1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Does the given value dominate the specified phi node? 141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 142 Instruction *I = dyn_cast<Instruction>(V); 143 if (!I) 144 // Arguments and constants dominate all instructions. 145 return true; 146 147 // If we are processing instructions (and/or basic blocks) that have not been 148 // fully added to a function, the parent nodes may still be null. Simply 149 // return the conservative answer in these cases. 150 if (!I->getParent() || !P->getParent() || !I->getFunction()) 151 return false; 152 153 // If we have a DominatorTree then do a precise test. 154 if (DT) 155 return DT->dominates(I, P); 156 157 // Otherwise, if the instruction is in the entry block and is not an invoke, 158 // then it obviously dominates all phi nodes. 159 if (I->getParent() == &I->getFunction()->getEntryBlock() && 160 !isa<InvokeInst>(I)) 161 return true; 162 163 return false; 164 } 165 166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 167 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 170 /// Returns the simplified value, or null if no simplification was performed. 171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 172 Instruction::BinaryOps OpcodeToExpand, 173 const SimplifyQuery &Q, unsigned MaxRecurse) { 174 // Recursion is always used, so bail out at once if we already hit the limit. 175 if (!MaxRecurse--) 176 return nullptr; 177 178 // Check whether the expression has the form "(A op' B) op C". 179 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 180 if (Op0->getOpcode() == OpcodeToExpand) { 181 // It does! Try turning it into "(A op C) op' (B op C)". 182 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 183 // Do "A op C" and "B op C" both simplify? 184 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 185 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 186 // They do! Return "L op' R" if it simplifies or is already available. 187 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 188 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 189 && L == B && R == A)) { 190 ++NumExpand; 191 return LHS; 192 } 193 // Otherwise return "L op' R" if it simplifies. 194 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 195 ++NumExpand; 196 return V; 197 } 198 } 199 } 200 201 // Check whether the expression has the form "A op (B op' C)". 202 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 203 if (Op1->getOpcode() == OpcodeToExpand) { 204 // It does! Try turning it into "(A op B) op' (A op C)". 205 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 206 // Do "A op B" and "A op C" both simplify? 207 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 208 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 209 // They do! Return "L op' R" if it simplifies or is already available. 210 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 211 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 212 && L == C && R == B)) { 213 ++NumExpand; 214 return RHS; 215 } 216 // Otherwise return "L op' R" if it simplifies. 217 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 218 ++NumExpand; 219 return V; 220 } 221 } 222 } 223 224 return nullptr; 225 } 226 227 /// Generic simplifications for associative binary operations. 228 /// Returns the simpler value, or null if none was found. 229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 230 Value *LHS, Value *RHS, 231 const SimplifyQuery &Q, 232 unsigned MaxRecurse) { 233 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 234 235 // Recursion is always used, so bail out at once if we already hit the limit. 236 if (!MaxRecurse--) 237 return nullptr; 238 239 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 240 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 241 242 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 243 if (Op0 && Op0->getOpcode() == Opcode) { 244 Value *A = Op0->getOperand(0); 245 Value *B = Op0->getOperand(1); 246 Value *C = RHS; 247 248 // Does "B op C" simplify? 249 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 250 // It does! Return "A op V" if it simplifies or is already available. 251 // If V equals B then "A op V" is just the LHS. 252 if (V == B) return LHS; 253 // Otherwise return "A op V" if it simplifies. 254 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 255 ++NumReassoc; 256 return W; 257 } 258 } 259 } 260 261 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 262 if (Op1 && Op1->getOpcode() == Opcode) { 263 Value *A = LHS; 264 Value *B = Op1->getOperand(0); 265 Value *C = Op1->getOperand(1); 266 267 // Does "A op B" simplify? 268 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 269 // It does! Return "V op C" if it simplifies or is already available. 270 // If V equals B then "V op C" is just the RHS. 271 if (V == B) return RHS; 272 // Otherwise return "V op C" if it simplifies. 273 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 274 ++NumReassoc; 275 return W; 276 } 277 } 278 } 279 280 // The remaining transforms require commutativity as well as associativity. 281 if (!Instruction::isCommutative(Opcode)) 282 return nullptr; 283 284 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 285 if (Op0 && Op0->getOpcode() == Opcode) { 286 Value *A = Op0->getOperand(0); 287 Value *B = Op0->getOperand(1); 288 Value *C = RHS; 289 290 // Does "C op A" simplify? 291 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 292 // It does! Return "V op B" if it simplifies or is already available. 293 // If V equals A then "V op B" is just the LHS. 294 if (V == A) return LHS; 295 // Otherwise return "V op B" if it simplifies. 296 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 297 ++NumReassoc; 298 return W; 299 } 300 } 301 } 302 303 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 304 if (Op1 && Op1->getOpcode() == Opcode) { 305 Value *A = LHS; 306 Value *B = Op1->getOperand(0); 307 Value *C = Op1->getOperand(1); 308 309 // Does "C op A" simplify? 310 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 311 // It does! Return "B op V" if it simplifies or is already available. 312 // If V equals C then "B op V" is just the RHS. 313 if (V == C) return RHS; 314 // Otherwise return "B op V" if it simplifies. 315 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 return nullptr; 323 } 324 325 /// In the case of a binary operation with a select instruction as an operand, 326 /// try to simplify the binop by seeing whether evaluating it on both branches 327 /// of the select results in the same value. Returns the common value if so, 328 /// otherwise returns null. 329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 330 Value *RHS, const SimplifyQuery &Q, 331 unsigned MaxRecurse) { 332 // Recursion is always used, so bail out at once if we already hit the limit. 333 if (!MaxRecurse--) 334 return nullptr; 335 336 SelectInst *SI; 337 if (isa<SelectInst>(LHS)) { 338 SI = cast<SelectInst>(LHS); 339 } else { 340 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 341 SI = cast<SelectInst>(RHS); 342 } 343 344 // Evaluate the BinOp on the true and false branches of the select. 345 Value *TV; 346 Value *FV; 347 if (SI == LHS) { 348 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 350 } else { 351 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 352 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 353 } 354 355 // If they simplified to the same value, then return the common value. 356 // If they both failed to simplify then return null. 357 if (TV == FV) 358 return TV; 359 360 // If one branch simplified to undef, return the other one. 361 if (TV && isa<UndefValue>(TV)) 362 return FV; 363 if (FV && isa<UndefValue>(FV)) 364 return TV; 365 366 // If applying the operation did not change the true and false select values, 367 // then the result of the binop is the select itself. 368 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 369 return SI; 370 371 // If one branch simplified and the other did not, and the simplified 372 // value is equal to the unsimplified one, return the simplified value. 373 // For example, select (cond, X, X & Z) & Z -> X & Z. 374 if ((FV && !TV) || (TV && !FV)) { 375 // Check that the simplified value has the form "X op Y" where "op" is the 376 // same as the original operation. 377 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 378 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 379 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 380 // We already know that "op" is the same as for the simplified value. See 381 // if the operands match too. If so, return the simplified value. 382 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 383 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 384 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 385 if (Simplified->getOperand(0) == UnsimplifiedLHS && 386 Simplified->getOperand(1) == UnsimplifiedRHS) 387 return Simplified; 388 if (Simplified->isCommutative() && 389 Simplified->getOperand(1) == UnsimplifiedLHS && 390 Simplified->getOperand(0) == UnsimplifiedRHS) 391 return Simplified; 392 } 393 } 394 395 return nullptr; 396 } 397 398 /// In the case of a comparison with a select instruction, try to simplify the 399 /// comparison by seeing whether both branches of the select result in the same 400 /// value. Returns the common value if so, otherwise returns null. 401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 402 Value *RHS, const SimplifyQuery &Q, 403 unsigned MaxRecurse) { 404 // Recursion is always used, so bail out at once if we already hit the limit. 405 if (!MaxRecurse--) 406 return nullptr; 407 408 // Make sure the select is on the LHS. 409 if (!isa<SelectInst>(LHS)) { 410 std::swap(LHS, RHS); 411 Pred = CmpInst::getSwappedPredicate(Pred); 412 } 413 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 414 SelectInst *SI = cast<SelectInst>(LHS); 415 Value *Cond = SI->getCondition(); 416 Value *TV = SI->getTrueValue(); 417 Value *FV = SI->getFalseValue(); 418 419 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 420 // Does "cmp TV, RHS" simplify? 421 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 422 if (TCmp == Cond) { 423 // It not only simplified, it simplified to the select condition. Replace 424 // it with 'true'. 425 TCmp = getTrue(Cond->getType()); 426 } else if (!TCmp) { 427 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 428 // condition then we can replace it with 'true'. Otherwise give up. 429 if (!isSameCompare(Cond, Pred, TV, RHS)) 430 return nullptr; 431 TCmp = getTrue(Cond->getType()); 432 } 433 434 // Does "cmp FV, RHS" simplify? 435 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 436 if (FCmp == Cond) { 437 // It not only simplified, it simplified to the select condition. Replace 438 // it with 'false'. 439 FCmp = getFalse(Cond->getType()); 440 } else if (!FCmp) { 441 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 442 // condition then we can replace it with 'false'. Otherwise give up. 443 if (!isSameCompare(Cond, Pred, FV, RHS)) 444 return nullptr; 445 FCmp = getFalse(Cond->getType()); 446 } 447 448 // If both sides simplified to the same value, then use it as the result of 449 // the original comparison. 450 if (TCmp == FCmp) 451 return TCmp; 452 453 // The remaining cases only make sense if the select condition has the same 454 // type as the result of the comparison, so bail out if this is not so. 455 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 456 return nullptr; 457 // If the false value simplified to false, then the result of the compare 458 // is equal to "Cond && TCmp". This also catches the case when the false 459 // value simplified to false and the true value to true, returning "Cond". 460 if (match(FCmp, m_Zero())) 461 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 462 return V; 463 // If the true value simplified to true, then the result of the compare 464 // is equal to "Cond || FCmp". 465 if (match(TCmp, m_One())) 466 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 467 return V; 468 // Finally, if the false value simplified to true and the true value to 469 // false, then the result of the compare is equal to "!Cond". 470 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 471 if (Value *V = 472 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 473 Q, MaxRecurse)) 474 return V; 475 476 return nullptr; 477 } 478 479 /// In the case of a binary operation with an operand that is a PHI instruction, 480 /// try to simplify the binop by seeing whether evaluating it on the incoming 481 /// phi values yields the same result for every value. If so returns the common 482 /// value, otherwise returns null. 483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 484 Value *RHS, const SimplifyQuery &Q, 485 unsigned MaxRecurse) { 486 // Recursion is always used, so bail out at once if we already hit the limit. 487 if (!MaxRecurse--) 488 return nullptr; 489 490 PHINode *PI; 491 if (isa<PHINode>(LHS)) { 492 PI = cast<PHINode>(LHS); 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!valueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 } else { 497 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 498 PI = cast<PHINode>(RHS); 499 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 500 if (!valueDominatesPHI(LHS, PI, Q.DT)) 501 return nullptr; 502 } 503 504 // Evaluate the BinOp on the incoming phi values. 505 Value *CommonValue = nullptr; 506 for (Value *Incoming : PI->incoming_values()) { 507 // If the incoming value is the phi node itself, it can safely be skipped. 508 if (Incoming == PI) continue; 509 Value *V = PI == LHS ? 510 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 511 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 512 // If the operation failed to simplify, or simplified to a different value 513 // to previously, then give up. 514 if (!V || (CommonValue && V != CommonValue)) 515 return nullptr; 516 CommonValue = V; 517 } 518 519 return CommonValue; 520 } 521 522 /// In the case of a comparison with a PHI instruction, try to simplify the 523 /// comparison by seeing whether comparing with all of the incoming phi values 524 /// yields the same result every time. If so returns the common result, 525 /// otherwise returns null. 526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 527 const SimplifyQuery &Q, unsigned MaxRecurse) { 528 // Recursion is always used, so bail out at once if we already hit the limit. 529 if (!MaxRecurse--) 530 return nullptr; 531 532 // Make sure the phi is on the LHS. 533 if (!isa<PHINode>(LHS)) { 534 std::swap(LHS, RHS); 535 Pred = CmpInst::getSwappedPredicate(Pred); 536 } 537 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 538 PHINode *PI = cast<PHINode>(LHS); 539 540 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 541 if (!valueDominatesPHI(RHS, PI, Q.DT)) 542 return nullptr; 543 544 // Evaluate the BinOp on the incoming phi values. 545 Value *CommonValue = nullptr; 546 for (Value *Incoming : PI->incoming_values()) { 547 // If the incoming value is the phi node itself, it can safely be skipped. 548 if (Incoming == PI) continue; 549 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 550 // If the operation failed to simplify, or simplified to a different value 551 // to previously, then give up. 552 if (!V || (CommonValue && V != CommonValue)) 553 return nullptr; 554 CommonValue = V; 555 } 556 557 return CommonValue; 558 } 559 560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 561 Value *&Op0, Value *&Op1, 562 const SimplifyQuery &Q) { 563 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 564 if (auto *CRHS = dyn_cast<Constant>(Op1)) 565 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 566 567 // Canonicalize the constant to the RHS if this is a commutative operation. 568 if (Instruction::isCommutative(Opcode)) 569 std::swap(Op0, Op1); 570 } 571 return nullptr; 572 } 573 574 /// Given operands for an Add, see if we can fold the result. 575 /// If not, this returns null. 576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 577 const SimplifyQuery &Q, unsigned MaxRecurse) { 578 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 579 return C; 580 581 // X + undef -> undef 582 if (match(Op1, m_Undef())) 583 return Op1; 584 585 // X + 0 -> X 586 if (match(Op1, m_Zero())) 587 return Op0; 588 589 // If two operands are negative, return 0. 590 if (isKnownNegation(Op0, Op1)) 591 return Constant::getNullValue(Op0->getType()); 592 593 // X + (Y - X) -> Y 594 // (Y - X) + X -> Y 595 // Eg: X + -X -> 0 596 Value *Y = nullptr; 597 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 598 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 599 return Y; 600 601 // X + ~X -> -1 since ~X = -X-1 602 Type *Ty = Op0->getType(); 603 if (match(Op0, m_Not(m_Specific(Op1))) || 604 match(Op1, m_Not(m_Specific(Op0)))) 605 return Constant::getAllOnesValue(Ty); 606 607 // add nsw/nuw (xor Y, signmask), signmask --> Y 608 // The no-wrapping add guarantees that the top bit will be set by the add. 609 // Therefore, the xor must be clearing the already set sign bit of Y. 610 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 611 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 612 return Y; 613 614 // add nuw %x, -1 -> -1, because %x can only be 0. 615 if (IsNUW && match(Op1, m_AllOnes())) 616 return Op1; // Which is -1. 617 618 /// i1 add -> xor. 619 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 620 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 621 return V; 622 623 // Try some generic simplifications for associative operations. 624 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 625 MaxRecurse)) 626 return V; 627 628 // Threading Add over selects and phi nodes is pointless, so don't bother. 629 // Threading over the select in "A + select(cond, B, C)" means evaluating 630 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 631 // only if B and C are equal. If B and C are equal then (since we assume 632 // that operands have already been simplified) "select(cond, B, C)" should 633 // have been simplified to the common value of B and C already. Analysing 634 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 635 // for threading over phi nodes. 636 637 return nullptr; 638 } 639 640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 641 const SimplifyQuery &Query) { 642 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 643 } 644 645 /// Compute the base pointer and cumulative constant offsets for V. 646 /// 647 /// This strips all constant offsets off of V, leaving it the base pointer, and 648 /// accumulates the total constant offset applied in the returned constant. It 649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 650 /// no constant offsets applied. 651 /// 652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 654 /// folding. 655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 656 bool AllowNonInbounds = false) { 657 assert(V->getType()->isPtrOrPtrVectorTy()); 658 659 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 660 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 661 662 // Even though we don't look through PHI nodes, we could be called on an 663 // instruction in an unreachable block, which may be on a cycle. 664 SmallPtrSet<Value *, 4> Visited; 665 Visited.insert(V); 666 do { 667 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 668 if ((!AllowNonInbounds && !GEP->isInBounds()) || 669 !GEP->accumulateConstantOffset(DL, Offset)) 670 break; 671 V = GEP->getPointerOperand(); 672 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 673 V = cast<Operator>(V)->getOperand(0); 674 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 675 if (GA->isInterposable()) 676 break; 677 V = GA->getAliasee(); 678 } else { 679 if (auto *Call = dyn_cast<CallBase>(V)) 680 if (Value *RV = Call->getReturnedArgOperand()) { 681 V = RV; 682 continue; 683 } 684 break; 685 } 686 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 687 } while (Visited.insert(V).second); 688 689 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 690 if (V->getType()->isVectorTy()) 691 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 692 OffsetIntPtr); 693 return OffsetIntPtr; 694 } 695 696 /// Compute the constant difference between two pointer values. 697 /// If the difference is not a constant, returns zero. 698 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 699 Value *RHS) { 700 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 701 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 702 703 // If LHS and RHS are not related via constant offsets to the same base 704 // value, there is nothing we can do here. 705 if (LHS != RHS) 706 return nullptr; 707 708 // Otherwise, the difference of LHS - RHS can be computed as: 709 // LHS - RHS 710 // = (LHSOffset + Base) - (RHSOffset + Base) 711 // = LHSOffset - RHSOffset 712 return ConstantExpr::getSub(LHSOffset, RHSOffset); 713 } 714 715 /// Given operands for a Sub, see if we can fold the result. 716 /// If not, this returns null. 717 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 718 const SimplifyQuery &Q, unsigned MaxRecurse) { 719 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 720 return C; 721 722 // X - undef -> undef 723 // undef - X -> undef 724 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 725 return UndefValue::get(Op0->getType()); 726 727 // X - 0 -> X 728 if (match(Op1, m_Zero())) 729 return Op0; 730 731 // X - X -> 0 732 if (Op0 == Op1) 733 return Constant::getNullValue(Op0->getType()); 734 735 // Is this a negation? 736 if (match(Op0, m_Zero())) { 737 // 0 - X -> 0 if the sub is NUW. 738 if (isNUW) 739 return Constant::getNullValue(Op0->getType()); 740 741 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 742 if (Known.Zero.isMaxSignedValue()) { 743 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 744 // Op1 must be 0 because negating the minimum signed value is undefined. 745 if (isNSW) 746 return Constant::getNullValue(Op0->getType()); 747 748 // 0 - X -> X if X is 0 or the minimum signed value. 749 return Op1; 750 } 751 } 752 753 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 754 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 755 Value *X = nullptr, *Y = nullptr, *Z = Op1; 756 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 757 // See if "V === Y - Z" simplifies. 758 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 759 // It does! Now see if "X + V" simplifies. 760 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 761 // It does, we successfully reassociated! 762 ++NumReassoc; 763 return W; 764 } 765 // See if "V === X - Z" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 767 // It does! Now see if "Y + V" simplifies. 768 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 769 // It does, we successfully reassociated! 770 ++NumReassoc; 771 return W; 772 } 773 } 774 775 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 776 // For example, X - (X + 1) -> -1 777 X = Op0; 778 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 779 // See if "V === X - Y" simplifies. 780 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 781 // It does! Now see if "V - Z" simplifies. 782 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 783 // It does, we successfully reassociated! 784 ++NumReassoc; 785 return W; 786 } 787 // See if "V === X - Z" simplifies. 