 1432 1433 ICmpInst::Predicate EqPred; 1434 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1435 !ICmpInst::isEquality(EqPred)) 1436 return nullptr; 1437 1438 ICmpInst::Predicate UnsignedPred; 1439 1440 Value *A, *B; 1441 // Y = (A - B); 1442 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1443 if (match(UnsignedICmp, 1444 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1445 ICmpInst::isUnsigned(UnsignedPred)) { 1446 // A >=/<= B || (A - B) != 0 <--> true 1447 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1448 UnsignedPred == ICmpInst::ICMP_ULE) && 1449 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1450 return ConstantInt::getTrue(UnsignedICmp->getType()); 1451 // A </> B && (A - B) == 0 <--> false 1452 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1453 UnsignedPred == ICmpInst::ICMP_UGT) && 1454 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1455 return ConstantInt::getFalse(UnsignedICmp->getType()); 1456 1457 // A </> B && (A - B) != 0 <--> A </> B 1458 // A </> B || (A - B) != 0 <--> (A - B) != 0 1459 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1460 UnsignedPred == ICmpInst::ICMP_UGT)) 1461 return IsAnd ? UnsignedICmp : ZeroICmp; 1462 1463 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1464 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1465 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1466 UnsignedPred == ICmpInst::ICMP_UGE)) 1467 return IsAnd ? ZeroICmp : UnsignedICmp; 1468 } 1469 1470 // Given Y = (A - B) 1471 // Y >= A && Y != 0 --> Y >= A iff B != 0 1472 // Y < A || Y == 0 --> Y < A iff B != 0 1473 if (match(UnsignedICmp, 1474 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1475 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1476 EqPred == ICmpInst::ICMP_NE && 1477 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1478 return UnsignedICmp; 1479 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1480 EqPred == ICmpInst::ICMP_EQ && 1481 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1482 return UnsignedICmp; 1483 } 1484 } 1485 1486 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1487 ICmpInst::isUnsigned(UnsignedPred)) 1488 ; 1489 else if (match(UnsignedICmp, 1490 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1491 ICmpInst::isUnsigned(UnsignedPred)) 1492 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1493 else 1494 return nullptr; 1495 1496 // X > Y && Y == 0 --> Y == 0 iff X != 0 1497 // X > Y || Y == 0 --> X > Y iff X != 0 1498 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1499 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1500 return IsAnd ? ZeroICmp : UnsignedICmp; 1501 1502 // X <= Y && Y != 0 --> X <= Y iff X != 0 1503 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1504 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1505 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1506 return IsAnd ? UnsignedICmp : ZeroICmp; 1507 1508 // The transforms below here are expected to be handled more generally with 1509 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1510 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1511 // these are candidates for removal. 1512 1513 // X < Y && Y != 0 --> X < Y 1514 // X < Y || Y != 0 --> Y != 0 1515 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1516 return IsAnd ? UnsignedICmp : ZeroICmp; 1517 1518 // X >= Y && Y == 0 --> Y == 0 1519 // X >= Y || Y == 0 --> X >= Y 1520 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1521 return IsAnd ? ZeroICmp : UnsignedICmp; 1522 1523 // X < Y && Y == 0 --> false 1524 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1525 IsAnd) 1526 return getFalse(UnsignedICmp->getType()); 1527 1528 // X >= Y || Y != 0 --> true 1529 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1530 !IsAnd) 1531 return getTrue(UnsignedICmp->getType()); 1532 1533 return nullptr; 1534 } 1535 1536 /// Commuted variants are assumed to be handled by calling this function again 1537 /// with the parameters swapped. 1538 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1539 ICmpInst::Predicate Pred0, Pred1; 1540 Value *A ,*B; 1541 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1542 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1543 return nullptr; 1544 1545 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1546 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1547 // can eliminate Op1 from this 'and'. 1548 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1549 return Op0; 1550 1551 // Check for any combination of predicates that are guaranteed to be disjoint. 1552 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1553 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1554 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1555 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1556 return getFalse(Op0->getType()); 1557 1558 return nullptr; 1559 } 1560 1561 /// Commuted variants are assumed to be handled by calling this function again 1562 /// with the parameters swapped. 1563 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1564 ICmpInst::Predicate Pred0, Pred1; 1565 Value *A ,*B; 1566 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1567 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1568 return nullptr; 1569 1570 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1571 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1572 // can eliminate Op0 from this 'or'. 1573 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1574 return Op1; 1575 1576 // Check for any combination of predicates that cover the entire range of 1577 // possibilities. 1578 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1579 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1580 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1581 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1582 return getTrue(Op0->getType()); 1583 1584 return nullptr; 1585 } 1586 1587 /// Test if a pair of compares with a shared operand and 2 constants has an 1588 /// empty set intersection, full set union, or if one compare is a superset of 1589 /// the other. 1590 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1591 bool IsAnd) { 1592 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1593 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1594 return nullptr; 1595 1596 const APInt *C0, *C1; 1597 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1598 !match(Cmp1->getOperand(1), m_APInt(C1))) 1599 return nullptr; 1600 1601 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1602 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1603 1604 // For and-of-compares, check if the intersection is empty: 1605 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1606 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1607 return getFalse(Cmp0->getType()); 1608 1609 // For or-of-compares, check if the union is full: 1610 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1611 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1612 return getTrue(Cmp0->getType()); 1613 1614 // Is one range a superset of the other? 1615 // If this is and-of-compares, take the smaller set: 1616 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1617 // If this is or-of-compares, take the larger set: 1618 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1619 if (Range0.contains(Range1)) 1620 return IsAnd ? Cmp1 : Cmp0; 1621 if (Range1.contains(Range0)) 1622 return IsAnd ? Cmp0 : Cmp1; 1623 1624 return nullptr; 1625 } 1626 1627 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1628 bool IsAnd) { 1629 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1630 if (!match(Cmp0->getOperand(1), m_Zero()) || 1631 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1632 return nullptr; 1633 1634 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1635 return nullptr; 1636 1637 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1638 Value *X = Cmp0->getOperand(0); 1639 Value *Y = Cmp1->getOperand(0); 1640 1641 // If one of the compares is a masked version of a (not) null check, then 1642 // that compare implies the other, so we eliminate the other. Optionally, look 1643 // through a pointer-to-int cast to match a null check of a pointer type. 1644 1645 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1646 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1647 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1648 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1649 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1650 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1651 return Cmp1; 1652 1653 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1654 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1655 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1656 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1657 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1658 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1659 return Cmp0; 1660 1661 return nullptr; 1662 } 1663 1664 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1665 const InstrInfoQuery &IIQ) { 1666 // (icmp (add V, C0), C1) & (icmp V, C0) 1667 ICmpInst::Predicate Pred0, Pred1; 1668 const APInt *C0, *C1; 1669 Value *V; 1670 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1671 return nullptr; 1672 1673 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1674 return nullptr; 1675 1676 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1677 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1678 return nullptr; 1679 1680 Type *ITy = Op0->getType(); 1681 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1682 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1683 1684 const APInt Delta = *C1 - *C0; 1685 if (C0->isStrictlyPositive()) { 1686 if (Delta == 2) { 1687 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1688 return getFalse(ITy); 1689 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1690 return getFalse(ITy); 1691 } 1692 if (Delta == 1) { 1693 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1694 return getFalse(ITy); 1695 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1696 return getFalse(ITy); 1697 } 1698 } 1699 if (C0->getBoolValue() && isNUW) { 1700 if (Delta == 2) 1701 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1702 return getFalse(ITy); 1703 if (Delta == 1) 1704 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1705 return getFalse(ITy); 1706 } 1707 1708 return nullptr; 1709 } 1710 1711 /// Try to eliminate compares with signed or unsigned min/max constants. 1712 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1713 bool IsAnd) { 1714 // Canonicalize an equality compare as Cmp0. 1715 if (Cmp1->isEquality()) 1716 std::swap(Cmp0, Cmp1); 1717 if (!Cmp0->isEquality()) 1718 return nullptr; 1719 1720 // The non-equality compare must include a common operand (X). Canonicalize 1721 // the common operand as operand 0 (the predicate is swapped if the common 1722 // operand was operand 1). 1723 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1724 Value *X = Cmp0->getOperand(0); 1725 ICmpInst::Predicate Pred1; 1726 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1727 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1728 return nullptr; 1729 if (ICmpInst::isEquality(Pred1)) 1730 return nullptr; 1731 1732 // The equality compare must be against a constant. Flip bits if we matched 1733 // a bitwise not. Convert a null pointer constant to an integer zero value. 1734 APInt MinMaxC; 1735 const APInt *C; 1736 if (match(Cmp0->getOperand(1), m_APInt(C))) 1737 MinMaxC = HasNotOp ? ~*C : *C; 1738 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1739 MinMaxC = APInt::getNullValue(8); 1740 else 1741 return nullptr; 1742 1743 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1744 if (!IsAnd) { 1745 Pred0 = ICmpInst::getInversePredicate(Pred0); 1746 Pred1 = ICmpInst::getInversePredicate(Pred1); 1747 } 1748 1749 // Normalize to unsigned compare and unsigned min/max value. 1750 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1751 if (ICmpInst::isSigned(Pred1)) { 1752 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1753 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1754 } 1755 1756 // (X != MAX) && (X < Y) --> X < Y 1757 // (X == MAX) || (X >= Y) --> X >= Y 1758 if (MinMaxC.isMaxValue()) 1759 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1760 return Cmp1; 1761 1762 // (X != MIN) && (X > Y) --> X > Y 1763 // (X == MIN) || (X <= Y) --> X <= Y 1764 if (MinMaxC.isMinValue()) 1765 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1766 return Cmp1; 1767 1768 return nullptr; 1769 } 1770 1771 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1772 const SimplifyQuery &Q) { 1773 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1774 return X; 1775 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1776 return X; 1777 1778 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1779 return X; 1780 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1781 return X; 1782 1783 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1784 return X; 1785 1786 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1787 return X; 1788 1789 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1790 return X; 1791 1792 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1793 return X; 1794 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1795 return X; 1796 1797 return nullptr; 1798 } 1799 1800 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1801 const InstrInfoQuery &IIQ) { 1802 // (icmp (add V, C0), C1) | (icmp V, C0) 1803 ICmpInst::Predicate Pred0, Pred1; 1804 const APInt *C0, *C1; 1805 Value *V; 1806 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1807 return nullptr; 1808 1809 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1810 return nullptr; 1811 1812 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1813 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1814 return nullptr; 1815 1816 Type *ITy = Op0->getType(); 1817 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1818 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1819 1820 const APInt Delta = *C1 - *C0; 1821 if (C0->isStrictlyPositive()) { 1822 if (Delta == 2) { 1823 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1824 return getTrue(ITy); 1825 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1826 return getTrue(ITy); 1827 } 1828 if (Delta == 1) { 1829 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1830 return getTrue(ITy); 1831 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1832 return getTrue(ITy); 1833 } 1834 } 1835 if (C0->getBoolValue() && isNUW) { 1836 if (Delta == 2) 1837 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1838 return getTrue(ITy); 1839 if (Delta == 1) 1840 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1841 return getTrue(ITy); 1842 } 1843 1844 return nullptr; 1845 } 1846 1847 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1848 const SimplifyQuery &Q) { 1849 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1850 return X; 1851 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1852 return X; 1853 1854 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1855 return X; 1856 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1857 return X; 1858 1859 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1860 return X; 1861 1862 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1863 return X; 1864 1865 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1866 return X; 1867 1868 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1869 return X; 1870 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1871 return X; 1872 1873 return nullptr; 1874 } 1875 1876 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1877 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1878 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1879 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1880 if (LHS0->getType() != RHS0->getType()) 1881 return nullptr; 1882 1883 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1884 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1885 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1886 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1887 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1888 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1889 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1890 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1891 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1892 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1893 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1894 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1895 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1896 return RHS; 1897 1898 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1899 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1900 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1901 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1902 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1903 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1904 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1905 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1906 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1907 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1908 return LHS; 1909 } 1910 1911 return nullptr; 1912 } 1913 1914 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1915 Value *Op0, Value *Op1, bool IsAnd) { 1916 // Look through casts of the 'and' operands to find compares. 1917 auto *Cast0 = dyn_cast<CastInst>(Op0); 1918 auto *Cast1 = dyn_cast<CastInst>(Op1); 1919 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1920 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1921 Op0 = Cast0->getOperand(0); 1922 Op1 = Cast1->getOperand(0); 1923 } 1924 1925 Value *V = nullptr; 1926 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1927 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1928 if (ICmp0 && ICmp1) 1929 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1930 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1931 1932 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1933 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1934 if (FCmp0 && FCmp1) 1935 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1936 1937 if (!V) 1938 return nullptr; 1939 if (!Cast0) 1940 return V; 1941 1942 // If we looked through casts, we can only handle a constant simplification 1943 // because we are not allowed to create a cast instruction here. 1944 if (auto *C = dyn_cast<Constant>(V)) 1945 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1946 1947 return nullptr; 1948 } 1949 1950 /// Check that the Op1 is in expected form, i.e.: 1951 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1952 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1953 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1954 Value *X) { 1955 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1956 // We should only be extracting the overflow bit. 1957 if (!Extract || !Extract->getIndices().equals(1)) 1958 return false; 1959 Value *Agg = Extract->getAggregateOperand(); 1960 // This should be a multiplication-with-overflow intrinsic. 1961 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1962 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1963 return false; 1964 // One of its multipliers should be the value we checked for zero before. 1965 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1966 m_Argument<1>(m_Specific(X))))) 1967 return false; 1968 return true; 1969 } 1970 1971 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1972 /// other form of check, e.g. one that was using division; it may have been 1973 /// guarded against division-by-zero. We can drop that check now. 1974 /// Look for: 1975 /// %Op0 = icmp ne i4 %X, 0 1976 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1977 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1978 /// %??? = and i1 %Op0, %Op1 1979 /// We can just return %Op1 1980 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1981 ICmpInst::Predicate Pred; 1982 Value *X; 1983 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1984 Pred != ICmpInst::Predicate::ICMP_NE) 1985 return nullptr; 1986 // Is Op1 in expected form? 1987 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1988 return nullptr; 1989 // Can omit 'and', and just return the overflow bit. 1990 return Op1; 1991 } 1992 1993 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1994 /// other form of check, e.g. one that was using division; it may have been 1995 /// guarded against division-by-zero. We can drop that check now. 1996 /// Look for: 1997 /// %Op0 = icmp eq i4 %X, 0 1998 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1999 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 2000 /// %NotOp1 = xor i1 %Op1, true 2001 /// %or = or i1 %Op0, %NotOp1 2002 /// We can just return %NotOp1 2003 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 2004 Value *NotOp1) { 2005 ICmpInst::Predicate Pred; 2006 Value *X; 2007 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 2008 Pred != ICmpInst::Predicate::ICMP_EQ) 2009 return nullptr; 2010 // We expect the other hand of an 'or' to be a 'not'. 