1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 242 MaxRecurse); 243 if (!L) 244 return nullptr; 245 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!R) 248 return nullptr; 249 250 // Does the expanded pair of binops simplify to the existing binop? 251 if ((L == B0 && R == B1) || 252 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 253 ++NumExpand; 254 return B; 255 } 256 257 // Otherwise, return "L op' R" if it simplifies. 258 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 259 if (!S) 260 return nullptr; 261 262 ++NumExpand; 263 return S; 264 } 265 266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 267 /// distributing op over op'. 268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 269 Value *L, Value *R, 270 Instruction::BinaryOps OpcodeToExpand, 271 const SimplifyQuery &Q, 272 unsigned MaxRecurse) { 273 // Recursion is always used, so bail out at once if we already hit the limit. 274 if (!MaxRecurse--) 275 return nullptr; 276 277 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 return nullptr; 282 } 283 284 /// Generic simplifications for associative binary operations. 285 /// Returns the simpler value, or null if none was found. 286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 287 Value *LHS, Value *RHS, 288 const SimplifyQuery &Q, 289 unsigned MaxRecurse) { 290 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 291 292 // Recursion is always used, so bail out at once if we already hit the limit. 293 if (!MaxRecurse--) 294 return nullptr; 295 296 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 297 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 298 299 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 300 if (Op0 && Op0->getOpcode() == Opcode) { 301 Value *A = Op0->getOperand(0); 302 Value *B = Op0->getOperand(1); 303 Value *C = RHS; 304 305 // Does "B op C" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 307 // It does! Return "A op V" if it simplifies or is already available. 308 // If V equals B then "A op V" is just the LHS. 309 if (V == B) return LHS; 310 // Otherwise return "A op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 319 if (Op1 && Op1->getOpcode() == Opcode) { 320 Value *A = LHS; 321 Value *B = Op1->getOperand(0); 322 Value *C = Op1->getOperand(1); 323 324 // Does "A op B" simplify? 325 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 326 // It does! Return "V op C" if it simplifies or is already available. 327 // If V equals B then "V op C" is just the RHS. 328 if (V == B) return RHS; 329 // Otherwise return "V op C" if it simplifies. 330 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 331 ++NumReassoc; 332 return W; 333 } 334 } 335 } 336 337 // The remaining transforms require commutativity as well as associativity. 338 if (!Instruction::isCommutative(Opcode)) 339 return nullptr; 340 341 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 342 if (Op0 && Op0->getOpcode() == Opcode) { 343 Value *A = Op0->getOperand(0); 344 Value *B = Op0->getOperand(1); 345 Value *C = RHS; 346 347 // Does "C op A" simplify? 348 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 349 // It does! Return "V op B" if it simplifies or is already available. 350 // If V equals A then "V op B" is just the LHS. 351 if (V == A) return LHS; 352 // Otherwise return "V op B" if it simplifies. 353 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 354 ++NumReassoc; 355 return W; 356 } 357 } 358 } 359 360 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 361 if (Op1 && Op1->getOpcode() == Opcode) { 362 Value *A = LHS; 363 Value *B = Op1->getOperand(0); 364 Value *C = Op1->getOperand(1); 365 366 // Does "C op A" simplify? 367 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 368 // It does! Return "B op V" if it simplifies or is already available. 369 // If V equals C then "B op V" is just the RHS. 370 if (V == C) return RHS; 371 // Otherwise return "B op V" if it simplifies. 372 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 373 ++NumReassoc; 374 return W; 375 } 376 } 377 } 378 379 return nullptr; 380 } 381 382 /// In the case of a binary operation with a select instruction as an operand, 383 /// try to simplify the binop by seeing whether evaluating it on both branches 384 /// of the select results in the same value. Returns the common value if so, 385 /// otherwise returns null. 386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 387 Value *RHS, const SimplifyQuery &Q, 388 unsigned MaxRecurse) { 389 // Recursion is always used, so bail out at once if we already hit the limit. 390 if (!MaxRecurse--) 391 return nullptr; 392 393 SelectInst *SI; 394 if (isa<SelectInst>(LHS)) { 395 SI = cast<SelectInst>(LHS); 396 } else { 397 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 398 SI = cast<SelectInst>(RHS); 399 } 400 401 // Evaluate the BinOp on the true and false branches of the select. 402 Value *TV; 403 Value *FV; 404 if (SI == LHS) { 405 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 406 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 407 } else { 408 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 409 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 410 } 411 412 // If they simplified to the same value, then return the common value. 413 // If they both failed to simplify then return null. 414 if (TV == FV) 415 return TV; 416 417 // If one branch simplified to undef, return the other one. 418 if (TV && Q.isUndefValue(TV)) 419 return FV; 420 if (FV && Q.isUndefValue(FV)) 421 return TV; 422 423 // If applying the operation did not change the true and false select values, 424 // then the result of the binop is the select itself. 425 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 426 return SI; 427 428 // If one branch simplified and the other did not, and the simplified 429 // value is equal to the unsimplified one, return the simplified value. 430 // For example, select (cond, X, X & Z) & Z -> X & Z. 431 if ((FV && !TV) || (TV && !FV)) { 432 // Check that the simplified value has the form "X op Y" where "op" is the 433 // same as the original operation. 434 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 435 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 436 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 437 // We already know that "op" is the same as for the simplified value. See 438 // if the operands match too. If so, return the simplified value. 439 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 440 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 441 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 442 if (Simplified->getOperand(0) == UnsimplifiedLHS && 443 Simplified->getOperand(1) == UnsimplifiedRHS) 444 return Simplified; 445 if (Simplified->isCommutative() && 446 Simplified->getOperand(1) == UnsimplifiedLHS && 447 Simplified->getOperand(0) == UnsimplifiedRHS) 448 return Simplified; 449 } 450 } 451 452 return nullptr; 453 } 454 455 /// In the case of a comparison with a select instruction, try to simplify the 456 /// comparison by seeing whether both branches of the select result in the same 457 /// value. Returns the common value if so, otherwise returns null. 458 /// For example, if we have: 459 /// %tmp = select i1 %cmp, i32 1, i32 2 460 /// %cmp1 = icmp sle i32 %tmp, 3 461 /// We can simplify %cmp1 to true, because both branches of select are 462 /// less than 3. We compose new comparison by substituting %tmp with both 463 /// branches of select and see if it can be simplified. 464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 465 Value *RHS, const SimplifyQuery &Q, 466 unsigned MaxRecurse) { 467 // Recursion is always used, so bail out at once if we already hit the limit. 468 if (!MaxRecurse--) 469 return nullptr; 470 471 // Make sure the select is on the LHS. 472 if (!isa<SelectInst>(LHS)) { 473 std::swap(LHS, RHS); 474 Pred = CmpInst::getSwappedPredicate(Pred); 475 } 476 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 477 SelectInst *SI = cast<SelectInst>(LHS); 478 Value *Cond = SI->getCondition(); 479 Value *TV = SI->getTrueValue(); 480 Value *FV = SI->getFalseValue(); 481 482 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 483 // Does "cmp TV, RHS" simplify? 484 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 485 if (!TCmp) 486 return nullptr; 487 488 // Does "cmp FV, RHS" simplify? 489 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 490 if (!FCmp) 491 return nullptr; 492 493 // If both sides simplified to the same value, then use it as the result of 494 // the original comparison. 495 if (TCmp == FCmp) 496 return TCmp; 497 498 // The remaining cases only make sense if the select condition has the same 499 // type as the result of the comparison, so bail out if this is not so. 500 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 501 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 502 503 return nullptr; 504 } 505 506 /// In the case of a binary operation with an operand that is a PHI instruction, 507 /// try to simplify the binop by seeing whether evaluating it on the incoming 508 /// phi values yields the same result for every value. If so returns the common 509 /// value, otherwise returns null. 510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 511 Value *RHS, const SimplifyQuery &Q, 512 unsigned MaxRecurse) { 513 // Recursion is always used, so bail out at once if we already hit the limit. 514 if (!MaxRecurse--) 515 return nullptr; 516 517 PHINode *PI; 518 if (isa<PHINode>(LHS)) { 519 PI = cast<PHINode>(LHS); 520 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 521 if (!valueDominatesPHI(RHS, PI, Q.DT)) 522 return nullptr; 523 } else { 524 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 525 PI = cast<PHINode>(RHS); 526 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(LHS, PI, Q.DT)) 528 return nullptr; 529 } 530 531 // Evaluate the BinOp on the incoming phi values. 532 Value *CommonValue = nullptr; 533 for (Value *Incoming : PI->incoming_values()) { 534 // If the incoming value is the phi node itself, it can safely be skipped. 535 if (Incoming == PI) continue; 536 Value *V = PI == LHS ? 537 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 538 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 539 // If the operation failed to simplify, or simplified to a different value 540 // to previously, then give up. 541 if (!V || (CommonValue && V != CommonValue)) 542 return nullptr; 543 CommonValue = V; 544 } 545 546 return CommonValue; 547 } 548 549 /// In the case of a comparison with a PHI instruction, try to simplify the 550 /// comparison by seeing whether comparing with all of the incoming phi values 551 /// yields the same result every time. If so returns the common result, 552 /// otherwise returns null. 553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 554 const SimplifyQuery &Q, unsigned MaxRecurse) { 555 // Recursion is always used, so bail out at once if we already hit the limit. 556 if (!MaxRecurse--) 557 return nullptr; 558 559 // Make sure the phi is on the LHS. 560 if (!isa<PHINode>(LHS)) { 561 std::swap(LHS, RHS); 562 Pred = CmpInst::getSwappedPredicate(Pred); 563 } 564 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 565 PHINode *PI = cast<PHINode>(LHS); 566 567 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 568 if (!valueDominatesPHI(RHS, PI, Q.DT)) 569 return nullptr; 570 571 // Evaluate the BinOp on the incoming phi values. 572 Value *CommonValue = nullptr; 573 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 574 Value *Incoming = PI->getIncomingValue(u); 575 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 576 // If the incoming value is the phi node itself, it can safely be skipped. 577 if (Incoming == PI) continue; 578 // Change the context instruction to the "edge" that flows into the phi. 579 // This is important because that is where incoming is actually "evaluated" 580 // even though it is used later somewhere else. 581 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 582 MaxRecurse); 583 // If the operation failed to simplify, or simplified to a different value 584 // to previously, then give up. 585 if (!V || (CommonValue && V != CommonValue)) 586 return nullptr; 587 CommonValue = V; 588 } 589 590 return CommonValue; 591 } 592 593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 594 Value *&Op0, Value *&Op1, 595 const SimplifyQuery &Q) { 596 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 597 if (auto *CRHS = dyn_cast<Constant>(Op1)) 598 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 599 600 // Canonicalize the constant to the RHS if this is a commutative operation. 601 if (Instruction::isCommutative(Opcode)) 602 std::swap(Op0, Op1); 603 } 604 return nullptr; 605 } 606 607 /// Given operands for an Add, see if we can fold the result. 608 /// If not, this returns null. 609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 610 const SimplifyQuery &Q, unsigned MaxRecurse) { 611 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 612 return C; 613 614 // X + undef -> undef 615 if (Q.isUndefValue(Op1)) 616 return Op1; 617 618 // X + 0 -> X 619 if (match(Op1, m_Zero())) 620 return Op0; 621 622 // If two operands are negative, return 0. 623 if (isKnownNegation(Op0, Op1)) 624 return Constant::getNullValue(Op0->getType()); 625 626 // X + (Y - X) -> Y 627 // (Y - X) + X -> Y 628 // Eg: X + -X -> 0 629 Value *Y = nullptr; 630 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 631 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 632 return Y; 633 634 // X + ~X -> -1 since ~X = -X-1 635 Type *Ty = Op0->getType(); 636 if (match(Op0, m_Not(m_Specific(Op1))) || 637 match(Op1, m_Not(m_Specific(Op0)))) 638 return Constant::getAllOnesValue(Ty); 639 640 // add nsw/nuw (xor Y, signmask), signmask --> Y 641 // The no-wrapping add guarantees that the top bit will be set by the add. 642 // Therefore, the xor must be clearing the already set sign bit of Y. 643 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 644 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 645 return Y; 646 647 // add nuw %x, -1 -> -1, because %x can only be 0. 648 if (IsNUW && match(Op1, m_AllOnes())) 649 return Op1; // Which is -1. 650 651 /// i1 add -> xor. 652 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 653 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 654 return V; 655 656 // Try some generic simplifications for associative operations. 657 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 658 MaxRecurse)) 659 return V; 660 661 // Threading Add over selects and phi nodes is pointless, so don't bother. 