788 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 789 // It does! Now see if "V - Y" simplifies. 790 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 791 // It does, we successfully reassociated! 792 ++NumReassoc; 793 return W; 794 } 795 } 796 797 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 798 // For example, X - (X - Y) -> Y. 799 Z = Op0; 800 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 801 // See if "V === Z - X" simplifies. 802 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 803 // It does! Now see if "V + Y" simplifies. 804 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 805 // It does, we successfully reassociated! 806 ++NumReassoc; 807 return W; 808 } 809 810 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 811 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 812 match(Op1, m_Trunc(m_Value(Y)))) 813 if (X->getType() == Y->getType()) 814 // See if "V === X - Y" simplifies. 815 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 816 // It does! Now see if "trunc V" simplifies. 817 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 818 Q, MaxRecurse - 1)) 819 // It does, return the simplified "trunc V". 820 return W; 821 822 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 823 if (match(Op0, m_PtrToInt(m_Value(X))) && 824 match(Op1, m_PtrToInt(m_Value(Y)))) 825 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 826 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 827 828 // i1 sub -> xor. 829 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 830 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 831 return V; 832 833 // Threading Sub over selects and phi nodes is pointless, so don't bother. 834 // Threading over the select in "A - select(cond, B, C)" means evaluating 835 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 836 // only if B and C are equal. If B and C are equal then (since we assume 837 // that operands have already been simplified) "select(cond, B, C)" should 838 // have been simplified to the common value of B and C already. Analysing 839 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 840 // for threading over phi nodes. 841 842 return nullptr; 843 } 844 845 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 846 const SimplifyQuery &Q) { 847 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 848 } 849 850 /// Given operands for a Mul, see if we can fold the result. 851 /// If not, this returns null. 852 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 853 unsigned MaxRecurse) { 854 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 855 return C; 856 857 // X * undef -> 0 858 // X * 0 -> 0 859 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 860 return Constant::getNullValue(Op0->getType()); 861 862 // X * 1 -> X 863 if (match(Op1, m_One())) 864 return Op0; 865 866 // (X / Y) * Y -> X if the division is exact. 867 Value *X = nullptr; 868 if (Q.IIQ.UseInstrInfo && 869 (match(Op0, 870 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 871 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 872 return X; 873 874 // i1 mul -> and. 875 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 876 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 877 return V; 878 879 // Try some generic simplifications for associative operations. 880 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 881 MaxRecurse)) 882 return V; 883 884 // Mul distributes over Add. Try some generic simplifications based on this. 885 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 886 Q, MaxRecurse)) 887 return V; 888 889 // If the operation is with the result of a select instruction, check whether 890 // operating on either branch of the select always yields the same value. 891 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 892 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 893 MaxRecurse)) 894 return V; 895 896 // If the operation is with the result of a phi instruction, check whether 897 // operating on all incoming values of the phi always yields the same value. 898 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 899 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 900 MaxRecurse)) 901 return V; 902 903 return nullptr; 904 } 905 906 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 907 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 908 } 909 910 /// Check for common or similar folds of integer division or integer remainder. 911 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 912 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 913 Type *Ty = Op0->getType(); 914 915 // X / undef -> undef 916 // X % undef -> undef 917 if (match(Op1, m_Undef())) 918 return Op1; 919 920 // X / 0 -> undef 921 // X % 0 -> undef 922 // We don't need to preserve faults! 923 if (match(Op1, m_Zero())) 924 return UndefValue::get(Ty); 925 926 // If any element of a constant divisor vector is zero or undef, the whole op 927 // is undef. 928 auto *Op1C = dyn_cast<Constant>(Op1); 929 if (Op1C && Ty->isVectorTy()) { 930 unsigned NumElts = Ty->getVectorNumElements(); 931 for (unsigned i = 0; i != NumElts; ++i) { 932 Constant *Elt = Op1C->getAggregateElement(i); 933 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 934 return UndefValue::get(Ty); 935 } 936 } 937 938 // undef / X -> 0 939 // undef % X -> 0 940 if (match(Op0, m_Undef())) 941 return Constant::getNullValue(Ty); 942 943 // 0 / X -> 0 944 // 0 % X -> 0 945 if (match(Op0, m_Zero())) 946 return Constant::getNullValue(Op0->getType()); 947 948 // X / X -> 1 949 // X % X -> 0 950 if (Op0 == Op1) 951 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 952 953 // X / 1 -> X 954 // X % 1 -> 0 955 // If this is a boolean op (single-bit element type), we can't have 956 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 957 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 958 Value *X; 959 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 960 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 961 return IsDiv ? Op0 : Constant::getNullValue(Ty); 962 963 return nullptr; 964 } 965 966 /// Given a predicate and two operands, return true if the comparison is true. 967 /// This is a helper for div/rem simplification where we return some other value 968 /// when we can prove a relationship between the operands. 969 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 970 const SimplifyQuery &Q, unsigned MaxRecurse) { 971 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 972 Constant *C = dyn_cast_or_null<Constant>(V); 973 return (C && C->isAllOnesValue()); 974 } 975 976 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 977 /// to simplify X % Y to X. 978 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 979 unsigned MaxRecurse, bool IsSigned) { 980 // Recursion is always used, so bail out at once if we already hit the limit. 981 if (!MaxRecurse--) 982 return false; 983 984 if (IsSigned) { 985 // |X| / |Y| --> 0 986 // 987 // We require that 1 operand is a simple constant. That could be extended to 988 // 2 variables if we computed the sign bit for each. 989 // 990 // Make sure that a constant is not the minimum signed value because taking 991 // the abs() of that is undefined. 992 Type *Ty = X->getType(); 993 const APInt *C; 994 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 995 // Is the variable divisor magnitude always greater than the constant 996 // dividend magnitude? 997 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 998 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 999 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1000 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1001 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1002 return true; 1003 } 1004 if (match(Y, m_APInt(C))) { 1005 // Special-case: we can't take the abs() of a minimum signed value. If 1006 // that's the divisor, then all we have to do is prove that the dividend 1007 // is also not the minimum signed value. 1008 if (C->isMinSignedValue()) 1009 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1010 1011 // Is the variable dividend magnitude always less than the constant 1012 // divisor magnitude? 1013 // |X| < |C| --> X > -abs(C) and X < abs(C) 1014 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1015 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1016 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1017 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1018 return true; 1019 } 1020 return false; 1021 } 1022 1023 // IsSigned == false. 1024 // Is the dividend unsigned less than the divisor? 1025 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1026 } 1027 1028 /// These are simplifications common to SDiv and UDiv. 1029 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1030 const SimplifyQuery &Q, unsigned MaxRecurse) { 1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1032 return C; 1033 1034 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1035 return V; 1036 1037 bool IsSigned = Opcode == Instruction::SDiv; 1038 1039 // (X * Y) / Y -> X if the multiplication does not overflow. 1040 Value *X; 1041 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1042 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1043 // If the Mul does not overflow, then we are good to go. 1044 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1045 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1046 return X; 1047 // If X has the form X = A / Y, then X * Y cannot overflow. 1048 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1049 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1050 return X; 1051 } 1052 1053 // (X rem Y) / Y -> 0 1054 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1055 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1056 return Constant::getNullValue(Op0->getType()); 1057 1058 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1059 ConstantInt *C1, *C2; 1060 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1061 match(Op1, m_ConstantInt(C2))) { 1062 bool Overflow; 1063 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1064 if (Overflow) 1065 return Constant::getNullValue(Op0->getType()); 1066 } 1067 1068 // If the operation is with the result of a select instruction, check whether 1069 // operating on either branch of the select always yields the same value. 1070 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1071 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1072 return V; 1073 1074 // If the operation is with the result of a phi instruction, check whether 1075 // operating on all incoming values of the phi always yields the same value. 1076 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1077 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1078 return V; 1079 1080 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1081 return Constant::getNullValue(Op0->getType()); 1082 1083 return nullptr; 1084 } 1085 1086 /// These are simplifications common to SRem and URem. 1087 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1088 const SimplifyQuery &Q, unsigned MaxRecurse) { 1089 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1090 return C; 1091 1092 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1093 return V; 1094 1095 // (X % Y) % Y -> X % Y 1096 if ((Opcode == Instruction::SRem && 1097 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1098 (Opcode == Instruction::URem && 1099 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1100 return Op0; 1101 1102 // (X << Y) % X -> 0 1103 if (Q.IIQ.UseInstrInfo && 1104 ((Opcode == Instruction::SRem && 1105 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1106 (Opcode == Instruction::URem && 1107 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1108 return Constant::getNullValue(Op0->getType()); 1109 1110 // If the operation is with the result of a select instruction, check whether 1111 // operating on either branch of the select always yields the same value. 1112 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1113 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1114 return V; 1115 1116 // If the operation is with the result of a phi instruction, check whether 1117 // operating on all incoming values of the phi always yields the same value. 1118 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1119 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1120 return V; 1121 1122 // If X / Y == 0, then X % Y == X. 1123 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1124 return Op0; 1125 1126 return nullptr; 1127 } 1128 1129 /// Given operands for an SDiv, see if we can fold the result. 1130 /// If not, this returns null. 1131 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1132 unsigned MaxRecurse) { 1133 // If two operands are negated and no signed overflow, return -1. 1134 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1135 return Constant::getAllOnesValue(Op0->getType()); 1136 1137 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1138 } 1139 1140 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1141 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1142 } 1143 1144 /// Given operands for a UDiv, see if we can fold the result. 1145 /// If not, this returns null. 1146 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1147 unsigned MaxRecurse) { 1148 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1149 } 1150 1151 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1152 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1153 } 1154 1155 /// Given operands for an SRem, see if we can fold the result. 1156 /// If not, this returns null. 1157 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1158 unsigned MaxRecurse) { 1159 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1160 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1161 Value *X; 1162 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1163 return ConstantInt::getNullValue(Op0->getType()); 1164 1165 // If the two operands are negated, return 0. 1166 if (isKnownNegation(Op0, Op1)) 1167 return ConstantInt::getNullValue(Op0->getType()); 1168 1169 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1170 } 1171 1172 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1173 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1174 } 1175 1176 /// Given operands for a URem, see if we can fold the result. 1177 /// If not, this returns null. 1178 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1179 unsigned MaxRecurse) { 1180 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1181 } 1182 1183 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1184 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1185 } 1186 1187 /// Returns true if a shift by \c Amount always yields undef. 1188 static bool isUndefShift(Value *Amount) { 1189 Constant *C = dyn_cast<Constant>(Amount); 1190 if (!C) 1191 return false; 1192 1193 // X shift by undef -> undef because it may shift by the bitwidth. 1194 if (isa<UndefValue>(C)) 1195 return true; 1196 1197 // Shifting by the bitwidth or more is undefined. 1198 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1199 if (CI->getValue().getLimitedValue() >= 1200 CI->getType()->getScalarSizeInBits()) 1201 return true; 1202 1203 // If all lanes of a vector shift are undefined the whole shift is. 1204 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1205 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1206 if (!isUndefShift(C->getAggregateElement(I))) 1207 return false; 1208 return true; 1209 } 1210 1211 return false; 1212 } 1213 1214 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1215 /// If not, this returns null. 1216 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1217 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1218 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1219 return C; 1220 1221 // 0 shift by X -> 0 1222 if (match(Op0, m_Zero())) 1223 return Constant::getNullValue(Op0->getType()); 1224 1225 // X shift by 0 -> X 1226 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1227 // would be poison. 1228 Value *X; 1229 if (match(Op1, m_Zero()) || 1230 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1231 return Op0; 1232 1233 // Fold undefined shifts. 1234 if (isUndefShift(Op1)) 1235 return UndefValue::get(Op0->getType()); 1236 1237 // If the operation is with the result of a select instruction, check whether 1238 // operating on either branch of the select always yields the same value. 1239 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1240 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1241 return V; 1242 1243 // If the operation is with the result of a phi instruction, check whether 1244 // operating on all incoming values of the phi always yields the same value. 1245 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1246 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1247 return V; 1248 1249 // If any bits in the shift amount make that value greater than or equal to 1250 // the number of bits in the type, the shift is undefined. 1251 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1252 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1253 return UndefValue::get(Op0->getType()); 1254 1255 // If all valid bits in the shift amount are known zero, the first operand is 1256 // unchanged. 1257 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1258 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1259 return Op0; 1260 1261 return nullptr; 1262 } 1263 1264 /// Given operands for an Shl, LShr or AShr, see if we can 1265 /// fold the result. If not, this returns null. 1266 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1267 Value *Op1, bool isExact, const SimplifyQuery &Q, 1268 unsigned MaxRecurse) { 1269 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1270 return V; 1271 1272 // X >> X -> 0 1273 if (Op0 == Op1) 1274 return Constant::getNullValue(Op0->getType()); 1275 1276 // undef >> X -> 0 1277 // undef >> X -> undef (if it's exact) 1278 if (match(Op0, m_Undef())) 1279 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1280 1281 // The low bit cannot be shifted out of an exact shift if it is set. 1282 if (isExact) { 1283 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1284 if (Op0Known.One[0]) 1285 return Op0; 1286 } 1287 1288 return nullptr; 1289 } 1290 1291 /// Given operands for an Shl, see if we can fold the result. 1292 /// If not, this returns null. 1293 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1294 const SimplifyQuery &Q, unsigned MaxRecurse) { 1295 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1296 return V; 1297 1298 // undef << X -> 0 1299 // undef << X -> undef if (if it's NSW/NUW) 1300 if (match(Op0, m_Undef())) 1301 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1302 1303 // (X >> A) << A -> X 1304 Value *X; 1305 if (Q.IIQ.UseInstrInfo && 1306 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1307 return X; 1308 1309 // shl nuw i8 C, %x -> C iff C has sign bit set. 1310 if (isNUW && match(Op0, m_Negative())) 1311 return Op0; 1312 // NOTE: could use computeKnownBits() / LazyValueInfo, 1313 // but the cost-benefit analysis suggests it isn't worth it. 1314 1315 return nullptr; 1316 } 1317 1318 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1319 const SimplifyQuery &Q) { 1320 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1321 } 1322 1323 /// Given operands for an LShr, see if we can fold the result. 1324 /// If not, this returns null. 1325 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1326 const SimplifyQuery &Q, unsigned MaxRecurse) { 1327 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1328 MaxRecurse)) 1329 return V; 1330 1331 // (X << A) >> A -> X 1332 Value *X; 1333 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1334 return X; 1335 1336 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1337 // We can return X as we do in the above case since OR alters no bits in X. 1338 // SimplifyDemandedBits in InstCombine can do more general optimization for 1339 // bit manipulation. This pattern aims to provide opportunities for other 1340 // optimizers by supporting a simple but common case in InstSimplify. 1341 Value *Y; 1342 const APInt *ShRAmt, *ShLAmt; 1343 if (match(Op1, m_APInt(ShRAmt)) && 1344 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1345 *ShRAmt == *ShLAmt) { 1346 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1347 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1348 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1349 if (ShRAmt->uge(EffWidthY)) 1350 return X; 1351 } 1352 1353 return nullptr; 1354 } 1355 1356 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1357 const SimplifyQuery &Q) { 1358 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1359 } 1360 1361 /// Given operands for an AShr, see if we can fold the result. 1362 /// If not, this returns null. 1363 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1364 const SimplifyQuery &Q, unsigned MaxRecurse) { 1365 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1366 MaxRecurse)) 1367 return V; 1368 1369 // all ones >>a X -> -1 1370 // Do not return Op0 because it may contain undef elements if it's a vector. 1371 if (match(Op0, m_AllOnes())) 1372 return Constant::getAllOnesValue(Op0->getType()); 1373 1374 // (X << A) >> A -> X 1375 Value *X; 1376 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1377 return X; 1378 1379 // Arithmetic shifting an all-sign-bit value is a no-op. 1380 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1381 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1382 return Op0; 1383 1384 return nullptr; 1385 } 1386 1387 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1388 const SimplifyQuery &Q) { 1389 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1390 } 1391 1392 /// Commuted variants are assumed to be handled by calling this function again 1393 /// with the parameters swapped. 1394 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1395 ICmpInst *UnsignedICmp, bool IsAnd) { 1396 Value *X, *Y; 1397 1398 ICmpInst::Predicate EqPred; 1399 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1400 !ICmpInst::isEquality(EqPred)) 1401 return nullptr; 1402 1403 ICmpInst::Predicate UnsignedPred; 1404 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1405 ICmpInst::isUnsigned(UnsignedPred)) 1406 ; 1407 else if (match(UnsignedICmp, 1408 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1409 ICmpInst::isUnsigned(UnsignedPred)) 1410 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1411 else 1412 return nullptr; 1413 1414 // X < Y && Y != 0 --> X < Y 1415 // X < Y || Y != 0 --> Y != 0 1416 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1417 return IsAnd ? UnsignedICmp : ZeroICmp; 1418 1419 // X >= Y || Y != 0 --> true 1420 // X >= Y || Y == 0 --> X >= Y 1421 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1422 if (EqPred == ICmpInst::ICMP_NE) 1423 return getTrue(UnsignedICmp->getType()); 1424 return UnsignedICmp; 1425 } 1426 1427 // X < Y && Y == 0 --> false 1428 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1429 IsAnd) 1430 return getFalse(UnsignedICmp->getType()); 1431 1432 return nullptr; 1433 } 1434 1435 /// Commuted variants are assumed to be handled by calling this function again 1436 /// with the parameters swapped. 