2011 Value *Op1; 2012 if (!match(NotOp1, m_Not(m_Value(Op1)))) 2013 return nullptr; 2014 // Is Op1 in expected form? 2015 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 2016 return nullptr; 2017 // Can omit 'and', and just return the inverted overflow bit. 2018 return NotOp1; 2019 } 2020 2021 /// Given a bitwise logic op, check if the operands are add/sub with a common 2022 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2023 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2024 Instruction::BinaryOps Opcode) { 2025 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2026 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2027 Value *X; 2028 Constant *C1, *C2; 2029 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2030 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2031 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2032 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2033 if (ConstantExpr::getNot(C1) == C2) { 2034 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2035 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2036 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2037 Type *Ty = Op0->getType(); 2038 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2039 : ConstantInt::getAllOnesValue(Ty); 2040 } 2041 } 2042 return nullptr; 2043 } 2044 2045 /// Given operands for an And, see if we can fold the result. 2046 /// If not, this returns null. 2047 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2048 unsigned MaxRecurse) { 2049 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2050 return C; 2051 2052 // X & undef -> 0 2053 if (Q.isUndefValue(Op1)) 2054 return Constant::getNullValue(Op0->getType()); 2055 2056 // X & X = X 2057 if (Op0 == Op1) 2058 return Op0; 2059 2060 // X & 0 = 0 2061 if (match(Op1, m_Zero())) 2062 return Constant::getNullValue(Op0->getType()); 2063 2064 // X & -1 = X 2065 if (match(Op1, m_AllOnes())) 2066 return Op0; 2067 2068 // A & ~A = ~A & A = 0 2069 if (match(Op0, m_Not(m_Specific(Op1))) || 2070 match(Op1, m_Not(m_Specific(Op0)))) 2071 return Constant::getNullValue(Op0->getType()); 2072 2073 // (A | ?) & A = A 2074 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2075 return Op1; 2076 2077 // A & (A | ?) = A 2078 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2079 return Op0; 2080 2081 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2082 return V; 2083 2084 // A mask that only clears known zeros of a shifted value is a no-op. 2085 Value *X; 2086 const APInt *Mask; 2087 const APInt *ShAmt; 2088 if (match(Op1, m_APInt(Mask))) { 2089 // If all bits in the inverted and shifted mask are clear: 2090 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2091 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2092 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2093 return Op0; 2094 2095 // If all bits in the inverted and shifted mask are clear: 2096 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2097 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2098 (~(*Mask)).shl(*ShAmt).isNullValue()) 2099 return Op0; 2100 } 2101 2102 // If we have a multiplication overflow check that is being 'and'ed with a 2103 // check that one of the multipliers is not zero, we can omit the 'and', and 2104 // only keep the overflow check. 2105 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2106 return V; 2107 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2108 return V; 2109 2110 // A & (-A) = A if A is a power of two or zero. 2111 if (match(Op0, m_Neg(m_Specific(Op1))) || 2112 match(Op1, m_Neg(m_Specific(Op0)))) { 2113 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2114 Q.DT)) 2115 return Op0; 2116 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2117 Q.DT)) 2118 return Op1; 2119 } 2120 2121 // This is a similar pattern used for checking if a value is a power-of-2: 2122 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2123 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2124 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2125 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2126 return Constant::getNullValue(Op1->getType()); 2127 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2128 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2129 return Constant::getNullValue(Op0->getType()); 2130 2131 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2132 return V; 2133 2134 // Try some generic simplifications for associative operations. 2135 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2136 MaxRecurse)) 2137 return V; 2138 2139 // And distributes over Or. Try some generic simplifications based on this. 2140 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2141 Instruction::Or, Q, MaxRecurse)) 2142 return V; 2143 2144 // And distributes over Xor. Try some generic simplifications based on this. 2145 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2146 Instruction::Xor, Q, MaxRecurse)) 2147 return V; 2148 2149 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2150 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2151 // A & (A && B) -> A && B 2152 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2153 return Op1; 2154 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2155 return Op0; 2156 } 2157 // If the operation is with the result of a select instruction, check 2158 // whether operating on either branch of the select always yields the same 2159 // value. 2160 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2161 MaxRecurse)) 2162 return V; 2163 } 2164 2165 // If the operation is with the result of a phi instruction, check whether 2166 // operating on all incoming values of the phi always yields the same value. 2167 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2168 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2169 MaxRecurse)) 2170 return V; 2171 2172 // Assuming the effective width of Y is not larger than A, i.e. all bits 2173 // from X and Y are disjoint in (X << A) | Y, 2174 // if the mask of this AND op covers all bits of X or Y, while it covers 2175 // no bits from the other, we can bypass this AND op. E.g., 2176 // ((X << A) | Y) & Mask -> Y, 2177 // if Mask = ((1 << effective_width_of(Y)) - 1) 2178 // ((X << A) | Y) & Mask -> X << A, 2179 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2180 // SimplifyDemandedBits in InstCombine can optimize the general case. 2181 // This pattern aims to help other passes for a common case. 2182 Value *Y, *XShifted; 2183 if (match(Op1, m_APInt(Mask)) && 2184 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2185 m_Value(XShifted)), 2186 m_Value(Y)))) { 2187 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2188 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2189 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2190 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2191 if (EffWidthY <= ShftCnt) { 2192 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2193 Q.DT); 2194 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2195 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2196 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2197 // If the mask is extracting all bits from X or Y as is, we can skip 2198 // this AND op. 2199 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2200 return Y; 2201 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2202 return XShifted; 2203 } 2204 } 2205 2206 return nullptr; 2207 } 2208 2209 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2210 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2211 } 2212 2213 /// Given operands for an Or, see if we can fold the result. 2214 /// If not, this returns null. 2215 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2216 unsigned MaxRecurse) { 2217 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2218 return C; 2219 2220 // X | undef -> -1 2221 // X | -1 = -1 2222 // Do not return Op1 because it may contain undef elements if it's a vector. 2223 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2224 return Constant::getAllOnesValue(Op0->getType()); 2225 2226 // X | X = X 2227 // X | 0 = X 2228 if (Op0 == Op1 || match(Op1, m_Zero())) 2229 return Op0; 2230 2231 // A | ~A = ~A | A = -1 2232 if (match(Op0, m_Not(m_Specific(Op1))) || 2233 match(Op1, m_Not(m_Specific(Op0)))) 2234 return Constant::getAllOnesValue(Op0->getType()); 2235 2236 // (A & ?) | A = A 2237 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2238 return Op1; 2239 2240 // A | (A & ?) = A 2241 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2242 return Op0; 2243 2244 // ~(A & ?) | A = -1 2245 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2246 return Constant::getAllOnesValue(Op1->getType()); 2247 2248 // A | ~(A & ?) = -1 2249 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2250 return Constant::getAllOnesValue(Op0->getType()); 2251 2252 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2253 return V; 2254 2255 Value *A, *B, *NotA; 2256 // (A & ~B) | (A ^ B) -> (A ^ B) 2257 // (~B & A) | (A ^ B) -> (A ^ B) 2258 // (A & ~B) | (B ^ A) -> (B ^ A) 2259 // (~B & A) | (B ^ A) -> (B ^ A) 2260 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2261 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2262 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2263 return Op1; 2264 2265 // Commute the 'or' operands. 2266 // (A ^ B) | (A & ~B) -> (A ^ B) 2267 // (A ^ B) | (~B & A) -> (A ^ B) 2268 // (B ^ A) | (A & ~B) -> (B ^ A) 2269 // (B ^ A) | (~B & A) -> (B ^ A) 2270 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2271 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2272 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2273 return Op0; 2274 2275 // (A & B) | (~A ^ B) -> (~A ^ B) 2276 // (B & A) | (~A ^ B) -> (~A ^ B) 2277 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2278 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2279 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2280 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2281 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2282 return Op1; 2283 2284 // Commute the 'or' operands. 2285 // (~A ^ B) | (A & B) -> (~A ^ B) 2286 // (~A ^ B) | (B & A) -> (~A ^ B) 2287 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2288 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2289 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2290 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2291 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2292 return Op0; 2293 2294 // (~A & B) | ~(A | B) --> ~A 2295 // (~A & B) | ~(B | A) --> ~A 2296 // (B & ~A) | ~(A | B) --> ~A 2297 // (B & ~A) | ~(B | A) --> ~A 2298 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2299 m_Value(B))) && 2300 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2301 return NotA; 2302 2303 // Commute the 'or' operands. 2304 // ~(A | B) | (~A & B) --> ~A 2305 // ~(B | A) | (~A & B) --> ~A 2306 // ~(A | B) | (B & ~A) --> ~A 2307 // ~(B | A) | (B & ~A) --> ~A 2308 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2309 m_Value(B))) && 2310 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2311 return NotA; 2312 2313 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2314 return V; 2315 2316 // If we have a multiplication overflow check that is being 'and'ed with a 2317 // check that one of the multipliers is not zero, we can omit the 'and', and 2318 // only keep the overflow check. 2319 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2320 return V; 2321 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2322 return V; 2323 2324 // Try some generic simplifications for associative operations. 2325 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2326 MaxRecurse)) 2327 return V; 2328 2329 // Or distributes over And. Try some generic simplifications based on this. 2330 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2331 Instruction::And, Q, MaxRecurse)) 2332 return V; 2333 2334 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2335 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2336 // A | (A || B) -> A || B 2337 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2338 return Op1; 2339 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2340 return Op0; 2341 } 2342 // If the operation is with the result of a select instruction, check 2343 // whether operating on either branch of the select always yields the same 2344 // value. 2345 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2346 MaxRecurse)) 2347 return V; 2348 } 2349 2350 // (A & C1)|(B & C2) 2351 const APInt *C1, *C2; 2352 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2353 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2354 if (*C1 == ~*C2) { 2355 // (A & C1)|(B & C2) 2356 // If we have: ((V + N) & C1) | (V & C2) 2357 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2358 // replace with V+N. 2359 Value *N; 2360 if (C2->isMask() && // C2 == 0+1+ 2361 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2362 // Add commutes, try both ways. 2363 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2364 return A; 2365 } 2366 // Or commutes, try both ways. 2367 if (C1->isMask() && 2368 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2369 // Add commutes, try both ways. 2370 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2371 return B; 2372 } 2373 } 2374 } 2375 2376 // If the operation is with the result of a phi instruction, check whether 2377 // operating on all incoming values of the phi always yields the same value. 2378 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2379 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2380 return V; 2381 2382 return nullptr; 2383 } 2384 2385 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2386 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2387 } 2388 2389 /// Given operands for a Xor, see if we can fold the result. 2390 /// If not, this returns null. 2391 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2392 unsigned MaxRecurse) { 2393 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2394 return C; 2395 2396 // A ^ undef -> undef 2397 if (Q.isUndefValue(Op1)) 2398 return Op1; 2399 2400 // A ^ 0 = A 2401 if (match(Op1, m_Zero())) 2402 return Op0; 2403 2404 // A ^ A = 0 2405 if (Op0 == Op1) 2406 return Constant::getNullValue(Op0->getType()); 2407 2408 // A ^ ~A = ~A ^ A = -1 2409 if (match(Op0, m_Not(m_Specific(Op1))) || 2410 match(Op1, m_Not(m_Specific(Op0)))) 2411 return Constant::getAllOnesValue(Op0->getType()); 2412 2413 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2414 return V; 2415 2416 // Try some generic simplifications for associative operations. 2417 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2418 MaxRecurse)) 2419 return V; 2420 2421 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2422 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2423 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2424 // only if B and C are equal. If B and C are equal then (since we assume 2425 // that operands have already been simplified) "select(cond, B, C)" should 2426 // have been simplified to the common value of B and C already. Analysing 2427 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2428 // for threading over phi nodes. 2429 2430 return nullptr; 2431 } 2432 2433 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2434 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2435 } 2436 2437 2438 static Type *GetCompareTy(Value *Op) { 2439 return CmpInst::makeCmpResultType(Op->getType()); 2440 } 2441 2442 /// Rummage around inside V looking for something equivalent to the comparison 2443 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2444 /// Helper function for analyzing max/min idioms. 2445 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2446 Value *LHS, Value *RHS) { 2447 SelectInst *SI = dyn_cast<SelectInst>(V); 2448 if (!SI) 2449 return nullptr; 2450 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2451 if (!Cmp) 2452 return nullptr; 2453 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2454 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2455 return Cmp; 2456 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2457 LHS == CmpRHS && RHS == CmpLHS) 2458 return Cmp; 2459 return nullptr; 2460 } 2461 2462 // A significant optimization not implemented here is assuming that alloca 2463 // addresses are not equal to incoming argument values. They don't *alias*, 2464 // as we say, but that doesn't mean they aren't equal, so we take a 2465 // conservative approach. 2466 // 2467 // This is inspired in part by C++11 5.10p1: 2468 // "Two pointers of the same type compare equal if and only if they are both 2469 // null, both point to the same function, or both represent the same 2470 // address." 2471 // 2472 // This is pretty permissive. 2473 // 2474 // It's also partly due to C11 6.5.9p6: 2475 // "Two pointers compare equal if and only if both are null pointers, both are 2476 // pointers to the same object (including a pointer to an object and a 2477 // subobject at its beginning) or function, both are pointers to one past the 2478 // last element of the same array object, or one is a pointer to one past the 2479 // end of one array object and the other is a pointer to the start of a 2480 // different array object that happens to immediately follow the first array 2481 // object in the address space.) 2482 // 2483 // C11's version is more restrictive, however there's no reason why an argument 2484 // couldn't be a one-past-the-end value for a stack object in the caller and be 2485 // equal to the beginning of a stack object in the callee. 2486 // 2487 // If the C and C++ standards are ever made sufficiently restrictive in this 2488 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2489 // this optimization. 2490 static Constant * 2491 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2492 const DominatorTree *DT, CmpInst::Predicate Pred, 2493 AssumptionCache *AC, const Instruction *CxtI, 2494 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2495 // First, skip past any trivial no-ops. 2496 LHS = LHS->stripPointerCasts(); 2497 RHS = RHS->stripPointerCasts(); 2498 2499 // A non-null pointer is not equal to a null pointer. 2500 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2501 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2502 IIQ.UseInstrInfo)) 2503 return ConstantInt::get(GetCompareTy(LHS), 2504 !CmpInst::isTrueWhenEqual(Pred)); 2505 2506 // We can only fold certain predicates on pointer comparisons. 2507 switch (Pred) { 2508 default: 2509 return nullptr; 2510 2511 // Equality comaprisons are easy to fold. 2512 case CmpInst::ICMP_EQ: 2513 case CmpInst::ICMP_NE: 2514 break; 2515 2516 // We can only handle unsigned relational comparisons because 'inbounds' on 2517 // a GEP only protects against unsigned wrapping. 2518 case CmpInst::ICMP_UGT: 2519 case CmpInst::ICMP_UGE: 2520 case CmpInst::ICMP_ULT: 2521 case CmpInst::ICMP_ULE: 2522 // However, we have to switch them to their signed variants to handle 2523 // negative indices from the base pointer. 2524 Pred = ICmpInst::getSignedPredicate(Pred); 2525 break; 2526 } 2527 2528 // Strip off any constant offsets so that we can reason about them. 2529 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2530 // here and compare base addresses like AliasAnalysis does, however there are 2531 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2532 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2533 // doesn't need to guarantee pointer inequality when it says NoAlias. 2534 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2535 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2536 2537 // If LHS and RHS are related via constant offsets to the same base 2538 // value, we can replace it with an icmp which just compares the offsets. 2539 if (LHS == RHS) 2540 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2541 2542 // Various optimizations for (in)equality comparisons. 2543 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2544 // Different non-empty allocations that exist at the same time have 2545 // different addresses (if the program can tell). Global variables always 2546 // exist, so they always exist during the lifetime of each other and all 2547 // allocas. Two different allocas usually have different addresses... 2548 // 2549 // However, if there's an @llvm.stackrestore dynamically in between two 2550 // allocas, they may have the same address. It's tempting to reduce the 2551 // scope of the problem by only looking at *static* allocas here. That would 2552 // cover the majority of allocas while significantly reducing the likelihood 2553 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2554 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2555 // an entry block. Also, if we have a block that's not attached to a 2556 // function, we can't tell if it's "static" under the current definition. 