662 // Threading over the select in "A + select(cond, B, C)" means evaluating 663 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 664 // only if B and C are equal. If B and C are equal then (since we assume 665 // that operands have already been simplified) "select(cond, B, C)" should 666 // have been simplified to the common value of B and C already. Analysing 667 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 668 // for threading over phi nodes. 669 670 return nullptr; 671 } 672 673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 674 const SimplifyQuery &Query) { 675 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 676 } 677 678 /// Compute the base pointer and cumulative constant offsets for V. 679 /// 680 /// This strips all constant offsets off of V, leaving it the base pointer, and 681 /// accumulates the total constant offset applied in the returned constant. It 682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 683 /// no constant offsets applied. 684 /// 685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 687 /// folding. 688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 689 bool AllowNonInbounds = false) { 690 assert(V->getType()->isPtrOrPtrVectorTy()); 691 692 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 693 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 694 695 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 696 // As that strip may trace through `addrspacecast`, need to sext or trunc 697 // the offset calculated. 698 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 699 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 700 701 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 702 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 703 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 704 return OffsetIntPtr; 705 } 706 707 /// Compute the constant difference between two pointer values. 708 /// If the difference is not a constant, returns zero. 709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 710 Value *RHS) { 711 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 712 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 713 714 // If LHS and RHS are not related via constant offsets to the same base 715 // value, there is nothing we can do here. 716 if (LHS != RHS) 717 return nullptr; 718 719 // Otherwise, the difference of LHS - RHS can be computed as: 720 // LHS - RHS 721 // = (LHSOffset + Base) - (RHSOffset + Base) 722 // = LHSOffset - RHSOffset 723 return ConstantExpr::getSub(LHSOffset, RHSOffset); 724 } 725 726 /// Given operands for a Sub, see if we can fold the result. 727 /// If not, this returns null. 728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 729 const SimplifyQuery &Q, unsigned MaxRecurse) { 730 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 731 return C; 732 733 // X - undef -> undef 734 // undef - X -> undef 735 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 736 return UndefValue::get(Op0->getType()); 737 738 // X - 0 -> X 739 if (match(Op1, m_Zero())) 740 return Op0; 741 742 // X - X -> 0 743 if (Op0 == Op1) 744 return Constant::getNullValue(Op0->getType()); 745 746 // Is this a negation? 747 if (match(Op0, m_Zero())) { 748 // 0 - X -> 0 if the sub is NUW. 749 if (isNUW) 750 return Constant::getNullValue(Op0->getType()); 751 752 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 753 if (Known.Zero.isMaxSignedValue()) { 754 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 755 // Op1 must be 0 because negating the minimum signed value is undefined. 756 if (isNSW) 757 return Constant::getNullValue(Op0->getType()); 758 759 // 0 - X -> X if X is 0 or the minimum signed value. 760 return Op1; 761 } 762 } 763 764 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 765 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 766 Value *X = nullptr, *Y = nullptr, *Z = Op1; 767 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 768 // See if "V === Y - Z" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 770 // It does! Now see if "X + V" simplifies. 771 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 772 // It does, we successfully reassociated! 773 ++NumReassoc; 774 return W; 775 } 776 // See if "V === X - Z" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 778 // It does! Now see if "Y + V" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 } 785 786 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 787 // For example, X - (X + 1) -> -1 788 X = Op0; 789 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 790 // See if "V === X - Y" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 792 // It does! Now see if "V - Z" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 // See if "V === X - Z" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 800 // It does! Now see if "V - Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 } 807 808 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 809 // For example, X - (X - Y) -> Y. 810 Z = Op0; 811 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 812 // See if "V === Z - X" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 814 // It does! Now see if "V + Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 821 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 822 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 823 match(Op1, m_Trunc(m_Value(Y)))) 824 if (X->getType() == Y->getType()) 825 // See if "V === X - Y" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 827 // It does! Now see if "trunc V" simplifies. 828 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 829 Q, MaxRecurse - 1)) 830 // It does, return the simplified "trunc V". 831 return W; 832 833 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 834 if (match(Op0, m_PtrToInt(m_Value(X))) && 835 match(Op1, m_PtrToInt(m_Value(Y)))) 836 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 837 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 838 839 // i1 sub -> xor. 840 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 841 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 842 return V; 843 844 // Threading Sub over selects and phi nodes is pointless, so don't bother. 845 // Threading over the select in "A - select(cond, B, C)" means evaluating 846 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 847 // only if B and C are equal. If B and C are equal then (since we assume 848 // that operands have already been simplified) "select(cond, B, C)" should 849 // have been simplified to the common value of B and C already. Analysing 850 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 851 // for threading over phi nodes. 852 853 return nullptr; 854 } 855 856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 857 const SimplifyQuery &Q) { 858 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 859 } 860 861 /// Given operands for a Mul, see if we can fold the result. 862 /// If not, this returns null. 863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 864 unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 866 return C; 867 868 // X * undef -> 0 869 // X * 0 -> 0 870 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 871 return Constant::getNullValue(Op0->getType()); 872 873 // X * 1 -> X 874 if (match(Op1, m_One())) 875 return Op0; 876 877 // (X / Y) * Y -> X if the division is exact. 878 Value *X = nullptr; 879 if (Q.IIQ.UseInstrInfo && 880 (match(Op0, 881 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 882 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 883 return X; 884 885 // i1 mul -> and. 886 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 887 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 888 return V; 889 890 // Try some generic simplifications for associative operations. 891 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 892 MaxRecurse)) 893 return V; 894 895 // Mul distributes over Add. Try some generic simplifications based on this. 896 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 897 Instruction::Add, Q, MaxRecurse)) 898 return V; 899 900 // If the operation is with the result of a select instruction, check whether 901 // operating on either branch of the select always yields the same value. 902 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 903 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 904 MaxRecurse)) 905 return V; 906 907 // If the operation is with the result of a phi instruction, check whether 908 // operating on all incoming values of the phi always yields the same value. 909 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 910 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 return nullptr; 915 } 916 917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 918 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 919 } 920 921 /// Check for common or similar folds of integer division or integer remainder. 922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 924 const SimplifyQuery &Q) { 925 Type *Ty = Op0->getType(); 926 927 // X / undef -> undef 928 // X % undef -> undef 929 if (Q.isUndefValue(Op1)) 930 return Op1; 931 932 // X / 0 -> undef 933 // X % 0 -> undef 934 // We don't need to preserve faults! 935 if (match(Op1, m_Zero())) 936 return UndefValue::get(Ty); 937 938 // If any element of a constant divisor fixed width vector is zero or undef, 939 // the whole op is undef. 940 auto *Op1C = dyn_cast<Constant>(Op1); 941 auto *VTy = dyn_cast<FixedVectorType>(Ty); 942 if (Op1C && VTy) { 943 unsigned NumElts = VTy->getNumElements(); 944 for (unsigned i = 0; i != NumElts; ++i) { 945 Constant *Elt = Op1C->getAggregateElement(i); 946 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 947 return UndefValue::get(Ty); 948 } 949 } 950 951 // undef / X -> 0 952 // undef % X -> 0 953 if (Q.isUndefValue(Op0)) 954 return Constant::getNullValue(Ty); 955 956 // 0 / X -> 0 957 // 0 % X -> 0 958 if (match(Op0, m_Zero())) 959 return Constant::getNullValue(Op0->getType()); 960 961 // X / X -> 1 962 // X % X -> 0 963 if (Op0 == Op1) 964 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 965 966 // X / 1 -> X 967 // X % 1 -> 0 968 // If this is a boolean op (single-bit element type), we can't have 969 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 970 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 971 Value *X; 972 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 973 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 974 return IsDiv ? Op0 : Constant::getNullValue(Ty); 975 976 return nullptr; 977 } 978 979 /// Given a predicate and two operands, return true if the comparison is true. 980 /// This is a helper for div/rem simplification where we return some other value 981 /// when we can prove a relationship between the operands. 982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 983 const SimplifyQuery &Q, unsigned MaxRecurse) { 984 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 985 Constant *C = dyn_cast_or_null<Constant>(V); 986 return (C && C->isAllOnesValue()); 987 } 988 989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 990 /// to simplify X % Y to X. 991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 992 unsigned MaxRecurse, bool IsSigned) { 993 // Recursion is always used, so bail out at once if we already hit the limit. 994 if (!MaxRecurse--) 995 return false; 996 997 if (IsSigned) { 998 // |X| / |Y| --> 0 999 // 1000 // We require that 1 operand is a simple constant. That could be extended to 1001 // 2 variables if we computed the sign bit for each. 1002 // 1003 // Make sure that a constant is not the minimum signed value because taking 1004 // the abs() of that is undefined. 1005 Type *Ty = X->getType(); 1006 const APInt *C; 1007 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1008 // Is the variable divisor magnitude always greater than the constant 1009 // dividend magnitude? 1010 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1011 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1014 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 if (match(Y, m_APInt(C))) { 1018 // Special-case: we can't take the abs() of a minimum signed value. If 1019 // that's the divisor, then all we have to do is prove that the dividend 1020 // is also not the minimum signed value. 1021 if (C->isMinSignedValue()) 1022 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1023 1024 // Is the variable dividend magnitude always less than the constant 1025 // divisor magnitude? 1026 // |X| < |C| --> X > -abs(C) and X < abs(C) 1027 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1028 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1029 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1030 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 // IsSigned == false. 1037 // Is the dividend unsigned less than the divisor? 1038 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1039 } 1040 1041 /// These are simplifications common to SDiv and UDiv. 1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1043 const SimplifyQuery &Q, unsigned MaxRecurse) { 1044 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1045 return C; 1046 1047 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1048 return V; 1049 1050 bool IsSigned = Opcode == Instruction::SDiv; 1051 1052 // (X * Y) / Y -> X if the multiplication does not overflow. 1053 Value *X; 1054 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1055 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1056 // If the Mul does not overflow, then we are good to go. 1057 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1058 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1059 return X; 1060 // If X has the form X = A / Y, then X * Y cannot overflow. 1061 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1062 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1063 return X; 1064 } 1065 1066 // (X rem Y) / Y -> 0 1067 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1068 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1069 return Constant::getNullValue(Op0->getType()); 1070 1071 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1072 ConstantInt *C1, *C2; 1073 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1074 match(Op1, m_ConstantInt(C2))) { 1075 bool Overflow; 1076 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1077 if (Overflow) 1078 return Constant::getNullValue(Op0->getType()); 1079 } 1080 1081 // If the operation is with the result of a select instruction, check whether 1082 // operating on either branch of the select always yields the same value. 1083 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1084 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1085 return V; 1086 1087 // If the operation is with the result of a phi instruction, check whether 1088 // operating on all incoming values of the phi always yields the same value. 