1437 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1438 ICmpInst::Predicate Pred0, Pred1; 1439 Value *A ,*B; 1440 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1441 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1442 return nullptr; 1443 1444 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1445 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1446 // can eliminate Op1 from this 'and'. 1447 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1448 return Op0; 1449 1450 // Check for any combination of predicates that are guaranteed to be disjoint. 1451 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1452 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1453 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1454 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1455 return getFalse(Op0->getType()); 1456 1457 return nullptr; 1458 } 1459 1460 /// Commuted variants are assumed to be handled by calling this function again 1461 /// with the parameters swapped. 1462 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1463 ICmpInst::Predicate Pred0, Pred1; 1464 Value *A ,*B; 1465 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1466 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1467 return nullptr; 1468 1469 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1470 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1471 // can eliminate Op0 from this 'or'. 1472 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1473 return Op1; 1474 1475 // Check for any combination of predicates that cover the entire range of 1476 // possibilities. 1477 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1478 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1479 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1480 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1481 return getTrue(Op0->getType()); 1482 1483 return nullptr; 1484 } 1485 1486 /// Test if a pair of compares with a shared operand and 2 constants has an 1487 /// empty set intersection, full set union, or if one compare is a superset of 1488 /// the other. 1489 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1490 bool IsAnd) { 1491 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1492 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1493 return nullptr; 1494 1495 const APInt *C0, *C1; 1496 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1497 !match(Cmp1->getOperand(1), m_APInt(C1))) 1498 return nullptr; 1499 1500 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1501 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1502 1503 // For and-of-compares, check if the intersection is empty: 1504 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1505 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1506 return getFalse(Cmp0->getType()); 1507 1508 // For or-of-compares, check if the union is full: 1509 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1510 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1511 return getTrue(Cmp0->getType()); 1512 1513 // Is one range a superset of the other? 1514 // If this is and-of-compares, take the smaller set: 1515 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1516 // If this is or-of-compares, take the larger set: 1517 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1518 if (Range0.contains(Range1)) 1519 return IsAnd ? Cmp1 : Cmp0; 1520 if (Range1.contains(Range0)) 1521 return IsAnd ? Cmp0 : Cmp1; 1522 1523 return nullptr; 1524 } 1525 1526 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1527 bool IsAnd) { 1528 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1529 if (!match(Cmp0->getOperand(1), m_Zero()) || 1530 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1531 return nullptr; 1532 1533 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1534 return nullptr; 1535 1536 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1537 Value *X = Cmp0->getOperand(0); 1538 Value *Y = Cmp1->getOperand(0); 1539 1540 // If one of the compares is a masked version of a (not) null check, then 1541 // that compare implies the other, so we eliminate the other. Optionally, look 1542 // through a pointer-to-int cast to match a null check of a pointer type. 1543 1544 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1545 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1546 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1547 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1548 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1549 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1550 return Cmp1; 1551 1552 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1553 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1554 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1555 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1556 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1557 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1558 return Cmp0; 1559 1560 return nullptr; 1561 } 1562 1563 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1564 const InstrInfoQuery &IIQ) { 1565 // (icmp (add V, C0), C1) & (icmp V, C0) 1566 ICmpInst::Predicate Pred0, Pred1; 1567 const APInt *C0, *C1; 1568 Value *V; 1569 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1570 return nullptr; 1571 1572 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1573 return nullptr; 1574 1575 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1576 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1577 return nullptr; 1578 1579 Type *ITy = Op0->getType(); 1580 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1581 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1582 1583 const APInt Delta = *C1 - *C0; 1584 if (C0->isStrictlyPositive()) { 1585 if (Delta == 2) { 1586 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1587 return getFalse(ITy); 1588 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1589 return getFalse(ITy); 1590 } 1591 if (Delta == 1) { 1592 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1593 return getFalse(ITy); 1594 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1595 return getFalse(ITy); 1596 } 1597 } 1598 if (C0->getBoolValue() && isNUW) { 1599 if (Delta == 2) 1600 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1601 return getFalse(ITy); 1602 if (Delta == 1) 1603 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1604 return getFalse(ITy); 1605 } 1606 1607 return nullptr; 1608 } 1609 1610 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1611 const InstrInfoQuery &IIQ) { 1612 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1613 return X; 1614 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1615 return X; 1616 1617 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1618 return X; 1619 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1620 return X; 1621 1622 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1623 return X; 1624 1625 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1626 return X; 1627 1628 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1629 return X; 1630 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1631 return X; 1632 1633 return nullptr; 1634 } 1635 1636 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1637 const InstrInfoQuery &IIQ) { 1638 // (icmp (add V, C0), C1) | (icmp V, C0) 1639 ICmpInst::Predicate Pred0, Pred1; 1640 const APInt *C0, *C1; 1641 Value *V; 1642 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1643 return nullptr; 1644 1645 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1646 return nullptr; 1647 1648 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1649 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1650 return nullptr; 1651 1652 Type *ITy = Op0->getType(); 1653 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1654 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1655 1656 const APInt Delta = *C1 - *C0; 1657 if (C0->isStrictlyPositive()) { 1658 if (Delta == 2) { 1659 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1660 return getTrue(ITy); 1661 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1662 return getTrue(ITy); 1663 } 1664 if (Delta == 1) { 1665 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1666 return getTrue(ITy); 1667 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1668 return getTrue(ITy); 1669 } 1670 } 1671 if (C0->getBoolValue() && isNUW) { 1672 if (Delta == 2) 1673 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1674 return getTrue(ITy); 1675 if (Delta == 1) 1676 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1677 return getTrue(ITy); 1678 } 1679 1680 return nullptr; 1681 } 1682 1683 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1684 const InstrInfoQuery &IIQ) { 1685 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1686 return X; 1687 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1688 return X; 1689 1690 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1691 return X; 1692 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1693 return X; 1694 1695 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1696 return X; 1697 1698 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1699 return X; 1700 1701 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1702 return X; 1703 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1704 return X; 1705 1706 return nullptr; 1707 } 1708 1709 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1710 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1711 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1712 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1713 if (LHS0->getType() != RHS0->getType()) 1714 return nullptr; 1715 1716 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1717 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1718 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1719 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1720 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1721 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1722 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1723 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1724 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1725 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1726 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1727 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1728 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1729 return RHS; 1730 1731 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1732 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1733 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1734 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1735 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1736 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1737 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1738 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1739 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1740 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1741 return LHS; 1742 } 1743 1744 return nullptr; 1745 } 1746 1747 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1748 Value *Op0, Value *Op1, bool IsAnd) { 1749 // Look through casts of the 'and' operands to find compares. 1750 auto *Cast0 = dyn_cast<CastInst>(Op0); 1751 auto *Cast1 = dyn_cast<CastInst>(Op1); 1752 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1753 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1754 Op0 = Cast0->getOperand(0); 1755 Op1 = Cast1->getOperand(0); 1756 } 1757 1758 Value *V = nullptr; 1759 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1760 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1761 if (ICmp0 && ICmp1) 1762 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1763 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1764 1765 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1766 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1767 if (FCmp0 && FCmp1) 1768 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1769 1770 if (!V) 1771 return nullptr; 1772 if (!Cast0) 1773 return V; 1774 1775 // If we looked through casts, we can only handle a constant simplification 1776 // because we are not allowed to create a cast instruction here. 1777 if (auto *C = dyn_cast<Constant>(V)) 1778 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1779 1780 return nullptr; 1781 } 1782 1783 /// Given operands for an And, see if we can fold the result. 1784 /// If not, this returns null. 1785 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1786 unsigned MaxRecurse) { 1787 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1788 return C; 1789 1790 // X & undef -> 0 1791 if (match(Op1, m_Undef())) 1792 return Constant::getNullValue(Op0->getType()); 1793 1794 // X & X = X 1795 if (Op0 == Op1) 1796 return Op0; 1797 1798 // X & 0 = 0 1799 if (match(Op1, m_Zero())) 1800 return Constant::getNullValue(Op0->getType()); 1801 1802 // X & -1 = X 1803 if (match(Op1, m_AllOnes())) 1804 return Op0; 1805 1806 // A & ~A = ~A & A = 0 1807 if (match(Op0, m_Not(m_Specific(Op1))) || 1808 match(Op1, m_Not(m_Specific(Op0)))) 1809 return Constant::getNullValue(Op0->getType()); 1810 1811 // (A | ?) & A = A 1812 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1813 return Op1; 1814 1815 // A & (A | ?) = A 1816 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1817 return Op0; 1818 1819 // A mask that only clears known zeros of a shifted value is a no-op. 1820 Value *X; 1821 const APInt *Mask; 1822 const APInt *ShAmt; 1823 if (match(Op1, m_APInt(Mask))) { 1824 // If all bits in the inverted and shifted mask are clear: 1825 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1826 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1827 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1828 return Op0; 1829 1830 // If all bits in the inverted and shifted mask are clear: 1831 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1832 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1833 (~(*Mask)).shl(*ShAmt).isNullValue()) 1834 return Op0; 1835 } 1836 1837 // A & (-A) = A if A is a power of two or zero. 1838 if (match(Op0, m_Neg(m_Specific(Op1))) || 1839 match(Op1, m_Neg(m_Specific(Op0)))) { 1840 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1841 Q.DT)) 1842 return Op0; 1843 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1844 Q.DT)) 1845 return Op1; 1846 } 1847 1848 // This is a similar pattern used for checking if a value is a power-of-2: 1849 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 1850 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 1851 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 1852 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1853 return Constant::getNullValue(Op1->getType()); 1854 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 1855 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1856 return Constant::getNullValue(Op0->getType()); 1857 1858 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1859 return V; 1860 1861 // Try some generic simplifications for associative operations. 1862 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1863 MaxRecurse)) 1864 return V; 1865 1866 // And distributes over Or. Try some generic simplifications based on this. 1867 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1868 Q, MaxRecurse)) 1869 return V; 1870 1871 // And distributes over Xor. Try some generic simplifications based on this. 1872 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1873 Q, MaxRecurse)) 1874 return V; 1875 1876 // If the operation is with the result of a select instruction, check whether 1877 // operating on either branch of the select always yields the same value. 1878 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1879 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1880 MaxRecurse)) 1881 return V; 1882 1883 // If the operation is with the result of a phi instruction, check whether 1884 // operating on all incoming values of the phi always yields the same value. 1885 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1886 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1887 MaxRecurse)) 1888 return V; 1889 1890 // Assuming the effective width of Y is not larger than A, i.e. all bits 1891 // from X and Y are disjoint in (X << A) | Y, 1892 // if the mask of this AND op covers all bits of X or Y, while it covers 1893 // no bits from the other, we can bypass this AND op. E.g., 1894 // ((X << A) | Y) & Mask -> Y, 1895 // if Mask = ((1 << effective_width_of(Y)) - 1) 1896 // ((X << A) | Y) & Mask -> X << A, 1897 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1898 // SimplifyDemandedBits in InstCombine can optimize the general case. 1899 // This pattern aims to help other passes for a common case. 1900 Value *Y, *XShifted; 1901 if (match(Op1, m_APInt(Mask)) && 1902 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1903 m_Value(XShifted)), 1904 m_Value(Y)))) { 1905 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1906 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1907 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1908 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1909 if (EffWidthY <= ShftCnt) { 1910 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1911 Q.DT); 1912 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1913 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1914 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1915 // If the mask is extracting all bits from X or Y as is, we can skip 1916 // this AND op. 1917 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1918 return Y; 1919 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1920 return XShifted; 1921 } 1922 } 1923 1924 return nullptr; 1925 } 1926 1927 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1928 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1929 } 1930 1931 /// Given operands for an Or, see if we can fold the result. 1932 /// If not, this returns null. 1933 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1934 unsigned MaxRecurse) { 1935 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1936 return C; 1937 1938 // X | undef -> -1 1939 // X | -1 = -1 1940 // Do not return Op1 because it may contain undef elements if it's a vector. 1941 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1942 return Constant::getAllOnesValue(Op0->getType()); 1943 1944 // X | X = X 1945 // X | 0 = X 1946 if (Op0 == Op1 || match(Op1, m_Zero())) 1947 return Op0; 1948 1949 // A | ~A = ~A | A = -1 1950 if (match(Op0, m_Not(m_Specific(Op1))) || 1951 match(Op1, m_Not(m_Specific(Op0)))) 1952 return Constant::getAllOnesValue(Op0->getType()); 1953 1954 // (A & ?) | A = A 1955 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1956 return Op1; 1957 1958 // A | (A & ?) = A 1959 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1960 return Op0; 1961 1962 // ~(A & ?) | A = -1 1963 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1964 return Constant::getAllOnesValue(Op1->getType()); 1965 1966 // A | ~(A & ?) = -1 1967 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1968 return Constant::getAllOnesValue(Op0->getType()); 1969 1970 Value *A, *B; 1971 // (A & ~B) | (A ^ B) -> (A ^ B) 1972 // (~B & A) | (A ^ B) -> (A ^ B) 1973 // (A & ~B) | (B ^ A) -> (B ^ A) 1974 // (~B & A) | (B ^ A) -> (B ^ A) 1975 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1976 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1977 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1978 return Op1; 1979 1980 // Commute the 'or' operands. 1981 // (A ^ B) | (A & ~B) -> (A ^ B) 1982 // (A ^ B) | (~B & A) -> (A ^ B) 1983 // (B ^ A) | (A & ~B) -> (B ^ A) 1984 // (B ^ A) | (~B & A) -> (B ^ A) 1985 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1986 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1987 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1988 return Op0; 1989 1990 // (A & B) | (~A ^ B) -> (~A ^ B) 1991 // (B & A) | (~A ^ B) -> (~A ^ B) 1992 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1993 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1994 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1995 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1996 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1997 return Op1; 1998 1999 // (~A ^ B) | (A & B) -> (~A ^ B) 2000 // (~A ^ B) | (B & A) -> (~A ^ B) 2001 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2002 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2003 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2004 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2005 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2006 return Op0; 2007 2008 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2009 return V; 2010 2011 // Try some generic simplifications for associative operations. 2012 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2013 MaxRecurse)) 2014 return V; 2015 2016 // Or distributes over And. Try some generic simplifications based on this. 2017 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2018 MaxRecurse)) 2019 return V; 2020 2021 // If the operation is with the result of a select instruction, check whether 2022 // operating on either branch of the select always yields the same value. 2023 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2024 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2025 MaxRecurse)) 2026 return V; 2027 2028 // (A & C1)|(B & C2) 2029 const APInt *C1, *C2; 2030 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2031 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2032 if (*C1 == ~*C2) { 2033 // (A & C1)|(B & C2) 2034 // If we have: ((V + N) & C1) | (V & C2) 2035 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2036 // replace with V+N. 2037 Value *N; 2038 if (C2->isMask() && // C2 == 0+1+ 2039 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2040 // Add commutes, try both ways. 2041 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2042 return A; 2043 } 2044 // Or commutes, try both ways. 2045 if (C1->isMask() && 2046 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2047 // Add commutes, try both ways. 2048 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2049 return B; 2050 } 2051 } 2052 } 2053 2054 // If the operation is with the result of a phi instruction, check whether 2055 // operating on all incoming values of the phi always yields the same value. 2056 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2057 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2058 return V; 2059 2060 return nullptr; 2061 } 2062 2063 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2064 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2065 } 2066 2067 /// Given operands for a Xor, see if we can fold the result. 2068 /// If not, this returns null. 2069 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2070 unsigned MaxRecurse) { 2071 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2072 return C; 2073 2074 // A ^ undef -> undef 2075 if (match(Op1, m_Undef())) 2076 return Op1; 2077 2078 // A ^ 0 = A 2079 if (match(Op1, m_Zero())) 2080 return Op0; 2081 2082 // A ^ A = 0 2083 if (Op0 == Op1) 2084 return Constant::getNullValue(Op0->getType()); 2085 2086 // A ^ ~A = ~A ^ A = -1 2087 if (match(Op0, m_Not(m_Specific(Op1))) || 2088 match(Op1, m_Not(m_Specific(Op0)))) 2089 return Constant::getAllOnesValue(Op0->getType()); 2090 2091 // Try some generic simplifications for associative operations. 