2557 // Theoretically, this problem could be fixed by creating a new kind of 2558 // instruction kind specifically for static allocas. Such a new instruction 2559 // could be required to be at the top of the entry block, thus preventing it 2560 // from being subject to a @llvm.stackrestore. Instcombine could even 2561 // convert regular allocas into these special allocas. It'd be nifty. 2562 // However, until then, this problem remains open. 2563 // 2564 // So, we'll assume that two non-empty allocas have different addresses 2565 // for now. 2566 // 2567 // With all that, if the offsets are within the bounds of their allocations 2568 // (and not one-past-the-end! so we can't use inbounds!), and their 2569 // allocations aren't the same, the pointers are not equal. 2570 // 2571 // Note that it's not necessary to check for LHS being a global variable 2572 // address, due to canonicalization and constant folding. 2573 if (isa<AllocaInst>(LHS) && 2574 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2575 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2576 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2577 uint64_t LHSSize, RHSSize; 2578 ObjectSizeOpts Opts; 2579 Opts.NullIsUnknownSize = 2580 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2581 if (LHSOffsetCI && RHSOffsetCI && 2582 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2583 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2584 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2585 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2586 if (!LHSOffsetValue.isNegative() && 2587 !RHSOffsetValue.isNegative() && 2588 LHSOffsetValue.ult(LHSSize) && 2589 RHSOffsetValue.ult(RHSSize)) { 2590 return ConstantInt::get(GetCompareTy(LHS), 2591 !CmpInst::isTrueWhenEqual(Pred)); 2592 } 2593 } 2594 2595 // Repeat the above check but this time without depending on DataLayout 2596 // or being able to compute a precise size. 2597 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2598 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2599 LHSOffset->isNullValue() && 2600 RHSOffset->isNullValue()) 2601 return ConstantInt::get(GetCompareTy(LHS), 2602 !CmpInst::isTrueWhenEqual(Pred)); 2603 } 2604 2605 // Even if an non-inbounds GEP occurs along the path we can still optimize 2606 // equality comparisons concerning the result. We avoid walking the whole 2607 // chain again by starting where the last calls to 2608 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2609 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2610 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2611 if (LHS == RHS) 2612 return ConstantExpr::getICmp(Pred, 2613 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2614 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2615 2616 // If one side of the equality comparison must come from a noalias call 2617 // (meaning a system memory allocation function), and the other side must 2618 // come from a pointer that cannot overlap with dynamically-allocated 2619 // memory within the lifetime of the current function (allocas, byval 2620 // arguments, globals), then determine the comparison result here. 2621 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2622 getUnderlyingObjects(LHS, LHSUObjs); 2623 getUnderlyingObjects(RHS, RHSUObjs); 2624 2625 // Is the set of underlying objects all noalias calls? 2626 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2627 return all_of(Objects, isNoAliasCall); 2628 }; 2629 2630 // Is the set of underlying objects all things which must be disjoint from 2631 // noalias calls. For allocas, we consider only static ones (dynamic 2632 // allocas might be transformed into calls to malloc not simultaneously 2633 // live with the compared-to allocation). For globals, we exclude symbols 2634 // that might be resolve lazily to symbols in another dynamically-loaded 2635 // library (and, thus, could be malloc'ed by the implementation). 2636 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2637 return all_of(Objects, [](const Value *V) { 2638 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2639 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2640 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2641 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2642 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2643 !GV->isThreadLocal(); 2644 if (const Argument *A = dyn_cast<Argument>(V)) 2645 return A->hasByValAttr(); 2646 return false; 2647 }); 2648 }; 2649 2650 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2651 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2652 return ConstantInt::get(GetCompareTy(LHS), 2653 !CmpInst::isTrueWhenEqual(Pred)); 2654 2655 // Fold comparisons for non-escaping pointer even if the allocation call 2656 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2657 // dynamic allocation call could be either of the operands. 2658 Value *MI = nullptr; 2659 if (isAllocLikeFn(LHS, TLI) && 2660 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2661 MI = LHS; 2662 else if (isAllocLikeFn(RHS, TLI) && 2663 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2664 MI = RHS; 2665 // FIXME: We should also fold the compare when the pointer escapes, but the 2666 // compare dominates the pointer escape 2667 if (MI && !PointerMayBeCaptured(MI, true, true)) 2668 return ConstantInt::get(GetCompareTy(LHS), 2669 CmpInst::isFalseWhenEqual(Pred)); 2670 } 2671 2672 // Otherwise, fail. 2673 return nullptr; 2674 } 2675 2676 /// Fold an icmp when its operands have i1 scalar type. 2677 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2678 Value *RHS, const SimplifyQuery &Q) { 2679 Type *ITy = GetCompareTy(LHS); // The return type. 2680 Type *OpTy = LHS->getType(); // The operand type. 2681 if (!OpTy->isIntOrIntVectorTy(1)) 2682 return nullptr; 2683 2684 // A boolean compared to true/false can be simplified in 14 out of the 20 2685 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2686 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2687 if (match(RHS, m_Zero())) { 2688 switch (Pred) { 2689 case CmpInst::ICMP_NE: // X != 0 -> X 2690 case CmpInst::ICMP_UGT: // X >u 0 -> X 2691 case CmpInst::ICMP_SLT: // X <s 0 -> X 2692 return LHS; 2693 2694 case CmpInst::ICMP_ULT: // X <u 0 -> false 2695 case CmpInst::ICMP_SGT: // X >s 0 -> false 2696 return getFalse(ITy); 2697 2698 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2699 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2700 return getTrue(ITy); 2701 2702 default: break; 2703 } 2704 } else if (match(RHS, m_One())) { 2705 switch (Pred) { 2706 case CmpInst::ICMP_EQ: // X == 1 -> X 2707 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2708 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2709 return LHS; 2710 2711 case CmpInst::ICMP_UGT: // X >u 1 -> false 2712 case CmpInst::ICMP_SLT: // X <s -1 -> false 2713 return getFalse(ITy); 2714 2715 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2716 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2717 return getTrue(ITy); 2718 2719 default: break; 2720 } 2721 } 2722 2723 switch (Pred) { 2724 default: 2725 break; 2726 case ICmpInst::ICMP_UGE: 2727 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2728 return getTrue(ITy); 2729 break; 2730 case ICmpInst::ICMP_SGE: 2731 /// For signed comparison, the values for an i1 are 0 and -1 2732 /// respectively. This maps into a truth table of: 2733 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2734 /// 0 | 0 | 1 (0 >= 0) | 1 2735 /// 0 | 1 | 1 (0 >= -1) | 1 2736 /// 1 | 0 | 0 (-1 >= 0) | 0 2737 /// 1 | 1 | 1 (-1 >= -1) | 1 2738 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2739 return getTrue(ITy); 2740 break; 2741 case ICmpInst::ICMP_ULE: 2742 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2743 return getTrue(ITy); 2744 break; 2745 } 2746 2747 return nullptr; 2748 } 2749 2750 /// Try hard to fold icmp with zero RHS because this is a common case. 2751 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2752 Value *RHS, const SimplifyQuery &Q) { 2753 if (!match(RHS, m_Zero())) 2754 return nullptr; 2755 2756 Type *ITy = GetCompareTy(LHS); // The return type. 2757 switch (Pred) { 2758 default: 2759 llvm_unreachable("Unknown ICmp predicate!"); 2760 case ICmpInst::ICMP_ULT: 2761 return getFalse(ITy); 2762 case ICmpInst::ICMP_UGE: 2763 return getTrue(ITy); 2764 case ICmpInst::ICMP_EQ: 2765 case ICmpInst::ICMP_ULE: 2766 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2767 return getFalse(ITy); 2768 break; 2769 case ICmpInst::ICMP_NE: 2770 case ICmpInst::ICMP_UGT: 2771 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2772 return getTrue(ITy); 2773 break; 2774 case ICmpInst::ICMP_SLT: { 2775 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2776 if (LHSKnown.isNegative()) 2777 return getTrue(ITy); 2778 if (LHSKnown.isNonNegative()) 2779 return getFalse(ITy); 2780 break; 2781 } 2782 case ICmpInst::ICMP_SLE: { 2783 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2784 if (LHSKnown.isNegative()) 2785 return getTrue(ITy); 2786 if (LHSKnown.isNonNegative() && 2787 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2788 return getFalse(ITy); 2789 break; 2790 } 2791 case ICmpInst::ICMP_SGE: { 2792 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2793 if (LHSKnown.isNegative()) 2794 return getFalse(ITy); 2795 if (LHSKnown.isNonNegative()) 2796 return getTrue(ITy); 2797 break; 2798 } 2799 case ICmpInst::ICMP_SGT: { 2800 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2801 if (LHSKnown.isNegative()) 2802 return getFalse(ITy); 2803 if (LHSKnown.isNonNegative() && 2804 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2805 return getTrue(ITy); 2806 break; 2807 } 2808 } 2809 2810 return nullptr; 2811 } 2812 2813 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2814 Value *RHS, const InstrInfoQuery &IIQ) { 2815 Type *ITy = GetCompareTy(RHS); // The return type. 2816 2817 Value *X; 2818 // Sign-bit checks can be optimized to true/false after unsigned 2819 // floating-point casts: 2820 // icmp slt (bitcast (uitofp X)), 0 --> false 2821 // icmp sgt (bitcast (uitofp X)), -1 --> true 2822 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2823 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2824 return ConstantInt::getFalse(ITy); 2825 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2826 return ConstantInt::getTrue(ITy); 2827 } 2828 2829 const APInt *C; 2830 if (!match(RHS, m_APIntAllowUndef(C))) 2831 return nullptr; 2832 2833 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2834 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2835 if (RHS_CR.isEmptySet()) 2836 return ConstantInt::getFalse(ITy); 2837 if (RHS_CR.isFullSet()) 2838 return ConstantInt::getTrue(ITy); 2839 2840 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2841 if (!LHS_CR.isFullSet()) { 2842 if (RHS_CR.contains(LHS_CR)) 2843 return ConstantInt::getTrue(ITy); 2844 if (RHS_CR.inverse().contains(LHS_CR)) 2845 return ConstantInt::getFalse(ITy); 2846 } 2847 2848 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2849 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2850 const APInt *MulC; 2851 if (ICmpInst::isEquality(Pred) && 2852 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2853 *MulC != 0 && C->urem(*MulC) != 0) || 2854 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2855 *MulC != 0 && C->srem(*MulC) != 0))) 2856 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2857 2858 return nullptr; 2859 } 2860 2861 static Value *simplifyICmpWithBinOpOnLHS( 2862 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2863 const SimplifyQuery &Q, unsigned MaxRecurse) { 2864 Type *ITy = GetCompareTy(RHS); // The return type. 2865 2866 Value *Y = nullptr; 2867 // icmp pred (or X, Y), X 2868 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2869 if (Pred == ICmpInst::ICMP_ULT) 2870 return getFalse(ITy); 2871 if (Pred == ICmpInst::ICMP_UGE) 2872 return getTrue(ITy); 2873 2874 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2875 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2876 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2877 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2878 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2879 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2880 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2881 } 2882 } 2883 2884 // icmp pred (and X, Y), X 2885 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2886 if (Pred == ICmpInst::ICMP_UGT) 2887 return getFalse(ITy); 2888 if (Pred == ICmpInst::ICMP_ULE) 2889 return getTrue(ITy); 2890 } 2891 2892 // icmp pred (urem X, Y), Y 2893 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2894 switch (Pred) { 2895 default: 2896 break; 2897 case ICmpInst::ICMP_SGT: 2898 case ICmpInst::ICMP_SGE: { 2899 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2900 if (!Known.isNonNegative()) 2901 break; 2902 LLVM_FALLTHROUGH; 2903 } 2904 case ICmpInst::ICMP_EQ: 2905 case ICmpInst::ICMP_UGT: 2906 case ICmpInst::ICMP_UGE: 2907 return getFalse(ITy); 2908 case ICmpInst::ICMP_SLT: 2909 case ICmpInst::ICMP_SLE: { 2910 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2911 if (!Known.isNonNegative()) 2912 break; 2913 LLVM_FALLTHROUGH; 2914 } 2915 case ICmpInst::ICMP_NE: 2916 case ICmpInst::ICMP_ULT: 2917 case ICmpInst::ICMP_ULE: 2918 return getTrue(ITy); 2919 } 2920 } 2921 2922 // icmp pred (urem X, Y), X 2923 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2924 if (Pred == ICmpInst::ICMP_ULE) 2925 return getTrue(ITy); 2926 if (Pred == ICmpInst::ICMP_UGT) 2927 return getFalse(ITy); 2928 } 2929 2930 // x >> y <=u x 2931 // x udiv y <=u x. 2932 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2933 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2934 // icmp pred (X op Y), X 2935 if (Pred == ICmpInst::ICMP_UGT) 2936 return getFalse(ITy); 2937 if (Pred == ICmpInst::ICMP_ULE) 2938 return getTrue(ITy); 2939 } 2940 2941 // (x*C1)/C2 <= x for C1 <= C2. 2942 // This holds even if the multiplication overflows: Assume that x != 0 and 2943 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2944 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2945 // 2946 // Additionally, either the multiplication and division might be represented 2947 // as shifts: 2948 // (x*C1)>>C2 <= x for C1 < 2**C2. 2949 // (x<<C1)/C2 <= x for 2**C1 < C2. 2950 const APInt *C1, *C2; 2951 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2952 C1->ule(*C2)) || 2953 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2954 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2955 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2956 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2957 if (Pred == ICmpInst::ICMP_UGT) 2958 return getFalse(ITy); 2959 if (Pred == ICmpInst::ICMP_ULE) 2960 return getTrue(ITy); 2961 } 2962 2963 return nullptr; 2964 } 2965 2966 2967 // If only one of the icmp's operands has NSW flags, try to prove that: 2968 // 2969 // icmp slt (x + C1), (x +nsw C2) 2970 // 2971 // is equivalent to: 2972 // 2973 // icmp slt C1, C2 2974 // 2975 // which is true if x + C2 has the NSW flags set and: 2976 // *) C1 < C2 && C1 >= 0, or 2977 // *) C2 < C1 && C1 <= 0. 2978 // 2979 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2980 Value *RHS) { 2981 // TODO: only support icmp slt for now. 2982 if (Pred != CmpInst::ICMP_SLT) 2983 return false; 2984 2985 // Canonicalize nsw add as RHS. 2986 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2987 std::swap(LHS, RHS); 2988 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2989 return false; 2990 2991 Value *X; 2992 const APInt *C1, *C2; 2993 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2994 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2995 return false; 2996 2997 return (C1->slt(*C2) && C1->isNonNegative()) || 2998 (C2->slt(*C1) && C1->isNonPositive()); 2999 } 3000 3001 3002 /// TODO: A large part of this logic is duplicated in InstCombine's 3003 /// foldICmpBinOp(). We should be able to share that and avoid the code 3004 /// duplication. 3005 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3006 Value *RHS, const SimplifyQuery &Q, 3007 unsigned MaxRecurse) { 3008 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3009 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3010 if (MaxRecurse && (LBO || RBO)) { 3011 // Analyze the case when either LHS or RHS is an add instruction. 3012 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3013 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3014 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3015 if (LBO && LBO->getOpcode() == Instruction::Add) { 3016 A = LBO->getOperand(0); 3017 B = LBO->getOperand(1); 3018 NoLHSWrapProblem = 3019 ICmpInst::isEquality(Pred) || 3020 (CmpInst::isUnsigned(Pred) && 3021 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3022 (CmpInst::isSigned(Pred) && 3023 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3024 } 3025 if (RBO && RBO->getOpcode() == Instruction::Add) { 3026 C = RBO->getOperand(0); 3027 D = RBO->getOperand(1); 3028 NoRHSWrapProblem = 3029 ICmpInst::isEquality(Pred) || 3030 (CmpInst::isUnsigned(Pred) && 3031 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3032 (CmpInst::isSigned(Pred) && 3033 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3034 } 3035 3036 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3037 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3038 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3039 Constant::getNullValue(RHS->getType()), Q, 3040 MaxRecurse - 1)) 3041 return V; 3042 3043 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3044 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3045 if (Value *V = 3046 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3047 C == LHS ? D : C, Q, MaxRecurse - 1)) 3048 return V; 3049 3050 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3051 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3052 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3053 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3054 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3055 Value *Y, *Z; 3056 if (A == C) { 3057 // C + B == C + D -> B == D 3058 Y = B; 3059 Z = D; 3060 } else if (A == D) { 3061 // D + B == C + D -> B == C 3062 Y = B; 3063 Z = C; 3064 } else if (B == C) { 3065 // A + C == C + D -> A == D 3066 Y = A; 3067 Z = D; 3068 } else { 3069 assert(B == D); 3070 // A + D == C + D -> A == C 3071 Y = A; 3072 Z = C; 3073 } 3074 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3075 return V; 3076 } 3077 } 3078 3079 if (LBO) 3080 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3081 return V; 3082 3083 if (RBO) 3084 if (Value *V = simplifyICmpWithBinOpOnLHS( 3085 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3086 return V; 3087 3088 // 0 - (zext X) pred C 3089 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3090 const APInt *C; 3091 if (match(RHS, m_APInt(C))) { 3092 if (C->isStrictlyPositive()) { 3093 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3094 return ConstantInt::getTrue(GetCompareTy(RHS)); 3095 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3096 return ConstantInt::getFalse(GetCompareTy(RHS)); 3097 } 3098 if (C->isNonNegative()) { 3099 if (Pred == ICmpInst::ICMP_SLE) 3100 return ConstantInt::getTrue(GetCompareTy(RHS)); 3101 if (Pred == ICmpInst::ICMP_SGT) 3102 return ConstantInt::getFalse(GetCompareTy(RHS)); 3103 } 3104 } 3105 } 3106 3107 // If C2 is a power-of-2 and C is not: 3108 // (C2 << X) == C --> false 3109 // (C2 << X) != C --> true 3110 const APInt *C; 3111 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3112 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3113 // C2 << X can equal zero in some circumstances. 3114 // This simplification might be unsafe if C is zero. 3115 // 3116 // We know it is safe if: 3117 // - The shift is nsw. We can't shift out the one bit. 3118 // - The shift is nuw. We can't shift out the one bit. 3119 // - C2 is one. 3120 // - C isn't zero. 3121 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3122 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3123 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3124 if (Pred == ICmpInst::ICMP_EQ) 3125 return ConstantInt::getFalse(GetCompareTy(RHS)); 3126 if (Pred == ICmpInst::ICMP_NE) 3127 return ConstantInt::getTrue(GetCompareTy(RHS)); 3128 } 3129 } 3130 3131 // TODO: This is overly constrained. LHS can be any power-of-2. 