1089 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1090 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1091 return V; 1092 1093 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1094 return Constant::getNullValue(Op0->getType()); 1095 1096 return nullptr; 1097 } 1098 1099 /// These are simplifications common to SRem and URem. 1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1101 const SimplifyQuery &Q, unsigned MaxRecurse) { 1102 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1103 return C; 1104 1105 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1106 return V; 1107 1108 // (X % Y) % Y -> X % Y 1109 if ((Opcode == Instruction::SRem && 1110 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1111 (Opcode == Instruction::URem && 1112 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1113 return Op0; 1114 1115 // (X << Y) % X -> 0 1116 if (Q.IIQ.UseInstrInfo && 1117 ((Opcode == Instruction::SRem && 1118 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1119 (Opcode == Instruction::URem && 1120 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 // If the operation is with the result of a select instruction, check whether 1124 // operating on either branch of the select always yields the same value. 1125 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1126 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 // If the operation is with the result of a phi instruction, check whether 1130 // operating on all incoming values of the phi always yields the same value. 1131 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1132 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1133 return V; 1134 1135 // If X / Y == 0, then X % Y == X. 1136 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1137 return Op0; 1138 1139 return nullptr; 1140 } 1141 1142 /// Given operands for an SDiv, see if we can fold the result. 1143 /// If not, this returns null. 1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1145 unsigned MaxRecurse) { 1146 // If two operands are negated and no signed overflow, return -1. 1147 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1148 return Constant::getAllOnesValue(Op0->getType()); 1149 1150 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1151 } 1152 1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1154 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1155 } 1156 1157 /// Given operands for a UDiv, see if we can fold the result. 1158 /// If not, this returns null. 1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1160 unsigned MaxRecurse) { 1161 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1162 } 1163 1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1165 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1166 } 1167 1168 /// Given operands for an SRem, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1173 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1174 Value *X; 1175 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1176 return ConstantInt::getNullValue(Op0->getType()); 1177 1178 // If the two operands are negated, return 0. 1179 if (isKnownNegation(Op0, Op1)) 1180 return ConstantInt::getNullValue(Op0->getType()); 1181 1182 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a URem, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Returns true if a shift by \c Amount always yields undef. 1201 static bool isUndefShift(Value *Amount, const SimplifyQuery &Q) { 1202 Constant *C = dyn_cast<Constant>(Amount); 1203 if (!C) 1204 return false; 1205 1206 // X shift by undef -> undef because it may shift by the bitwidth. 1207 if (Q.isUndefValue(C)) 1208 return true; 1209 1210 // Shifting by the bitwidth or more is undefined. 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1212 if (CI->getValue().getLimitedValue() >= 1213 CI->getType()->getScalarSizeInBits()) 1214 return true; 1215 1216 // If all lanes of a vector shift are undefined the whole shift is. 1217 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1218 for (unsigned I = 0, 1219 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1220 I != E; ++I) 1221 if (!isUndefShift(C->getAggregateElement(I), Q)) 1222 return false; 1223 return true; 1224 } 1225 1226 return false; 1227 } 1228 1229 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1230 /// If not, this returns null. 1231 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1232 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1233 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1234 return C; 1235 1236 // 0 shift by X -> 0 1237 if (match(Op0, m_Zero())) 1238 return Constant::getNullValue(Op0->getType()); 1239 1240 // X shift by 0 -> X 1241 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1242 // would be poison. 1243 Value *X; 1244 if (match(Op1, m_Zero()) || 1245 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1246 return Op0; 1247 1248 // Fold undefined shifts. 1249 if (isUndefShift(Op1, Q)) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If the operation is with the result of a select instruction, check whether 1253 // operating on either branch of the select always yields the same value. 1254 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1255 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1256 return V; 1257 1258 // If the operation is with the result of a phi instruction, check whether 1259 // operating on all incoming values of the phi always yields the same value. 1260 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1261 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1262 return V; 1263 1264 // If any bits in the shift amount make that value greater than or equal to 1265 // the number of bits in the type, the shift is undefined. 1266 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1267 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1268 return UndefValue::get(Op0->getType()); 1269 1270 // If all valid bits in the shift amount are known zero, the first operand is 1271 // unchanged. 1272 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1273 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1274 return Op0; 1275 1276 return nullptr; 1277 } 1278 1279 /// Given operands for an Shl, LShr or AShr, see if we can 1280 /// fold the result. If not, this returns null. 1281 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1282 Value *Op1, bool isExact, const SimplifyQuery &Q, 1283 unsigned MaxRecurse) { 1284 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1285 return V; 1286 1287 // X >> X -> 0 1288 if (Op0 == Op1) 1289 return Constant::getNullValue(Op0->getType()); 1290 1291 // undef >> X -> 0 1292 // undef >> X -> undef (if it's exact) 1293 if (Q.isUndefValue(Op0)) 1294 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1295 1296 // The low bit cannot be shifted out of an exact shift if it is set. 1297 if (isExact) { 1298 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1299 if (Op0Known.One[0]) 1300 return Op0; 1301 } 1302 1303 return nullptr; 1304 } 1305 1306 /// Given operands for an Shl, see if we can fold the result. 1307 /// If not, this returns null. 1308 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1309 const SimplifyQuery &Q, unsigned MaxRecurse) { 1310 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1311 return V; 1312 1313 // undef << X -> 0 1314 // undef << X -> undef if (if it's NSW/NUW) 1315 if (Q.isUndefValue(Op0)) 1316 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1317 1318 // (X >> A) << A -> X 1319 Value *X; 1320 if (Q.IIQ.UseInstrInfo && 1321 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1322 return X; 1323 1324 // shl nuw i8 C, %x -> C iff C has sign bit set. 1325 if (isNUW && match(Op0, m_Negative())) 1326 return Op0; 1327 // NOTE: could use computeKnownBits() / LazyValueInfo, 1328 // but the cost-benefit analysis suggests it isn't worth it. 1329 1330 return nullptr; 1331 } 1332 1333 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1334 const SimplifyQuery &Q) { 1335 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1336 } 1337 1338 /// Given operands for an LShr, see if we can fold the result. 1339 /// If not, this returns null. 1340 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1341 const SimplifyQuery &Q, unsigned MaxRecurse) { 1342 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1343 MaxRecurse)) 1344 return V; 1345 1346 // (X << A) >> A -> X 1347 Value *X; 1348 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1349 return X; 1350 1351 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1352 // We can return X as we do in the above case since OR alters no bits in X. 1353 // SimplifyDemandedBits in InstCombine can do more general optimization for 1354 // bit manipulation. This pattern aims to provide opportunities for other 1355 // optimizers by supporting a simple but common case in InstSimplify. 1356 Value *Y; 1357 const APInt *ShRAmt, *ShLAmt; 1358 if (match(Op1, m_APInt(ShRAmt)) && 1359 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1360 *ShRAmt == *ShLAmt) { 1361 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1362 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1363 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1364 if (ShRAmt->uge(EffWidthY)) 1365 return X; 1366 } 1367 1368 return nullptr; 1369 } 1370 1371 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1372 const SimplifyQuery &Q) { 1373 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1374 } 1375 1376 /// Given operands for an AShr, see if we can fold the result. 1377 /// If not, this returns null. 1378 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1379 const SimplifyQuery &Q, unsigned MaxRecurse) { 1380 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1381 MaxRecurse)) 1382 return V; 1383 1384 // all ones >>a X -> -1 1385 // Do not return Op0 because it may contain undef elements if it's a vector. 1386 if (match(Op0, m_AllOnes())) 1387 return Constant::getAllOnesValue(Op0->getType()); 1388 1389 // (X << A) >> A -> X 1390 Value *X; 1391 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1392 return X; 1393 1394 // Arithmetic shifting an all-sign-bit value is a no-op. 1395 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1396 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1397 return Op0; 1398 1399 return nullptr; 1400 } 1401 1402 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1403 const SimplifyQuery &Q) { 1404 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1405 } 1406 1407 /// Commuted variants are assumed to be handled by calling this function again 1408 /// with the parameters swapped. 1409 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1410 ICmpInst *UnsignedICmp, bool IsAnd, 1411 const SimplifyQuery &Q) { 1412 Value *X, *Y; 1413 1414 ICmpInst::Predicate EqPred; 1415 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1416 !ICmpInst::isEquality(EqPred)) 1417 return nullptr; 1418 1419 ICmpInst::Predicate UnsignedPred; 1420 1421 Value *A, *B; 1422 // Y = (A - B); 1423 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1424 if (match(UnsignedICmp, 1425 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1426 ICmpInst::isUnsigned(UnsignedPred)) { 1427 // A >=/<= B || (A - B) != 0 <--> true 1428 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1429 UnsignedPred == ICmpInst::ICMP_ULE) && 1430 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1431 return ConstantInt::getTrue(UnsignedICmp->getType()); 1432 // A </> B && (A - B) == 0 <--> false 1433 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1434 UnsignedPred == ICmpInst::ICMP_UGT) && 1435 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1436 return ConstantInt::getFalse(UnsignedICmp->getType()); 1437 1438 // A </> B && (A - B) != 0 <--> A </> B 1439 // A </> B || (A - B) != 0 <--> (A - B) != 0 1440 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1441 UnsignedPred == ICmpInst::ICMP_UGT)) 1442 return IsAnd ? UnsignedICmp : ZeroICmp; 1443 1444 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1445 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1446 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1447 UnsignedPred == ICmpInst::ICMP_UGE)) 1448 return IsAnd ? ZeroICmp : UnsignedICmp; 1449 } 1450 1451 // Given Y = (A - B) 1452 // Y >= A && Y != 0 --> Y >= A iff B != 0 1453 // Y < A || Y == 0 --> Y < A iff B != 0 1454 if (match(UnsignedICmp, 1455 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1456 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1457 EqPred == ICmpInst::ICMP_NE && 1458 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1459 return UnsignedICmp; 1460 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1461 EqPred == ICmpInst::ICMP_EQ && 1462 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1463 return UnsignedICmp; 1464 } 1465 } 1466 1467 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1468 ICmpInst::isUnsigned(UnsignedPred)) 1469 ; 1470 else if (match(UnsignedICmp, 1471 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1472 ICmpInst::isUnsigned(UnsignedPred)) 1473 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1474 else 1475 return nullptr; 1476 1477 // X > Y && Y == 0 --> Y == 0 iff X != 0 1478 // X > Y || Y == 0 --> X > Y iff X != 0 1479 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1480 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1481 return IsAnd ? ZeroICmp : UnsignedICmp; 1482 1483 // X <= Y && Y != 0 --> X <= Y iff X != 0 1484 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1485 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1486 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1487 return IsAnd ? UnsignedICmp : ZeroICmp; 1488 1489 // The transforms below here are expected to be handled more generally with 1490 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1491 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1492 // these are candidates for removal. 1493 1494 // X < Y && Y != 0 --> X < Y 1495 // X < Y || Y != 0 --> Y != 0 1496 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1497 return IsAnd ? UnsignedICmp : ZeroICmp; 1498 1499 // X >= Y && Y == 0 --> Y == 0 1500 // X >= Y || Y == 0 --> X >= Y 1501 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1502 return IsAnd ? ZeroICmp : UnsignedICmp; 1503 1504 // X < Y && Y == 0 --> false 1505 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1506 IsAnd) 1507 return getFalse(UnsignedICmp->getType()); 1508 1509 // X >= Y || Y != 0 --> true 1510 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1511 !IsAnd) 1512 return getTrue(UnsignedICmp->getType()); 1513 1514 return nullptr; 1515 } 1516 1517 /// Commuted variants are assumed to be handled by calling this function again 1518 /// with the parameters swapped. 