2092 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2093 MaxRecurse)) 2094 return V; 2095 2096 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2097 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2098 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2099 // only if B and C are equal. If B and C are equal then (since we assume 2100 // that operands have already been simplified) "select(cond, B, C)" should 2101 // have been simplified to the common value of B and C already. Analysing 2102 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2103 // for threading over phi nodes. 2104 2105 return nullptr; 2106 } 2107 2108 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2109 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2110 } 2111 2112 2113 static Type *GetCompareTy(Value *Op) { 2114 return CmpInst::makeCmpResultType(Op->getType()); 2115 } 2116 2117 /// Rummage around inside V looking for something equivalent to the comparison 2118 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2119 /// Helper function for analyzing max/min idioms. 2120 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2121 Value *LHS, Value *RHS) { 2122 SelectInst *SI = dyn_cast<SelectInst>(V); 2123 if (!SI) 2124 return nullptr; 2125 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2126 if (!Cmp) 2127 return nullptr; 2128 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2129 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2130 return Cmp; 2131 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2132 LHS == CmpRHS && RHS == CmpLHS) 2133 return Cmp; 2134 return nullptr; 2135 } 2136 2137 // A significant optimization not implemented here is assuming that alloca 2138 // addresses are not equal to incoming argument values. They don't *alias*, 2139 // as we say, but that doesn't mean they aren't equal, so we take a 2140 // conservative approach. 2141 // 2142 // This is inspired in part by C++11 5.10p1: 2143 // "Two pointers of the same type compare equal if and only if they are both 2144 // null, both point to the same function, or both represent the same 2145 // address." 2146 // 2147 // This is pretty permissive. 2148 // 2149 // It's also partly due to C11 6.5.9p6: 2150 // "Two pointers compare equal if and only if both are null pointers, both are 2151 // pointers to the same object (including a pointer to an object and a 2152 // subobject at its beginning) or function, both are pointers to one past the 2153 // last element of the same array object, or one is a pointer to one past the 2154 // end of one array object and the other is a pointer to the start of a 2155 // different array object that happens to immediately follow the first array 2156 // object in the address space.) 2157 // 2158 // C11's version is more restrictive, however there's no reason why an argument 2159 // couldn't be a one-past-the-end value for a stack object in the caller and be 2160 // equal to the beginning of a stack object in the callee. 2161 // 2162 // If the C and C++ standards are ever made sufficiently restrictive in this 2163 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2164 // this optimization. 2165 static Constant * 2166 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2167 const DominatorTree *DT, CmpInst::Predicate Pred, 2168 AssumptionCache *AC, const Instruction *CxtI, 2169 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2170 // First, skip past any trivial no-ops. 2171 LHS = LHS->stripPointerCasts(); 2172 RHS = RHS->stripPointerCasts(); 2173 2174 // A non-null pointer is not equal to a null pointer. 2175 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2176 IIQ.UseInstrInfo) && 2177 isa<ConstantPointerNull>(RHS) && 2178 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2179 return ConstantInt::get(GetCompareTy(LHS), 2180 !CmpInst::isTrueWhenEqual(Pred)); 2181 2182 // We can only fold certain predicates on pointer comparisons. 2183 switch (Pred) { 2184 default: 2185 return nullptr; 2186 2187 // Equality comaprisons are easy to fold. 2188 case CmpInst::ICMP_EQ: 2189 case CmpInst::ICMP_NE: 2190 break; 2191 2192 // We can only handle unsigned relational comparisons because 'inbounds' on 2193 // a GEP only protects against unsigned wrapping. 2194 case CmpInst::ICMP_UGT: 2195 case CmpInst::ICMP_UGE: 2196 case CmpInst::ICMP_ULT: 2197 case CmpInst::ICMP_ULE: 2198 // However, we have to switch them to their signed variants to handle 2199 // negative indices from the base pointer. 2200 Pred = ICmpInst::getSignedPredicate(Pred); 2201 break; 2202 } 2203 2204 // Strip off any constant offsets so that we can reason about them. 2205 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2206 // here and compare base addresses like AliasAnalysis does, however there are 2207 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2208 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2209 // doesn't need to guarantee pointer inequality when it says NoAlias. 2210 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2211 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2212 2213 // If LHS and RHS are related via constant offsets to the same base 2214 // value, we can replace it with an icmp which just compares the offsets. 2215 if (LHS == RHS) 2216 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2217 2218 // Various optimizations for (in)equality comparisons. 2219 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2220 // Different non-empty allocations that exist at the same time have 2221 // different addresses (if the program can tell). Global variables always 2222 // exist, so they always exist during the lifetime of each other and all 2223 // allocas. Two different allocas usually have different addresses... 2224 // 2225 // However, if there's an @llvm.stackrestore dynamically in between two 2226 // allocas, they may have the same address. It's tempting to reduce the 2227 // scope of the problem by only looking at *static* allocas here. That would 2228 // cover the majority of allocas while significantly reducing the likelihood 2229 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2230 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2231 // an entry block. Also, if we have a block that's not attached to a 2232 // function, we can't tell if it's "static" under the current definition. 2233 // Theoretically, this problem could be fixed by creating a new kind of 2234 // instruction kind specifically for static allocas. Such a new instruction 2235 // could be required to be at the top of the entry block, thus preventing it 2236 // from being subject to a @llvm.stackrestore. Instcombine could even 2237 // convert regular allocas into these special allocas. It'd be nifty. 2238 // However, until then, this problem remains open. 2239 // 2240 // So, we'll assume that two non-empty allocas have different addresses 2241 // for now. 2242 // 2243 // With all that, if the offsets are within the bounds of their allocations 2244 // (and not one-past-the-end! so we can't use inbounds!), and their 2245 // allocations aren't the same, the pointers are not equal. 2246 // 2247 // Note that it's not necessary to check for LHS being a global variable 2248 // address, due to canonicalization and constant folding. 2249 if (isa<AllocaInst>(LHS) && 2250 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2251 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2252 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2253 uint64_t LHSSize, RHSSize; 2254 ObjectSizeOpts Opts; 2255 Opts.NullIsUnknownSize = 2256 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2257 if (LHSOffsetCI && RHSOffsetCI && 2258 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2259 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2260 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2261 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2262 if (!LHSOffsetValue.isNegative() && 2263 !RHSOffsetValue.isNegative() && 2264 LHSOffsetValue.ult(LHSSize) && 2265 RHSOffsetValue.ult(RHSSize)) { 2266 return ConstantInt::get(GetCompareTy(LHS), 2267 !CmpInst::isTrueWhenEqual(Pred)); 2268 } 2269 } 2270 2271 // Repeat the above check but this time without depending on DataLayout 2272 // or being able to compute a precise size. 2273 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2274 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2275 LHSOffset->isNullValue() && 2276 RHSOffset->isNullValue()) 2277 return ConstantInt::get(GetCompareTy(LHS), 2278 !CmpInst::isTrueWhenEqual(Pred)); 2279 } 2280 2281 // Even if an non-inbounds GEP occurs along the path we can still optimize 2282 // equality comparisons concerning the result. We avoid walking the whole 2283 // chain again by starting where the last calls to 2284 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2285 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2286 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2287 if (LHS == RHS) 2288 return ConstantExpr::getICmp(Pred, 2289 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2290 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2291 2292 // If one side of the equality comparison must come from a noalias call 2293 // (meaning a system memory allocation function), and the other side must 2294 // come from a pointer that cannot overlap with dynamically-allocated 2295 // memory within the lifetime of the current function (allocas, byval 2296 // arguments, globals), then determine the comparison result here. 2297 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2298 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2299 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2300 2301 // Is the set of underlying objects all noalias calls? 2302 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2303 return all_of(Objects, isNoAliasCall); 2304 }; 2305 2306 // Is the set of underlying objects all things which must be disjoint from 2307 // noalias calls. For allocas, we consider only static ones (dynamic 2308 // allocas might be transformed into calls to malloc not simultaneously 2309 // live with the compared-to allocation). For globals, we exclude symbols 2310 // that might be resolve lazily to symbols in another dynamically-loaded 2311 // library (and, thus, could be malloc'ed by the implementation). 2312 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2313 return all_of(Objects, [](const Value *V) { 2314 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2315 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2316 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2317 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2318 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2319 !GV->isThreadLocal(); 2320 if (const Argument *A = dyn_cast<Argument>(V)) 2321 return A->hasByValAttr(); 2322 return false; 2323 }); 2324 }; 2325 2326 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2327 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2328 return ConstantInt::get(GetCompareTy(LHS), 2329 !CmpInst::isTrueWhenEqual(Pred)); 2330 2331 // Fold comparisons for non-escaping pointer even if the allocation call 2332 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2333 // dynamic allocation call could be either of the operands. 2334 Value *MI = nullptr; 2335 if (isAllocLikeFn(LHS, TLI) && 2336 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2337 MI = LHS; 2338 else if (isAllocLikeFn(RHS, TLI) && 2339 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2340 MI = RHS; 2341 // FIXME: We should also fold the compare when the pointer escapes, but the 2342 // compare dominates the pointer escape 2343 if (MI && !PointerMayBeCaptured(MI, true, true)) 2344 return ConstantInt::get(GetCompareTy(LHS), 2345 CmpInst::isFalseWhenEqual(Pred)); 2346 } 2347 2348 // Otherwise, fail. 2349 return nullptr; 2350 } 2351 2352 /// Fold an icmp when its operands have i1 scalar type. 2353 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2354 Value *RHS, const SimplifyQuery &Q) { 2355 Type *ITy = GetCompareTy(LHS); // The return type. 2356 Type *OpTy = LHS->getType(); // The operand type. 2357 if (!OpTy->isIntOrIntVectorTy(1)) 2358 return nullptr; 2359 2360 // A boolean compared to true/false can be simplified in 14 out of the 20 2361 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2362 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2363 if (match(RHS, m_Zero())) { 2364 switch (Pred) { 2365 case CmpInst::ICMP_NE: // X != 0 -> X 2366 case CmpInst::ICMP_UGT: // X >u 0 -> X 2367 case CmpInst::ICMP_SLT: // X <s 0 -> X 2368 return LHS; 2369 2370 case CmpInst::ICMP_ULT: // X <u 0 -> false 2371 case CmpInst::ICMP_SGT: // X >s 0 -> false 2372 return getFalse(ITy); 2373 2374 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2375 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2376 return getTrue(ITy); 2377 2378 default: break; 2379 } 2380 } else if (match(RHS, m_One())) { 2381 switch (Pred) { 2382 case CmpInst::ICMP_EQ: // X == 1 -> X 2383 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2384 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2385 return LHS; 2386 2387 case CmpInst::ICMP_UGT: // X >u 1 -> false 2388 case CmpInst::ICMP_SLT: // X <s -1 -> false 2389 return getFalse(ITy); 2390 2391 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2392 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2393 return getTrue(ITy); 2394 2395 default: break; 2396 } 2397 } 2398 2399 switch (Pred) { 2400 default: 2401 break; 2402 case ICmpInst::ICMP_UGE: 2403 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2404 return getTrue(ITy); 2405 break; 2406 case ICmpInst::ICMP_SGE: 2407 /// For signed comparison, the values for an i1 are 0 and -1 2408 /// respectively. This maps into a truth table of: 2409 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2410 /// 0 | 0 | 1 (0 >= 0) | 1 2411 /// 0 | 1 | 1 (0 >= -1) | 1 2412 /// 1 | 0 | 0 (-1 >= 0) | 0 2413 /// 1 | 1 | 1 (-1 >= -1) | 1 2414 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2415 return getTrue(ITy); 2416 break; 2417 case ICmpInst::ICMP_ULE: 2418 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2419 return getTrue(ITy); 2420 break; 2421 } 2422 2423 return nullptr; 2424 } 2425 2426 /// Try hard to fold icmp with zero RHS because this is a common case. 2427 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2428 Value *RHS, const SimplifyQuery &Q) { 2429 if (!match(RHS, m_Zero())) 2430 return nullptr; 2431 2432 Type *ITy = GetCompareTy(LHS); // The return type. 2433 switch (Pred) { 2434 default: 2435 llvm_unreachable("Unknown ICmp predicate!"); 2436 case ICmpInst::ICMP_ULT: 2437 return getFalse(ITy); 2438 case ICmpInst::ICMP_UGE: 2439 return getTrue(ITy); 2440 case ICmpInst::ICMP_EQ: 2441 case ICmpInst::ICMP_ULE: 2442 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2443 return getFalse(ITy); 2444 break; 2445 case ICmpInst::ICMP_NE: 2446 case ICmpInst::ICMP_UGT: 2447 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2448 return getTrue(ITy); 2449 break; 2450 case ICmpInst::ICMP_SLT: { 2451 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2452 if (LHSKnown.isNegative()) 2453 return getTrue(ITy); 2454 if (LHSKnown.isNonNegative()) 2455 return getFalse(ITy); 2456 break; 2457 } 2458 case ICmpInst::ICMP_SLE: { 2459 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2460 if (LHSKnown.isNegative()) 2461 return getTrue(ITy); 2462 if (LHSKnown.isNonNegative() && 2463 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2464 return getFalse(ITy); 2465 break; 2466 } 2467 case ICmpInst::ICMP_SGE: { 2468 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2469 if (LHSKnown.isNegative()) 2470 return getFalse(ITy); 2471 if (LHSKnown.isNonNegative()) 2472 return getTrue(ITy); 2473 break; 2474 } 2475 case ICmpInst::ICMP_SGT: { 2476 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2477 if (LHSKnown.isNegative()) 2478 return getFalse(ITy); 2479 if (LHSKnown.isNonNegative() && 2480 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2481 return getTrue(ITy); 2482 break; 2483 } 2484 } 2485 2486 return nullptr; 2487 } 2488 2489 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2490 Value *RHS, const InstrInfoQuery &IIQ) { 2491 Type *ITy = GetCompareTy(RHS); // The return type. 2492 2493 Value *X; 2494 // Sign-bit checks can be optimized to true/false after unsigned 2495 // floating-point casts: 2496 // icmp slt (bitcast (uitofp X)), 0 --> false 2497 // icmp sgt (bitcast (uitofp X)), -1 --> true 2498 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2499 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2500 return ConstantInt::getFalse(ITy); 2501 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2502 return ConstantInt::getTrue(ITy); 2503 } 2504 2505 const APInt *C; 2506 if (!match(RHS, m_APInt(C))) 2507 return nullptr; 2508 2509 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2510 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2511 if (RHS_CR.isEmptySet()) 2512 return ConstantInt::getFalse(ITy); 2513 if (RHS_CR.isFullSet()) 2514 return ConstantInt::getTrue(ITy); 2515 2516 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2517 if (!LHS_CR.isFullSet()) { 2518 if (RHS_CR.contains(LHS_CR)) 2519 return ConstantInt::getTrue(ITy); 2520 if (RHS_CR.inverse().contains(LHS_CR)) 2521 return ConstantInt::getFalse(ITy); 2522 } 2523 2524 return nullptr; 2525 } 2526 2527 /// TODO: A large part of this logic is duplicated in InstCombine's 2528 /// foldICmpBinOp(). We should be able to share that and avoid the code 2529 /// duplication. 2530 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2531 Value *RHS, const SimplifyQuery &Q, 2532 unsigned MaxRecurse) { 2533 Type *ITy = GetCompareTy(LHS); // The return type. 2534 2535 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2536 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2537 if (MaxRecurse && (LBO || RBO)) { 2538 // Analyze the case when either LHS or RHS is an add instruction. 2539 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2540 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2541 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2542 if (LBO && LBO->getOpcode() == Instruction::Add) { 2543 A = LBO->getOperand(0); 2544 B = LBO->getOperand(1); 2545 NoLHSWrapProblem = 2546 ICmpInst::isEquality(Pred) || 2547 (CmpInst::isUnsigned(Pred) && 2548 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2549 (CmpInst::isSigned(Pred) && 2550 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2551 } 2552 if (RBO && RBO->getOpcode() == Instruction::Add) { 2553 C = RBO->getOperand(0); 2554 D = RBO->getOperand(1); 2555 NoRHSWrapProblem = 2556 ICmpInst::isEquality(Pred) || 2557 (CmpInst::isUnsigned(Pred) && 2558 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2559 (CmpInst::isSigned(Pred) && 2560 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2561 } 2562 2563 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2564 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2565 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2566 Constant::getNullValue(RHS->getType()), Q, 2567 MaxRecurse - 1)) 2568 return V; 2569 2570 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2571 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2572 if (Value *V = 2573 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2574 C == LHS ? D : C, Q, MaxRecurse - 1)) 2575 return V; 2576 2577 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2578 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2579 NoRHSWrapProblem) { 2580 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2581 Value *Y, *Z; 2582 if (A == C) { 2583 // C + B == C + D -> B == D 2584 Y = B; 2585 Z = D; 2586 } else if (A == D) { 2587 // D + B == C + D -> B == C 2588 Y = B; 2589 Z = C; 2590 } else if (B == C) { 2591 // A + C == C + D -> A == D 2592 Y = A; 2593 Z = D; 2594 } else { 2595 assert(B == D); 2596 // A + D == C + D -> A == C 2597 Y = A; 2598 Z = C; 2599 } 2600 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2601 return V; 2602 } 2603 } 2604 2605 { 2606 Value *Y = nullptr; 2607 // icmp pred (or X, Y), X 2608 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2609 if (Pred == ICmpInst::ICMP_ULT) 2610 return getFalse(ITy); 2611 if (Pred == ICmpInst::ICMP_UGE) 2612 return getTrue(ITy); 2613 2614 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2615 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2616 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2617 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2618 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2619 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2620 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2621 } 2622 } 2623 // icmp pred X, (or X, Y) 2624 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2625 if (Pred == ICmpInst::ICMP_ULE) 2626 return getTrue(ITy); 2627 if (Pred == ICmpInst::ICMP_UGT) 2628 return getFalse(ITy); 2629 2630 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2631 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2632 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2633 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2634 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2635 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2636 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2637 } 2638 } 2639 } 2640 2641 // icmp pred (and X, Y), X 2642 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2643 if (Pred == ICmpInst::ICMP_UGT) 2644 return getFalse(ITy); 2645 if (Pred == ICmpInst::ICMP_ULE) 2646 return getTrue(ITy); 2647 } 2648 // icmp pred X, (and X, Y) 2649 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2650 if (Pred == ICmpInst::ICMP_UGE) 2651 return getTrue(ITy); 2652 if (Pred == ICmpInst::ICMP_ULT) 2653 return getFalse(ITy); 2654 } 2655 2656 // 0 - (zext X) pred C 2657 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2658 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2659 if (RHSC->getValue().isStrictlyPositive()) { 2660 if (Pred == ICmpInst::ICMP_SLT) 2661 return ConstantInt::getTrue(RHSC->getContext()); 2662 if (Pred == ICmpInst::ICMP_SGE) 2663 return ConstantInt::getFalse(RHSC->getContext()); 2664 if (Pred == ICmpInst::ICMP_EQ) 2665 return ConstantInt::getFalse(RHSC->getContext()); 2666 if (Pred == ICmpInst::ICMP_NE) 2667 return ConstantInt::getTrue(RHSC->getContext()); 2668 } 2669 if (RHSC->getValue().isNonNegative()) { 2670 if (Pred == ICmpInst::ICMP_SLE) 2671 return ConstantInt::getTrue(RHSC->getContext()); 2672 if (Pred == ICmpInst::ICMP_SGT) 2673 return ConstantInt::getFalse(RHSC->getContext()); 2674 } 2675 } 2676 } 2677 2678 // icmp pred (urem X, Y), Y 2679 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2680 switch (Pred) { 2681 default: 2682 break; 2683 case ICmpInst::ICMP_SGT: 2684 case ICmpInst::ICMP_SGE: { 2685 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2686 if (!Known.isNonNegative()) 2687 break; 2688 LLVM_FALLTHROUGH; 2689 } 2690 case ICmpInst::ICMP_EQ: 2691 case ICmpInst::ICMP_UGT: 2692 case ICmpInst::ICMP_UGE: 2693 return getFalse(ITy); 2694 case ICmpInst::ICMP_SLT: 2695 case ICmpInst::ICMP_SLE: { 2696 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2697 if (!Known.isNonNegative()) 2698 break; 2699 LLVM_FALLTHROUGH; 2700 } 2701 case ICmpInst::ICMP_NE: 2702 case ICmpInst::ICMP_ULT: 2703 case