3132 // (1 << X) >u 0x8000 --> false 3133 // (1 << X) <=u 0x8000 --> true 3134 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3135 if (Pred == ICmpInst::ICMP_UGT) 3136 return ConstantInt::getFalse(GetCompareTy(RHS)); 3137 if (Pred == ICmpInst::ICMP_ULE) 3138 return ConstantInt::getTrue(GetCompareTy(RHS)); 3139 } 3140 3141 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3142 LBO->getOperand(1) == RBO->getOperand(1)) { 3143 switch (LBO->getOpcode()) { 3144 default: 3145 break; 3146 case Instruction::UDiv: 3147 case Instruction::LShr: 3148 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3149 !Q.IIQ.isExact(RBO)) 3150 break; 3151 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3152 RBO->getOperand(0), Q, MaxRecurse - 1)) 3153 return V; 3154 break; 3155 case Instruction::SDiv: 3156 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3157 !Q.IIQ.isExact(RBO)) 3158 break; 3159 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3160 RBO->getOperand(0), Q, MaxRecurse - 1)) 3161 return V; 3162 break; 3163 case Instruction::AShr: 3164 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3165 break; 3166 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3167 RBO->getOperand(0), Q, MaxRecurse - 1)) 3168 return V; 3169 break; 3170 case Instruction::Shl: { 3171 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3172 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3173 if (!NUW && !NSW) 3174 break; 3175 if (!NSW && ICmpInst::isSigned(Pred)) 3176 break; 3177 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3178 RBO->getOperand(0), Q, MaxRecurse - 1)) 3179 return V; 3180 break; 3181 } 3182 } 3183 } 3184 return nullptr; 3185 } 3186 3187 /// Simplify integer comparisons where at least one operand of the compare 3188 /// matches an integer min/max idiom. 3189 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3190 Value *RHS, const SimplifyQuery &Q, 3191 unsigned MaxRecurse) { 3192 Type *ITy = GetCompareTy(LHS); // The return type. 3193 Value *A, *B; 3194 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3195 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3196 3197 // Signed variants on "max(a,b)>=a -> true". 3198 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3199 if (A != RHS) 3200 std::swap(A, B); // smax(A, B) pred A. 3201 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3202 // We analyze this as smax(A, B) pred A. 3203 P = Pred; 3204 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3205 (A == LHS || B == LHS)) { 3206 if (A != LHS) 3207 std::swap(A, B); // A pred smax(A, B). 3208 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3209 // We analyze this as smax(A, B) swapped-pred A. 3210 P = CmpInst::getSwappedPredicate(Pred); 3211 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3212 (A == RHS || B == RHS)) { 3213 if (A != RHS) 3214 std::swap(A, B); // smin(A, B) pred A. 3215 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3216 // We analyze this as smax(-A, -B) swapped-pred -A. 3217 // Note that we do not need to actually form -A or -B thanks to EqP. 3218 P = CmpInst::getSwappedPredicate(Pred); 3219 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3220 (A == LHS || B == LHS)) { 3221 if (A != LHS) 3222 std::swap(A, B); // A pred smin(A, B). 3223 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3224 // We analyze this as smax(-A, -B) pred -A. 3225 // Note that we do not need to actually form -A or -B thanks to EqP. 3226 P = Pred; 3227 } 3228 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3229 // Cases correspond to "max(A, B) p A". 3230 switch (P) { 3231 default: 3232 break; 3233 case CmpInst::ICMP_EQ: 3234 case CmpInst::ICMP_SLE: 3235 // Equivalent to "A EqP B". This may be the same as the condition tested 3236 // in the max/min; if so, we can just return that. 3237 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3238 return V; 3239 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3240 return V; 3241 // Otherwise, see if "A EqP B" simplifies. 3242 if (MaxRecurse) 3243 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3244 return V; 3245 break; 3246 case CmpInst::ICMP_NE: 3247 case CmpInst::ICMP_SGT: { 3248 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3249 // Equivalent to "A InvEqP B". This may be the same as the condition 3250 // tested in the max/min; if so, we can just return that. 3251 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3252 return V; 3253 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3254 return V; 3255 // Otherwise, see if "A InvEqP B" simplifies. 3256 if (MaxRecurse) 3257 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3258 return V; 3259 break; 3260 } 3261 case CmpInst::ICMP_SGE: 3262 // Always true. 3263 return getTrue(ITy); 3264 case CmpInst::ICMP_SLT: 3265 // Always false. 3266 return getFalse(ITy); 3267 } 3268 } 3269 3270 // Unsigned variants on "max(a,b)>=a -> true". 3271 P = CmpInst::BAD_ICMP_PREDICATE; 3272 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3273 if (A != RHS) 3274 std::swap(A, B); // umax(A, B) pred A. 3275 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3276 // We analyze this as umax(A, B) pred A. 3277 P = Pred; 3278 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3279 (A == LHS || B == LHS)) { 3280 if (A != LHS) 3281 std::swap(A, B); // A pred umax(A, B). 3282 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3283 // We analyze this as umax(A, B) swapped-pred A. 3284 P = CmpInst::getSwappedPredicate(Pred); 3285 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3286 (A == RHS || B == RHS)) { 3287 if (A != RHS) 3288 std::swap(A, B); // umin(A, B) pred A. 3289 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3290 // We analyze this as umax(-A, -B) swapped-pred -A. 3291 // Note that we do not need to actually form -A or -B thanks to EqP. 3292 P = CmpInst::getSwappedPredicate(Pred); 3293 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3294 (A == LHS || B == LHS)) { 3295 if (A != LHS) 3296 std::swap(A, B); // A pred umin(A, B). 3297 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3298 // We analyze this as umax(-A, -B) pred -A. 3299 // Note that we do not need to actually form -A or -B thanks to EqP. 3300 P = Pred; 3301 } 3302 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3303 // Cases correspond to "max(A, B) p A". 3304 switch (P) { 3305 default: 3306 break; 3307 case CmpInst::ICMP_EQ: 3308 case CmpInst::ICMP_ULE: 3309 // Equivalent to "A EqP B". This may be the same as the condition tested 3310 // in the max/min; if so, we can just return that. 3311 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3312 return V; 3313 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3314 return V; 3315 // Otherwise, see if "A EqP B" simplifies. 3316 if (MaxRecurse) 3317 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3318 return V; 3319 break; 3320 case CmpInst::ICMP_NE: 3321 case CmpInst::ICMP_UGT: { 3322 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3323 // Equivalent to "A InvEqP B". This may be the same as the condition 3324 // tested in the max/min; if so, we can just return that. 3325 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3326 return V; 3327 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3328 return V; 3329 // Otherwise, see if "A InvEqP B" simplifies. 3330 if (MaxRecurse) 3331 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3332 return V; 3333 break; 3334 } 3335 case CmpInst::ICMP_UGE: 3336 return getTrue(ITy); 3337 case CmpInst::ICMP_ULT: 3338 return getFalse(ITy); 3339 } 3340 } 3341 3342 // Comparing 1 each of min/max with a common operand? 3343 // Canonicalize min operand to RHS. 3344 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3345 match(LHS, m_SMin(m_Value(), m_Value()))) { 3346 std::swap(LHS, RHS); 3347 Pred = ICmpInst::getSwappedPredicate(Pred); 3348 } 3349 3350 Value *C, *D; 3351 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3352 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3353 (A == C || A == D || B == C || B == D)) { 3354 // smax(A, B) >=s smin(A, D) --> true 3355 if (Pred == CmpInst::ICMP_SGE) 3356 return getTrue(ITy); 3357 // smax(A, B) <s smin(A, D) --> false 3358 if (Pred == CmpInst::ICMP_SLT) 3359 return getFalse(ITy); 3360 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3361 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3362 (A == C || A == D || B == C || B == D)) { 3363 // umax(A, B) >=u umin(A, D) --> true 3364 if (Pred == CmpInst::ICMP_UGE) 3365 return getTrue(ITy); 3366 // umax(A, B) <u umin(A, D) --> false 3367 if (Pred == CmpInst::ICMP_ULT) 3368 return getFalse(ITy); 3369 } 3370 3371 return nullptr; 3372 } 3373 3374 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3375 Value *LHS, Value *RHS, 3376 const SimplifyQuery &Q) { 3377 // Gracefully handle instructions that have not been inserted yet. 3378 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3379 return nullptr; 3380 3381 for (Value *AssumeBaseOp : {LHS, RHS}) { 3382 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3383 if (!AssumeVH) 3384 continue; 3385 3386 CallInst *Assume = cast<CallInst>(AssumeVH); 3387 if (Optional<bool> Imp = 3388 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3389 Q.DL)) 3390 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3391 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3392 } 3393 } 3394 3395 return nullptr; 3396 } 3397 3398 /// Given operands for an ICmpInst, see if we can fold the result. 3399 /// If not, this returns null. 3400 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3401 const SimplifyQuery &Q, unsigned MaxRecurse) { 3402 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3403 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3404 3405 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3406 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3407 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3408 3409 // If we have a constant, make sure it is on the RHS. 3410 std::swap(LHS, RHS); 3411 Pred = CmpInst::getSwappedPredicate(Pred); 3412 } 3413 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3414 3415 Type *ITy = GetCompareTy(LHS); // The return type. 3416 3417 // For EQ and NE, we can always pick a value for the undef to make the 3418 // predicate pass or fail, so we can return undef. 3419 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3420 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3421 return UndefValue::get(ITy); 3422 3423 // icmp X, X -> true/false 3424 // icmp X, undef -> true/false because undef could be X. 3425 if (LHS == RHS || Q.isUndefValue(RHS)) 3426 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3427 3428 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3429 return V; 3430 3431 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3432 return V; 3433 3434 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3435 return V; 3436 3437 // If both operands have range metadata, use the metadata 3438 // to simplify the comparison. 3439 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3440 auto RHS_Instr = cast<Instruction>(RHS); 3441 auto LHS_Instr = cast<Instruction>(LHS); 3442 3443 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3444 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3445 auto RHS_CR = getConstantRangeFromMetadata( 3446 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3447 auto LHS_CR = getConstantRangeFromMetadata( 3448 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3449 3450 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3451 if (Satisfied_CR.contains(LHS_CR)) 3452 return ConstantInt::getTrue(RHS->getContext()); 3453 3454 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3455 CmpInst::getInversePredicate(Pred), RHS_CR); 3456 if (InversedSatisfied_CR.contains(LHS_CR)) 3457 return ConstantInt::getFalse(RHS->getContext()); 3458 } 3459 } 3460 3461 // Compare of cast, for example (zext X) != 0 -> X != 0 3462 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3463 Instruction *LI = cast<CastInst>(LHS); 3464 Value *SrcOp = LI->getOperand(0); 3465 Type *SrcTy = SrcOp->getType(); 3466 Type *DstTy = LI->getType(); 3467 3468 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3469 // if the integer type is the same size as the pointer type. 3470 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3471 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3472 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3473 // Transfer the cast to the constant. 3474 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3475 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3476 Q, MaxRecurse-1)) 3477 return V; 3478 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3479 if (RI->getOperand(0)->getType() == SrcTy) 3480 // Compare without the cast. 3481 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3482 Q, MaxRecurse-1)) 3483 return V; 3484 } 3485 } 3486 3487 if (isa<ZExtInst>(LHS)) { 3488 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3489 // same type. 3490 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3491 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3492 // Compare X and Y. Note that signed predicates become unsigned. 3493 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3494 SrcOp, RI->getOperand(0), Q, 3495 MaxRecurse-1)) 3496 return V; 3497 } 3498 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3499 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3500 if (SrcOp == RI->getOperand(0)) { 3501 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3502 return ConstantInt::getTrue(ITy); 3503 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3504 return ConstantInt::getFalse(ITy); 3505 } 3506 } 3507 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3508 // too. If not, then try to deduce the result of the comparison. 3509 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3510 // Compute the constant that would happen if we truncated to SrcTy then 3511 // reextended to DstTy. 3512 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3513 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3514 3515 // If the re-extended constant didn't change then this is effectively 3516 // also a case of comparing two zero-extended values. 3517 if (RExt == CI && MaxRecurse) 3518 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3519 SrcOp, Trunc, Q, MaxRecurse-1)) 3520 return V; 3521 3522 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3523 // there. Use this to work out the result of the comparison. 3524 if (RExt != CI) { 3525 switch (Pred) { 3526 default: llvm_unreachable("Unknown ICmp predicate!"); 3527 // LHS <u RHS. 3528 case ICmpInst::ICMP_EQ: 3529 case ICmpInst::ICMP_UGT: 3530 case ICmpInst::ICMP_UGE: 3531 return ConstantInt::getFalse(CI->getContext()); 3532 3533 case ICmpInst::ICMP_NE: 3534 case ICmpInst::ICMP_ULT: 3535 case ICmpInst::ICMP_ULE: 3536 return ConstantInt::getTrue(CI->getContext()); 3537 3538 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3539 // is non-negative then LHS <s RHS. 3540 case ICmpInst::ICMP_SGT: 3541 case ICmpInst::ICMP_SGE: 3542 return CI->getValue().isNegative() ? 3543 ConstantInt::getTrue(CI->getContext()) : 3544 ConstantInt::getFalse(CI->getContext()); 3545 3546 case ICmpInst::ICMP_SLT: 3547 case ICmpInst::ICMP_SLE: 3548 return CI->getValue().isNegative() ? 3549 ConstantInt::getFalse(CI->getContext()) : 3550 ConstantInt::getTrue(CI->getContext()); 3551 } 3552 } 3553 } 3554 } 3555 3556 if (isa<SExtInst>(LHS)) { 3557 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3558 // same type. 3559 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3560 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3561 // Compare X and Y. Note that the predicate does not change. 3562 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3563 Q, MaxRecurse-1)) 3564 return V; 3565 } 3566 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3567 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3568 if (SrcOp == RI->getOperand(0)) { 3569 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3570 return ConstantInt::getTrue(ITy); 3571 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3572 return ConstantInt::getFalse(ITy); 3573 } 3574 } 3575 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3576 // too. If not, then try to deduce the result of the comparison. 3577 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3578 // Compute the constant that would happen if we truncated to SrcTy then 3579 // reextended to DstTy. 3580 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3581 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3582 3583 // If the re-extended constant didn't change then this is effectively 3584 // also a case of comparing two sign-extended values. 3585 if (RExt == CI && MaxRecurse) 3586 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3587 return V; 3588 3589 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3590 // bits there. Use this to work out the result of the comparison. 3591 if (RExt != CI) { 3592 switch (Pred) { 3593 default: llvm_unreachable("Unknown ICmp predicate!"); 3594 case ICmpInst::ICMP_EQ: 3595 return ConstantInt::getFalse(CI->getContext()); 3596 case ICmpInst::ICMP_NE: 3597 return ConstantInt::getTrue(CI->getContext()); 3598 3599 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3600 // LHS >s RHS. 3601 case ICmpInst::ICMP_SGT: 3602 case ICmpInst::ICMP_SGE: 3603 return CI->getValue().isNegative() ? 3604 ConstantInt::getTrue(CI->getContext()) : 3605 ConstantInt::getFalse(CI->getContext()); 3606 case ICmpInst::ICMP_SLT: 3607 case ICmpInst::ICMP_SLE: 3608 return CI->getValue().isNegative() ? 3609 ConstantInt::getFalse(CI->getContext()) : 3610 ConstantInt::getTrue(CI->getContext()); 3611 3612 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3613 // LHS >u RHS. 3614 case ICmpInst::ICMP_UGT: 3615 case ICmpInst::ICMP_UGE: 3616 // Comparison is true iff the LHS <s 0. 3617 if (MaxRecurse) 3618 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3619 Constant::getNullValue(SrcTy), 3620 Q, MaxRecurse-1)) 3621 return V; 3622 break; 3623 case ICmpInst::ICMP_ULT: 3624 case ICmpInst::ICMP_ULE: 3625 // Comparison is true iff the LHS >=s 0. 3626 if (MaxRecurse) 3627 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3628 Constant::getNullValue(SrcTy), 3629 Q, MaxRecurse-1)) 3630 return V; 3631 break; 3632 } 3633 } 3634 } 3635 } 3636 } 3637 3638 // icmp eq|ne X, Y -> false|true if X != Y 3639 if (ICmpInst::isEquality(Pred) && 3640 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3641 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3642 } 3643 3644 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3645 return V; 3646 3647 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3648 return V; 3649 3650 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3651 return V; 3652 3653 // Simplify comparisons of related pointers using a powerful, recursive 3654 // GEP-walk when we have target data available.. 3655 if (LHS->getType()->isPointerTy()) 3656 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3657 Q.IIQ, LHS, RHS)) 3658 return C; 3659 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3660 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3661 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3662 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3663 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3664 Q.DL.getTypeSizeInBits(CRHS->getType())) 3665 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3666 Q.IIQ, CLHS->getPointerOperand(), 3667 CRHS->getPointerOperand())) 3668 return C; 3669 3670 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3671 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3672 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3673 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3674 (ICmpInst::isEquality(Pred) || 3675 (GLHS->isInBounds() && GRHS->isInBounds() && 3676 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3677 // The bases are equal and the indices are constant. Build a constant 3678 // expression GEP with the same indices and a null base pointer to see 3679 // what constant folding can make out of it. 3680 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3681 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3682 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3683 GLHS->getSourceElementType(), Null, IndicesLHS); 3684 3685 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3686 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3687 GLHS->getSourceElementType(), Null, IndicesRHS); 3688 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3689 return ConstantFoldConstant(NewICmp, Q.DL); 3690 } 3691 } 3692 } 3693 3694 // If the comparison is with the result of a select instruction, check whether 3695 // comparing with either branch of the select always yields the same value. 3696 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3697 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3698 return V; 3699 3700 // If the comparison is with the result of a phi instruction, check whether 3701 // doing the compare with each incoming phi value yields a common result. 