1519 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1520 ICmpInst::Predicate Pred0, Pred1; 1521 Value *A ,*B; 1522 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1523 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1524 return nullptr; 1525 1526 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1527 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1528 // can eliminate Op1 from this 'and'. 1529 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1530 return Op0; 1531 1532 // Check for any combination of predicates that are guaranteed to be disjoint. 1533 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1534 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1535 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1536 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1537 return getFalse(Op0->getType()); 1538 1539 return nullptr; 1540 } 1541 1542 /// Commuted variants are assumed to be handled by calling this function again 1543 /// with the parameters swapped. 1544 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1545 ICmpInst::Predicate Pred0, Pred1; 1546 Value *A ,*B; 1547 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1548 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1549 return nullptr; 1550 1551 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1552 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1553 // can eliminate Op0 from this 'or'. 1554 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1555 return Op1; 1556 1557 // Check for any combination of predicates that cover the entire range of 1558 // possibilities. 1559 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1560 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1561 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1562 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1563 return getTrue(Op0->getType()); 1564 1565 return nullptr; 1566 } 1567 1568 /// Test if a pair of compares with a shared operand and 2 constants has an 1569 /// empty set intersection, full set union, or if one compare is a superset of 1570 /// the other. 1571 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1572 bool IsAnd) { 1573 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1574 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1575 return nullptr; 1576 1577 const APInt *C0, *C1; 1578 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1579 !match(Cmp1->getOperand(1), m_APInt(C1))) 1580 return nullptr; 1581 1582 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1583 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1584 1585 // For and-of-compares, check if the intersection is empty: 1586 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1587 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1588 return getFalse(Cmp0->getType()); 1589 1590 // For or-of-compares, check if the union is full: 1591 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1592 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1593 return getTrue(Cmp0->getType()); 1594 1595 // Is one range a superset of the other? 1596 // If this is and-of-compares, take the smaller set: 1597 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1598 // If this is or-of-compares, take the larger set: 1599 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1600 if (Range0.contains(Range1)) 1601 return IsAnd ? Cmp1 : Cmp0; 1602 if (Range1.contains(Range0)) 1603 return IsAnd ? Cmp0 : Cmp1; 1604 1605 return nullptr; 1606 } 1607 1608 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1609 bool IsAnd) { 1610 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1611 if (!match(Cmp0->getOperand(1), m_Zero()) || 1612 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1613 return nullptr; 1614 1615 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1616 return nullptr; 1617 1618 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1619 Value *X = Cmp0->getOperand(0); 1620 Value *Y = Cmp1->getOperand(0); 1621 1622 // If one of the compares is a masked version of a (not) null check, then 1623 // that compare implies the other, so we eliminate the other. Optionally, look 1624 // through a pointer-to-int cast to match a null check of a pointer type. 1625 1626 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1627 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1628 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1629 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1630 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1631 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1632 return Cmp1; 1633 1634 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1635 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1636 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1637 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1638 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1639 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1640 return Cmp0; 1641 1642 return nullptr; 1643 } 1644 1645 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1646 const InstrInfoQuery &IIQ) { 1647 // (icmp (add V, C0), C1) & (icmp V, C0) 1648 ICmpInst::Predicate Pred0, Pred1; 1649 const APInt *C0, *C1; 1650 Value *V; 1651 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1652 return nullptr; 1653 1654 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1655 return nullptr; 1656 1657 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1658 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1659 return nullptr; 1660 1661 Type *ITy = Op0->getType(); 1662 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1663 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1664 1665 const APInt Delta = *C1 - *C0; 1666 if (C0->isStrictlyPositive()) { 1667 if (Delta == 2) { 1668 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1669 return getFalse(ITy); 1670 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1671 return getFalse(ITy); 1672 } 1673 if (Delta == 1) { 1674 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1675 return getFalse(ITy); 1676 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1677 return getFalse(ITy); 1678 } 1679 } 1680 if (C0->getBoolValue() && isNUW) { 1681 if (Delta == 2) 1682 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1683 return getFalse(ITy); 1684 if (Delta == 1) 1685 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1686 return getFalse(ITy); 1687 } 1688 1689 return nullptr; 1690 } 1691 1692 /// Try to eliminate compares with signed or unsigned min/max constants. 1693 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1694 bool IsAnd) { 1695 // Canonicalize an equality compare as Cmp0. 1696 if (Cmp1->isEquality()) 1697 std::swap(Cmp0, Cmp1); 1698 if (!Cmp0->isEquality()) 1699 return nullptr; 1700 1701 // The equality compare must be against a constant. Convert the 'null' pointer 1702 // constant to an integer zero value. 1703 APInt MinMaxC; 1704 const APInt *C; 1705 if (match(Cmp0->getOperand(1), m_APInt(C))) 1706 MinMaxC = *C; 1707 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1708 MinMaxC = APInt::getNullValue(8); 1709 else 1710 return nullptr; 1711 1712 // The non-equality compare must include a common operand (X). Canonicalize 1713 // the common operand as operand 0 (the predicate is swapped if the common 1714 // operand was operand 1). 1715 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1716 Value *X = Cmp0->getOperand(0); 1717 ICmpInst::Predicate Pred1; 1718 if (!match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())) || 1719 ICmpInst::isEquality(Pred1)) 1720 return nullptr; 1721 1722 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1723 if (!IsAnd) { 1724 Pred0 = ICmpInst::getInversePredicate(Pred0); 1725 Pred1 = ICmpInst::getInversePredicate(Pred1); 1726 } 1727 1728 // Normalize to unsigned compare and unsigned min/max value. 1729 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1730 if (ICmpInst::isSigned(Pred1)) { 1731 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1732 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1733 } 1734 1735 // (X != MAX) && (X < Y) --> X < Y 1736 // (X == MAX) || (X >= Y) --> X >= Y 1737 if (MinMaxC.isMaxValue()) 1738 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1739 return Cmp1; 1740 1741 // (X != MIN) && (X > Y) --> X > Y 1742 // (X == MIN) || (X <= Y) --> X <= Y 1743 if (MinMaxC.isMinValue()) 1744 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1745 return Cmp1; 1746 1747 return nullptr; 1748 } 1749 1750 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1751 const SimplifyQuery &Q) { 1752 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1753 return X; 1754 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1755 return X; 1756 1757 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1758 return X; 1759 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1760 return X; 1761 1762 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1763 return X; 1764 1765 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1766 return X; 1767 1768 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1769 return X; 1770 1771 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1772 return X; 1773 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1774 return X; 1775 1776 return nullptr; 1777 } 1778 1779 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1780 const InstrInfoQuery &IIQ) { 1781 // (icmp (add V, C0), C1) | (icmp V, C0) 1782 ICmpInst::Predicate Pred0, Pred1; 1783 const APInt *C0, *C1; 1784 Value *V; 1785 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1786 return nullptr; 1787 1788 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1789 return nullptr; 1790 1791 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1792 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1793 return nullptr; 1794 1795 Type *ITy = Op0->getType(); 1796 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1797 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1798 1799 const APInt Delta = *C1 - *C0; 1800 if (C0->isStrictlyPositive()) { 1801 if (Delta == 2) { 1802 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1803 return getTrue(ITy); 1804 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1805 return getTrue(ITy); 1806 } 1807 if (Delta == 1) { 1808 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1809 return getTrue(ITy); 1810 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1811 return getTrue(ITy); 1812 } 1813 } 1814 if (C0->getBoolValue() && isNUW) { 1815 if (Delta == 2) 1816 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1817 return getTrue(ITy); 1818 if (Delta == 1) 1819 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1820 return getTrue(ITy); 1821 } 1822 1823 return nullptr; 1824 } 1825 1826 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1827 const SimplifyQuery &Q) { 1828 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1829 return X; 1830 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1831 return X; 1832 1833 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1834 return X; 1835 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1836 return X; 1837 1838 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1839 return X; 1840 1841 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1842 return X; 1843 1844 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1845 return X; 1846 1847 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1848 return X; 1849 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1850 return X; 1851 1852 return nullptr; 1853 } 1854 1855 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1856 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1857 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1858 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1859 if (LHS0->getType() != RHS0->getType()) 1860 return nullptr; 1861 1862 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1863 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1864 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1865 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1866 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1867 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1868 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1869 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1870 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1871 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1872 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1873 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1874 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1875 return RHS; 1876 1877 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1878 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1879 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1880 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1881 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1882 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1883 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1884 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1885 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1886 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1887 return LHS; 1888 } 1889 1890 return nullptr; 1891 } 1892 1893 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1894 Value *Op0, Value *Op1, bool IsAnd) { 1895 // Look through casts of the 'and' operands to find compares. 1896 auto *Cast0 = dyn_cast<CastInst>(Op0); 1897 auto *Cast1 = dyn_cast<CastInst>(Op1); 1898 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1899 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1900 Op0 = Cast0->getOperand(0); 1901 Op1 = Cast1->getOperand(0); 1902 } 1903 1904 Value *V = nullptr; 1905 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1906 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1907 if (ICmp0 && ICmp1) 1908 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1909 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1910 1911 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1912 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1913 if (FCmp0 && FCmp1) 1914 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1915 1916 if (!V) 1917 return nullptr; 1918 if (!Cast0) 1919 return V; 1920 1921 // If we looked through casts, we can only handle a constant simplification 1922 // because we are not allowed to create a cast instruction here. 1923 if (auto *C = dyn_cast<Constant>(V)) 1924 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1925 1926 return nullptr; 1927 } 1928 1929 /// Check that the Op1 is in expected form, i.e.: 1930 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1931 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1932 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1933 Value *X) { 1934 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1935 // We should only be extracting the overflow bit. 1936 if (!Extract || !Extract->getIndices().equals(1)) 1937 return false; 1938 Value *Agg = Extract->getAggregateOperand(); 1939 // This should be a multiplication-with-overflow intrinsic. 