ICmpInst::ICMP_ULE: 2704 return getTrue(ITy); 2705 } 2706 } 2707 2708 // icmp pred X, (urem Y, X) 2709 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2710 switch (Pred) { 2711 default: 2712 break; 2713 case ICmpInst::ICMP_SGT: 2714 case ICmpInst::ICMP_SGE: { 2715 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2716 if (!Known.isNonNegative()) 2717 break; 2718 LLVM_FALLTHROUGH; 2719 } 2720 case ICmpInst::ICMP_NE: 2721 case ICmpInst::ICMP_UGT: 2722 case ICmpInst::ICMP_UGE: 2723 return getTrue(ITy); 2724 case ICmpInst::ICMP_SLT: 2725 case ICmpInst::ICMP_SLE: { 2726 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2727 if (!Known.isNonNegative()) 2728 break; 2729 LLVM_FALLTHROUGH; 2730 } 2731 case ICmpInst::ICMP_EQ: 2732 case ICmpInst::ICMP_ULT: 2733 case ICmpInst::ICMP_ULE: 2734 return getFalse(ITy); 2735 } 2736 } 2737 2738 // x >> y <=u x 2739 // x udiv y <=u x. 2740 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2741 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2742 // icmp pred (X op Y), X 2743 if (Pred == ICmpInst::ICMP_UGT) 2744 return getFalse(ITy); 2745 if (Pred == ICmpInst::ICMP_ULE) 2746 return getTrue(ITy); 2747 } 2748 2749 // x >=u x >> y 2750 // x >=u x udiv y. 2751 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2752 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2753 // icmp pred X, (X op Y) 2754 if (Pred == ICmpInst::ICMP_ULT) 2755 return getFalse(ITy); 2756 if (Pred == ICmpInst::ICMP_UGE) 2757 return getTrue(ITy); 2758 } 2759 2760 // handle: 2761 // CI2 << X == CI 2762 // CI2 << X != CI 2763 // 2764 // where CI2 is a power of 2 and CI isn't 2765 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2766 const APInt *CI2Val, *CIVal = &CI->getValue(); 2767 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2768 CI2Val->isPowerOf2()) { 2769 if (!CIVal->isPowerOf2()) { 2770 // CI2 << X can equal zero in some circumstances, 2771 // this simplification is unsafe if CI is zero. 2772 // 2773 // We know it is safe if: 2774 // - The shift is nsw, we can't shift out the one bit. 2775 // - The shift is nuw, we can't shift out the one bit. 2776 // - CI2 is one 2777 // - CI isn't zero 2778 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2779 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2780 CI2Val->isOneValue() || !CI->isZero()) { 2781 if (Pred == ICmpInst::ICMP_EQ) 2782 return ConstantInt::getFalse(RHS->getContext()); 2783 if (Pred == ICmpInst::ICMP_NE) 2784 return ConstantInt::getTrue(RHS->getContext()); 2785 } 2786 } 2787 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2788 if (Pred == ICmpInst::ICMP_UGT) 2789 return ConstantInt::getFalse(RHS->getContext()); 2790 if (Pred == ICmpInst::ICMP_ULE) 2791 return ConstantInt::getTrue(RHS->getContext()); 2792 } 2793 } 2794 } 2795 2796 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2797 LBO->getOperand(1) == RBO->getOperand(1)) { 2798 switch (LBO->getOpcode()) { 2799 default: 2800 break; 2801 case Instruction::UDiv: 2802 case Instruction::LShr: 2803 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 2804 !Q.IIQ.isExact(RBO)) 2805 break; 2806 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2807 RBO->getOperand(0), Q, MaxRecurse - 1)) 2808 return V; 2809 break; 2810 case Instruction::SDiv: 2811 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 2812 !Q.IIQ.isExact(RBO)) 2813 break; 2814 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2815 RBO->getOperand(0), Q, MaxRecurse - 1)) 2816 return V; 2817 break; 2818 case Instruction::AShr: 2819 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 2820 break; 2821 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2822 RBO->getOperand(0), Q, MaxRecurse - 1)) 2823 return V; 2824 break; 2825 case Instruction::Shl: { 2826 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 2827 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 2828 if (!NUW && !NSW) 2829 break; 2830 if (!NSW && ICmpInst::isSigned(Pred)) 2831 break; 2832 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2833 RBO->getOperand(0), Q, MaxRecurse - 1)) 2834 return V; 2835 break; 2836 } 2837 } 2838 } 2839 return nullptr; 2840 } 2841 2842 /// Simplify integer comparisons where at least one operand of the compare 2843 /// matches an integer min/max idiom. 2844 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2845 Value *RHS, const SimplifyQuery &Q, 2846 unsigned MaxRecurse) { 2847 Type *ITy = GetCompareTy(LHS); // The return type. 2848 Value *A, *B; 2849 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2850 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2851 2852 // Signed variants on "max(a,b)>=a -> true". 2853 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2854 if (A != RHS) 2855 std::swap(A, B); // smax(A, B) pred A. 2856 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2857 // We analyze this as smax(A, B) pred A. 2858 P = Pred; 2859 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2860 (A == LHS || B == LHS)) { 2861 if (A != LHS) 2862 std::swap(A, B); // A pred smax(A, B). 2863 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2864 // We analyze this as smax(A, B) swapped-pred A. 2865 P = CmpInst::getSwappedPredicate(Pred); 2866 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2867 (A == RHS || B == RHS)) { 2868 if (A != RHS) 2869 std::swap(A, B); // smin(A, B) pred A. 2870 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2871 // We analyze this as smax(-A, -B) swapped-pred -A. 2872 // Note that we do not need to actually form -A or -B thanks to EqP. 2873 P = CmpInst::getSwappedPredicate(Pred); 2874 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2875 (A == LHS || B == LHS)) { 2876 if (A != LHS) 2877 std::swap(A, B); // A pred smin(A, B). 2878 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2879 // We analyze this as smax(-A, -B) pred -A. 2880 // Note that we do not need to actually form -A or -B thanks to EqP. 2881 P = Pred; 2882 } 2883 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2884 // Cases correspond to "max(A, B) p A". 2885 switch (P) { 2886 default: 2887 break; 2888 case CmpInst::ICMP_EQ: 2889 case CmpInst::ICMP_SLE: 2890 // Equivalent to "A EqP B". This may be the same as the condition tested 2891 // in the max/min; if so, we can just return that. 2892 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2893 return V; 2894 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2895 return V; 2896 // Otherwise, see if "A EqP B" simplifies. 2897 if (MaxRecurse) 2898 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2899 return V; 2900 break; 2901 case CmpInst::ICMP_NE: 2902 case CmpInst::ICMP_SGT: { 2903 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2904 // Equivalent to "A InvEqP B". This may be the same as the condition 2905 // tested in the max/min; if so, we can just return that. 2906 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2907 return V; 2908 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2909 return V; 2910 // Otherwise, see if "A InvEqP B" simplifies. 2911 if (MaxRecurse) 2912 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2913 return V; 2914 break; 2915 } 2916 case CmpInst::ICMP_SGE: 2917 // Always true. 2918 return getTrue(ITy); 2919 case CmpInst::ICMP_SLT: 2920 // Always false. 2921 return getFalse(ITy); 2922 } 2923 } 2924 2925 // Unsigned variants on "max(a,b)>=a -> true". 2926 P = CmpInst::BAD_ICMP_PREDICATE; 2927 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2928 if (A != RHS) 2929 std::swap(A, B); // umax(A, B) pred A. 2930 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2931 // We analyze this as umax(A, B) pred A. 2932 P = Pred; 2933 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2934 (A == LHS || B == LHS)) { 2935 if (A != LHS) 2936 std::swap(A, B); // A pred umax(A, B). 2937 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2938 // We analyze this as umax(A, B) swapped-pred A. 2939 P = CmpInst::getSwappedPredicate(Pred); 2940 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2941 (A == RHS || B == RHS)) { 2942 if (A != RHS) 2943 std::swap(A, B); // umin(A, B) pred A. 2944 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2945 // We analyze this as umax(-A, -B) swapped-pred -A. 2946 // Note that we do not need to actually form -A or -B thanks to EqP. 2947 P = CmpInst::getSwappedPredicate(Pred); 2948 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2949 (A == LHS || B == LHS)) { 2950 if (A != LHS) 2951 std::swap(A, B); // A pred umin(A, B). 2952 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2953 // We analyze this as umax(-A, -B) pred -A. 2954 // Note that we do not need to actually form -A or -B thanks to EqP. 2955 P = Pred; 2956 } 2957 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2958 // Cases correspond to "max(A, B) p A". 2959 switch (P) { 2960 default: 2961 break; 2962 case CmpInst::ICMP_EQ: 2963 case CmpInst::ICMP_ULE: 2964 // Equivalent to "A EqP B". This may be the same as the condition tested 2965 // in the max/min; if so, we can just return that. 2966 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2967 return V; 2968 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2969 return V; 2970 // Otherwise, see if "A EqP B" simplifies. 2971 if (MaxRecurse) 2972 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2973 return V; 2974 break; 2975 case CmpInst::ICMP_NE: 2976 case CmpInst::ICMP_UGT: { 2977 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2978 // Equivalent to "A InvEqP B". This may be the same as the condition 2979 // tested in the max/min; if so, we can just return that. 2980 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2981 return V; 2982 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2983 return V; 2984 // Otherwise, see if "A InvEqP B" simplifies. 2985 if (MaxRecurse) 2986 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2987 return V; 2988 break; 2989 } 2990 case CmpInst::ICMP_UGE: 2991 // Always true. 2992 return getTrue(ITy); 2993 case CmpInst::ICMP_ULT: 2994 // Always false. 2995 return getFalse(ITy); 2996 } 2997 } 2998 2999 // Variants on "max(x,y) >= min(x,z)". 3000 Value *C, *D; 3001 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3002 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3003 (A == C || A == D || B == C || B == D)) { 3004 // max(x, ?) pred min(x, ?). 3005 if (Pred == CmpInst::ICMP_SGE) 3006 // Always true. 3007 return getTrue(ITy); 3008 if (Pred == CmpInst::ICMP_SLT) 3009 // Always false. 3010 return getFalse(ITy); 3011 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3012 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3013 (A == C || A == D || B == C || B == D)) { 3014 // min(x, ?) pred max(x, ?). 3015 if (Pred == CmpInst::ICMP_SLE) 3016 // Always true. 3017 return getTrue(ITy); 3018 if (Pred == CmpInst::ICMP_SGT) 3019 // Always false. 3020 return getFalse(ITy); 3021 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3022 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3023 (A == C || A == D || B == C || B == D)) { 3024 // max(x, ?) pred min(x, ?). 3025 if (Pred == CmpInst::ICMP_UGE) 3026 // Always true. 3027 return getTrue(ITy); 3028 if (Pred == CmpInst::ICMP_ULT) 3029 // Always false. 3030 return getFalse(ITy); 3031 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3032 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3033 (A == C || A == D || B == C || B == D)) { 3034 // min(x, ?) pred max(x, ?). 3035 if (Pred == CmpInst::ICMP_ULE) 3036 // Always true. 3037 return getTrue(ITy); 3038 if (Pred == CmpInst::ICMP_UGT) 3039 // Always false. 3040 return getFalse(ITy); 3041 } 3042 3043 return nullptr; 3044 } 3045 3046 /// Given operands for an ICmpInst, see if we can fold the result. 3047 /// If not, this returns null. 3048 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3049 const SimplifyQuery &Q, unsigned MaxRecurse) { 3050 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3051 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3052 3053 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3054 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3055 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3056 3057 // If we have a constant, make sure it is on the RHS. 3058 std::swap(LHS, RHS); 3059 Pred = CmpInst::getSwappedPredicate(Pred); 3060 } 3061 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3062 3063 Type *ITy = GetCompareTy(LHS); // The return type. 3064 3065 // For EQ and NE, we can always pick a value for the undef to make the 3066 // predicate pass or fail, so we can return undef. 3067 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3068 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3069 return UndefValue::get(ITy); 3070 3071 // icmp X, X -> true/false 3072 // icmp X, undef -> true/false because undef could be X. 3073 if (LHS == RHS || isa<UndefValue>(RHS)) 3074 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3075 3076 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3077 return V; 3078 3079 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3080 return V; 3081 3082 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3083 return V; 3084 3085 // If both operands have range metadata, use the metadata 3086 // to simplify the comparison. 3087 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3088 auto RHS_Instr = cast<Instruction>(RHS); 3089 auto LHS_Instr = cast<Instruction>(LHS); 3090 3091 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3092 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3093 auto RHS_CR = getConstantRangeFromMetadata( 3094 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3095 auto LHS_CR = getConstantRangeFromMetadata( 3096 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3097 3098 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3099 if (Satisfied_CR.contains(LHS_CR)) 3100 return ConstantInt::getTrue(RHS->getContext()); 3101 3102 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3103 CmpInst::getInversePredicate(Pred), RHS_CR); 3104 if (InversedSatisfied_CR.contains(LHS_CR)) 3105 return ConstantInt::getFalse(RHS->getContext()); 3106 } 3107 } 3108 3109 // Compare of cast, for example (zext X) != 0 -> X != 0 3110 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3111 Instruction *LI = cast<CastInst>(LHS); 3112 Value *SrcOp = LI->getOperand(0); 3113 Type *SrcTy = SrcOp->getType(); 3114 Type *DstTy = LI->getType(); 3115 3116 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3117 // if the integer type is the same size as the pointer type. 3118 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3119 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3120 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3121 // Transfer the cast to the constant. 3122 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3123 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3124 Q, MaxRecurse-1)) 3125 return V; 3126 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3127 if (RI->getOperand(0)->getType() == SrcTy) 3128 // Compare without the cast. 3129 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3130 Q, MaxRecurse-1)) 3131 return V; 3132 } 3133 } 3134 3135 if (isa<ZExtInst>(LHS)) { 3136 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3137 // same type. 3138 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3139 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3140 // Compare X and Y. Note that signed predicates become unsigned. 3141 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3142 SrcOp, RI->getOperand(0), Q, 3143 MaxRecurse-1)) 3144 return V; 3145 } 3146 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3147 // too. If not, then try to deduce the result of the comparison. 3148 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3149 // Compute the constant that would happen if we truncated to SrcTy then 3150 // reextended to DstTy. 3151 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3152 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3153 3154 // If the re-extended constant didn't change then this is effectively 3155 // also a case of comparing two zero-extended values. 3156 if (RExt == CI && MaxRecurse) 3157 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3158 SrcOp, Trunc, Q, MaxRecurse-1)) 3159 return V; 3160 3161 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3162 // there. Use this to work out the result of the comparison. 3163 if (RExt != CI) { 3164 switch (Pred) { 3165 default: llvm_unreachable("Unknown ICmp predicate!"); 3166 // LHS <u RHS. 3167 case ICmpInst::ICMP_EQ: 3168 case ICmpInst::ICMP_UGT: 3169 case ICmpInst::ICMP_UGE: 3170 return ConstantInt::getFalse(CI->getContext()); 3171 3172 case ICmpInst::ICMP_NE: 3173 case ICmpInst::ICMP_ULT: 3174 case ICmpInst::ICMP_ULE: 3175 return ConstantInt::getTrue(CI->getContext()); 3176 3177 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3178 // is non-negative then LHS <s RHS. 3179 case ICmpInst::ICMP_SGT: 3180 case ICmpInst::ICMP_SGE: 3181 return CI->getValue().isNegative() ? 3182 ConstantInt::getTrue(CI->getContext()) : 3183 ConstantInt::getFalse(CI->getContext()); 3184 3185 case ICmpInst::ICMP_SLT: 3186 case ICmpInst::ICMP_SLE: 3187 return CI->getValue().isNegative() ? 3188 ConstantInt::getFalse(CI->getContext()) : 3189 ConstantInt::getTrue(CI->getContext()); 3190 } 3191 } 3192 } 3193 } 3194 3195 if (isa<SExtInst>(LHS)) { 3196 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3197 // same type. 3198 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3199 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3200 // Compare X and Y. Note that the predicate does not change. 3201 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3202 Q, MaxRecurse-1)) 3203 return V; 3204 } 3205 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3206 // too. If not, then try to deduce the result of the comparison. 3207 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3208 // Compute the constant that would happen if we truncated to SrcTy then 3209 // reextended to DstTy. 3210 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3211 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3212 3213 // If the re-extended constant didn't change then this is effectively 3214 // also a case of comparing two sign-extended values. 3215 if (RExt == CI && MaxRecurse) 3216 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3217 return V; 3218 3219 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3220 // bits there. Use this to work out the result of the comparison. 3221 if (RExt != CI) { 3222 switch (Pred) { 3223 default: llvm_unreachable("Unknown ICmp predicate!"); 3224 case ICmpInst::ICMP_EQ: 3225 return ConstantInt::getFalse(CI->getContext()); 3226 case ICmpInst::ICMP_NE: 3227 return ConstantInt::getTrue(CI->getContext()); 3228 3229 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3230 // LHS >s RHS. 3231 case ICmpInst::ICMP_SGT: 3232 case ICmpInst::ICMP_SGE: 3233 return CI->getValue().isNegative() ? 3234 ConstantInt::getTrue(CI->getContext()) : 3235 ConstantInt::getFalse(CI->getContext()); 3236 case ICmpInst::ICMP_SLT: 3237 case ICmpInst::ICMP_SLE: 3238 return CI->getValue().isNegative() ? 3239 ConstantInt::getFalse(CI->getContext()) : 3240 ConstantInt::getTrue(CI->getContext()); 3241 3242 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3243 // LHS >u RHS. 3244 case ICmpInst::ICMP_UGT: 3245 case ICmpInst::ICMP_UGE: 3246 // Comparison is true iff the LHS <s 0. 3247 if (MaxRecurse) 3248 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3249 Constant::getNullValue(SrcTy), 3250 Q, MaxRecurse-1)) 3251 return V; 3252 break; 3253 case ICmpInst::ICMP_ULT: 3254 case ICmpInst::ICMP_ULE: 3255 // Comparison is true iff the LHS >=s 0. 3256 if (MaxRecurse) 3257 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3258 Constant::getNullValue(SrcTy), 3259 Q, MaxRecurse-1)) 3260 return V; 3261 break; 3262 } 3263 } 3264 } 3265 } 3266 } 3267 3268 // icmp eq|ne X, Y -> false|true if X != Y 3269 if (ICmpInst::isEquality(Pred) && 3270 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3271 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3272 } 3273 3274 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3275 return V; 3276 3277 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3278 return V; 3279 3280 // Simplify comparisons of related pointers using a powerful, recursive 3281 // GEP-walk when we have target data available.. 3282 if (LHS->getType()->isPointerTy()) 3283 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3284 Q.IIQ, LHS, RHS)) 3285 return C; 3286 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3287 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3288 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3289 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3290 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3291 Q.DL.getTypeSizeInBits(CRHS->getType())) 3292 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3293 Q.IIQ, CLHS->getPointerOperand(), 3294 CRHS->getPointerOperand())) 3295 return C; 3296 3297 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3298 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3299 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3300 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3301 (ICmpInst::isEquality(Pred) || 3302 (GLHS->isInBounds() && GRHS->isInBounds() && 3303 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3304 // The bases are equal and the indices are constant. Build a constant 3305 // expression GEP with the same indices and a null base pointer to see 3306 // what constant folding can make out of it. 3307 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3308 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3309 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3310 GLHS->getSourceElementType(), Null, IndicesLHS); 3311 3312 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3313 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3314 GLHS->getSourceElementType(), Null, IndicesRHS); 3315 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3316 } 3317 } 3318 } 3319 3320 // If the comparison is with the result of a select instruction, check whether 3321 // comparing with either branch of the select always yields the same value. 3322 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3323 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3324 return V; 3325 3326 // If the comparison is with the result of a phi instruction, check whether 3327 // doing the compare with each incoming phi value yields a common result. 3328 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3329 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3330 return V; 3331 3332 return nullptr; 3333 } 3334 3335 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3336 const SimplifyQuery &Q) { 3337 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3338 } 3339 3340 /// Given operands for an FCmpInst, see if we can fold the result. 3341 /// If not, this returns null. 3342 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3343 FastMathFlags FMF, const SimplifyQuery &Q, 3344 unsigned MaxRecurse) { 3345 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3346 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3347 3348 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3349 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3350 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3351 3352 // If we have a constant, make sure it is on the RHS. 3353 std::swap(LHS, RHS); 3354 Pred = CmpInst::getSwappedPredicate(Pred); 3355 } 3356 3357 // Fold trivial predicates. 