3702 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3703 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3704 return V; 3705 3706 return nullptr; 3707 } 3708 3709 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3710 const SimplifyQuery &Q) { 3711 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3712 } 3713 3714 /// Given operands for an FCmpInst, see if we can fold the result. 3715 /// If not, this returns null. 3716 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3717 FastMathFlags FMF, const SimplifyQuery &Q, 3718 unsigned MaxRecurse) { 3719 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3720 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3721 3722 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3723 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3724 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3725 3726 // If we have a constant, make sure it is on the RHS. 3727 std::swap(LHS, RHS); 3728 Pred = CmpInst::getSwappedPredicate(Pred); 3729 } 3730 3731 // Fold trivial predicates. 3732 Type *RetTy = GetCompareTy(LHS); 3733 if (Pred == FCmpInst::FCMP_FALSE) 3734 return getFalse(RetTy); 3735 if (Pred == FCmpInst::FCMP_TRUE) 3736 return getTrue(RetTy); 3737 3738 // Fold (un)ordered comparison if we can determine there are no NaNs. 3739 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3740 if (FMF.noNaNs() || 3741 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3742 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3743 3744 // NaN is unordered; NaN is not ordered. 3745 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3746 "Comparison must be either ordered or unordered"); 3747 if (match(RHS, m_NaN())) 3748 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3749 3750 // fcmp pred x, undef and fcmp pred undef, x 3751 // fold to true if unordered, false if ordered 3752 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3753 // Choosing NaN for the undef will always make unordered comparison succeed 3754 // and ordered comparison fail. 3755 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3756 } 3757 3758 // fcmp x,x -> true/false. Not all compares are foldable. 3759 if (LHS == RHS) { 3760 if (CmpInst::isTrueWhenEqual(Pred)) 3761 return getTrue(RetTy); 3762 if (CmpInst::isFalseWhenEqual(Pred)) 3763 return getFalse(RetTy); 3764 } 3765 3766 // Handle fcmp with constant RHS. 3767 // TODO: Use match with a specific FP value, so these work with vectors with 3768 // undef lanes. 3769 const APFloat *C; 3770 if (match(RHS, m_APFloat(C))) { 3771 // Check whether the constant is an infinity. 3772 if (C->isInfinity()) { 3773 if (C->isNegative()) { 3774 switch (Pred) { 3775 case FCmpInst::FCMP_OLT: 3776 // No value is ordered and less than negative infinity. 3777 return getFalse(RetTy); 3778 case FCmpInst::FCMP_UGE: 3779 // All values are unordered with or at least negative infinity. 3780 return getTrue(RetTy); 3781 default: 3782 break; 3783 } 3784 } else { 3785 switch (Pred) { 3786 case FCmpInst::FCMP_OGT: 3787 // No value is ordered and greater than infinity. 3788 return getFalse(RetTy); 3789 case FCmpInst::FCMP_ULE: 3790 // All values are unordered with and at most infinity. 3791 return getTrue(RetTy); 3792 default: 3793 break; 3794 } 3795 } 3796 3797 // LHS == Inf 3798 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3799 return getFalse(RetTy); 3800 // LHS != Inf 3801 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3802 return getTrue(RetTy); 3803 // LHS == Inf || LHS == NaN 3804 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3805 isKnownNeverNaN(LHS, Q.TLI)) 3806 return getFalse(RetTy); 3807 // LHS != Inf && LHS != NaN 3808 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3809 isKnownNeverNaN(LHS, Q.TLI)) 3810 return getTrue(RetTy); 3811 } 3812 if (C->isNegative() && !C->isNegZero()) { 3813 assert(!C->isNaN() && "Unexpected NaN constant!"); 3814 // TODO: We can catch more cases by using a range check rather than 3815 // relying on CannotBeOrderedLessThanZero. 3816 switch (Pred) { 3817 case FCmpInst::FCMP_UGE: 3818 case FCmpInst::FCMP_UGT: 3819 case FCmpInst::FCMP_UNE: 3820 // (X >= 0) implies (X > C) when (C < 0) 3821 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3822 return getTrue(RetTy); 3823 break; 3824 case FCmpInst::FCMP_OEQ: 3825 case FCmpInst::FCMP_OLE: 3826 case FCmpInst::FCMP_OLT: 3827 // (X >= 0) implies !(X < C) when (C < 0) 3828 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3829 return getFalse(RetTy); 3830 break; 3831 default: 3832 break; 3833 } 3834 } 3835 3836 // Check comparison of [minnum/maxnum with constant] with other constant. 3837 const APFloat *C2; 3838 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3839 *C2 < *C) || 3840 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3841 *C2 > *C)) { 3842 bool IsMaxNum = 3843 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3844 // The ordered relationship and minnum/maxnum guarantee that we do not 3845 // have NaN constants, so ordered/unordered preds are handled the same. 3846 switch (Pred) { 3847 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3848 // minnum(X, LesserC) == C --> false 3849 // maxnum(X, GreaterC) == C --> false 3850 return getFalse(RetTy); 3851 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3852 // minnum(X, LesserC) != C --> true 3853 // maxnum(X, GreaterC) != C --> true 3854 return getTrue(RetTy); 3855 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3856 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3857 // minnum(X, LesserC) >= C --> false 3858 // minnum(X, LesserC) > C --> false 3859 // maxnum(X, GreaterC) >= C --> true 3860 // maxnum(X, GreaterC) > C --> true 3861 return ConstantInt::get(RetTy, IsMaxNum); 3862 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3863 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3864 // minnum(X, LesserC) <= C --> true 3865 // minnum(X, LesserC) < C --> true 3866 // maxnum(X, GreaterC) <= C --> false 3867 // maxnum(X, GreaterC) < C --> false 3868 return ConstantInt::get(RetTy, !IsMaxNum); 3869 default: 3870 // TRUE/FALSE/ORD/UNO should be handled before this. 3871 llvm_unreachable("Unexpected fcmp predicate"); 3872 } 3873 } 3874 } 3875 3876 if (match(RHS, m_AnyZeroFP())) { 3877 switch (Pred) { 3878 case FCmpInst::FCMP_OGE: 3879 case FCmpInst::FCMP_ULT: 3880 // Positive or zero X >= 0.0 --> true 3881 // Positive or zero X < 0.0 --> false 3882 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3883 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3884 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3885 break; 3886 case FCmpInst::FCMP_UGE: 3887 case FCmpInst::FCMP_OLT: 3888 // Positive or zero or nan X >= 0.0 --> true 3889 // Positive or zero or nan X < 0.0 --> false 3890 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3891 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3892 break; 3893 default: 3894 break; 3895 } 3896 } 3897 3898 // If the comparison is with the result of a select instruction, check whether 3899 // comparing with either branch of the select always yields the same value. 3900 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3901 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3902 return V; 3903 3904 // If the comparison is with the result of a phi instruction, check whether 3905 // doing the compare with each incoming phi value yields a common result. 3906 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3907 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3908 return V; 3909 3910 return nullptr; 3911 } 3912 3913 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3914 FastMathFlags FMF, const SimplifyQuery &Q) { 3915 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3916 } 3917 3918 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3919 const SimplifyQuery &Q, 3920 bool AllowRefinement, 3921 unsigned MaxRecurse) { 3922 // Trivial replacement. 3923 if (V == Op) 3924 return RepOp; 3925 3926 // We cannot replace a constant, and shouldn't even try. 3927 if (isa<Constant>(Op)) 3928 return nullptr; 3929 3930 auto *I = dyn_cast<Instruction>(V); 3931 if (!I) 3932 return nullptr; 3933 3934 // Consider: 3935 // %cmp = icmp eq i32 %x, 2147483647 3936 // %add = add nsw i32 %x, 1 3937 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3938 // 3939 // We can't replace %sel with %add unless we strip away the flags (which will 3940 // be done in InstCombine). 3941 // TODO: This is unsound, because it only catches some forms of refinement. 3942 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3943 return nullptr; 3944 3945 // The simplification queries below may return the original value. Consider: 3946 // %div = udiv i32 %arg, %arg2 3947 // %mul = mul nsw i32 %div, %arg2 3948 // %cmp = icmp eq i32 %mul, %arg 3949 // %sel = select i1 %cmp, i32 %div, i32 undef 3950 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3951 // simplifies back to %arg. This can only happen because %mul does not 3952 // dominate %div. To ensure a consistent return value contract, we make sure 3953 // that this case returns nullptr as well. 3954 auto PreventSelfSimplify = [V](Value *Simplified) { 3955 return Simplified != V ? Simplified : nullptr; 3956 }; 3957 3958 // If this is a binary operator, try to simplify it with the replaced op. 3959 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3960 if (MaxRecurse) { 3961 if (B->getOperand(0) == Op) 3962 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp, 3963 B->getOperand(1), Q, 3964 MaxRecurse - 1)); 3965 if (B->getOperand(1) == Op) 3966 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), 3967 B->getOperand(0), RepOp, Q, 3968 MaxRecurse - 1)); 3969 } 3970 } 3971 3972 // Same for CmpInsts. 3973 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3974 if (MaxRecurse) { 3975 if (C->getOperand(0) == Op) 3976 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp, 3977 C->getOperand(1), Q, 3978 MaxRecurse - 1)); 3979 if (C->getOperand(1) == Op) 3980 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), 3981 C->getOperand(0), RepOp, Q, 3982 MaxRecurse - 1)); 3983 } 3984 } 3985 3986 // Same for GEPs. 3987 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3988 if (MaxRecurse) { 3989 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3990 transform(GEP->operands(), NewOps.begin(), 3991 [&](Value *V) { return V == Op ? RepOp : V; }); 3992 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3993 NewOps, Q, MaxRecurse - 1)); 3994 } 3995 } 3996 3997 // Same for Selects. 3998 if (auto *SI = dyn_cast<SelectInst>(I)) { 3999 if (MaxRecurse) { 4000 SmallVector<Value *, 3> NewOps(3); 4001 transform(SI->operands(), NewOps.begin(), 4002 [&](Value *V) { return V == Op ? RepOp : V; }); 4003 return PreventSelfSimplify(SimplifySelectInst( 4004 NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse - 1)); 4005 } 4006 } 4007 4008 // TODO: We could hand off more cases to instsimplify here. 4009 4010 // If all operands are constant after substituting Op for RepOp then we can 4011 // constant fold the instruction. 4012 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 4013 // Build a list of all constant operands. 4014 SmallVector<Constant *, 8> ConstOps; 4015 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 4016 if (I->getOperand(i) == Op) 4017 ConstOps.push_back(CRepOp); 4018 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 4019 ConstOps.push_back(COp); 4020 else 4021 break; 4022 } 4023 4024 // All operands were constants, fold it. 4025 if (ConstOps.size() == I->getNumOperands()) { 4026 if (CmpInst *C = dyn_cast<CmpInst>(I)) 4027 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 4028 ConstOps[1], Q.DL, Q.TLI); 4029 4030 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4031 if (!LI->isVolatile()) 4032 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4033 4034 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4035 } 4036 } 4037 4038 return nullptr; 4039 } 4040 4041 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4042 const SimplifyQuery &Q, 4043 bool AllowRefinement) { 4044 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4045 RecursionLimit); 4046 } 4047 4048 /// Try to simplify a select instruction when its condition operand is an 4049 /// integer comparison where one operand of the compare is a constant. 4050 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4051 const APInt *Y, bool TrueWhenUnset) { 4052 const APInt *C; 4053 4054 // (X & Y) == 0 ? X & ~Y : X --> X 4055 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4056 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4057 *Y == ~*C) 4058 return TrueWhenUnset ? FalseVal : TrueVal; 4059 4060 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4061 // (X & Y) != 0 ? X : X & ~Y --> X 4062 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4063 *Y == ~*C) 4064 return TrueWhenUnset ? FalseVal : TrueVal; 4065 4066 if (Y->isPowerOf2()) { 4067 // (X & Y) == 0 ? X | Y : X --> X | Y 4068 // (X & Y) != 0 ? X | Y : X --> X 4069 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4070 *Y == *C) 4071 return TrueWhenUnset ? TrueVal : FalseVal; 4072 4073 // (X & Y) == 0 ? X : X | Y --> X 4074 // (X & Y) != 0 ? X : X | Y --> X | Y 4075 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4076 *Y == *C) 4077 return TrueWhenUnset ? TrueVal : FalseVal; 4078 } 4079 4080 return nullptr; 4081 } 4082 4083 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4084 /// eq/ne. 4085 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4086 ICmpInst::Predicate Pred, 4087 Value *TrueVal, Value *FalseVal) { 4088 Value *X; 4089 APInt Mask; 4090 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4091 return nullptr; 4092 4093 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4094 Pred == ICmpInst::ICMP_EQ); 4095 } 4096 4097 /// Try to simplify a select instruction when its condition operand is an 4098 /// integer comparison. 4099 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4100 Value *FalseVal, const SimplifyQuery &Q, 4101 unsigned MaxRecurse) { 4102 ICmpInst::Predicate Pred; 4103 Value *CmpLHS, *CmpRHS; 4104 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4105 return nullptr; 4106 4107 // Canonicalize ne to eq predicate. 4108 if (Pred == ICmpInst::ICMP_NE) { 4109 Pred = ICmpInst::ICMP_EQ; 4110 std::swap(TrueVal, FalseVal); 4111 } 4112 4113 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4114 Value *X; 4115 const APInt *Y; 4116 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4117 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4118 /*TrueWhenUnset=*/true)) 4119 return V; 4120 4121 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4122 Value *ShAmt; 4123 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4124 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4125 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4126 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4127 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4128 return X; 4129 4130 // Test for a zero-shift-guard-op around rotates. These are used to 4131 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4132 // intrinsics do not have that problem. 4133 // We do not allow this transform for the general funnel shift case because 4134 // that would not preserve the poison safety of the original code. 4135 auto isRotate = 4136 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4137 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4138 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4139 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4140 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4141 Pred == ICmpInst::ICMP_EQ) 4142 return FalseVal; 4143 4144 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4145 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4146 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4147 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4148 return FalseVal; 4149 if (match(TrueVal, 4150 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4151 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4152 return FalseVal; 4153 } 4154 4155 // Check for other compares that behave like bit test. 4156 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4157 TrueVal, FalseVal)) 4158 return V; 4159 4160 // If we have an equality comparison, then we know the value in one of the 4161 // arms of the select. See if substituting this value into the arm and 4162 // simplifying the result yields the same value as the other arm. 4163 if (Pred == ICmpInst::ICMP_EQ) { 4164 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4165 /* AllowRefinement */ false, MaxRecurse) == 4166 TrueVal || 4167 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4168 /* AllowRefinement */ false, MaxRecurse) == 4169 TrueVal) 4170 return FalseVal; 4171 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4172 /* AllowRefinement */ true, MaxRecurse) == 4173 FalseVal || 4174 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4175 /* AllowRefinement */ true, MaxRecurse) == 4176 FalseVal) 4177 return FalseVal; 4178 } 4179 4180 return nullptr; 4181 } 4182 4183 /// Try to simplify a select instruction when its condition operand is a 4184 /// floating-point comparison. 4185 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4186 const SimplifyQuery &Q) { 4187 FCmpInst::Predicate Pred; 4188 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4189 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4190 return nullptr; 4191 4192 // This transform is safe if we do not have (do not care about) -0.0 or if 4193 // at least one operand is known to not be -0.0. Otherwise, the select can 4194 // change the sign of a zero operand. 4195 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4196 Q.CxtI->hasNoSignedZeros(); 4197 const APFloat *C; 4198 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4199 (match(F, m_APFloat(C)) && C->isNonZero())) { 4200 // (T == F) ? T : F --> F 4201 // (F == T) ? T : F --> F 4202 if (Pred == FCmpInst::FCMP_OEQ) 4203 return F; 4204 4205 // (T != F) ? T : F --> T 4206 // (F != T) ? T : F --> T 4207 if (Pred == FCmpInst::FCMP_UNE) 4208 return T; 4209 } 4210 4211 return nullptr; 4212 } 4213 4214 /// Given operands for a SelectInst, see if we can fold the result. 4215 /// If not, this returns null. 4216 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4217 const SimplifyQuery &Q, unsigned MaxRecurse) { 4218 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4219 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4220 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4221 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4222 4223 // select undef, X, Y -> X or Y 4224 if (Q.isUndefValue(CondC)) 4225 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4226 4227 // TODO: Vector constants with undef elements don't simplify. 4228 4229 // select true, X, Y -> X 4230 if (CondC->isAllOnesValue()) 4231 return TrueVal; 4232 // select false, X, Y -> Y 4233 if (CondC->isNullValue()) 4234 return FalseVal; 4235 } 4236 4237 // select i1 Cond, i1 true, i1 false --> i1 Cond 4238 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4239 "Select must have bool or bool vector condition"); 4240 assert(TrueVal->getType() == FalseVal->getType() && 4241 "Select must have same types for true/false ops"); 4242 if (Cond->getType() == TrueVal->getType() && 4243 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4244 return Cond; 4245 4246 // select ?, X, X -> X 4247 if (TrueVal == FalseVal) 4248 return TrueVal; 4249 4250 // If the true or false value is undef, we can fold to the other value as 4251 // long as the other value isn't poison. 4252 // select ?, undef, X -> X 4253 if (Q.isUndefValue(TrueVal) && 4254 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4255 return FalseVal; 4256 // select ?, X, undef -> X 4257 if (Q.isUndefValue(FalseVal) && 4258 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4259 return TrueVal; 4260 4261 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4262 Constant *TrueC, *FalseC; 4263 if (isa<FixedVectorType>(TrueVal->getType()) && 4264 match(TrueVal, m_Constant(TrueC)) && 4265 match(FalseVal, m_Constant(FalseC))) { 4266 unsigned NumElts = 4267 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4268 SmallVector<Constant *, 16> NewC; 4269 for (unsigned i = 0; i != NumElts; ++i) { 4270 // Bail out on incomplete vector constants. 4271 Constant *TEltC = TrueC->getAggregateElement(i); 4272 Constant *FEltC = FalseC->getAggregateElement(i); 4273 if (!TEltC || !FEltC) 4274 break; 4275 4276 // If the elements match (undef or not), that value is the result. If only 4277 // one element is undef, choose the defined element as the safe result. 