1940 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1941 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1942 return false; 1943 // One of its multipliers should be the value we checked for zero before. 1944 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1945 m_Argument<1>(m_Specific(X))))) 1946 return false; 1947 return true; 1948 } 1949 1950 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1951 /// other form of check, e.g. one that was using division; it may have been 1952 /// guarded against division-by-zero. We can drop that check now. 1953 /// Look for: 1954 /// %Op0 = icmp ne i4 %X, 0 1955 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1956 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1957 /// %??? = and i1 %Op0, %Op1 1958 /// We can just return %Op1 1959 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1960 ICmpInst::Predicate Pred; 1961 Value *X; 1962 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1963 Pred != ICmpInst::Predicate::ICMP_NE) 1964 return nullptr; 1965 // Is Op1 in expected form? 1966 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1967 return nullptr; 1968 // Can omit 'and', and just return the overflow bit. 1969 return Op1; 1970 } 1971 1972 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1973 /// other form of check, e.g. one that was using division; it may have been 1974 /// guarded against division-by-zero. We can drop that check now. 1975 /// Look for: 1976 /// %Op0 = icmp eq i4 %X, 0 1977 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1978 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1979 /// %NotOp1 = xor i1 %Op1, true 1980 /// %or = or i1 %Op0, %NotOp1 1981 /// We can just return %NotOp1 1982 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1983 Value *NotOp1) { 1984 ICmpInst::Predicate Pred; 1985 Value *X; 1986 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1987 Pred != ICmpInst::Predicate::ICMP_EQ) 1988 return nullptr; 1989 // We expect the other hand of an 'or' to be a 'not'. 1990 Value *Op1; 1991 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1992 return nullptr; 1993 // Is Op1 in expected form? 1994 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1995 return nullptr; 1996 // Can omit 'and', and just return the inverted overflow bit. 1997 return NotOp1; 1998 } 1999 2000 /// Given operands for an And, see if we can fold the result. 2001 /// If not, this returns null. 2002 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2003 unsigned MaxRecurse) { 2004 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2005 return C; 2006 2007 // X & undef -> 0 2008 if (Q.isUndefValue(Op1)) 2009 return Constant::getNullValue(Op0->getType()); 2010 2011 // X & X = X 2012 if (Op0 == Op1) 2013 return Op0; 2014 2015 // X & 0 = 0 2016 if (match(Op1, m_Zero())) 2017 return Constant::getNullValue(Op0->getType()); 2018 2019 // X & -1 = X 2020 if (match(Op1, m_AllOnes())) 2021 return Op0; 2022 2023 // A & ~A = ~A & A = 0 2024 if (match(Op0, m_Not(m_Specific(Op1))) || 2025 match(Op1, m_Not(m_Specific(Op0)))) 2026 return Constant::getNullValue(Op0->getType()); 2027 2028 // (A | ?) & A = A 2029 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2030 return Op1; 2031 2032 // A & (A | ?) = A 2033 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2034 return Op0; 2035 2036 // A mask that only clears known zeros of a shifted value is a no-op. 2037 Value *X; 2038 const APInt *Mask; 2039 const APInt *ShAmt; 2040 if (match(Op1, m_APInt(Mask))) { 2041 // If all bits in the inverted and shifted mask are clear: 2042 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2043 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2044 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2045 return Op0; 2046 2047 // If all bits in the inverted and shifted mask are clear: 2048 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2049 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2050 (~(*Mask)).shl(*ShAmt).isNullValue()) 2051 return Op0; 2052 } 2053 2054 // If we have a multiplication overflow check that is being 'and'ed with a 2055 // check that one of the multipliers is not zero, we can omit the 'and', and 2056 // only keep the overflow check. 2057 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2058 return V; 2059 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2060 return V; 2061 2062 // A & (-A) = A if A is a power of two or zero. 2063 if (match(Op0, m_Neg(m_Specific(Op1))) || 2064 match(Op1, m_Neg(m_Specific(Op0)))) { 2065 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2066 Q.DT)) 2067 return Op0; 2068 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2069 Q.DT)) 2070 return Op1; 2071 } 2072 2073 // This is a similar pattern used for checking if a value is a power-of-2: 2074 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2075 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2076 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2077 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2078 return Constant::getNullValue(Op1->getType()); 2079 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2080 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2081 return Constant::getNullValue(Op0->getType()); 2082 2083 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2084 return V; 2085 2086 // Try some generic simplifications for associative operations. 2087 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2088 MaxRecurse)) 2089 return V; 2090 2091 // And distributes over Or. Try some generic simplifications based on this. 2092 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2093 Instruction::Or, Q, MaxRecurse)) 2094 return V; 2095 2096 // And distributes over Xor. Try some generic simplifications based on this. 2097 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2098 Instruction::Xor, Q, MaxRecurse)) 2099 return V; 2100 2101 // If the operation is with the result of a select instruction, check whether 2102 // operating on either branch of the select always yields the same value. 2103 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2104 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2105 MaxRecurse)) 2106 return V; 2107 2108 // If the operation is with the result of a phi instruction, check whether 2109 // operating on all incoming values of the phi always yields the same value. 2110 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2111 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2112 MaxRecurse)) 2113 return V; 2114 2115 // Assuming the effective width of Y is not larger than A, i.e. all bits 2116 // from X and Y are disjoint in (X << A) | Y, 2117 // if the mask of this AND op covers all bits of X or Y, while it covers 2118 // no bits from the other, we can bypass this AND op. E.g., 2119 // ((X << A) | Y) & Mask -> Y, 2120 // if Mask = ((1 << effective_width_of(Y)) - 1) 2121 // ((X << A) | Y) & Mask -> X << A, 2122 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2123 // SimplifyDemandedBits in InstCombine can optimize the general case. 2124 // This pattern aims to help other passes for a common case. 2125 Value *Y, *XShifted; 2126 if (match(Op1, m_APInt(Mask)) && 2127 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2128 m_Value(XShifted)), 2129 m_Value(Y)))) { 2130 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2131 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2132 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2133 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2134 if (EffWidthY <= ShftCnt) { 2135 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2136 Q.DT); 2137 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2138 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2139 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2140 // If the mask is extracting all bits from X or Y as is, we can skip 2141 // this AND op. 2142 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2143 return Y; 2144 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2145 return XShifted; 2146 } 2147 } 2148 2149 return nullptr; 2150 } 2151 2152 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2153 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2154 } 2155 2156 /// Given operands for an Or, see if we can fold the result. 2157 /// If not, this returns null. 2158 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2159 unsigned MaxRecurse) { 2160 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2161 return C; 2162 2163 // X | undef -> -1 2164 // X | -1 = -1 2165 // Do not return Op1 because it may contain undef elements if it's a vector. 2166 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2167 return Constant::getAllOnesValue(Op0->getType()); 2168 2169 // X | X = X 2170 // X | 0 = X 2171 if (Op0 == Op1 || match(Op1, m_Zero())) 2172 return Op0; 2173 2174 // A | ~A = ~A | A = -1 2175 if (match(Op0, m_Not(m_Specific(Op1))) || 2176 match(Op1, m_Not(m_Specific(Op0)))) 2177 return Constant::getAllOnesValue(Op0->getType()); 2178 2179 // (A & ?) | A = A 2180 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2181 return Op1; 2182 2183 // A | (A & ?) = A 2184 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2185 return Op0; 2186 2187 // ~(A & ?) | A = -1 2188 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2189 return Constant::getAllOnesValue(Op1->getType()); 2190 2191 // A | ~(A & ?) = -1 2192 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2193 return Constant::getAllOnesValue(Op0->getType()); 2194 2195 Value *A, *B; 2196 // (A & ~B) | (A ^ B) -> (A ^ B) 2197 // (~B & A) | (A ^ B) -> (A ^ B) 2198 // (A & ~B) | (B ^ A) -> (B ^ A) 2199 // (~B & A) | (B ^ A) -> (B ^ A) 2200 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2201 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2202 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2203 return Op1; 2204 2205 // Commute the 'or' operands. 2206 // (A ^ B) | (A & ~B) -> (A ^ B) 2207 // (A ^ B) | (~B & A) -> (A ^ B) 2208 // (B ^ A) | (A & ~B) -> (B ^ A) 2209 // (B ^ A) | (~B & A) -> (B ^ A) 2210 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2211 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2212 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2213 return Op0; 2214 2215 // (A & B) | (~A ^ B) -> (~A ^ B) 2216 // (B & A) | (~A ^ B) -> (~A ^ B) 2217 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2218 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2219 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2220 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2221 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2222 return Op1; 2223 2224 // (~A ^ B) | (A & B) -> (~A ^ B) 2225 // (~A ^ B) | (B & A) -> (~A ^ B) 2226 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2227 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2228 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2229 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2230 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2231 return Op0; 2232 2233 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2234 return V; 2235 2236 // If we have a multiplication overflow check that is being 'and'ed with a 2237 // check that one of the multipliers is not zero, we can omit the 'and', and 2238 // only keep the overflow check. 2239 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2240 return V; 2241 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2242 return V; 2243 2244 // Try some generic simplifications for associative operations. 2245 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2246 MaxRecurse)) 2247 return V; 2248 2249 // Or distributes over And. Try some generic simplifications based on this. 2250 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2251 Instruction::And, Q, MaxRecurse)) 2252 return V; 2253 2254 // If the operation is with the result of a select instruction, check whether 2255 // operating on either branch of the select always yields the same value. 2256 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2257 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2258 MaxRecurse)) 2259 return V; 2260 2261 // (A & C1)|(B & C2) 2262 const APInt *C1, *C2; 2263 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2264 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2265 if (*C1 == ~*C2) { 2266 // (A & C1)|(B & C2) 2267 // If we have: ((V + N) & C1) | (V & C2) 2268 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2269 // replace with V+N. 2270 Value *N; 2271 if (C2->isMask() && // C2 == 0+1+ 2272 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2273 // Add commutes, try both ways. 2274 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2275 return A; 2276 } 2277 // Or commutes, try both ways. 2278 if (C1->isMask() && 2279 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2280 // Add commutes, try both ways. 2281 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2282 return B; 2283 } 2284 } 2285 } 2286 2287 // If the operation is with the result of a phi instruction, check whether 2288 // operating on all incoming values of the phi always yields the same value. 2289 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2290 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2291 return V; 2292 2293 return nullptr; 2294 } 2295 2296 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2297 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2298 } 2299 2300 /// Given operands for a Xor, see if we can fold the result. 2301 /// If not, this returns null. 2302 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2303 unsigned MaxRecurse) { 2304 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2305 return C; 2306 2307 // A ^ undef -> undef 2308 if (Q.isUndefValue(Op1)) 2309 return Op1; 2310 2311 // A ^ 0 = A 2312 if (match(Op1, m_Zero())) 2313 return Op0; 2314 2315 // A ^ A = 0 2316 if (Op0 == Op1) 2317 return Constant::getNullValue(Op0->getType()); 2318 2319 // A ^ ~A = ~A ^ A = -1 2320 if (match(Op0, m_Not(m_Specific(Op1))) || 2321 match(Op1, m_Not(m_Specific(Op0)))) 2322 return Constant::getAllOnesValue(Op0->getType()); 2323 2324 // Try some generic simplifications for associative operations. 2325 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2326 MaxRecurse)) 2327 return V; 2328 2329 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2330 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2331 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2332 // only if B and C are equal. If B and C are equal then (since we assume 2333 // that operands have already been simplified) "select(cond, B, C)" should 2334 // have been simplified to the common value of B and C already. Analysing 2335 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2336 // for threading over phi nodes. 