3358 Type *RetTy = GetCompareTy(LHS); 3359 if (Pred == FCmpInst::FCMP_FALSE) 3360 return getFalse(RetTy); 3361 if (Pred == FCmpInst::FCMP_TRUE) 3362 return getTrue(RetTy); 3363 3364 // Fold (un)ordered comparison if we can determine there are no NaNs. 3365 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3366 if (FMF.noNaNs() || 3367 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3368 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3369 3370 // NaN is unordered; NaN is not ordered. 3371 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3372 "Comparison must be either ordered or unordered"); 3373 if (match(RHS, m_NaN())) 3374 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3375 3376 // fcmp pred x, undef and fcmp pred undef, x 3377 // fold to true if unordered, false if ordered 3378 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3379 // Choosing NaN for the undef will always make unordered comparison succeed 3380 // and ordered comparison fail. 3381 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3382 } 3383 3384 // fcmp x,x -> true/false. Not all compares are foldable. 3385 if (LHS == RHS) { 3386 if (CmpInst::isTrueWhenEqual(Pred)) 3387 return getTrue(RetTy); 3388 if (CmpInst::isFalseWhenEqual(Pred)) 3389 return getFalse(RetTy); 3390 } 3391 3392 // Handle fcmp with constant RHS. 3393 // TODO: Use match with a specific FP value, so these work with vectors with 3394 // undef lanes. 3395 const APFloat *C; 3396 if (match(RHS, m_APFloat(C))) { 3397 // Check whether the constant is an infinity. 3398 if (C->isInfinity()) { 3399 if (C->isNegative()) { 3400 switch (Pred) { 3401 case FCmpInst::FCMP_OLT: 3402 // No value is ordered and less than negative infinity. 3403 return getFalse(RetTy); 3404 case FCmpInst::FCMP_UGE: 3405 // All values are unordered with or at least negative infinity. 3406 return getTrue(RetTy); 3407 default: 3408 break; 3409 } 3410 } else { 3411 switch (Pred) { 3412 case FCmpInst::FCMP_OGT: 3413 // No value is ordered and greater than infinity. 3414 return getFalse(RetTy); 3415 case FCmpInst::FCMP_ULE: 3416 // All values are unordered with and at most infinity. 3417 return getTrue(RetTy); 3418 default: 3419 break; 3420 } 3421 } 3422 } 3423 if (C->isNegative() && !C->isNegZero()) { 3424 assert(!C->isNaN() && "Unexpected NaN constant!"); 3425 // TODO: We can catch more cases by using a range check rather than 3426 // relying on CannotBeOrderedLessThanZero. 3427 switch (Pred) { 3428 case FCmpInst::FCMP_UGE: 3429 case FCmpInst::FCMP_UGT: 3430 case FCmpInst::FCMP_UNE: 3431 // (X >= 0) implies (X > C) when (C < 0) 3432 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3433 return getTrue(RetTy); 3434 break; 3435 case FCmpInst::FCMP_OEQ: 3436 case FCmpInst::FCMP_OLE: 3437 case FCmpInst::FCMP_OLT: 3438 // (X >= 0) implies !(X < C) when (C < 0) 3439 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3440 return getFalse(RetTy); 3441 break; 3442 default: 3443 break; 3444 } 3445 } 3446 3447 // Check comparison of [minnum/maxnum with constant] with other constant. 3448 const APFloat *C2; 3449 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3450 C2->compare(*C) == APFloat::cmpLessThan) || 3451 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3452 C2->compare(*C) == APFloat::cmpGreaterThan)) { 3453 bool IsMaxNum = 3454 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3455 // The ordered relationship and minnum/maxnum guarantee that we do not 3456 // have NaN constants, so ordered/unordered preds are handled the same. 3457 switch (Pred) { 3458 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3459 // minnum(X, LesserC) == C --> false 3460 // maxnum(X, GreaterC) == C --> false 3461 return getFalse(RetTy); 3462 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3463 // minnum(X, LesserC) != C --> true 3464 // maxnum(X, GreaterC) != C --> true 3465 return getTrue(RetTy); 3466 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3467 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3468 // minnum(X, LesserC) >= C --> false 3469 // minnum(X, LesserC) > C --> false 3470 // maxnum(X, GreaterC) >= C --> true 3471 // maxnum(X, GreaterC) > C --> true 3472 return ConstantInt::get(RetTy, IsMaxNum); 3473 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3474 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3475 // minnum(X, LesserC) <= C --> true 3476 // minnum(X, LesserC) < C --> true 3477 // maxnum(X, GreaterC) <= C --> false 3478 // maxnum(X, GreaterC) < C --> false 3479 return ConstantInt::get(RetTy, !IsMaxNum); 3480 default: 3481 // TRUE/FALSE/ORD/UNO should be handled before this. 3482 llvm_unreachable("Unexpected fcmp predicate"); 3483 } 3484 } 3485 } 3486 3487 if (match(RHS, m_AnyZeroFP())) { 3488 switch (Pred) { 3489 case FCmpInst::FCMP_OGE: 3490 case FCmpInst::FCMP_ULT: 3491 // Positive or zero X >= 0.0 --> true 3492 // Positive or zero X < 0.0 --> false 3493 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3494 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3495 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3496 break; 3497 case FCmpInst::FCMP_UGE: 3498 case FCmpInst::FCMP_OLT: 3499 // Positive or zero or nan X >= 0.0 --> true 3500 // Positive or zero or nan X < 0.0 --> false 3501 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3502 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3503 break; 3504 default: 3505 break; 3506 } 3507 } 3508 3509 // If the comparison is with the result of a select instruction, check whether 3510 // comparing with either branch of the select always yields the same value. 3511 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3512 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3513 return V; 3514 3515 // If the comparison is with the result of a phi instruction, check whether 3516 // doing the compare with each incoming phi value yields a common result. 3517 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3518 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3519 return V; 3520 3521 return nullptr; 3522 } 3523 3524 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3525 FastMathFlags FMF, const SimplifyQuery &Q) { 3526 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3527 } 3528 3529 /// See if V simplifies when its operand Op is replaced with RepOp. 3530 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3531 const SimplifyQuery &Q, 3532 unsigned MaxRecurse) { 3533 // Trivial replacement. 3534 if (V == Op) 3535 return RepOp; 3536 3537 // We cannot replace a constant, and shouldn't even try. 3538 if (isa<Constant>(Op)) 3539 return nullptr; 3540 3541 auto *I = dyn_cast<Instruction>(V); 3542 if (!I) 3543 return nullptr; 3544 3545 // If this is a binary operator, try to simplify it with the replaced op. 3546 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3547 // Consider: 3548 // %cmp = icmp eq i32 %x, 2147483647 3549 // %add = add nsw i32 %x, 1 3550 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3551 // 3552 // We can't replace %sel with %add unless we strip away the flags. 3553 if (isa<OverflowingBinaryOperator>(B)) 3554 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3555 return nullptr; 3556 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3557 return nullptr; 3558 3559 if (MaxRecurse) { 3560 if (B->getOperand(0) == Op) 3561 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3562 MaxRecurse - 1); 3563 if (B->getOperand(1) == Op) 3564 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3565 MaxRecurse - 1); 3566 } 3567 } 3568 3569 // Same for CmpInsts. 3570 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3571 if (MaxRecurse) { 3572 if (C->getOperand(0) == Op) 3573 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3574 MaxRecurse - 1); 3575 if (C->getOperand(1) == Op) 3576 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3577 MaxRecurse - 1); 3578 } 3579 } 3580 3581 // Same for GEPs. 3582 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3583 if (MaxRecurse) { 3584 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3585 transform(GEP->operands(), NewOps.begin(), 3586 [&](Value *V) { return V == Op ? RepOp : V; }); 3587 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3588 MaxRecurse - 1); 3589 } 3590 } 3591 3592 // TODO: We could hand off more cases to instsimplify here. 3593 3594 // If all operands are constant after substituting Op for RepOp then we can 3595 // constant fold the instruction. 3596 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3597 // Build a list of all constant operands. 3598 SmallVector<Constant *, 8> ConstOps; 3599 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3600 if (I->getOperand(i) == Op) 3601 ConstOps.push_back(CRepOp); 3602 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3603 ConstOps.push_back(COp); 3604 else 3605 break; 3606 } 3607 3608 // All operands were constants, fold it. 3609 if (ConstOps.size() == I->getNumOperands()) { 3610 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3611 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3612 ConstOps[1], Q.DL, Q.TLI); 3613 3614 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3615 if (!LI->isVolatile()) 3616 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3617 3618 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3619 } 3620 } 3621 3622 return nullptr; 3623 } 3624 3625 /// Try to simplify a select instruction when its condition operand is an 3626 /// integer comparison where one operand of the compare is a constant. 3627 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3628 const APInt *Y, bool TrueWhenUnset) { 3629 const APInt *C; 3630 3631 // (X & Y) == 0 ? X & ~Y : X --> X 3632 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3633 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3634 *Y == ~*C) 3635 return TrueWhenUnset ? FalseVal : TrueVal; 3636 3637 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3638 // (X & Y) != 0 ? X : X & ~Y --> X 3639 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3640 *Y == ~*C) 3641 return TrueWhenUnset ? FalseVal : TrueVal; 3642 3643 if (Y->isPowerOf2()) { 3644 // (X & Y) == 0 ? X | Y : X --> X | Y 3645 // (X & Y) != 0 ? X | Y : X --> X 3646 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3647 *Y == *C) 3648 return TrueWhenUnset ? TrueVal : FalseVal; 3649 3650 // (X & Y) == 0 ? X : X | Y --> X 3651 // (X & Y) != 0 ? X : X | Y --> X | Y 3652 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3653 *Y == *C) 3654 return TrueWhenUnset ? TrueVal : FalseVal; 3655 } 3656 3657 return nullptr; 3658 } 3659 3660 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3661 /// eq/ne. 3662 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3663 ICmpInst::Predicate Pred, 3664 Value *TrueVal, Value *FalseVal) { 3665 Value *X; 3666 APInt Mask; 3667 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3668 return nullptr; 3669 3670 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3671 Pred == ICmpInst::ICMP_EQ); 3672 } 3673 3674 /// Try to simplify a select instruction when its condition operand is an 3675 /// integer comparison. 3676 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3677 Value *FalseVal, const SimplifyQuery &Q, 3678 unsigned MaxRecurse) { 3679 ICmpInst::Predicate Pred; 3680 Value *CmpLHS, *CmpRHS; 3681 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3682 return nullptr; 3683 3684 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3685 Value *X; 3686 const APInt *Y; 3687 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3688 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3689 Pred == ICmpInst::ICMP_EQ)) 3690 return V; 3691 3692 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3693 Value *ShAmt; 3694 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3695 m_Value(ShAmt)), 3696 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3697 m_Value(ShAmt))); 3698 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3699 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3700 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3701 Pred == ICmpInst::ICMP_EQ) 3702 return X; 3703 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3704 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3705 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3706 Pred == ICmpInst::ICMP_NE) 3707 return X; 3708 3709 // Test for a zero-shift-guard-op around rotates. These are used to 3710 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3711 // intrinsics do not have that problem. 3712 // We do not allow this transform for the general funnel shift case because 3713 // that would not preserve the poison safety of the original code. 3714 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3715 m_Deferred(X), 3716 m_Value(ShAmt)), 3717 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3718 m_Deferred(X), 3719 m_Value(ShAmt))); 3720 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3721 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3722 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3723 Pred == ICmpInst::ICMP_NE) 3724 return TrueVal; 3725 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3726 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3727 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3728 Pred == ICmpInst::ICMP_EQ) 3729 return FalseVal; 3730 } 3731 3732 // Check for other compares that behave like bit test. 3733 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3734 TrueVal, FalseVal)) 3735 return V; 3736 3737 // If we have an equality comparison, then we know the value in one of the 3738 // arms of the select. See if substituting this value into the arm and 3739 // simplifying the result yields the same value as the other arm. 3740 if (Pred == ICmpInst::ICMP_EQ) { 3741 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3742 TrueVal || 3743 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3744 TrueVal) 3745 return FalseVal; 3746 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3747 FalseVal || 3748 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3749 FalseVal) 3750 return FalseVal; 3751 } else if (Pred == ICmpInst::ICMP_NE) { 3752 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3753 FalseVal || 3754 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3755 FalseVal) 3756 return TrueVal; 3757 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3758 TrueVal || 3759 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3760 TrueVal) 3761 return TrueVal; 3762 } 3763 3764 return nullptr; 3765 } 3766 3767 /// Try to simplify a select instruction when its condition operand is a 3768 /// floating-point comparison. 3769 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3770 FCmpInst::Predicate Pred; 3771 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3772 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3773 return nullptr; 3774 3775 // TODO: The transform may not be valid with -0.0. An incomplete way of 3776 // testing for that possibility is to check if at least one operand is a 3777 // non-zero constant. 3778 const APFloat *C; 3779 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3780 (match(F, m_APFloat(C)) && C->isNonZero())) { 3781 // (T == F) ? T : F --> F 3782 // (F == T) ? T : F --> F 3783 if (Pred == FCmpInst::FCMP_OEQ) 3784 return F; 3785 3786 // (T != F) ? T : F --> T 3787 // (F != T) ? T : F --> T 3788 if (Pred == FCmpInst::FCMP_UNE) 3789 return T; 3790 } 3791 3792 return nullptr; 3793 } 3794 3795 /// Given operands for a SelectInst, see if we can fold the result. 3796 /// If not, this returns null. 3797 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3798 const SimplifyQuery &Q, unsigned MaxRecurse) { 3799 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3800 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3801 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3802 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3803 3804 // select undef, X, Y -> X or Y 3805 if (isa<UndefValue>(CondC)) 3806 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3807 3808 // TODO: Vector constants with undef elements don't simplify. 3809 3810 // select true, X, Y -> X 3811 if (CondC->isAllOnesValue()) 3812 return TrueVal; 3813 // select false, X, Y -> Y 3814 if (CondC->isNullValue()) 3815 return FalseVal; 3816 } 3817 3818 // select ?, X, X -> X 3819 if (TrueVal == FalseVal) 3820 return TrueVal; 3821 3822 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3823 return FalseVal; 3824 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3825 return TrueVal; 3826 3827 if (Value *V = 3828 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3829 return V; 3830 3831 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 3832 return V; 3833 3834 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 3835 return V; 3836 3837 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 3838 if (Imp) 3839 return *Imp ? TrueVal : FalseVal; 3840 3841 return nullptr; 3842 } 3843 3844 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3845 const SimplifyQuery &Q) { 3846 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3847 } 3848 3849 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3850 /// If not, this returns null. 3851 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3852 const SimplifyQuery &Q, unsigned) { 3853 // The type of the GEP pointer operand. 3854 unsigned AS = 3855 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3856 3857 // getelementptr P -> P. 3858 if (Ops.size() == 1) 3859 return Ops[0]; 3860 3861 // Compute the (pointer) type returned by the GEP instruction. 3862 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3863 Type *GEPTy = PointerType::get(LastType, AS); 3864 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3865 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3866 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3867 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3868 3869 if (isa<UndefValue>(Ops[0])) 3870 return UndefValue::get(GEPTy); 3871 3872 if (Ops.size() == 2) { 3873 // getelementptr P, 0 -> P. 3874 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3875 return Ops[0]; 3876 3877 Type *Ty = SrcTy; 3878 if (Ty->isSized()) { 3879 Value *P; 3880 uint64_t C; 3881 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3882 // getelementptr P, N -> P if P points to a type of zero size. 3883 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3884 return Ops[0]; 3885 3886 // The following transforms are only safe if the ptrtoint cast 3887 // doesn't truncate the pointers. 3888 if (Ops[1]->getType()->getScalarSizeInBits() == 3889 Q.DL.getIndexSizeInBits(AS)) { 3890 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3891 if (match(P, m_Zero())) 3892 return Constant::getNullValue(GEPTy); 3893 Value *Temp; 3894 if (match(P, m_PtrToInt(m_Value(Temp)))) 3895 if (Temp->getType() == GEPTy) 3896 return Temp; 3897 return nullptr; 3898 }; 3899 3900 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3901 if (TyAllocSize == 1 && 3902 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3903 if (Value *R = PtrToIntOrZero(P)) 3904 return R; 3905 3906 // getelementptr V, (ashr (sub P, V), C) -> Q 3907 // if P points to a type of size 1 << C. 3908 if (match(Ops[1], 3909 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3910 m_ConstantInt(C))) && 3911 TyAllocSize == 1ULL << C) 3912 if (Value *R = PtrToIntOrZero(P)) 3913 return R; 3914 3915 // getelementptr V, (sdiv (sub P, V), C) -> Q 3916 // if P points to a type of size C. 3917 if (match(Ops[1], 3918 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3919 m_SpecificInt(TyAllocSize)))) 3920 if (Value *R = PtrToIntOrZero(P)) 3921 return R; 3922 } 3923 } 3924 } 3925 3926 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3927 all_of(Ops.slice(1).drop_back(1), 3928 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3929 unsigned IdxWidth = 3930 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3931 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3932 APInt BasePtrOffset(IdxWidth, 0); 3933 Value *StrippedBasePtr = 3934 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3935 BasePtrOffset); 3936 3937 // gep (gep V, C), (sub 0, V) -> C 3938 if (match(Ops.back(), 3939 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3940 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3941 return ConstantExpr::getIntToPtr(CI, GEPTy); 3942 } 3943 // gep (gep V, C), (xor V, -1) -> C-1 3944 if (match(Ops.back(), 3945 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3946 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3947 return ConstantExpr::getIntToPtr(CI, GEPTy); 3948 } 3949 } 3950 } 3951 3952 // Check to see if this is constant foldable. 3953 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3954 return nullptr; 3955 3956 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3957 Ops.slice(1)); 3958 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3959 return CEFolded; 3960 return CE; 3961 } 3962 3963 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3964 const SimplifyQuery &Q) { 3965 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3966 } 3967 3968 /// Given operands for an InsertValueInst, see if we can fold the result. 3969 /// If not, this returns null. 3970 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3971 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3972 unsigned) { 3973 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3974 if (Constant *CVal = dyn_cast<Constant>(Val)) 3975 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3976 3977 // insertvalue x, undef, n -> x 3978 if (match(Val, m_Undef())) 3979 return Agg; 3980 3981 // insertvalue x, (extractvalue y, n), n 3982 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3983 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3984 EV->getIndices() == Idxs) { 3985 // insertvalue undef, (extractvalue y, n), n -> y 3986 if (match(Agg, m_Undef())) 3987 return EV->getAggregateOperand(); 3988 3989 // insertvalue y, (extractvalue y, n), n -> y 3990 if (Agg == EV->getAggregateOperand()) 3991 return Agg; 3992 } 3993 3994 return nullptr; 3995 } 3996 3997 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3998 ArrayRef<unsigned> Idxs, 3999 const SimplifyQuery &Q) { 4000 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4001 } 4002 4003 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4004 const SimplifyQuery &Q) { 4005 // Try to constant fold. 4006 auto *VecC = dyn_cast<Constant>(Vec); 4007 auto *ValC = dyn_cast<Constant>(Val); 4008 auto *IdxC = dyn_cast<Constant>(Idx); 4009 if (VecC && ValC && IdxC) 4010 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4011 4012 // Fold into undef if index is out of bounds. 4013 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4014 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4015 if (CI->uge(NumElements)) 4016 return UndefValue::get(Vec->getType()); 4017 } 4018 4019 // If index is undef, it might be out of bounds (see above case) 4020 if (isa<UndefValue>(Idx)) 4021 return UndefValue::get(Vec->getType()); 4022 4023 // Inserting an undef scalar? Assume it is the same value as the existing 4024 // vector element. 