4278 if (TEltC == FEltC) 4279 NewC.push_back(TEltC); 4280 else if (Q.isUndefValue(TEltC) && 4281 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4282 NewC.push_back(FEltC); 4283 else if (Q.isUndefValue(FEltC) && 4284 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4285 NewC.push_back(TEltC); 4286 else 4287 break; 4288 } 4289 if (NewC.size() == NumElts) 4290 return ConstantVector::get(NewC); 4291 } 4292 4293 if (Value *V = 4294 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4295 return V; 4296 4297 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4298 return V; 4299 4300 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4301 return V; 4302 4303 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4304 if (Imp) 4305 return *Imp ? TrueVal : FalseVal; 4306 4307 return nullptr; 4308 } 4309 4310 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4311 const SimplifyQuery &Q) { 4312 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4313 } 4314 4315 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4316 /// If not, this returns null. 4317 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4318 const SimplifyQuery &Q, unsigned) { 4319 // The type of the GEP pointer operand. 4320 unsigned AS = 4321 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4322 4323 // getelementptr P -> P. 4324 if (Ops.size() == 1) 4325 return Ops[0]; 4326 4327 // Compute the (pointer) type returned by the GEP instruction. 4328 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4329 Type *GEPTy = PointerType::get(LastType, AS); 4330 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4331 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4332 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4333 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4334 4335 // getelementptr poison, idx -> poison 4336 // getelementptr baseptr, poison -> poison 4337 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4338 return PoisonValue::get(GEPTy); 4339 4340 if (Q.isUndefValue(Ops[0])) 4341 return UndefValue::get(GEPTy); 4342 4343 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4344 4345 if (Ops.size() == 2) { 4346 // getelementptr P, 0 -> P. 4347 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4348 return Ops[0]; 4349 4350 Type *Ty = SrcTy; 4351 if (!IsScalableVec && Ty->isSized()) { 4352 Value *P; 4353 uint64_t C; 4354 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4355 // getelementptr P, N -> P if P points to a type of zero size. 4356 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4357 return Ops[0]; 4358 4359 // The following transforms are only safe if the ptrtoint cast 4360 // doesn't truncate the pointers. 4361 if (Ops[1]->getType()->getScalarSizeInBits() == 4362 Q.DL.getPointerSizeInBits(AS)) { 4363 auto PtrToInt = [GEPTy](Value *P) -> Value * { 4364 Value *Temp; 4365 if (match(P, m_PtrToInt(m_Value(Temp)))) 4366 if (Temp->getType() == GEPTy) 4367 return Temp; 4368 return nullptr; 4369 }; 4370 4371 // FIXME: The following transforms are only legal if P and V have the 4372 // same provenance (PR44403). Check whether getUnderlyingObject() is 4373 // the same? 4374 4375 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4376 if (TyAllocSize == 1 && 4377 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4378 if (Value *R = PtrToInt(P)) 4379 return R; 4380 4381 // getelementptr V, (ashr (sub P, V), C) -> Q 4382 // if P points to a type of size 1 << C. 4383 if (match(Ops[1], 4384 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4385 m_ConstantInt(C))) && 4386 TyAllocSize == 1ULL << C) 4387 if (Value *R = PtrToInt(P)) 4388 return R; 4389 4390 // getelementptr V, (sdiv (sub P, V), C) -> Q 4391 // if P points to a type of size C. 4392 if (match(Ops[1], 4393 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4394 m_SpecificInt(TyAllocSize)))) 4395 if (Value *R = PtrToInt(P)) 4396 return R; 4397 } 4398 } 4399 } 4400 4401 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4402 all_of(Ops.slice(1).drop_back(1), 4403 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4404 unsigned IdxWidth = 4405 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4406 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4407 APInt BasePtrOffset(IdxWidth, 0); 4408 Value *StrippedBasePtr = 4409 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4410 BasePtrOffset); 4411 4412 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4413 // inttoptr is generally conservative, this particular case is folded to 4414 // a null pointer, which will have incorrect provenance. 4415 4416 // gep (gep V, C), (sub 0, V) -> C 4417 if (match(Ops.back(), 4418 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4419 !BasePtrOffset.isNullValue()) { 4420 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4421 return ConstantExpr::getIntToPtr(CI, GEPTy); 4422 } 4423 // gep (gep V, C), (xor V, -1) -> C-1 4424 if (match(Ops.back(), 4425 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4426 !BasePtrOffset.isOneValue()) { 4427 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4428 return ConstantExpr::getIntToPtr(CI, GEPTy); 4429 } 4430 } 4431 } 4432 4433 // Check to see if this is constant foldable. 4434 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4435 return nullptr; 4436 4437 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4438 Ops.slice(1)); 4439 return ConstantFoldConstant(CE, Q.DL); 4440 } 4441 4442 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4443 const SimplifyQuery &Q) { 4444 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4445 } 4446 4447 /// Given operands for an InsertValueInst, see if we can fold the result. 4448 /// If not, this returns null. 4449 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4450 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4451 unsigned) { 4452 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4453 if (Constant *CVal = dyn_cast<Constant>(Val)) 4454 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4455 4456 // insertvalue x, undef, n -> x 4457 if (Q.isUndefValue(Val)) 4458 return Agg; 4459 4460 // insertvalue x, (extractvalue y, n), n 4461 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4462 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4463 EV->getIndices() == Idxs) { 4464 // insertvalue undef, (extractvalue y, n), n -> y 4465 if (Q.isUndefValue(Agg)) 4466 return EV->getAggregateOperand(); 4467 4468 // insertvalue y, (extractvalue y, n), n -> y 4469 if (Agg == EV->getAggregateOperand()) 4470 return Agg; 4471 } 4472 4473 return nullptr; 4474 } 4475 4476 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4477 ArrayRef<unsigned> Idxs, 4478 const SimplifyQuery &Q) { 4479 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4480 } 4481 4482 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4483 const SimplifyQuery &Q) { 4484 // Try to constant fold. 4485 auto *VecC = dyn_cast<Constant>(Vec); 4486 auto *ValC = dyn_cast<Constant>(Val); 4487 auto *IdxC = dyn_cast<Constant>(Idx); 4488 if (VecC && ValC && IdxC) 4489 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4490 4491 // For fixed-length vector, fold into poison if index is out of bounds. 4492 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4493 if (isa<FixedVectorType>(Vec->getType()) && 4494 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4495 return PoisonValue::get(Vec->getType()); 4496 } 4497 4498 // If index is undef, it might be out of bounds (see above case) 4499 if (Q.isUndefValue(Idx)) 4500 return PoisonValue::get(Vec->getType()); 4501 4502 // If the scalar is poison, or it is undef and there is no risk of 4503 // propagating poison from the vector value, simplify to the vector value. 4504 if (isa<PoisonValue>(Val) || 4505 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4506 return Vec; 4507 4508 // If we are extracting a value from a vector, then inserting it into the same 4509 // place, that's the input vector: 4510 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4511 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4512 return Vec; 4513 4514 return nullptr; 4515 } 4516 4517 /// Given operands for an ExtractValueInst, see if we can fold the result. 4518 /// If not, this returns null. 4519 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4520 const SimplifyQuery &, unsigned) { 4521 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4522 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4523 4524 // extractvalue x, (insertvalue y, elt, n), n -> elt 4525 unsigned NumIdxs = Idxs.size(); 4526 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4527 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4528 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4529 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4530 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4531 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4532 Idxs.slice(0, NumCommonIdxs)) { 4533 if (NumIdxs == NumInsertValueIdxs) 4534 return IVI->getInsertedValueOperand(); 4535 break; 4536 } 4537 } 4538 4539 return nullptr; 4540 } 4541 4542 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4543 const SimplifyQuery &Q) { 4544 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4545 } 4546 4547 /// Given operands for an ExtractElementInst, see if we can fold the result. 4548 /// If not, this returns null. 4549 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4550 const SimplifyQuery &Q, unsigned) { 4551 auto *VecVTy = cast<VectorType>(Vec->getType()); 4552 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4553 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4554 return ConstantExpr::getExtractElement(CVec, CIdx); 4555 4556 // The index is not relevant if our vector is a splat. 4557 if (auto *Splat = CVec->getSplatValue()) 4558 return Splat; 4559 4560 if (Q.isUndefValue(Vec)) 4561 return UndefValue::get(VecVTy->getElementType()); 4562 } 4563 4564 // If extracting a specified index from the vector, see if we can recursively 4565 // find a previously computed scalar that was inserted into the vector. 4566 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4567 // For fixed-length vector, fold into undef if index is out of bounds. 4568 if (isa<FixedVectorType>(VecVTy) && 4569 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4570 return PoisonValue::get(VecVTy->getElementType()); 4571 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4572 return Elt; 4573 } 4574 4575 // An undef extract index can be arbitrarily chosen to be an out-of-range 4576 // index value, which would result in the instruction being poison. 4577 if (Q.isUndefValue(Idx)) 4578 return PoisonValue::get(VecVTy->getElementType()); 4579 4580 return nullptr; 4581 } 4582 4583 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4584 const SimplifyQuery &Q) { 4585 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4586 } 4587 4588 /// See if we can fold the given phi. If not, returns null. 4589 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4590 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4591 // here, because the PHI we may succeed simplifying to was not 4592 // def-reachable from the original PHI! 4593 4594 // If all of the PHI's incoming values are the same then replace the PHI node 4595 // with the common value. 4596 Value *CommonValue = nullptr; 4597 bool HasUndefInput = false; 4598 for (Value *Incoming : PN->incoming_values()) { 4599 // If the incoming value is the phi node itself, it can safely be skipped. 4600 if (Incoming == PN) continue; 4601 if (Q.isUndefValue(Incoming)) { 4602 // Remember that we saw an undef value, but otherwise ignore them. 4603 HasUndefInput = true; 4604 continue; 4605 } 4606 if (CommonValue && Incoming != CommonValue) 4607 return nullptr; // Not the same, bail out. 4608 CommonValue = Incoming; 4609 } 4610 4611 // If CommonValue is null then all of the incoming values were either undef or 4612 // equal to the phi node itself. 4613 if (!CommonValue) 4614 return UndefValue::get(PN->getType()); 4615 4616 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4617 // instruction, we cannot return X as the result of the PHI node unless it 4618 // dominates the PHI block. 4619 if (HasUndefInput) 4620 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4621 4622 return CommonValue; 4623 } 4624 4625 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4626 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4627 if (auto *C = dyn_cast<Constant>(Op)) 4628 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4629 4630 if (auto *CI = dyn_cast<CastInst>(Op)) { 4631 auto *Src = CI->getOperand(0); 4632 Type *SrcTy = Src->getType(); 4633 Type *MidTy = CI->getType(); 4634 Type *DstTy = Ty; 4635 if (Src->getType() == Ty) { 4636 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4637 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4638 Type *SrcIntPtrTy = 4639 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4640 Type *MidIntPtrTy = 4641 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4642 Type *DstIntPtrTy = 4643 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4644 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4645 SrcIntPtrTy, MidIntPtrTy, 4646 DstIntPtrTy) == Instruction::BitCast) 4647 return Src; 4648 } 4649 } 4650 4651 // bitcast x -> x 4652 if (CastOpc == Instruction::BitCast) 4653 if (Op->getType() == Ty) 4654 return Op; 4655 4656 return nullptr; 4657 } 4658 4659 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4660 const SimplifyQuery &Q) { 4661 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4662 } 4663 4664 /// For the given destination element of a shuffle, peek through shuffles to 4665 /// match a root vector source operand that contains that element in the same 4666 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4667 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4668 int MaskVal, Value *RootVec, 4669 unsigned MaxRecurse) { 4670 if (!MaxRecurse--) 4671 return nullptr; 4672 4673 // Bail out if any mask value is undefined. That kind of shuffle may be 4674 // simplified further based on demanded bits or other folds. 4675 if (MaskVal == -1) 4676 return nullptr; 4677 4678 // The mask value chooses which source operand we need to look at next. 4679 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4680 int RootElt = MaskVal; 4681 Value *SourceOp = Op0; 4682 if (MaskVal >= InVecNumElts) { 4683 RootElt = MaskVal - InVecNumElts; 4684 SourceOp = Op1; 4685 } 4686 4687 // If the source operand is a shuffle itself, look through it to find the 4688 // matching root vector. 4689 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4690 return foldIdentityShuffles( 4691 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4692 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4693 } 4694 4695 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4696 // size? 4697 4698 // The source operand is not a shuffle. Initialize the root vector value for 4699 // this shuffle if that has not been done yet. 4700 if (!RootVec) 4701 RootVec = SourceOp; 4702 4703 // Give up as soon as a source operand does not match the existing root value. 4704 if (RootVec != SourceOp) 4705 return nullptr; 4706 4707 // The element must be coming from the same lane in the source vector 4708 // (although it may have crossed lanes in intermediate shuffles). 4709 if (RootElt != DestElt) 4710 return nullptr; 4711 4712 return RootVec; 4713 } 4714 4715 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4716 ArrayRef<int> Mask, Type *RetTy, 4717 const SimplifyQuery &Q, 4718 unsigned MaxRecurse) { 4719 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4720 return UndefValue::get(RetTy); 4721 4722 auto *InVecTy = cast<VectorType>(Op0->getType()); 4723 unsigned MaskNumElts = Mask.size(); 4724 ElementCount InVecEltCount = InVecTy->getElementCount(); 4725 4726 bool Scalable = InVecEltCount.isScalable(); 4727 4728 SmallVector<int, 32> Indices; 4729 Indices.assign(Mask.begin(), Mask.end()); 4730 4731 // Canonicalization: If mask does not select elements from an input vector, 4732 // replace that input vector with poison. 4733 if (!Scalable) { 4734 bool MaskSelects0 = false, MaskSelects1 = false; 4735 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4736 for (unsigned i = 0; i != MaskNumElts; ++i) { 4737 if (Indices[i] == -1) 4738 continue; 4739 if ((unsigned)Indices[i] < InVecNumElts) 4740 MaskSelects0 = true; 4741 else 4742 MaskSelects1 = true; 4743 } 4744 if (!MaskSelects0) 4745 Op0 = PoisonValue::get(InVecTy); 4746 if (!MaskSelects1) 4747 Op1 = PoisonValue::get(InVecTy); 4748 } 4749 4750 auto *Op0Const = dyn_cast<Constant>(Op0); 4751 auto *Op1Const = dyn_cast<Constant>(Op1); 4752 4753 // If all operands are constant, constant fold the shuffle. This 4754 // transformation depends on the value of the mask which is not known at 4755 // compile time for scalable vectors 4756 if (Op0Const && Op1Const) 4757 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4758 4759 // Canonicalization: if only one input vector is constant, it shall be the 4760 // second one. This transformation depends on the value of the mask which 4761 // is not known at compile time for scalable vectors 4762 if (!Scalable && Op0Const && !Op1Const) { 4763 std::swap(Op0, Op1); 4764 ShuffleVectorInst::commuteShuffleMask(Indices, 4765 InVecEltCount.getKnownMinValue()); 4766 } 4767 4768 // A splat of an inserted scalar constant becomes a vector constant: 4769 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4770 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4771 // original mask constant. 4772 // NOTE: This transformation depends on the value of the mask which is not 4773 // known at compile time for scalable vectors 4774 Constant *C; 4775 ConstantInt *IndexC; 4776 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4777 m_ConstantInt(IndexC)))) { 4778 // Match a splat shuffle mask of the insert index allowing undef elements. 4779 int InsertIndex = IndexC->getZExtValue(); 4780 if (all_of(Indices, [InsertIndex](int MaskElt) { 4781 return MaskElt == InsertIndex || MaskElt == -1; 4782 })) { 4783 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4784 4785 // Shuffle mask undefs become undefined constant result elements. 4786 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4787 for (unsigned i = 0; i != MaskNumElts; ++i) 4788 if (Indices[i] == -1) 4789 VecC[i] = UndefValue::get(C->getType()); 4790 return ConstantVector::get(VecC); 4791 } 4792 } 4793 4794 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4795 // value type is same as the input vectors' type. 4796 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4797 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4798 is_splat(OpShuf->getShuffleMask())) 4799 return Op0; 4800 4801 // All remaining transformation depend on the value of the mask, which is 4802 // not known at compile time for scalable vectors. 4803 if (Scalable) 4804 return nullptr; 4805 4806 // Don't fold a shuffle with undef mask elements. This may get folded in a 4807 // better way using demanded bits or other analysis. 4808 // TODO: Should we allow this? 4809 if (is_contained(Indices, -1)) 4810 return nullptr; 4811 4812 // Check if every element of this shuffle can be mapped back to the 4813 // corresponding element of a single root vector. If so, we don't need this 4814 // shuffle. This handles simple identity shuffles as well as chains of 4815 // shuffles that may widen/narrow and/or move elements across lanes and back. 4816 Value *RootVec = nullptr; 4817 for (unsigned i = 0; i != MaskNumElts; ++i) { 4818 // Note that recursion is limited for each vector element, so if any element 4819 // exceeds the limit, this will fail to simplify. 4820 RootVec = 4821 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4822 4823 // We can't replace a widening/narrowing shuffle with one of its operands. 4824 if (!RootVec || RootVec->getType() != RetTy) 4825 return nullptr; 4826 } 4827 return RootVec; 4828 } 4829 4830 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4831 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4832 ArrayRef<int> Mask, Type *RetTy, 4833 const SimplifyQuery &Q) { 4834 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4835 } 4836 4837 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4838 Value *&Op, const SimplifyQuery &Q) { 4839 if (auto *C = dyn_cast<Constant>(Op)) 4840 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4841 return nullptr; 4842 } 4843 4844 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4845 /// returns null. 4846 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4847 const SimplifyQuery &Q, unsigned MaxRecurse) { 4848 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4849 return C; 4850 4851 Value *X; 4852 // fneg (fneg X) ==> X 4853 if (match(Op, m_FNeg(m_Value(X)))) 4854 return X; 4855 4856 return nullptr; 4857 } 4858 4859 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4860 const SimplifyQuery &Q) { 4861 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4862 } 4863 4864 static Constant *propagateNaN(Constant *In) { 4865 // If the input is a vector with undef elements, just return a default NaN. 4866 if (!In->isNaN()) 4867 return ConstantFP::getNaN(In->getType()); 4868 4869 // Propagate the existing NaN constant when possible. 