2337 2338 return nullptr; 2339 } 2340 2341 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2342 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2343 } 2344 2345 2346 static Type *GetCompareTy(Value *Op) { 2347 return CmpInst::makeCmpResultType(Op->getType()); 2348 } 2349 2350 /// Rummage around inside V looking for something equivalent to the comparison 2351 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2352 /// Helper function for analyzing max/min idioms. 2353 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2354 Value *LHS, Value *RHS) { 2355 SelectInst *SI = dyn_cast<SelectInst>(V); 2356 if (!SI) 2357 return nullptr; 2358 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2359 if (!Cmp) 2360 return nullptr; 2361 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2362 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2363 return Cmp; 2364 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2365 LHS == CmpRHS && RHS == CmpLHS) 2366 return Cmp; 2367 return nullptr; 2368 } 2369 2370 // A significant optimization not implemented here is assuming that alloca 2371 // addresses are not equal to incoming argument values. They don't *alias*, 2372 // as we say, but that doesn't mean they aren't equal, so we take a 2373 // conservative approach. 2374 // 2375 // This is inspired in part by C++11 5.10p1: 2376 // "Two pointers of the same type compare equal if and only if they are both 2377 // null, both point to the same function, or both represent the same 2378 // address." 2379 // 2380 // This is pretty permissive. 2381 // 2382 // It's also partly due to C11 6.5.9p6: 2383 // "Two pointers compare equal if and only if both are null pointers, both are 2384 // pointers to the same object (including a pointer to an object and a 2385 // subobject at its beginning) or function, both are pointers to one past the 2386 // last element of the same array object, or one is a pointer to one past the 2387 // end of one array object and the other is a pointer to the start of a 2388 // different array object that happens to immediately follow the first array 2389 // object in the address space.) 2390 // 2391 // C11's version is more restrictive, however there's no reason why an argument 2392 // couldn't be a one-past-the-end value for a stack object in the caller and be 2393 // equal to the beginning of a stack object in the callee. 2394 // 2395 // If the C and C++ standards are ever made sufficiently restrictive in this 2396 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2397 // this optimization. 2398 static Constant * 2399 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2400 const DominatorTree *DT, CmpInst::Predicate Pred, 2401 AssumptionCache *AC, const Instruction *CxtI, 2402 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2403 // First, skip past any trivial no-ops. 2404 LHS = LHS->stripPointerCasts(); 2405 RHS = RHS->stripPointerCasts(); 2406 2407 // A non-null pointer is not equal to a null pointer. 2408 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2409 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2410 IIQ.UseInstrInfo)) 2411 return ConstantInt::get(GetCompareTy(LHS), 2412 !CmpInst::isTrueWhenEqual(Pred)); 2413 2414 // We can only fold certain predicates on pointer comparisons. 2415 switch (Pred) { 2416 default: 2417 return nullptr; 2418 2419 // Equality comaprisons are easy to fold. 2420 case CmpInst::ICMP_EQ: 2421 case CmpInst::ICMP_NE: 2422 break; 2423 2424 // We can only handle unsigned relational comparisons because 'inbounds' on 2425 // a GEP only protects against unsigned wrapping. 2426 case CmpInst::ICMP_UGT: 2427 case CmpInst::ICMP_UGE: 2428 case CmpInst::ICMP_ULT: 2429 case CmpInst::ICMP_ULE: 2430 // However, we have to switch them to their signed variants to handle 2431 // negative indices from the base pointer. 2432 Pred = ICmpInst::getSignedPredicate(Pred); 2433 break; 2434 } 2435 2436 // Strip off any constant offsets so that we can reason about them. 2437 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2438 // here and compare base addresses like AliasAnalysis does, however there are 2439 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2440 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2441 // doesn't need to guarantee pointer inequality when it says NoAlias. 2442 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2443 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2444 2445 // If LHS and RHS are related via constant offsets to the same base 2446 // value, we can replace it with an icmp which just compares the offsets. 2447 if (LHS == RHS) 2448 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2449 2450 // Various optimizations for (in)equality comparisons. 2451 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2452 // Different non-empty allocations that exist at the same time have 2453 // different addresses (if the program can tell). Global variables always 2454 // exist, so they always exist during the lifetime of each other and all 2455 // allocas. Two different allocas usually have different addresses... 2456 // 2457 // However, if there's an @llvm.stackrestore dynamically in between two 2458 // allocas, they may have the same address. It's tempting to reduce the 2459 // scope of the problem by only looking at *static* allocas here. That would 2460 // cover the majority of allocas while significantly reducing the likelihood 2461 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2462 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2463 // an entry block. Also, if we have a block that's not attached to a 2464 // function, we can't tell if it's "static" under the current definition. 2465 // Theoretically, this problem could be fixed by creating a new kind of 2466 // instruction kind specifically for static allocas. Such a new instruction 2467 // could be required to be at the top of the entry block, thus preventing it 2468 // from being subject to a @llvm.stackrestore. Instcombine could even 2469 // convert regular allocas into these special allocas. It'd be nifty. 2470 // However, until then, this problem remains open. 2471 // 2472 // So, we'll assume that two non-empty allocas have different addresses 2473 // for now. 2474 // 2475 // With all that, if the offsets are within the bounds of their allocations 2476 // (and not one-past-the-end! so we can't use inbounds!), and their 2477 // allocations aren't the same, the pointers are not equal. 2478 // 2479 // Note that it's not necessary to check for LHS being a global variable 2480 // address, due to canonicalization and constant folding. 2481 if (isa<AllocaInst>(LHS) && 2482 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2483 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2484 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2485 uint64_t LHSSize, RHSSize; 2486 ObjectSizeOpts Opts; 2487 Opts.NullIsUnknownSize = 2488 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2489 if (LHSOffsetCI && RHSOffsetCI && 2490 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2491 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2492 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2493 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2494 if (!LHSOffsetValue.isNegative() && 2495 !RHSOffsetValue.isNegative() && 2496 LHSOffsetValue.ult(LHSSize) && 2497 RHSOffsetValue.ult(RHSSize)) { 2498 return ConstantInt::get(GetCompareTy(LHS), 2499 !CmpInst::isTrueWhenEqual(Pred)); 2500 } 2501 } 2502 2503 // Repeat the above check but this time without depending on DataLayout 2504 // or being able to compute a precise size. 2505 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2506 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2507 LHSOffset->isNullValue() && 2508 RHSOffset->isNullValue()) 2509 return ConstantInt::get(GetCompareTy(LHS), 2510 !CmpInst::isTrueWhenEqual(Pred)); 2511 } 2512 2513 // Even if an non-inbounds GEP occurs along the path we can still optimize 2514 // equality comparisons concerning the result. We avoid walking the whole 2515 // chain again by starting where the last calls to 2516 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2517 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2518 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2519 if (LHS == RHS) 2520 return ConstantExpr::getICmp(Pred, 2521 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2522 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2523 2524 // If one side of the equality comparison must come from a noalias call 2525 // (meaning a system memory allocation function), and the other side must 2526 // come from a pointer that cannot overlap with dynamically-allocated 2527 // memory within the lifetime of the current function (allocas, byval 2528 // arguments, globals), then determine the comparison result here. 2529 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2530 getUnderlyingObjects(LHS, LHSUObjs); 2531 getUnderlyingObjects(RHS, RHSUObjs); 2532 2533 // Is the set of underlying objects all noalias calls? 2534 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2535 return all_of(Objects, isNoAliasCall); 2536 }; 2537 2538 // Is the set of underlying objects all things which must be disjoint from 2539 // noalias calls. For allocas, we consider only static ones (dynamic 2540 // allocas might be transformed into calls to malloc not simultaneously 2541 // live with the compared-to allocation). For globals, we exclude symbols 2542 // that might be resolve lazily to symbols in another dynamically-loaded 2543 // library (and, thus, could be malloc'ed by the implementation). 2544 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2545 return all_of(Objects, [](const Value *V) { 2546 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2547 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2548 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2549 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2550 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2551 !GV->isThreadLocal(); 2552 if (const Argument *A = dyn_cast<Argument>(V)) 2553 return A->hasByValAttr(); 2554 return false; 2555 }); 2556 }; 2557 2558 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2559 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2560 return ConstantInt::get(GetCompareTy(LHS), 2561 !CmpInst::isTrueWhenEqual(Pred)); 2562 2563 // Fold comparisons for non-escaping pointer even if the allocation call 2564 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2565 // dynamic allocation call could be either of the operands. 2566 Value *MI = nullptr; 2567 if (isAllocLikeFn(LHS, TLI) && 2568 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2569 MI = LHS; 2570 else if (isAllocLikeFn(RHS, TLI) && 2571 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2572 MI = RHS; 2573 // FIXME: We should also fold the compare when the pointer escapes, but the 2574 // compare dominates the pointer escape 2575 if (MI && !PointerMayBeCaptured(MI, true, true)) 2576 return ConstantInt::get(GetCompareTy(LHS), 2577 CmpInst::isFalseWhenEqual(Pred)); 2578 } 2579 2580 // Otherwise, fail. 2581 return nullptr; 2582 } 2583 2584 /// Fold an icmp when its operands have i1 scalar type. 2585 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2586 Value *RHS, const SimplifyQuery &Q) { 2587 Type *ITy = GetCompareTy(LHS); // The return type. 2588 Type *OpTy = LHS->getType(); // The operand type. 2589 if (!OpTy->isIntOrIntVectorTy(1)) 2590 return nullptr; 2591 2592 // A boolean compared to true/false can be simplified in 14 out of the 20 2593 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2594 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2595 if (match(RHS, m_Zero())) { 2596 switch (Pred) { 2597 case CmpInst::ICMP_NE: // X != 0 -> X 2598 case CmpInst::ICMP_UGT: // X >u 0 -> X 2599 case CmpInst::ICMP_SLT: // X <s 0 -> X 2600 return LHS; 2601 2602 case CmpInst::ICMP_ULT: // X <u 0 -> false 2603 case CmpInst::ICMP_SGT: // X >s 0 -> false 2604 return getFalse(ITy); 2605 2606 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2607 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2608 return getTrue(ITy); 2609 2610 default: break; 2611 } 2612 } else if (match(RHS, m_One())) { 2613 switch (Pred) { 2614 case CmpInst::ICMP_EQ: // X == 1 -> X 2615 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2616 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2617 return LHS; 2618 2619 case CmpInst::ICMP_UGT: // X >u 1 -> false 2620 case CmpInst::ICMP_SLT: // X <s -1 -> false 2621 return getFalse(ITy); 2622 2623 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2624 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2625 return getTrue(ITy); 2626 2627 default: break; 2628 } 2629 } 2630 2631 switch (Pred) { 2632 default: 2633 break; 2634 case ICmpInst::ICMP_UGE: 2635 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2636 return getTrue(ITy); 2637 break; 2638 case ICmpInst::ICMP_SGE: 2639 /// For signed comparison, the values for an i1 are 0 and -1 2640 /// respectively. This maps into a truth table of: 2641 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2642 /// 0 | 0 | 1 (0 >= 0) | 1 2643 /// 0 | 1 | 1 (0 >= -1) | 1 2644 /// 1 | 0 | 0 (-1 >= 0) | 0 2645 /// 1 | 1 | 1 (-1 >= -1) | 1 2646 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2647 return getTrue(ITy); 2648 break; 2649 case ICmpInst::ICMP_ULE: 2650 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2651 return getTrue(ITy); 2652 break; 2653 } 2654 2655 return nullptr; 2656 } 2657 2658 /// Try hard to fold icmp with zero RHS because this is a common case. 2659 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2660 Value *RHS, const SimplifyQuery &Q) { 2661 if (!match(RHS, m_Zero())) 2662 return nullptr; 2663 2664 Type *ITy = GetCompareTy(LHS); // The return type. 2665 switch (Pred) { 2666 default: 2667 llvm_unreachable("Unknown ICmp predicate!"); 2668 case ICmpInst::ICMP_ULT: 2669 return getFalse(ITy); 2670 case ICmpInst::ICMP_UGE: 2671 return getTrue(ITy); 2672 case ICmpInst::ICMP_EQ: 2673 case ICmpInst::ICMP_ULE: 2674 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2675 return getFalse(ITy); 2676 break; 2677 case ICmpInst::ICMP_NE: 2678 case ICmpInst::ICMP_UGT: 2679 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2680 return getTrue(ITy); 2681 break; 2682 case ICmpInst::ICMP_SLT: { 2683 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2684 if (LHSKnown.isNegative()) 2685 return getTrue(ITy); 2686 if (LHSKnown.isNonNegative()) 2687 return getFalse(ITy); 2688 break; 2689 } 2690 