4025 if (isa<UndefValue>(Val)) 4026 return Vec; 4027 4028 // If we are extracting a value from a vector, then inserting it into the same 4029 // place, that's the input vector: 4030 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4031 if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx)))) 4032 return Vec; 4033 4034 return nullptr; 4035 } 4036 4037 /// Given operands for an ExtractValueInst, see if we can fold the result. 4038 /// If not, this returns null. 4039 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4040 const SimplifyQuery &, unsigned) { 4041 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4042 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4043 4044 // extractvalue x, (insertvalue y, elt, n), n -> elt 4045 unsigned NumIdxs = Idxs.size(); 4046 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4047 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4048 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4049 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4050 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4051 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4052 Idxs.slice(0, NumCommonIdxs)) { 4053 if (NumIdxs == NumInsertValueIdxs) 4054 return IVI->getInsertedValueOperand(); 4055 break; 4056 } 4057 } 4058 4059 return nullptr; 4060 } 4061 4062 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4063 const SimplifyQuery &Q) { 4064 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4065 } 4066 4067 /// Given operands for an ExtractElementInst, see if we can fold the result. 4068 /// If not, this returns null. 4069 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4070 unsigned) { 4071 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4072 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4073 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4074 4075 // The index is not relevant if our vector is a splat. 4076 if (auto *Splat = CVec->getSplatValue()) 4077 return Splat; 4078 4079 if (isa<UndefValue>(Vec)) 4080 return UndefValue::get(Vec->getType()->getVectorElementType()); 4081 } 4082 4083 // If extracting a specified index from the vector, see if we can recursively 4084 // find a previously computed scalar that was inserted into the vector. 4085 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4086 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4087 // definitely out of bounds, thus undefined result 4088 return UndefValue::get(Vec->getType()->getVectorElementType()); 4089 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4090 return Elt; 4091 } 4092 4093 // An undef extract index can be arbitrarily chosen to be an out-of-range 4094 // index value, which would result in the instruction being undef. 4095 if (isa<UndefValue>(Idx)) 4096 return UndefValue::get(Vec->getType()->getVectorElementType()); 4097 4098 return nullptr; 4099 } 4100 4101 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4102 const SimplifyQuery &Q) { 4103 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4104 } 4105 4106 /// See if we can fold the given phi. If not, returns null. 4107 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4108 // If all of the PHI's incoming values are the same then replace the PHI node 4109 // with the common value. 4110 Value *CommonValue = nullptr; 4111 bool HasUndefInput = false; 4112 for (Value *Incoming : PN->incoming_values()) { 4113 // If the incoming value is the phi node itself, it can safely be skipped. 4114 if (Incoming == PN) continue; 4115 if (isa<UndefValue>(Incoming)) { 4116 // Remember that we saw an undef value, but otherwise ignore them. 4117 HasUndefInput = true; 4118 continue; 4119 } 4120 if (CommonValue && Incoming != CommonValue) 4121 return nullptr; // Not the same, bail out. 4122 CommonValue = Incoming; 4123 } 4124 4125 // If CommonValue is null then all of the incoming values were either undef or 4126 // equal to the phi node itself. 4127 if (!CommonValue) 4128 return UndefValue::get(PN->getType()); 4129 4130 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4131 // instruction, we cannot return X as the result of the PHI node unless it 4132 // dominates the PHI block. 4133 if (HasUndefInput) 4134 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4135 4136 return CommonValue; 4137 } 4138 4139 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4140 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4141 if (auto *C = dyn_cast<Constant>(Op)) 4142 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4143 4144 if (auto *CI = dyn_cast<CastInst>(Op)) { 4145 auto *Src = CI->getOperand(0); 4146 Type *SrcTy = Src->getType(); 4147 Type *MidTy = CI->getType(); 4148 Type *DstTy = Ty; 4149 if (Src->getType() == Ty) { 4150 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4151 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4152 Type *SrcIntPtrTy = 4153 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4154 Type *MidIntPtrTy = 4155 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4156 Type *DstIntPtrTy = 4157 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4158 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4159 SrcIntPtrTy, MidIntPtrTy, 4160 DstIntPtrTy) == Instruction::BitCast) 4161 return Src; 4162 } 4163 } 4164 4165 // bitcast x -> x 4166 if (CastOpc == Instruction::BitCast) 4167 if (Op->getType() == Ty) 4168 return Op; 4169 4170 return nullptr; 4171 } 4172 4173 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4174 const SimplifyQuery &Q) { 4175 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4176 } 4177 4178 /// For the given destination element of a shuffle, peek through shuffles to 4179 /// match a root vector source operand that contains that element in the same 4180 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4181 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4182 int MaskVal, Value *RootVec, 4183 unsigned MaxRecurse) { 4184 if (!MaxRecurse--) 4185 return nullptr; 4186 4187 // Bail out if any mask value is undefined. That kind of shuffle may be 4188 // simplified further based on demanded bits or other folds. 4189 if (MaskVal == -1) 4190 return nullptr; 4191 4192 // The mask value chooses which source operand we need to look at next. 4193 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4194 int RootElt = MaskVal; 4195 Value *SourceOp = Op0; 4196 if (MaskVal >= InVecNumElts) { 4197 RootElt = MaskVal - InVecNumElts; 4198 SourceOp = Op1; 4199 } 4200 4201 // If the source operand is a shuffle itself, look through it to find the 4202 // matching root vector. 4203 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4204 return foldIdentityShuffles( 4205 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4206 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4207 } 4208 4209 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4210 // size? 4211 4212 // The source operand is not a shuffle. Initialize the root vector value for 4213 // this shuffle if that has not been done yet. 4214 if (!RootVec) 4215 RootVec = SourceOp; 4216 4217 // Give up as soon as a source operand does not match the existing root value. 4218 if (RootVec != SourceOp) 4219 return nullptr; 4220 4221 // The element must be coming from the same lane in the source vector 4222 // (although it may have crossed lanes in intermediate shuffles). 4223 if (RootElt != DestElt) 4224 return nullptr; 4225 4226 return RootVec; 4227 } 4228 4229 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4230 Type *RetTy, const SimplifyQuery &Q, 4231 unsigned MaxRecurse) { 4232 if (isa<UndefValue>(Mask)) 4233 return UndefValue::get(RetTy); 4234 4235 Type *InVecTy = Op0->getType(); 4236 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4237 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4238 4239 SmallVector<int, 32> Indices; 4240 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4241 assert(MaskNumElts == Indices.size() && 4242 "Size of Indices not same as number of mask elements?"); 4243 4244 // Canonicalization: If mask does not select elements from an input vector, 4245 // replace that input vector with undef. 4246 bool MaskSelects0 = false, MaskSelects1 = false; 4247 for (unsigned i = 0; i != MaskNumElts; ++i) { 4248 if (Indices[i] == -1) 4249 continue; 4250 if ((unsigned)Indices[i] < InVecNumElts) 4251 MaskSelects0 = true; 4252 else 4253 MaskSelects1 = true; 4254 } 4255 if (!MaskSelects0) 4256 Op0 = UndefValue::get(InVecTy); 4257 if (!MaskSelects1) 4258 Op1 = UndefValue::get(InVecTy); 4259 4260 auto *Op0Const = dyn_cast<Constant>(Op0); 4261 auto *Op1Const = dyn_cast<Constant>(Op1); 4262 4263 // If all operands are constant, constant fold the shuffle. 4264 if (Op0Const && Op1Const) 4265 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4266 4267 // Canonicalization: if only one input vector is constant, it shall be the 4268 // second one. 4269 if (Op0Const && !Op1Const) { 4270 std::swap(Op0, Op1); 4271 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4272 } 4273 4274 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4275 // value type is same as the input vectors' type. 4276 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4277 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4278 OpShuf->getMask()->getSplatValue()) 4279 return Op0; 4280 4281 // Don't fold a shuffle with undef mask elements. This may get folded in a 4282 // better way using demanded bits or other analysis. 4283 // TODO: Should we allow this? 4284 if (find(Indices, -1) != Indices.end()) 4285 return nullptr; 4286 4287 // Check if every element of this shuffle can be mapped back to the 4288 // corresponding element of a single root vector. If so, we don't need this 4289 // shuffle. This handles simple identity shuffles as well as chains of 4290 // shuffles that may widen/narrow and/or move elements across lanes and back. 4291 Value *RootVec = nullptr; 4292 for (unsigned i = 0; i != MaskNumElts; ++i) { 4293 // Note that recursion is limited for each vector element, so if any element 4294 // exceeds the limit, this will fail to simplify. 4295 RootVec = 4296 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4297 4298 // We can't replace a widening/narrowing shuffle with one of its operands. 4299 if (!RootVec || RootVec->getType() != RetTy) 4300 return nullptr; 4301 } 4302 return RootVec; 4303 } 4304 4305 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4306 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4307 Type *RetTy, const SimplifyQuery &Q) { 4308 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4309 } 4310 4311 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4312 Value *&Op, const SimplifyQuery &Q) { 4313 if (auto *C = dyn_cast<Constant>(Op)) 4314 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4315 return nullptr; 4316 } 4317 4318 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4319 /// returns null. 4320 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4321 const SimplifyQuery &Q, unsigned MaxRecurse) { 4322 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4323 return C; 4324 4325 Value *X; 4326 // fneg (fneg X) ==> X 4327 if (match(Op, m_FNeg(m_Value(X)))) 4328 return X; 4329 4330 return nullptr; 4331 } 4332 4333 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4334 const SimplifyQuery &Q) { 4335 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4336 } 4337 4338 static Constant *propagateNaN(Constant *In) { 4339 // If the input is a vector with undef elements, just return a default NaN. 4340 if (!In->isNaN()) 4341 return ConstantFP::getNaN(In->getType()); 4342 4343 // Propagate the existing NaN constant when possible. 4344 // TODO: Should we quiet a signaling NaN? 4345 return In; 4346 } 4347 4348 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4349 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4350 return ConstantFP::getNaN(Op0->getType()); 4351 4352 if (match(Op0, m_NaN())) 4353 return propagateNaN(cast<Constant>(Op0)); 4354 if (match(Op1, m_NaN())) 4355 return propagateNaN(cast<Constant>(Op1)); 4356 4357 return nullptr; 4358 } 4359 4360 /// Given operands for an FAdd, see if we can fold the result. If not, this 4361 /// returns null. 4362 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4363 const SimplifyQuery &Q, unsigned MaxRecurse) { 4364 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4365 return C; 4366 4367 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4368 return C; 4369 4370 // fadd X, -0 ==> X 4371 if (match(Op1, m_NegZeroFP())) 4372 return Op0; 4373 4374 // fadd X, 0 ==> X, when we know X is not -0 4375 if (match(Op1, m_PosZeroFP()) && 4376 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4377 return Op0; 4378 4379 // With nnan: -X + X --> 0.0 (and commuted variant) 4380 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4381 // Negative zeros are allowed because we always end up with positive zero: 4382 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4383 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4384 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4385 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4386 if (FMF.noNaNs()) { 4387 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4388 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4389 return ConstantFP::getNullValue(Op0->getType()); 4390 4391 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4392 match(Op1, m_FNeg(m_Specific(Op0)))) 4393 return ConstantFP::getNullValue(Op0->getType()); 4394 } 4395 4396 // (X - Y) + Y --> X 4397 // Y + (X - Y) --> X 4398 Value *X; 4399 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4400 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4401 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4402 return X; 4403 4404 return nullptr; 4405 } 4406 4407 /// Given operands for an FSub, see if we can fold the result. If not, this 4408 /// returns null. 4409 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4410 const SimplifyQuery &Q, unsigned MaxRecurse) { 4411 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4412 return C; 4413 4414 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4415 return C; 4416 4417 // fsub X, +0 ==> X 4418 if (match(Op1, m_PosZeroFP())) 4419 return Op0; 4420 4421 // fsub X, -0 ==> X, when we know X is not -0 4422 if (match(Op1, m_NegZeroFP()) && 4423 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4424 return Op0; 4425 4426 // fsub -0.0, (fsub -0.0, X) ==> X 4427 // fsub -0.0, (fneg X) ==> X 4428 Value *X; 4429 if (match(Op0, m_NegZeroFP()) && 4430 match(Op1, m_FNeg(m_Value(X)))) 4431 return X; 4432 4433 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4434 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4435 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4436 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4437 match(Op1, m_FNeg(m_Value(X))))) 4438 return X; 4439 4440 // fsub nnan x, x ==> 0.0 4441 if (FMF.noNaNs() && Op0 == Op1) 4442 return Constant::getNullValue(Op0->getType()); 4443 4444 // Y - (Y - X) --> X 4445 // (X + Y) - Y --> X 4446 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4447 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4448 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4449 return X; 4450 4451 return nullptr; 4452 } 4453 4454 /// Given the operands for an FMul, see if we can fold the result 4455 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4456 const SimplifyQuery &Q, unsigned MaxRecurse) { 4457 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4458 return C; 4459 4460 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4461 return C; 4462 4463 // fmul X, 1.0 ==> X 4464 if (match(Op1, m_FPOne())) 4465 return Op0; 4466 4467 // fmul nnan nsz X, 0 ==> 0 4468 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4469 return ConstantFP::getNullValue(Op0->getType()); 4470 4471 // sqrt(X) * sqrt(X) --> X, if we can: 4472 // 1. Remove the intermediate rounding (reassociate). 4473 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4474 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4475 Value *X; 4476 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4477 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4478 return X; 4479 4480 return nullptr; 4481 } 4482 4483 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4484 const SimplifyQuery &Q) { 4485 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4486 } 4487 4488 4489 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4490 const SimplifyQuery &Q) { 4491 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4492 } 4493 4494 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4495 const SimplifyQuery &Q) { 4496 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4497 } 4498 4499 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4500 const SimplifyQuery &Q, unsigned) { 4501 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4502 return C; 4503 4504 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4505 return C; 4506 4507 // X / 1.0 -> X 4508 if (match(Op1, m_FPOne())) 4509 return Op0; 4510 4511 // 0 / X -> 0 4512 // Requires that NaNs are off (X could be zero) and signed zeroes are 4513 // ignored (X could be positive or negative, so the output sign is unknown). 4514 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4515 return ConstantFP::getNullValue(Op0->getType()); 4516 4517 if (FMF.noNaNs()) { 4518 // X / X -> 1.0 is legal when NaNs are ignored. 4519 // We can ignore infinities because INF/INF is NaN. 4520 if (Op0 == Op1) 4521 return ConstantFP::get(Op0->getType(), 1.0); 4522 4523 // (X * Y) / Y --> X if we can reassociate to the above form. 4524 Value *X; 4525 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4526 return X; 4527 4528 // -X / X -> -1.0 and 4529 // X / -X -> -1.0 are legal when NaNs are ignored. 4530 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4531 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4532 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4533 return ConstantFP::get(Op0->getType(), -1.0); 4534 } 4535 4536 return nullptr; 4537 } 4538 4539 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4540 const SimplifyQuery &Q) { 4541 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4542 } 4543 4544 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4545 const SimplifyQuery &Q, unsigned) { 4546 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4547 return C; 4548 4549 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4550 return C; 4551 4552 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4553 // The constant match may include undef elements in a vector, so return a full 4554 // zero constant as the result. 4555 if (FMF.noNaNs()) { 4556 // +0 % X -> 0 4557 if (match(Op0, m_PosZeroFP())) 4558 return ConstantFP::getNullValue(Op0->getType()); 4559 // -0 % X -> -0 4560 if (match(Op0, m_NegZeroFP())) 4561 return ConstantFP::getNegativeZero(Op0->getType()); 4562 } 4563 4564 return nullptr; 4565 } 4566 4567 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4568 const SimplifyQuery &Q) { 4569 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4570 } 4571 4572 //=== Helper functions for higher up the class hierarchy. 4573 4574 /// Given the operand for a UnaryOperator, see if we can fold the result. 4575 /// If not, this returns null. 4576 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4577 unsigned MaxRecurse) { 4578 switch (Opcode) { 4579 case Instruction::FNeg: 4580 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4581 default: 4582 llvm_unreachable("Unexpected opcode"); 4583 } 4584 } 4585 4586 /// Given the operand for a UnaryOperator, see if we can fold the result. 4587 /// If not, this returns null. 4588 /// In contrast to SimplifyUnOp, try to use FastMathFlag when folding the 4589 /// result. In case we don't need FastMathFlags, simply fall to SimplifyUnOp. 4590 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4591 const FastMathFlags &FMF, 4592 const SimplifyQuery &Q, unsigned MaxRecurse) { 4593 switch (Opcode) { 4594 case Instruction::FNeg: 4595 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4596 default: 4597 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4598 } 4599 } 4600 4601 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4602 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4603 } 4604 4605 Value *llvm::SimplifyFPUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4606 const SimplifyQuery &Q) { 4607 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4608 } 4609 4610 /// Given operands for a BinaryOperator, see if we can fold the result. 4611 /// If not, this returns null. 4612 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4613 const SimplifyQuery &Q, unsigned MaxRecurse) { 4614 switch (Opcode) { 4615 case Instruction::Add: 4616 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4617 case Instruction::Sub: 4618 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4619 case Instruction::Mul: 4620 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4621 case Instruction::SDiv: 4622 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4623 case Instruction::UDiv: 4624 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4625 case Instruction::SRem: 4626 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4627 case Instruction::URem: 4628 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4629 case Instruction::Shl: 4630 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4631 case Instruction::LShr: 4632 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4633 case Instruction::AShr: 4634 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4635 case Instruction::And: 4636 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4637 case Instruction::Or: 4638 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4639 case Instruction::Xor: 4640 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4641 case Instruction::FAdd: 4642 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4643 case Instruction::FSub: 4644 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4645 case Instruction::FMul: 4646 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4647 case Instruction::FDiv: 4648 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4649 case Instruction::FRem: 4650 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4651 default: 4652 llvm_unreachable("Unexpected opcode"); 4653 } 4654 } 4655 4656 /// Given operands for a BinaryOperator, see if we can fold the result. 4657 /// If not, this returns null. 4658 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4659 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4660 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4661 const FastMathFlags &FMF, const SimplifyQuery &Q, 4662 unsigned MaxRecurse) { 4663 switch (Opcode) { 4664 case Instruction::FAdd: 4665 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4666 case Instruction::FSub: 4667 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4668 case Instruction::FMul: 4669 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4670 case Instruction::FDiv: 4671 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4672 default: 4673 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4674 } 4675 } 4676 4677 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4678 const SimplifyQuery &Q) { 4679 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4680 } 4681 4682 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4683 FastMathFlags FMF, const SimplifyQuery &Q) { 4684 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4685 } 4686 4687 /// Given operands for a CmpInst, see if we can fold the result. 