4870 // TODO: Should we quiet a signaling NaN? 4871 return In; 4872 } 4873 4874 /// Perform folds that are common to any floating-point operation. This implies 4875 /// transforms based on undef/NaN because the operation itself makes no 4876 /// difference to the result. 4877 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4878 FastMathFlags FMF, 4879 const SimplifyQuery &Q) { 4880 for (Value *V : Ops) { 4881 bool IsNan = match(V, m_NaN()); 4882 bool IsInf = match(V, m_Inf()); 4883 bool IsUndef = Q.isUndefValue(V); 4884 4885 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4886 // (an undef operand can be chosen to be Nan/Inf), then the result of 4887 // this operation is poison. 4888 if (FMF.noNaNs() && (IsNan || IsUndef)) 4889 return PoisonValue::get(V->getType()); 4890 if (FMF.noInfs() && (IsInf || IsUndef)) 4891 return PoisonValue::get(V->getType()); 4892 4893 if (IsUndef || IsNan) 4894 return propagateNaN(cast<Constant>(V)); 4895 } 4896 return nullptr; 4897 } 4898 4899 /// Given operands for an FAdd, see if we can fold the result. If not, this 4900 /// returns null. 4901 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4902 const SimplifyQuery &Q, unsigned MaxRecurse) { 4903 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4904 return C; 4905 4906 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4907 return C; 4908 4909 // fadd X, -0 ==> X 4910 if (match(Op1, m_NegZeroFP())) 4911 return Op0; 4912 4913 // fadd X, 0 ==> X, when we know X is not -0 4914 if (match(Op1, m_PosZeroFP()) && 4915 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4916 return Op0; 4917 4918 // With nnan: -X + X --> 0.0 (and commuted variant) 4919 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4920 // Negative zeros are allowed because we always end up with positive zero: 4921 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4922 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4923 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4924 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4925 if (FMF.noNaNs()) { 4926 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4927 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4928 return ConstantFP::getNullValue(Op0->getType()); 4929 4930 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4931 match(Op1, m_FNeg(m_Specific(Op0)))) 4932 return ConstantFP::getNullValue(Op0->getType()); 4933 } 4934 4935 // (X - Y) + Y --> X 4936 // Y + (X - Y) --> X 4937 Value *X; 4938 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4939 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4940 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4941 return X; 4942 4943 return nullptr; 4944 } 4945 4946 /// Given operands for an FSub, see if we can fold the result. If not, this 4947 /// returns null. 4948 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4949 const SimplifyQuery &Q, unsigned MaxRecurse) { 4950 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4951 return C; 4952 4953 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4954 return C; 4955 4956 // fsub X, +0 ==> X 4957 if (match(Op1, m_PosZeroFP())) 4958 return Op0; 4959 4960 // fsub X, -0 ==> X, when we know X is not -0 4961 if (match(Op1, m_NegZeroFP()) && 4962 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4963 return Op0; 4964 4965 // fsub -0.0, (fsub -0.0, X) ==> X 4966 // fsub -0.0, (fneg X) ==> X 4967 Value *X; 4968 if (match(Op0, m_NegZeroFP()) && 4969 match(Op1, m_FNeg(m_Value(X)))) 4970 return X; 4971 4972 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4973 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4974 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4975 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4976 match(Op1, m_FNeg(m_Value(X))))) 4977 return X; 4978 4979 // fsub nnan x, x ==> 0.0 4980 if (FMF.noNaNs() && Op0 == Op1) 4981 return Constant::getNullValue(Op0->getType()); 4982 4983 // Y - (Y - X) --> X 4984 // (X + Y) - Y --> X 4985 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4986 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4987 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4988 return X; 4989 4990 return nullptr; 4991 } 4992 4993 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4994 const SimplifyQuery &Q, unsigned MaxRecurse) { 4995 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4996 return C; 4997 4998 // fmul X, 1.0 ==> X 4999 if (match(Op1, m_FPOne())) 5000 return Op0; 5001 5002 // fmul 1.0, X ==> X 5003 if (match(Op0, m_FPOne())) 5004 return Op1; 5005 5006 // fmul nnan nsz X, 0 ==> 0 5007 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 5008 return ConstantFP::getNullValue(Op0->getType()); 5009 5010 // fmul nnan nsz 0, X ==> 0 5011 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5012 return ConstantFP::getNullValue(Op1->getType()); 5013 5014 // sqrt(X) * sqrt(X) --> X, if we can: 5015 // 1. Remove the intermediate rounding (reassociate). 5016 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5017 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5018 Value *X; 5019 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 5020 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 5021 return X; 5022 5023 return nullptr; 5024 } 5025 5026 /// Given the operands for an FMul, see if we can fold the result 5027 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5028 const SimplifyQuery &Q, unsigned MaxRecurse) { 5029 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5030 return C; 5031 5032 // Now apply simplifications that do not require rounding. 5033 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 5034 } 5035 5036 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5037 const SimplifyQuery &Q) { 5038 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 5039 } 5040 5041 5042 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5043 const SimplifyQuery &Q) { 5044 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 5045 } 5046 5047 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5048 const SimplifyQuery &Q) { 5049 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 5050 } 5051 5052 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5053 const SimplifyQuery &Q) { 5054 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 5055 } 5056 5057 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5058 const SimplifyQuery &Q, unsigned) { 5059 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5060 return C; 5061 5062 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5063 return C; 5064 5065 // X / 1.0 -> X 5066 if (match(Op1, m_FPOne())) 5067 return Op0; 5068 5069 // 0 / X -> 0 5070 // Requires that NaNs are off (X could be zero) and signed zeroes are 5071 // ignored (X could be positive or negative, so the output sign is unknown). 5072 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5073 return ConstantFP::getNullValue(Op0->getType()); 5074 5075 if (FMF.noNaNs()) { 5076 // X / X -> 1.0 is legal when NaNs are ignored. 5077 // We can ignore infinities because INF/INF is NaN. 5078 if (Op0 == Op1) 5079 return ConstantFP::get(Op0->getType(), 1.0); 5080 5081 // (X * Y) / Y --> X if we can reassociate to the above form. 5082 Value *X; 5083 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5084 return X; 5085 5086 // -X / X -> -1.0 and 5087 // X / -X -> -1.0 are legal when NaNs are ignored. 5088 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5089 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5090 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5091 return ConstantFP::get(Op0->getType(), -1.0); 5092 } 5093 5094 return nullptr; 5095 } 5096 5097 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5098 const SimplifyQuery &Q) { 5099 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5100 } 5101 5102 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5103 const SimplifyQuery &Q, unsigned) { 5104 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5105 return C; 5106 5107 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5108 return C; 5109 5110 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5111 // The constant match may include undef elements in a vector, so return a full 5112 // zero constant as the result. 5113 if (FMF.noNaNs()) { 5114 // +0 % X -> 0 5115 if (match(Op0, m_PosZeroFP())) 5116 return ConstantFP::getNullValue(Op0->getType()); 5117 // -0 % X -> -0 5118 if (match(Op0, m_NegZeroFP())) 5119 return ConstantFP::getNegativeZero(Op0->getType()); 5120 } 5121 5122 return nullptr; 5123 } 5124 5125 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5126 const SimplifyQuery &Q) { 5127 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5128 } 5129 5130 //=== Helper functions for higher up the class hierarchy. 5131 5132 /// Given the operand for a UnaryOperator, see if we can fold the result. 5133 /// If not, this returns null. 5134 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5135 unsigned MaxRecurse) { 5136 switch (Opcode) { 5137 case Instruction::FNeg: 5138 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5139 default: 5140 llvm_unreachable("Unexpected opcode"); 5141 } 5142 } 5143 5144 /// Given the operand for a UnaryOperator, see if we can fold the result. 5145 /// If not, this returns null. 5146 /// Try to use FastMathFlags when folding the result. 5147 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5148 const FastMathFlags &FMF, 5149 const SimplifyQuery &Q, unsigned MaxRecurse) { 5150 switch (Opcode) { 5151 case Instruction::FNeg: 5152 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5153 default: 5154 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5155 } 5156 } 5157 5158 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5159 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5160 } 5161 5162 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5163 const SimplifyQuery &Q) { 5164 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5165 } 5166 5167 /// Given operands for a BinaryOperator, see if we can fold the result. 5168 /// If not, this returns null. 5169 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5170 const SimplifyQuery &Q, unsigned MaxRecurse) { 5171 switch (Opcode) { 5172 case Instruction::Add: 5173 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5174 case Instruction::Sub: 5175 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5176 case Instruction::Mul: 5177 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5178 case Instruction::SDiv: 5179 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5180 case Instruction::UDiv: 5181 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5182 case Instruction::SRem: 5183 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5184 case Instruction::URem: 5185 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5186 case Instruction::Shl: 5187 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5188 case Instruction::LShr: 5189 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5190 case Instruction::AShr: 5191 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5192 case Instruction::And: 5193 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5194 case Instruction::Or: 5195 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5196 case Instruction::Xor: 5197 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5198 case Instruction::FAdd: 5199 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5200 case Instruction::FSub: 5201 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5202 case Instruction::FMul: 5203 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5204 case Instruction::FDiv: 5205 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5206 case Instruction::FRem: 5207 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5208 default: 5209 llvm_unreachable("Unexpected opcode"); 5210 } 5211 } 5212 5213 /// Given operands for a BinaryOperator, see if we can fold the result. 5214 /// If not, this returns null. 5215 /// Try to use FastMathFlags when folding the result. 5216 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5217 const FastMathFlags &FMF, const SimplifyQuery &Q, 5218 unsigned MaxRecurse) { 5219 switch (Opcode) { 5220 case Instruction::FAdd: 5221 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5222 case Instruction::FSub: 5223 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5224 case Instruction::FMul: 5225 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5226 case Instruction::FDiv: 5227 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5228 default: 5229 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5230 } 5231 } 5232 5233 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5234 const SimplifyQuery &Q) { 5235 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5236 } 5237 5238 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5239 FastMathFlags FMF, const SimplifyQuery &Q) { 5240 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5241 } 5242 5243 /// Given operands for a CmpInst, see if we can fold the result. 5244 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5245 const SimplifyQuery &Q, unsigned MaxRecurse) { 5246 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5247 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5248 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5249 } 5250 5251 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5252 const SimplifyQuery &Q) { 5253 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5254 } 5255 5256 static bool IsIdempotent(Intrinsic::ID ID) { 5257 switch (ID) { 5258 default: return false; 5259 5260 // Unary idempotent: f(f(x)) = f(x) 5261 case Intrinsic::fabs: 5262 case Intrinsic::floor: 5263 case Intrinsic::ceil: 5264 case Intrinsic::trunc: 5265 case Intrinsic::rint: 5266 case Intrinsic::nearbyint: 5267 case Intrinsic::round: 5268 case Intrinsic::roundeven: 5269 case Intrinsic::canonicalize: 5270 return true; 5271 } 5272 } 5273 5274 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5275 const DataLayout &DL) { 5276 GlobalValue *PtrSym; 5277 APInt PtrOffset; 5278 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5279 return nullptr; 5280 5281 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5282 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5283 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5284 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5285 5286 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5287 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5288 return nullptr; 5289 5290 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5291 if (OffsetInt % 4 != 0) 5292 return nullptr; 5293 5294 Constant *C = ConstantExpr::getGetElementPtr( 5295 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5296 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5297 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5298 if (!Loaded) 5299 return nullptr; 5300 5301 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5302 if (!LoadedCE) 5303 return nullptr; 5304 5305 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5306 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5307 if (!LoadedCE) 5308 return nullptr; 5309 } 5310 5311 if (LoadedCE->getOpcode() != Instruction::Sub) 5312 return nullptr; 5313 5314 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5315 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5316 return nullptr; 5317 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5318 5319 Constant *LoadedRHS = LoadedCE->getOperand(1); 5320 GlobalValue *LoadedRHSSym; 5321 APInt LoadedRHSOffset; 5322 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5323 DL) || 5324 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5325 return nullptr; 5326 5327 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5328 } 5329 5330 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5331 const SimplifyQuery &Q) { 5332 // Idempotent functions return the same result when called repeatedly. 5333 Intrinsic::ID IID = F->getIntrinsicID(); 5334 if (IsIdempotent(IID)) 5335 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5336 if (II->getIntrinsicID() == IID) 5337 return II; 5338 5339 Value *X; 5340 switch (IID) { 5341 case Intrinsic::fabs: 5342 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5343 break; 5344 case Intrinsic::bswap: 5345 // bswap(bswap(x)) -> x 5346 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5347 break; 5348 case Intrinsic::bitreverse: 5349 // bitreverse(bitreverse(x)) -> x 5350 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5351 break; 5352 case Intrinsic::ctpop: { 5353 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5354 // ctpop(and X, 1) --> and X, 1 5355 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5356 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5357 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5358 return Op0; 5359 break; 5360 } 5361 case Intrinsic::exp: 5362 // exp(log(x)) -> x 5363 if (Q.CxtI->hasAllowReassoc() && 5364 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5365 break; 5366 case Intrinsic::exp2: 5367 // exp2(log2(x)) -> x 5368 if (Q.CxtI->hasAllowReassoc() && 5369 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5370 break; 5371 case Intrinsic::log: 5372 // log(exp(x)) -> x 5373 if (Q.CxtI->hasAllowReassoc() && 5374 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5375 break; 5376 case Intrinsic::log2: 5377 // log2(exp2(x)) -> x 5378 if (Q.CxtI->hasAllowReassoc() && 5379 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5380 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5381 m_Value(X))))) return X; 5382 break; 5383 case Intrinsic::log10: 5384 // log10(pow(10.0, x)) -> x 5385 if (Q.CxtI->hasAllowReassoc() && 5386 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5387 m_Value(X)))) return X; 5388 break; 5389 case Intrinsic::floor: 5390 case Intrinsic::trunc: 5391 case Intrinsic::ceil: 5392 case Intrinsic::round: 5393 case Intrinsic::roundeven: 5394 case Intrinsic::nearbyint: 5395 case Intrinsic::rint: { 5396 // floor (sitofp x) -> sitofp x 5397 // floor (uitofp x) -> uitofp x 5398 // 5399 // Converting from int always results in a finite integral number or 5400 // infinity. For either of those inputs, these rounding functions always 5401 // return the same value, so the rounding can be eliminated. 5402 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5403 return Op0; 5404 break; 5405 } 5406 case Intrinsic::experimental_vector_reverse: 5407 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5408 if (match(Op0, 5409 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5410 return X; 5411 break; 5412 default: 5413 break; 5414 } 5415 5416 return nullptr; 5417 } 5418 5419 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5420 switch (IID) { 5421 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5422 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5423 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5424 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5425 default: llvm_unreachable("Unexpected intrinsic"); 5426 } 5427 } 5428 5429 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5430 switch (IID) { 5431 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5432 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5433 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5434 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5435 default: llvm_unreachable("Unexpected intrinsic"); 5436 } 5437 } 5438 5439 /// Given a min/max intrinsic, see if it can be removed based on having an 5440 /// operand that is another min/max intrinsic with shared operand(s). The caller 5441 /// is expected to swap the operand arguments to handle commutation. 5442 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5443 Value *X, *Y; 5444 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5445 return nullptr; 5446 5447 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5448 if (!MM0) 5449 return nullptr; 5450 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5451 5452 if (Op1 == X || Op1 == Y || 5453 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5454 // max (max X, Y), X --> max X, Y 5455 if (IID0 == IID) 5456 return MM0; 5457 // max (min X, Y), X --> X 5458 if (IID0 == getInverseMinMaxIntrinsic(IID)) 5459 return Op1; 5460 } 5461 return nullptr; 5462 } 5463 5464 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5465 const SimplifyQuery &Q) { 5466 Intrinsic::ID IID = F->getIntrinsicID(); 5467 Type *ReturnType = F->getReturnType(); 5468 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5469 switch (IID) { 5470 case Intrinsic::abs: 5471 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5472 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5473 // on the outer abs. 5474 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5475 return Op0; 5476 break; 5477 5478 case Intrinsic::cttz: { 5479 Value *X; 5480 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 5481 return X; 5482 break; 5483 } 5484 case Intrinsic::smax: 5485 case Intrinsic::smin: 5486 case Intrinsic::umax: 5487 case Intrinsic::umin: { 5488 // If the arguments are the same, this is a no-op. 5489 if (Op0 == Op1) 5490 return Op0; 5491 5492 // Canonicalize constant operand as Op1. 