case ICmpInst::ICMP_SLE: { 2691 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2692 if (LHSKnown.isNegative()) 2693 return getTrue(ITy); 2694 if (LHSKnown.isNonNegative() && 2695 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2696 return getFalse(ITy); 2697 break; 2698 } 2699 case ICmpInst::ICMP_SGE: { 2700 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2701 if (LHSKnown.isNegative()) 2702 return getFalse(ITy); 2703 if (LHSKnown.isNonNegative()) 2704 return getTrue(ITy); 2705 break; 2706 } 2707 case ICmpInst::ICMP_SGT: { 2708 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2709 if (LHSKnown.isNegative()) 2710 return getFalse(ITy); 2711 if (LHSKnown.isNonNegative() && 2712 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2713 return getTrue(ITy); 2714 break; 2715 } 2716 } 2717 2718 return nullptr; 2719 } 2720 2721 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2722 Value *RHS, const InstrInfoQuery &IIQ) { 2723 Type *ITy = GetCompareTy(RHS); // The return type. 2724 2725 Value *X; 2726 // Sign-bit checks can be optimized to true/false after unsigned 2727 // floating-point casts: 2728 // icmp slt (bitcast (uitofp X)), 0 --> false 2729 // icmp sgt (bitcast (uitofp X)), -1 --> true 2730 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2731 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2732 return ConstantInt::getFalse(ITy); 2733 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2734 return ConstantInt::getTrue(ITy); 2735 } 2736 2737 const APInt *C; 2738 if (!match(RHS, m_APIntAllowUndef(C))) 2739 return nullptr; 2740 2741 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2742 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2743 if (RHS_CR.isEmptySet()) 2744 return ConstantInt::getFalse(ITy); 2745 if (RHS_CR.isFullSet()) 2746 return ConstantInt::getTrue(ITy); 2747 2748 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2749 if (!LHS_CR.isFullSet()) { 2750 if (RHS_CR.contains(LHS_CR)) 2751 return ConstantInt::getTrue(ITy); 2752 if (RHS_CR.inverse().contains(LHS_CR)) 2753 return ConstantInt::getFalse(ITy); 2754 } 2755 2756 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2757 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2758 const APInt *MulC; 2759 if (ICmpInst::isEquality(Pred) && 2760 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2761 *MulC != 0 && C->urem(*MulC) != 0) || 2762 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2763 *MulC != 0 && C->srem(*MulC) != 0))) 2764 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2765 2766 return nullptr; 2767 } 2768 2769 static Value *simplifyICmpWithBinOpOnLHS( 2770 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2771 const SimplifyQuery &Q, unsigned MaxRecurse) { 2772 Type *ITy = GetCompareTy(RHS); // The return type. 2773 2774 Value *Y = nullptr; 2775 // icmp pred (or X, Y), X 2776 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2777 if (Pred == ICmpInst::ICMP_ULT) 2778 return getFalse(ITy); 2779 if (Pred == ICmpInst::ICMP_UGE) 2780 return getTrue(ITy); 2781 2782 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2783 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2784 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2785 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2786 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2787 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2788 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2789 } 2790 } 2791 2792 // icmp pred (and X, Y), X 2793 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2794 if (Pred == ICmpInst::ICMP_UGT) 2795 return getFalse(ITy); 2796 if (Pred == ICmpInst::ICMP_ULE) 2797 return getTrue(ITy); 2798 } 2799 2800 // icmp pred (urem X, Y), Y 2801 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2802 switch (Pred) { 2803 default: 2804 break; 2805 case ICmpInst::ICMP_SGT: 2806 case ICmpInst::ICMP_SGE: { 2807 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2808 if (!Known.isNonNegative()) 2809 break; 2810 LLVM_FALLTHROUGH; 2811 } 2812 case ICmpInst::ICMP_EQ: 2813 case ICmpInst::ICMP_UGT: 2814 case ICmpInst::ICMP_UGE: 2815 return getFalse(ITy); 2816 case ICmpInst::ICMP_SLT: 2817 case ICmpInst::ICMP_SLE: { 2818 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2819 if (!Known.isNonNegative()) 2820 break; 2821 LLVM_FALLTHROUGH; 2822 } 2823 case ICmpInst::ICMP_NE: 2824 case ICmpInst::ICMP_ULT: 2825 case ICmpInst::ICMP_ULE: 2826 return getTrue(ITy); 2827 } 2828 } 2829 2830 // icmp pred (urem X, Y), X 2831 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2832 if (Pred == ICmpInst::ICMP_ULE) 2833 return getTrue(ITy); 2834 if (Pred == ICmpInst::ICMP_UGT) 2835 return getFalse(ITy); 2836 } 2837 2838 // x >> y <=u x 2839 // x udiv y <=u x. 2840 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2841 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2842 // icmp pred (X op Y), X 2843 if (Pred == ICmpInst::ICMP_UGT) 2844 return getFalse(ITy); 2845 if (Pred == ICmpInst::ICMP_ULE) 2846 return getTrue(ITy); 2847 } 2848 2849 return nullptr; 2850 } 2851 2852 /// TODO: A large part of this logic is duplicated in InstCombine's 2853 /// foldICmpBinOp(). We should be able to share that and avoid the code 2854 /// duplication. 2855 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2856 Value *RHS, const SimplifyQuery &Q, 2857 unsigned MaxRecurse) { 2858 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2859 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2860 if (MaxRecurse && (LBO || RBO)) { 2861 // Analyze the case when either LHS or RHS is an add instruction. 2862 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2863 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2864 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2865 if (LBO && LBO->getOpcode() == Instruction::Add) { 2866 A = LBO->getOperand(0); 2867 B = LBO->getOperand(1); 2868 NoLHSWrapProblem = 2869 ICmpInst::isEquality(Pred) || 2870 (CmpInst::isUnsigned(Pred) && 2871 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2872 (CmpInst::isSigned(Pred) && 2873 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2874 } 2875 if (RBO && RBO->getOpcode() == Instruction::Add) { 2876 C = RBO->getOperand(0); 2877 D = RBO->getOperand(1); 2878 NoRHSWrapProblem = 2879 ICmpInst::isEquality(Pred) || 2880 (CmpInst::isUnsigned(Pred) && 2881 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2882 (CmpInst::isSigned(Pred) && 2883 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2884 } 2885 2886 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2887 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2888 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2889 Constant::getNullValue(RHS->getType()), Q, 2890 MaxRecurse - 1)) 2891 return V; 2892 2893 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2894 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2895 if (Value *V = 2896 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2897 C == LHS ? D : C, Q, MaxRecurse - 1)) 2898 return V; 2899 2900 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2901 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2902 NoRHSWrapProblem) { 2903 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2904 Value *Y, *Z; 2905 if (A == C) { 2906 // C + B == C + D -> B == D 2907 Y = B; 2908 Z = D; 2909 } else if (A == D) { 2910 // D + B == C + D -> B == C 2911 Y = B; 2912 Z = C; 2913 } else if (B == C) { 2914 // A + C == C + D -> A == D 2915 Y = A; 2916 Z = D; 2917 } else { 2918 assert(B == D); 2919 // A + D == C + D -> A == C 2920 Y = A; 2921 Z = C; 2922 } 2923 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2924 return V; 2925 } 2926 } 2927 2928 if (LBO) 2929 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 2930 return V; 2931 2932 if (RBO) 2933 if (Value *V = simplifyICmpWithBinOpOnLHS( 2934 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 2935 return V; 2936 2937 // 0 - (zext X) pred C 2938 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2939 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2940 if (RHSC->getValue().isStrictlyPositive()) { 2941 if (Pred == ICmpInst::ICMP_SLT) 2942 return ConstantInt::getTrue(RHSC->getContext()); 2943 if (Pred == ICmpInst::ICMP_SGE) 2944 return ConstantInt::getFalse(RHSC->getContext()); 2945 if (Pred == ICmpInst::ICMP_EQ) 2946 return ConstantInt::getFalse(RHSC->getContext()); 2947 if (Pred == ICmpInst::ICMP_NE) 2948 return ConstantInt::getTrue(RHSC->getContext()); 2949 } 2950 if (RHSC->getValue().isNonNegative()) { 2951 if (Pred == ICmpInst::ICMP_SLE) 2952 return ConstantInt::getTrue(RHSC->getContext()); 2953 if (Pred == ICmpInst::ICMP_SGT) 2954 return ConstantInt::getFalse(RHSC->getContext()); 2955 } 2956 } 2957 } 2958 2959 // handle: 2960 // CI2 << X == CI 2961 // CI2 << X != CI 2962 // 2963 // where CI2 is a power of 2 and CI isn't 2964 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2965 const APInt *CI2Val, *CIVal = &CI->getValue(); 2966 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2967 CI2Val->isPowerOf2()) { 2968 if (!CIVal->isPowerOf2()) { 2969 // CI2 << X can equal zero in some circumstances, 2970 // this simplification is unsafe if CI is zero. 2971 // 2972 // We know it is safe if: 2973 // - The shift is nsw, we can't shift out the one bit. 2974 // - The shift is nuw, we can't shift out the one bit. 2975 // - CI2 is one 2976 // - CI isn't zero 2977 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2978 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2979 CI2Val->isOneValue() || !CI->isZero()) { 2980 if (Pred == ICmpInst::ICMP_EQ) 2981 return ConstantInt::getFalse(RHS->getContext()); 2982 if (Pred == ICmpInst::ICMP_NE) 2983 return ConstantInt::getTrue(RHS->getContext()); 2984 } 2985 } 2986 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2987 if (Pred == ICmpInst::ICMP_UGT) 2988 return ConstantInt::getFalse(RHS->getContext()); 2989 if (Pred == ICmpInst::ICMP_ULE) 2990 return ConstantInt::getTrue(RHS->getContext()); 2991 } 2992 } 2993 } 2994 2995 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2996 LBO->getOperand(1) == RBO->getOperand(1)) { 2997 switch (LBO->getOpcode()) { 2998 default: 2999 break; 3000 case Instruction::UDiv: 3001 case Instruction::LShr: 3002 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3003 !Q.IIQ.isExact(RBO)) 3004 break; 3005 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3006 RBO->getOperand(0), Q, MaxRecurse - 1)) 3007 return V; 3008 break; 3009 case Instruction::SDiv: 3010 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3011 !Q.IIQ.isExact(RBO)) 3012 break; 3013 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3014 RBO->getOperand(0), Q, MaxRecurse - 1)) 3015 return V; 3016 break; 3017 case Instruction::AShr: 3018 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3019 break; 3020 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3021 RBO->getOperand(0), Q, MaxRecurse - 1)) 3022 return V; 3023 break; 3024 case Instruction::Shl: { 3025 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3026 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3027 if (!NUW && !NSW) 3028 break; 3029 if (!NSW && ICmpInst::isSigned(Pred)) 3030 break; 3031 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3032 RBO->getOperand(0), Q, MaxRecurse - 1)) 3033 return V; 3034 break; 3035 } 3036 } 3037 } 3038 return nullptr; 3039 } 3040 3041 /// Simplify integer comparisons where at least one operand of the compare 3042 /// matches an integer min/max idiom. 3043 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3044 Value *RHS, const SimplifyQuery &Q, 3045 unsigned MaxRecurse) { 3046 Type *ITy = GetCompareTy(LHS); // The return type. 3047 Value *A, *B; 3048 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3049 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3050 3051 // Signed variants on "max(a,b)>=a -> true". 3052 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3053 if (A != RHS) 3054 std::swap(A, B); // smax(A, B) pred A. 3055 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3056 // We analyze this as smax(A, B) pred A. 3057 P = Pred; 3058 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3059 (A == LHS || B == LHS)) { 3060 if (A != LHS) 3061 std::swap(A, B); // A pred smax(A, B). 3062 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3063 // We analyze this as smax(A, B) swapped-pred A. 3064 P = CmpInst::getSwappedPredicate(Pred); 3065 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3066 (A == RHS || B == RHS)) { 3067 if (A != RHS) 3068 std::swap(A, B); // smin(A, B) pred A. 3069 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3070 // We analyze this as smax(-A, -B) swapped-pred -A. 3071 // Note that we do not need to actually form -A or -B thanks to EqP. 3072 P = CmpInst::getSwappedPredicate(Pred); 3073 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3074 (A == LHS || B == LHS)) { 3075 if (A != LHS) 3076 std::swap(A, B); // A pred smin(A, B). 3077 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3078 // We analyze this as smax(-A, -B) pred -A. 3079 // Note that we do not need to actually form -A or -B thanks to EqP. 3080 P = Pred; 3081 } 3082 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3083 // Cases correspond to "max(A, B) p A". 3084 switch (P) { 3085 default: 3086 break; 3087 case CmpInst::ICMP_EQ: 3088 case CmpInst::ICMP_SLE: 3089 // Equivalent to "A EqP B". This may be the same as the condition tested 3090 // in the max/min; if so, we can just return that. 3091 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3092 return V; 3093 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3094 return V; 3095 // Otherwise, see if "A EqP B" simplifies. 3096 if (MaxRecurse) 3097 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3098 return V; 3099 break; 3100 case CmpInst::ICMP_NE: 3101 case CmpInst::ICMP_SGT: { 3102 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3103 // Equivalent to "A InvEqP B". This may be the same as the condition 3104 // tested in the max/min; if so, we can just return that. 3105 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3106 return V; 3107 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3108 return V; 3109 // Otherwise, see if "A InvEqP B" simplifies. 3110 if (MaxRecurse) 3111 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3112 return V; 3113 break; 3114 } 3115 case CmpInst::ICMP_SGE: 3116 // Always true. 3117 return getTrue(ITy); 3118 case CmpInst::ICMP_SLT: 3119 // Always false. 3120 return getFalse(ITy); 3121 } 3122 } 3123 3124 // Unsigned variants on "max(a,b)>=a -> true". 3125 P = CmpInst::BAD_ICMP_PREDICATE; 3126 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3127 if (A != RHS) 3128 std::swap(A, B); // umax(A, B) pred A. 3129 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3130 // We analyze this as umax(A, B) pred A. 3131 P = Pred; 3132 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3133 (A == LHS || B == LHS)) { 3134 if (A != LHS) 3135 std::swap(A, B); // A pred umax(A, B). 