4688 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4689 const SimplifyQuery &Q, unsigned MaxRecurse) { 4690 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4691 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4692 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4693 } 4694 4695 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4696 const SimplifyQuery &Q) { 4697 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4698 } 4699 4700 static bool IsIdempotent(Intrinsic::ID ID) { 4701 switch (ID) { 4702 default: return false; 4703 4704 // Unary idempotent: f(f(x)) = f(x) 4705 case Intrinsic::fabs: 4706 case Intrinsic::floor: 4707 case Intrinsic::ceil: 4708 case Intrinsic::trunc: 4709 case Intrinsic::rint: 4710 case Intrinsic::nearbyint: 4711 case Intrinsic::round: 4712 case Intrinsic::canonicalize: 4713 return true; 4714 } 4715 } 4716 4717 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4718 const DataLayout &DL) { 4719 GlobalValue *PtrSym; 4720 APInt PtrOffset; 4721 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4722 return nullptr; 4723 4724 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4725 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4726 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4727 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4728 4729 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4730 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4731 return nullptr; 4732 4733 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4734 if (OffsetInt % 4 != 0) 4735 return nullptr; 4736 4737 Constant *C = ConstantExpr::getGetElementPtr( 4738 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4739 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4740 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4741 if (!Loaded) 4742 return nullptr; 4743 4744 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4745 if (!LoadedCE) 4746 return nullptr; 4747 4748 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4749 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4750 if (!LoadedCE) 4751 return nullptr; 4752 } 4753 4754 if (LoadedCE->getOpcode() != Instruction::Sub) 4755 return nullptr; 4756 4757 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4758 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4759 return nullptr; 4760 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4761 4762 Constant *LoadedRHS = LoadedCE->getOperand(1); 4763 GlobalValue *LoadedRHSSym; 4764 APInt LoadedRHSOffset; 4765 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4766 DL) || 4767 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4768 return nullptr; 4769 4770 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4771 } 4772 4773 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4774 const SimplifyQuery &Q) { 4775 // Idempotent functions return the same result when called repeatedly. 4776 Intrinsic::ID IID = F->getIntrinsicID(); 4777 if (IsIdempotent(IID)) 4778 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4779 if (II->getIntrinsicID() == IID) 4780 return II; 4781 4782 Value *X; 4783 switch (IID) { 4784 case Intrinsic::fabs: 4785 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4786 break; 4787 case Intrinsic::bswap: 4788 // bswap(bswap(x)) -> x 4789 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4790 break; 4791 case Intrinsic::bitreverse: 4792 // bitreverse(bitreverse(x)) -> x 4793 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4794 break; 4795 case Intrinsic::exp: 4796 // exp(log(x)) -> x 4797 if (Q.CxtI->hasAllowReassoc() && 4798 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4799 break; 4800 case Intrinsic::exp2: 4801 // exp2(log2(x)) -> x 4802 if (Q.CxtI->hasAllowReassoc() && 4803 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4804 break; 4805 case Intrinsic::log: 4806 // log(exp(x)) -> x 4807 if (Q.CxtI->hasAllowReassoc() && 4808 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4809 break; 4810 case Intrinsic::log2: 4811 // log2(exp2(x)) -> x 4812 if (Q.CxtI->hasAllowReassoc() && 4813 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4814 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4815 m_Value(X))))) return X; 4816 break; 4817 case Intrinsic::log10: 4818 // log10(pow(10.0, x)) -> x 4819 if (Q.CxtI->hasAllowReassoc() && 4820 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4821 m_Value(X)))) return X; 4822 break; 4823 case Intrinsic::floor: 4824 case Intrinsic::trunc: 4825 case Intrinsic::ceil: 4826 case Intrinsic::round: 4827 case Intrinsic::nearbyint: 4828 case Intrinsic::rint: { 4829 // floor (sitofp x) -> sitofp x 4830 // floor (uitofp x) -> uitofp x 4831 // 4832 // Converting from int always results in a finite integral number or 4833 // infinity. For either of those inputs, these rounding functions always 4834 // return the same value, so the rounding can be eliminated. 4835 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 4836 return Op0; 4837 break; 4838 } 4839 default: 4840 break; 4841 } 4842 4843 return nullptr; 4844 } 4845 4846 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4847 const SimplifyQuery &Q) { 4848 Intrinsic::ID IID = F->getIntrinsicID(); 4849 Type *ReturnType = F->getReturnType(); 4850 switch (IID) { 4851 case Intrinsic::usub_with_overflow: 4852 case Intrinsic::ssub_with_overflow: 4853 // X - X -> { 0, false } 4854 if (Op0 == Op1) 4855 return Constant::getNullValue(ReturnType); 4856 LLVM_FALLTHROUGH; 4857 case Intrinsic::uadd_with_overflow: 4858 case Intrinsic::sadd_with_overflow: 4859 // X - undef -> { undef, false } 4860 // undef - X -> { undef, false } 4861 // X + undef -> { undef, false } 4862 // undef + x -> { undef, false } 4863 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 4864 return ConstantStruct::get( 4865 cast<StructType>(ReturnType), 4866 {UndefValue::get(ReturnType->getStructElementType(0)), 4867 Constant::getNullValue(ReturnType->getStructElementType(1))}); 4868 } 4869 break; 4870 case Intrinsic::umul_with_overflow: 4871 case Intrinsic::smul_with_overflow: 4872 // 0 * X -> { 0, false } 4873 // X * 0 -> { 0, false } 4874 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4875 return Constant::getNullValue(ReturnType); 4876 // undef * X -> { 0, false } 4877 // X * undef -> { 0, false } 4878 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4879 return Constant::getNullValue(ReturnType); 4880 break; 4881 case Intrinsic::uadd_sat: 4882 // sat(MAX + X) -> MAX 4883 // sat(X + MAX) -> MAX 4884 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4885 return Constant::getAllOnesValue(ReturnType); 4886 LLVM_FALLTHROUGH; 4887 case Intrinsic::sadd_sat: 4888 // sat(X + undef) -> -1 4889 // sat(undef + X) -> -1 4890 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 4891 // For signed: Assume undef is ~X, in which case X + ~X = -1. 4892 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4893 return Constant::getAllOnesValue(ReturnType); 4894 4895 // X + 0 -> X 4896 if (match(Op1, m_Zero())) 4897 return Op0; 4898 // 0 + X -> X 4899 if (match(Op0, m_Zero())) 4900 return Op1; 4901 break; 4902 case Intrinsic::usub_sat: 4903 // sat(0 - X) -> 0, sat(X - MAX) -> 0 4904 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 4905 return Constant::getNullValue(ReturnType); 4906 LLVM_FALLTHROUGH; 4907 case Intrinsic::ssub_sat: 4908 // X - X -> 0, X - undef -> 0, undef - X -> 0 4909 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 4910 return Constant::getNullValue(ReturnType); 4911 // X - 0 -> X 4912 if (match(Op1, m_Zero())) 4913 return Op0; 4914 break; 4915 case Intrinsic::load_relative: 4916 if (auto *C0 = dyn_cast<Constant>(Op0)) 4917 if (auto *C1 = dyn_cast<Constant>(Op1)) 4918 return SimplifyRelativeLoad(C0, C1, Q.DL); 4919 break; 4920 case Intrinsic::powi: 4921 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 4922 // powi(x, 0) -> 1.0 4923 if (Power->isZero()) 4924 return ConstantFP::get(Op0->getType(), 1.0); 4925 // powi(x, 1) -> x 4926 if (Power->isOne()) 4927 return Op0; 4928 } 4929 break; 4930 case Intrinsic::maxnum: 4931 case Intrinsic::minnum: 4932 case Intrinsic::maximum: 4933 case Intrinsic::minimum: { 4934 // If the arguments are the same, this is a no-op. 4935 if (Op0 == Op1) return Op0; 4936 4937 // If one argument is undef, return the other argument. 4938 if (match(Op0, m_Undef())) 4939 return Op1; 4940 if (match(Op1, m_Undef())) 4941 return Op0; 4942 4943 // If one argument is NaN, return other or NaN appropriately. 4944 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 4945 if (match(Op0, m_NaN())) 4946 return PropagateNaN ? Op0 : Op1; 4947 if (match(Op1, m_NaN())) 4948 return PropagateNaN ? Op1 : Op0; 4949 4950 // Min/max of the same operation with common operand: 4951 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 4952 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 4953 if (M0->getIntrinsicID() == IID && 4954 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 4955 return Op0; 4956 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 4957 if (M1->getIntrinsicID() == IID && 4958 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 4959 return Op1; 4960 4961 // min(X, -Inf) --> -Inf (and commuted variant) 4962 // max(X, +Inf) --> +Inf (and commuted variant) 4963 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 4964 const APFloat *C; 4965 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 4966 C->isNegative() == UseNegInf) || 4967 (match(Op1, m_APFloat(C)) && C->isInfinity() && 4968 C->isNegative() == UseNegInf)) 4969 return ConstantFP::getInfinity(ReturnType, UseNegInf); 4970 4971 // TODO: minnum(nnan x, inf) -> x 4972 // TODO: minnum(nnan ninf x, flt_max) -> x 4973 // TODO: maxnum(nnan x, -inf) -> x 4974 // TODO: maxnum(nnan ninf x, -flt_max) -> x 4975 break; 4976 } 4977 default: 4978 break; 4979 } 4980 4981 return nullptr; 4982 } 4983 4984 template <typename IterTy> 4985 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4986 const SimplifyQuery &Q) { 4987 // Intrinsics with no operands have some kind of side effect. Don't simplify. 4988 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4989 if (NumOperands == 0) 4990 return nullptr; 4991 4992 Intrinsic::ID IID = F->getIntrinsicID(); 4993 if (NumOperands == 1) 4994 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 4995 4996 if (NumOperands == 2) 4997 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 4998 4999 // Handle intrinsics with 3 or more arguments. 5000 switch (IID) { 5001 case Intrinsic::masked_load: 5002 case Intrinsic::masked_gather: { 5003 Value *MaskArg = ArgBegin[2]; 5004 Value *PassthruArg = ArgBegin[3]; 5005 // If the mask is all zeros or undef, the "passthru" argument is the result. 5006 if (maskIsAllZeroOrUndef(MaskArg)) 5007 return PassthruArg; 5008 return nullptr; 5009 } 5010 case Intrinsic::fshl: 5011 case Intrinsic::fshr: { 5012 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; 5013 5014 // If both operands are undef, the result is undef. 5015 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5016 return UndefValue::get(F->getReturnType()); 5017 5018 // If shift amount is undef, assume it is zero. 5019 if (match(ShAmtArg, m_Undef())) 5020 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5021 5022 const APInt *ShAmtC; 5023 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5024 // If there's effectively no shift, return the 1st arg or 2nd arg. 5025 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5026 if (ShAmtC->urem(BitWidth).isNullValue()) 5027 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5028 } 5029 return nullptr; 5030 } 5031 default: 5032 return nullptr; 5033 } 5034 } 5035 5036 template <typename IterTy> 5037 static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin, 5038 IterTy ArgEnd, const SimplifyQuery &Q, 5039 unsigned MaxRecurse) { 5040 Type *Ty = V->getType(); 5041 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 5042 Ty = PTy->getElementType(); 5043 FunctionType *FTy = cast<FunctionType>(Ty); 5044 5045 // call undef -> undef 5046 // call null -> undef 5047 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 5048 return UndefValue::get(FTy->getReturnType()); 5049 5050 Function *F = dyn_cast<Function>(V); 5051 if (!F) 5052 return nullptr; 5053 5054 if (F->isIntrinsic()) 5055 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 5056 return Ret; 5057 5058 if (!canConstantFoldCallTo(Call, F)) 5059 return nullptr; 5060 5061 SmallVector<Constant *, 4> ConstantArgs; 5062 ConstantArgs.reserve(ArgEnd - ArgBegin); 5063 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 5064 Constant *C = dyn_cast<Constant>(*I); 5065 if (!C) 5066 return nullptr; 5067 ConstantArgs.push_back(C); 5068 } 5069 5070 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5071 } 5072 5073 Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin, 5074 User::op_iterator ArgEnd, const SimplifyQuery &Q) { 5075 return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit); 5076 } 5077 5078 Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args, 5079 const SimplifyQuery &Q) { 5080 return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit); 5081 } 5082 5083 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5084 return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(), 5085 Call->arg_end(), Q, RecursionLimit); 5086 } 5087 5088 /// See if we can compute a simplified version of this instruction. 5089 /// If not, this returns null. 5090 5091 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5092 OptimizationRemarkEmitter *ORE) { 5093 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5094 Value *Result; 5095 5096 switch (I->getOpcode()) { 5097 default: 5098 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5099 break; 5100 case Instruction::FNeg: 5101 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5102 break; 5103 case Instruction::FAdd: 5104 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5105 I->getFastMathFlags(), Q); 5106 break; 5107 case Instruction::Add: 5108 Result = 5109 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5110 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5111 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5112 break; 5113 case Instruction::FSub: 5114 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5115 I->getFastMathFlags(), Q); 5116 break; 5117 case Instruction::Sub: 5118 Result = 5119 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5120 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5121 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5122 break; 5123 case Instruction::FMul: 5124 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5125 I->getFastMathFlags(), Q); 5126 break; 5127 case Instruction::Mul: 5128 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5129 break; 5130 case Instruction::SDiv: 5131 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5132 break; 5133 case Instruction::UDiv: 5134 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5135 break; 5136 case Instruction::FDiv: 5137 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5138 I->getFastMathFlags(), Q); 5139 break; 5140 case Instruction::SRem: 5141 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5142 break; 5143 case Instruction::URem: 5144 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5145 break; 5146 case Instruction::FRem: 5147 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5148 I->getFastMathFlags(), Q); 5149 break; 5150 case Instruction::Shl: 5151 Result = 5152 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5153 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5154 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5155 break; 5156 case Instruction::LShr: 5157 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5158 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5159 break; 5160 case Instruction::AShr: 5161 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5162 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5163 break; 5164 case Instruction::And: 5165 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5166 break; 5167 case Instruction::Or: 5168 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5169 break; 5170 case Instruction::Xor: 5171 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5172 break; 5173 case Instruction::ICmp: 5174 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5175 I->getOperand(0), I->getOperand(1), Q); 5176 break; 5177 case Instruction::FCmp: 5178 Result = 5179 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5180 I->getOperand(1), I->getFastMathFlags(), Q); 5181 break; 5182 case Instruction::Select: 5183 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5184 I->getOperand(2), Q); 5185 break; 5186 case Instruction::GetElementPtr: { 5187 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5188 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5189 Ops, Q); 5190 break; 5191 } 5192 case Instruction::InsertValue: { 5193 InsertValueInst *IV = cast<InsertValueInst>(I); 5194 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5195 IV->getInsertedValueOperand(), 5196 IV->getIndices(), Q); 5197 break; 5198 } 5199 case Instruction::InsertElement: { 5200 auto *IE = cast<InsertElementInst>(I); 5201 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5202 IE->getOperand(2), Q); 5203 break; 5204 } 5205 case Instruction::ExtractValue: { 5206 auto *EVI = cast<ExtractValueInst>(I); 5207 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5208 EVI->getIndices(), Q); 5209 break; 5210 } 5211 case Instruction::ExtractElement: { 5212 auto *EEI = cast<ExtractElementInst>(I); 5213 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5214 EEI->getIndexOperand(), Q); 5215 break; 5216 } 5217 case Instruction::ShuffleVector: { 5218 auto *SVI = cast<ShuffleVectorInst>(I); 5219 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5220 SVI->getMask(), SVI->getType(), Q); 5221 break; 5222 } 5223 case Instruction::PHI: 5224 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5225 break; 5226 case Instruction::Call: { 5227 Result = SimplifyCall(cast<CallInst>(I), Q); 5228 break; 5229 } 5230 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5231 #include "llvm/IR/Instruction.def" 5232 #undef HANDLE_CAST_INST 5233 Result = 5234 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5235 break; 5236 case Instruction::Alloca: 5237 // No simplifications for Alloca and it can't be constant folded. 5238 Result = nullptr; 5239 break; 5240 } 5241 5242 // In general, it is possible for computeKnownBits to determine all bits in a 5243 // value even when the operands are not all constants. 5244 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5245 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5246 if (Known.isConstant()) 5247 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5248 } 5249 5250 /// If called on unreachable code, the above logic may report that the 5251 /// instruction simplified to itself. Make life easier for users by 5252 /// detecting that case here, returning a safe value instead. 5253 return Result == I ? UndefValue::get(I->getType()) : Result; 5254 } 5255 5256 /// Implementation of recursive simplification through an instruction's 5257 /// uses. 5258 /// 5259 /// This is the common implementation of the recursive simplification routines. 5260 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5261 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5262 /// instructions to process and attempt to simplify it using 5263 /// InstructionSimplify. 5264 /// 5265 /// This routine returns 'true' only when *it* simplifies something. The passed 5266 /// in simplified value does not count toward this. 5267 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5268 const TargetLibraryInfo *TLI, 5269 const DominatorTree *DT, 5270 AssumptionCache *AC) { 5271 bool Simplified = false; 5272 SmallSetVector<Instruction *, 8> Worklist; 5273 const DataLayout &DL = I->getModule()->getDataLayout(); 5274 5275 // If we have an explicit value to collapse to, do that round of the 5276 // simplification loop by hand initially. 5277 if (SimpleV) { 5278 for (User *U : I->users()) 5279 if (U != I) 5280 Worklist.insert(cast<Instruction>(U)); 5281 5282 // Replace the instruction with its simplified value. 5283 I->replaceAllUsesWith(SimpleV); 5284 5285 // Gracefully handle edge cases where the instruction is not wired into any 5286 // parent block. 5287 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5288 !I->mayHaveSideEffects()) 5289 I->eraseFromParent(); 5290 } else { 5291 Worklist.insert(I); 5292 } 5293 5294 // Note that we must test the size on each iteration, the worklist can grow. 5295 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5296 I = Worklist[Idx]; 5297 5298 // See if this instruction simplifies. 5299 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5300 if (!SimpleV) 5301 continue; 5302 5303 Simplified = true; 5304 5305 // Stash away all the uses of the old instruction so we can check them for 5306 // recursive simplifications after a RAUW. This is cheaper than checking all 5307 // uses of To on the recursive step in most cases. 5308 for (User *U : I->users()) 5309 Worklist.insert(cast<Instruction>(U)); 5310 5311 // Replace the instruction with its simplified value. 5312 I->replaceAllUsesWith(SimpleV); 5313 5314 // Gracefully handle edge cases where the instruction is not wired into any 5315 // parent block. 5316 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5317 !I->mayHaveSideEffects()) 5318 I->eraseFromParent(); 5319 } 5320 return Simplified; 5321 } 5322 5323 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5324 const TargetLibraryInfo *TLI, 5325 const DominatorTree *DT, 5326 AssumptionCache *AC) { 5327 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5328 } 5329 5330 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5331 const TargetLibraryInfo *TLI, 5332 const DominatorTree *DT, 5333 AssumptionCache *AC) { 5334 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5335 assert(SimpleV && "Must provide a simplified value."); 5336 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5337 } 5338 5339 namespace llvm { 5340 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5341 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5342 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5343 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5344 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5345 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5346 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5347 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5348 } 5349 5350 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5351 const DataLayout &DL) { 5352 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5353 } 5354 5355 template <class T, class... TArgs> 5356 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5357 Function &F) { 5358 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5359 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5360 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5361 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5362 } 5363 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5364 Function &); 5365 } 5366