5493 if (isa<Constant>(Op0)) 5494 std::swap(Op0, Op1); 5495 5496 // Assume undef is the limit value. 5497 if (Q.isUndefValue(Op1)) 5498 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5499 5500 const APInt *C; 5501 if (match(Op1, m_APIntAllowUndef(C))) { 5502 // Clamp to limit value. For example: 5503 // umax(i8 %x, i8 255) --> 255 5504 if (*C == getMaxMinLimit(IID, BitWidth)) 5505 return ConstantInt::get(ReturnType, *C); 5506 5507 // If the constant op is the opposite of the limit value, the other must 5508 // be larger/smaller or equal. For example: 5509 // umin(i8 %x, i8 255) --> %x 5510 if (*C == getMaxMinLimit(getInverseMinMaxIntrinsic(IID), BitWidth)) 5511 return Op0; 5512 5513 // Remove nested call if constant operands allow it. Example: 5514 // max (max X, 7), 5 -> max X, 7 5515 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5516 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5517 // TODO: loosen undef/splat restrictions for vector constants. 5518 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5519 const APInt *InnerC; 5520 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5521 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5522 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5523 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5524 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5525 return Op0; 5526 } 5527 } 5528 5529 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5530 return V; 5531 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5532 return V; 5533 5534 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5535 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5536 return Op0; 5537 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5538 return Op1; 5539 5540 if (Optional<bool> Imp = 5541 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5542 return *Imp ? Op0 : Op1; 5543 if (Optional<bool> Imp = 5544 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5545 return *Imp ? Op1 : Op0; 5546 5547 break; 5548 } 5549 case Intrinsic::usub_with_overflow: 5550 case Intrinsic::ssub_with_overflow: 5551 // X - X -> { 0, false } 5552 // X - undef -> { 0, false } 5553 // undef - X -> { 0, false } 5554 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5555 return Constant::getNullValue(ReturnType); 5556 break; 5557 case Intrinsic::uadd_with_overflow: 5558 case Intrinsic::sadd_with_overflow: 5559 // X + undef -> { -1, false } 5560 // undef + x -> { -1, false } 5561 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5562 return ConstantStruct::get( 5563 cast<StructType>(ReturnType), 5564 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5565 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5566 } 5567 break; 5568 case Intrinsic::umul_with_overflow: 5569 case Intrinsic::smul_with_overflow: 5570 // 0 * X -> { 0, false } 5571 // X * 0 -> { 0, false } 5572 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5573 return Constant::getNullValue(ReturnType); 5574 // undef * X -> { 0, false } 5575 // X * undef -> { 0, false } 5576 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5577 return Constant::getNullValue(ReturnType); 5578 break; 5579 case Intrinsic::uadd_sat: 5580 // sat(MAX + X) -> MAX 5581 // sat(X + MAX) -> MAX 5582 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5583 return Constant::getAllOnesValue(ReturnType); 5584 LLVM_FALLTHROUGH; 5585 case Intrinsic::sadd_sat: 5586 // sat(X + undef) -> -1 5587 // sat(undef + X) -> -1 5588 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5589 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5590 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5591 return Constant::getAllOnesValue(ReturnType); 5592 5593 // X + 0 -> X 5594 if (match(Op1, m_Zero())) 5595 return Op0; 5596 // 0 + X -> X 5597 if (match(Op0, m_Zero())) 5598 return Op1; 5599 break; 5600 case Intrinsic::usub_sat: 5601 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5602 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5603 return Constant::getNullValue(ReturnType); 5604 LLVM_FALLTHROUGH; 5605 case Intrinsic::ssub_sat: 5606 // X - X -> 0, X - undef -> 0, undef - X -> 0 5607 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5608 return Constant::getNullValue(ReturnType); 5609 // X - 0 -> X 5610 if (match(Op1, m_Zero())) 5611 return Op0; 5612 break; 5613 case Intrinsic::load_relative: 5614 if (auto *C0 = dyn_cast<Constant>(Op0)) 5615 if (auto *C1 = dyn_cast<Constant>(Op1)) 5616 return SimplifyRelativeLoad(C0, C1, Q.DL); 5617 break; 5618 case Intrinsic::powi: 5619 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5620 // powi(x, 0) -> 1.0 5621 if (Power->isZero()) 5622 return ConstantFP::get(Op0->getType(), 1.0); 5623 // powi(x, 1) -> x 5624 if (Power->isOne()) 5625 return Op0; 5626 } 5627 break; 5628 case Intrinsic::copysign: 5629 // copysign X, X --> X 5630 if (Op0 == Op1) 5631 return Op0; 5632 // copysign -X, X --> X 5633 // copysign X, -X --> -X 5634 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5635 match(Op1, m_FNeg(m_Specific(Op0)))) 5636 return Op1; 5637 break; 5638 case Intrinsic::maxnum: 5639 case Intrinsic::minnum: 5640 case Intrinsic::maximum: 5641 case Intrinsic::minimum: { 5642 // If the arguments are the same, this is a no-op. 5643 if (Op0 == Op1) return Op0; 5644 5645 // Canonicalize constant operand as Op1. 5646 if (isa<Constant>(Op0)) 5647 std::swap(Op0, Op1); 5648 5649 // If an argument is undef, return the other argument. 5650 if (Q.isUndefValue(Op1)) 5651 return Op0; 5652 5653 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5654 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5655 5656 // minnum(X, nan) -> X 5657 // maxnum(X, nan) -> X 5658 // minimum(X, nan) -> nan 5659 // maximum(X, nan) -> nan 5660 if (match(Op1, m_NaN())) 5661 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5662 5663 // In the following folds, inf can be replaced with the largest finite 5664 // float, if the ninf flag is set. 5665 const APFloat *C; 5666 if (match(Op1, m_APFloat(C)) && 5667 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5668 // minnum(X, -inf) -> -inf 5669 // maxnum(X, +inf) -> +inf 5670 // minimum(X, -inf) -> -inf if nnan 5671 // maximum(X, +inf) -> +inf if nnan 5672 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5673 return ConstantFP::get(ReturnType, *C); 5674 5675 // minnum(X, +inf) -> X if nnan 5676 // maxnum(X, -inf) -> X if nnan 5677 // minimum(X, +inf) -> X 5678 // maximum(X, -inf) -> X 5679 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5680 return Op0; 5681 } 5682 5683 // Min/max of the same operation with common operand: 5684 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5685 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5686 if (M0->getIntrinsicID() == IID && 5687 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5688 return Op0; 5689 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5690 if (M1->getIntrinsicID() == IID && 5691 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5692 return Op1; 5693 5694 break; 5695 } 5696 default: 5697 break; 5698 } 5699 5700 return nullptr; 5701 } 5702 5703 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5704 5705 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5706 unsigned NumOperands = Call->getNumArgOperands(); 5707 if (!NumOperands) 5708 return nullptr; 5709 5710 Function *F = cast<Function>(Call->getCalledFunction()); 5711 Intrinsic::ID IID = F->getIntrinsicID(); 5712 if (NumOperands == 1) 5713 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5714 5715 if (NumOperands == 2) 5716 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5717 Call->getArgOperand(1), Q); 5718 5719 // Handle intrinsics with 3 or more arguments. 5720 switch (IID) { 5721 case Intrinsic::masked_load: 5722 case Intrinsic::masked_gather: { 5723 Value *MaskArg = Call->getArgOperand(2); 5724 Value *PassthruArg = Call->getArgOperand(3); 5725 // If the mask is all zeros or undef, the "passthru" argument is the result. 5726 if (maskIsAllZeroOrUndef(MaskArg)) 5727 return PassthruArg; 5728 return nullptr; 5729 } 5730 case Intrinsic::fshl: 5731 case Intrinsic::fshr: { 5732 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5733 *ShAmtArg = Call->getArgOperand(2); 5734 5735 // If both operands are undef, the result is undef. 5736 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5737 return UndefValue::get(F->getReturnType()); 5738 5739 // If shift amount is undef, assume it is zero. 5740 if (Q.isUndefValue(ShAmtArg)) 5741 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5742 5743 const APInt *ShAmtC; 5744 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5745 // If there's effectively no shift, return the 1st arg or 2nd arg. 5746 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5747 if (ShAmtC->urem(BitWidth).isNullValue()) 5748 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5749 } 5750 return nullptr; 5751 } 5752 case Intrinsic::fma: 5753 case Intrinsic::fmuladd: { 5754 Value *Op0 = Call->getArgOperand(0); 5755 Value *Op1 = Call->getArgOperand(1); 5756 Value *Op2 = Call->getArgOperand(2); 5757 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5758 return V; 5759 return nullptr; 5760 } 5761 default: 5762 return nullptr; 5763 } 5764 } 5765 5766 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5767 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5768 if (!F || !canConstantFoldCallTo(Call, F)) 5769 return nullptr; 5770 5771 SmallVector<Constant *, 4> ConstantArgs; 5772 unsigned NumArgs = Call->getNumArgOperands(); 5773 ConstantArgs.reserve(NumArgs); 5774 for (auto &Arg : Call->args()) { 5775 Constant *C = dyn_cast<Constant>(&Arg); 5776 if (!C) { 5777 if (isa<MetadataAsValue>(Arg.get())) 5778 continue; 5779 return nullptr; 5780 } 5781 ConstantArgs.push_back(C); 5782 } 5783 5784 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5785 } 5786 5787 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5788 // musttail calls can only be simplified if they are also DCEd. 5789 // As we can't guarantee this here, don't simplify them. 5790 if (Call->isMustTailCall()) 5791 return nullptr; 5792 5793 // call undef -> poison 5794 // call null -> poison 5795 Value *Callee = Call->getCalledOperand(); 5796 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5797 return PoisonValue::get(Call->getType()); 5798 5799 if (Value *V = tryConstantFoldCall(Call, Q)) 5800 return V; 5801 5802 auto *F = dyn_cast<Function>(Callee); 5803 if (F && F->isIntrinsic()) 5804 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5805 return Ret; 5806 5807 return nullptr; 5808 } 5809 5810 /// Given operands for a Freeze, see if we can fold the result. 5811 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5812 // Use a utility function defined in ValueTracking. 5813 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5814 return Op0; 5815 // We have room for improvement. 5816 return nullptr; 5817 } 5818 5819 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5820 return ::SimplifyFreezeInst(Op0, Q); 5821 } 5822 5823 /// See if we can compute a simplified version of this instruction. 5824 /// If not, this returns null. 5825 5826 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5827 OptimizationRemarkEmitter *ORE) { 5828 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5829 Value *Result; 5830 5831 switch (I->getOpcode()) { 5832 default: 5833 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5834 break; 5835 case Instruction::FNeg: 5836 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5837 break; 5838 case Instruction::FAdd: 5839 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5840 I->getFastMathFlags(), Q); 5841 break; 5842 case Instruction::Add: 5843 Result = 5844 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5845 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5846 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5847 break; 5848 case Instruction::FSub: 5849 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5850 I->getFastMathFlags(), Q); 5851 break; 5852 case Instruction::Sub: 5853 Result = 5854 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5855 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5856 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5857 break; 5858 case Instruction::FMul: 5859 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5860 I->getFastMathFlags(), Q); 5861 break; 5862 case Instruction::Mul: 5863 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5864 break; 5865 case Instruction::SDiv: 5866 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5867 break; 5868 case Instruction::UDiv: 5869 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5870 break; 5871 case Instruction::FDiv: 5872 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5873 I->getFastMathFlags(), Q); 5874 break; 5875 case Instruction::SRem: 5876 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5877 break; 5878 case Instruction::URem: 5879 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5880 break; 5881 case Instruction::FRem: 5882 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5883 I->getFastMathFlags(), Q); 5884 break; 5885 case Instruction::Shl: 5886 Result = 5887 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5888 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5889 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5890 break; 5891 case Instruction::LShr: 5892 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5893 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5894 break; 5895 case Instruction::AShr: 5896 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5897 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5898 break; 5899 case Instruction::And: 5900 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5901 break; 5902 case Instruction::Or: 5903 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5904 break; 5905 case Instruction::Xor: 5906 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5907 break; 5908 case Instruction::ICmp: 5909 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5910 I->getOperand(0), I->getOperand(1), Q); 5911 break; 5912 case Instruction::FCmp: 5913 Result = 5914 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5915 I->getOperand(1), I->getFastMathFlags(), Q); 5916 break; 5917 case Instruction::Select: 5918 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5919 I->getOperand(2), Q); 5920 break; 5921 case Instruction::GetElementPtr: { 5922 SmallVector<Value *, 8> Ops(I->operands()); 5923 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5924 Ops, Q); 5925 break; 5926 } 5927 case Instruction::InsertValue: { 5928 InsertValueInst *IV = cast<InsertValueInst>(I); 5929 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5930 IV->getInsertedValueOperand(), 5931 IV->getIndices(), Q); 5932 break; 5933 } 5934 case Instruction::InsertElement: { 5935 auto *IE = cast<InsertElementInst>(I); 5936 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5937 IE->getOperand(2), Q); 5938 break; 5939 } 5940 case Instruction::ExtractValue: { 5941 auto *EVI = cast<ExtractValueInst>(I); 5942 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5943 EVI->getIndices(), Q); 5944 break; 5945 } 5946 case Instruction::ExtractElement: { 5947 auto *EEI = cast<ExtractElementInst>(I); 5948 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5949 EEI->getIndexOperand(), Q); 5950 break; 5951 } 5952 case Instruction::ShuffleVector: { 5953 auto *SVI = cast<ShuffleVectorInst>(I); 5954 Result = 5955 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5956 SVI->getShuffleMask(), SVI->getType(), Q); 5957 break; 5958 } 5959 case Instruction::PHI: 5960 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5961 break; 5962 case Instruction::Call: { 5963 Result = SimplifyCall(cast<CallInst>(I), Q); 5964 break; 5965 } 5966 case Instruction::Freeze: 5967 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5968 break; 5969 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5970 #include "llvm/IR/Instruction.def" 5971 #undef HANDLE_CAST_INST 5972 Result = 5973 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5974 break; 5975 case Instruction::Alloca: 5976 // No simplifications for Alloca and it can't be constant folded. 5977 Result = nullptr; 5978 break; 5979 } 5980 5981 /// If called on unreachable code, the above logic may report that the 5982 /// instruction simplified to itself. Make life easier for users by 5983 /// detecting that case here, returning a safe value instead. 5984 return Result == I ? UndefValue::get(I->getType()) : Result; 5985 } 5986 5987 /// Implementation of recursive simplification through an instruction's 5988 /// uses. 5989 /// 5990 /// This is the common implementation of the recursive simplification routines. 5991 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5992 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5993 /// instructions to process and attempt to simplify it using 5994 /// InstructionSimplify. Recursively visited users which could not be 5995 /// simplified themselves are to the optional UnsimplifiedUsers set for 5996 /// further processing by the caller. 5997 /// 5998 /// This routine returns 'true' only when *it* simplifies something. The passed 5999 /// in simplified value does not count toward this. 6000 static bool replaceAndRecursivelySimplifyImpl( 6001 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6002 const DominatorTree *DT, AssumptionCache *AC, 6003 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 6004 bool Simplified = false; 6005 SmallSetVector<Instruction *, 8> Worklist; 6006 const DataLayout &DL = I->getModule()->getDataLayout(); 6007 6008 // If we have an explicit value to collapse to, do that round of the 6009 // simplification loop by hand initially. 6010 if (SimpleV) { 6011 for (User *U : I->users()) 6012 if (U != I) 6013 Worklist.insert(cast<Instruction>(U)); 6014 6015 // Replace the instruction with its simplified value. 6016 I->replaceAllUsesWith(SimpleV); 6017 6018 // Gracefully handle edge cases where the instruction is not wired into any 6019 // parent block. 6020 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6021 !I->mayHaveSideEffects()) 6022 I->eraseFromParent(); 6023 } else { 6024 Worklist.insert(I); 6025 } 6026 6027 // Note that we must test the size on each iteration, the worklist can grow. 6028 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6029 I = Worklist[Idx]; 6030 6031 // See if this instruction simplifies. 6032 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6033 if (!SimpleV) { 6034 if (UnsimplifiedUsers) 6035 UnsimplifiedUsers->insert(I); 6036 continue; 6037 } 6038 6039 Simplified = true; 6040 6041 // Stash away all the uses of the old instruction so we can check them for 6042 // recursive simplifications after a RAUW. This is cheaper than checking all 6043 // uses of To on the recursive step in most cases. 6044 for (User *U : I->users()) 6045 Worklist.insert(cast<Instruction>(U)); 6046 6047 // Replace the instruction with its simplified value. 6048 I->replaceAllUsesWith(SimpleV); 6049 6050 // Gracefully handle edge cases where the instruction is not wired into any 6051 // parent block. 6052 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6053 !I->mayHaveSideEffects()) 6054 I->eraseFromParent(); 6055 } 6056 return Simplified; 6057 } 6058 6059 bool llvm::replaceAndRecursivelySimplify( 6060 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6061 const DominatorTree *DT, AssumptionCache *AC, 6062 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6063 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6064 assert(SimpleV && "Must provide a simplified value."); 6065 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6066 UnsimplifiedUsers); 6067 } 6068 6069 namespace llvm { 6070 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6071 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6072 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6073 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6074 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6075 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6076 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6077 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6078 } 6079 6080 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6081 const DataLayout &DL) { 6082 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6083 } 6084 6085 template <class T, class... TArgs> 6086 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6087 Function &F) { 6088 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6089 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6090 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6091 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6092 } 6093 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6094 Function &); 6095 } 6096