3136 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3137 // We analyze this as umax(A, B) swapped-pred A. 3138 P = CmpInst::getSwappedPredicate(Pred); 3139 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3140 (A == RHS || B == RHS)) { 3141 if (A != RHS) 3142 std::swap(A, B); // umin(A, B) pred A. 3143 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3144 // We analyze this as umax(-A, -B) swapped-pred -A. 3145 // Note that we do not need to actually form -A or -B thanks to EqP. 3146 P = CmpInst::getSwappedPredicate(Pred); 3147 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3148 (A == LHS || B == LHS)) { 3149 if (A != LHS) 3150 std::swap(A, B); // A pred umin(A, B). 3151 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3152 // We analyze this as umax(-A, -B) pred -A. 3153 // Note that we do not need to actually form -A or -B thanks to EqP. 3154 P = Pred; 3155 } 3156 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3157 // Cases correspond to "max(A, B) p A". 3158 switch (P) { 3159 default: 3160 break; 3161 case CmpInst::ICMP_EQ: 3162 case CmpInst::ICMP_ULE: 3163 // Equivalent to "A EqP B". This may be the same as the condition tested 3164 // in the max/min; if so, we can just return that. 3165 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3166 return V; 3167 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3168 return V; 3169 // Otherwise, see if "A EqP B" simplifies. 3170 if (MaxRecurse) 3171 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3172 return V; 3173 break; 3174 case CmpInst::ICMP_NE: 3175 case CmpInst::ICMP_UGT: { 3176 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3177 // Equivalent to "A InvEqP B". This may be the same as the condition 3178 // tested in the max/min; if so, we can just return that. 3179 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3180 return V; 3181 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3182 return V; 3183 // Otherwise, see if "A InvEqP B" simplifies. 3184 if (MaxRecurse) 3185 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3186 return V; 3187 break; 3188 } 3189 case CmpInst::ICMP_UGE: 3190 return getTrue(ITy); 3191 case CmpInst::ICMP_ULT: 3192 return getFalse(ITy); 3193 } 3194 } 3195 3196 // Comparing 1 each of min/max with a common operand? 3197 // Canonicalize min operand to RHS. 3198 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3199 match(LHS, m_SMin(m_Value(), m_Value()))) { 3200 std::swap(LHS, RHS); 3201 Pred = ICmpInst::getSwappedPredicate(Pred); 3202 } 3203 3204 Value *C, *D; 3205 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3206 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3207 (A == C || A == D || B == C || B == D)) { 3208 // smax(A, B) >=s smin(A, D) --> true 3209 if (Pred == CmpInst::ICMP_SGE) 3210 return getTrue(ITy); 3211 // smax(A, B) <s smin(A, D) --> false 3212 if (Pred == CmpInst::ICMP_SLT) 3213 return getFalse(ITy); 3214 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3215 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3216 (A == C || A == D || B == C || B == D)) { 3217 // umax(A, B) >=u umin(A, D) --> true 3218 if (Pred == CmpInst::ICMP_UGE) 3219 return getTrue(ITy); 3220 // umax(A, B) <u umin(A, D) --> false 3221 if (Pred == CmpInst::ICMP_ULT) 3222 return getFalse(ITy); 3223 } 3224 3225 return nullptr; 3226 } 3227 3228 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3229 Value *LHS, Value *RHS, 3230 const SimplifyQuery &Q) { 3231 // Gracefully handle instructions that have not been inserted yet. 3232 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3233 return nullptr; 3234 3235 for (Value *AssumeBaseOp : {LHS, RHS}) { 3236 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3237 if (!AssumeVH) 3238 continue; 3239 3240 CallInst *Assume = cast<CallInst>(AssumeVH); 3241 if (Optional<bool> Imp = 3242 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3243 Q.DL)) 3244 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3245 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3246 } 3247 } 3248 3249 return nullptr; 3250 } 3251 3252 /// Given operands for an ICmpInst, see if we can fold the result. 3253 /// If not, this returns null. 3254 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3255 const SimplifyQuery &Q, unsigned MaxRecurse) { 3256 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3257 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3258 3259 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3260 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3261 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3262 3263 // If we have a constant, make sure it is on the RHS. 3264 std::swap(LHS, RHS); 3265 Pred = CmpInst::getSwappedPredicate(Pred); 3266 } 3267 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3268 3269 Type *ITy = GetCompareTy(LHS); // The return type. 3270 3271 // For EQ and NE, we can always pick a value for the undef to make the 3272 // predicate pass or fail, so we can return undef. 3273 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3274 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3275 return UndefValue::get(ITy); 3276 3277 // icmp X, X -> true/false 3278 // icmp X, undef -> true/false because undef could be X. 3279 if (LHS == RHS || Q.isUndefValue(RHS)) 3280 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3281 3282 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3283 return V; 3284 3285 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3286 return V; 3287 3288 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3289 return V; 3290 3291 // If both operands have range metadata, use the metadata 3292 // to simplify the comparison. 3293 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3294 auto RHS_Instr = cast<Instruction>(RHS); 3295 auto LHS_Instr = cast<Instruction>(LHS); 3296 3297 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3298 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3299 auto RHS_CR = getConstantRangeFromMetadata( 3300 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3301 auto LHS_CR = getConstantRangeFromMetadata( 3302 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3303 3304 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3305 if (Satisfied_CR.contains(LHS_CR)) 3306 return ConstantInt::getTrue(RHS->getContext()); 3307 3308 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3309 CmpInst::getInversePredicate(Pred), RHS_CR); 3310 if (InversedSatisfied_CR.contains(LHS_CR)) 3311 return ConstantInt::getFalse(RHS->getContext()); 3312 } 3313 } 3314 3315 // Compare of cast, for example (zext X) != 0 -> X != 0 3316 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3317 Instruction *LI = cast<CastInst>(LHS); 3318 Value *SrcOp = LI->getOperand(0); 3319 Type *SrcTy = SrcOp->getType(); 3320 Type *DstTy = LI->getType(); 3321 3322 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3323 // if the integer type is the same size as the pointer type. 3324 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3325 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3326 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3327 // Transfer the cast to the constant. 3328 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3329 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3330 Q, MaxRecurse-1)) 3331 return V; 3332 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3333 if (RI->getOperand(0)->getType() == SrcTy) 3334 // Compare without the cast. 3335 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3336 Q, MaxRecurse-1)) 3337 return V; 3338 } 3339 } 3340 3341 if (isa<ZExtInst>(LHS)) { 3342 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3343 // same type. 3344 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3345 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3346 // Compare X and Y. Note that signed predicates become unsigned. 3347 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3348 SrcOp, RI->getOperand(0), Q, 3349 MaxRecurse-1)) 3350 return V; 3351 } 3352 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3353 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3354 if (SrcOp == RI->getOperand(0)) { 3355 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3356 return ConstantInt::getTrue(ITy); 3357 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3358 return ConstantInt::getFalse(ITy); 3359 } 3360 } 3361 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3362 // too. If not, then try to deduce the result of the comparison. 3363 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3364 // Compute the constant that would happen if we truncated to SrcTy then 3365 // reextended to DstTy. 3366 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3367 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3368 3369 // If the re-extended constant didn't change then this is effectively 3370 // also a case of comparing two zero-extended values. 3371 if (RExt == CI && MaxRecurse) 3372 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3373 SrcOp, Trunc, Q, MaxRecurse-1)) 3374 return V; 3375 3376 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3377 // there. Use this to work out the result of the comparison. 3378 if (RExt != CI) { 3379 switch (Pred) { 3380 default: llvm_unreachable("Unknown ICmp predicate!"); 3381 // LHS <u RHS. 3382 case ICmpInst::ICMP_EQ: 3383 case ICmpInst::ICMP_UGT: 3384 case ICmpInst::ICMP_UGE: 3385 return ConstantInt::getFalse(CI->getContext()); 3386 3387 case ICmpInst::ICMP_NE: 3388 case ICmpInst::ICMP_ULT: 3389 case ICmpInst::ICMP_ULE: 3390 return ConstantInt::getTrue(CI->getContext()); 3391 3392 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3393 // is non-negative then LHS <s RHS. 3394 case ICmpInst::ICMP_SGT: 3395 case ICmpInst::ICMP_SGE: 3396 return CI->getValue().isNegative() ? 3397 ConstantInt::getTrue(CI->getContext()) : 3398 ConstantInt::getFalse(CI->getContext()); 3399 3400 case ICmpInst::ICMP_SLT: 3401 case ICmpInst::ICMP_SLE: 3402 return CI->getValue().isNegative() ? 3403 ConstantInt::getFalse(CI->getContext()) : 3404 ConstantInt::getTrue(CI->getContext()); 3405 } 3406 } 3407 } 3408 } 3409 3410 if (isa<SExtInst>(LHS)) { 3411 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3412 // same type. 3413 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3414 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3415 // Compare X and Y. Note that the predicate does not change. 3416 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3417 Q, MaxRecurse-1)) 3418 return V; 3419 } 3420 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3421 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3422 if (SrcOp == RI->getOperand(0)) { 3423 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3424 return ConstantInt::getTrue(ITy); 3425 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3426 return ConstantInt::getFalse(ITy); 3427 } 3428 } 3429 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3430 // too. If not, then try to deduce the result of the comparison. 3431 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3432 // Compute the constant that would happen if we truncated to SrcTy then 3433 // reextended to DstTy. 3434 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3435 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3436 3437 // If the re-extended constant didn't change then this is effectively 3438 // also a case of comparing two sign-extended values. 3439 if (RExt == CI && MaxRecurse) 3440 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3441 return V; 3442 3443 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3444 // bits there. Use this to work out the result of the comparison. 3445 if (RExt != CI) { 3446 switch (Pred) { 3447 default: llvm_unreachable("Unknown ICmp predicate!"); 3448 case ICmpInst::ICMP_EQ: 3449 return ConstantInt::getFalse(CI->getContext()); 3450 case ICmpInst::ICMP_NE: 3451 return ConstantInt::getTrue(CI->getContext()); 3452 3453 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3454 // LHS >s RHS. 3455 case ICmpInst::ICMP_SGT: 3456 case ICmpInst::ICMP_SGE: 3457 return CI->getValue().isNegative() ? 3458 ConstantInt::getTrue(CI->getContext()) : 3459 ConstantInt::getFalse(CI->getContext()); 3460 case ICmpInst::ICMP_SLT: 3461 case ICmpInst::ICMP_SLE: 3462 return CI->getValue().isNegative() ? 3463 ConstantInt::getFalse(CI->getContext()) : 3464 ConstantInt::getTrue(CI->getContext()); 3465 3466 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3467 // LHS >u RHS. 3468 case ICmpInst::ICMP_UGT: 3469 case ICmpInst::ICMP_UGE: 3470 // Comparison is true iff the LHS <s 0. 3471 if (MaxRecurse) 3472 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3473 Constant::getNullValue(SrcTy), 3474 Q, MaxRecurse-1)) 3475 return V; 3476 break; 3477 case ICmpInst::ICMP_ULT: 3478 case ICmpInst::ICMP_ULE: 3479 // Comparison is true iff the LHS >=s 0. 3480 if (MaxRecurse) 3481 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3482 Constant::getNullValue(SrcTy), 3483 Q, MaxRecurse-1)) 3484 return V; 3485 break; 3486 } 3487 } 3488 } 3489 } 3490 } 3491 3492 // icmp eq|ne X, Y -> false|true if X != Y 3493 if (ICmpInst::isEquality(Pred) && 3494 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3495 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3496 } 3497 3498 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3499 return V; 3500 3501 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3502 return V; 3503 3504 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3505 return V; 3506 3507 // Simplify comparisons of related pointers using a powerful, recursive 3508 // GEP-walk when we have target data available.. 3509 if (LHS->getType()->isPointerTy()) 3510 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3511 Q.IIQ, LHS, RHS)) 3512 return C; 3513 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3514 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3515 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3516 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3517 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3518 Q.DL.getTypeSizeInBits(CRHS->getType())) 3519 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3520 Q.IIQ, CLHS->getPointerOperand(), 3521 CRHS->getPointerOperand())) 3522 return C; 3523 3524 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3525 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3526 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3527 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3528 (ICmpInst::isEquality(Pred) || 3529 (GLHS->isInBounds() && GRHS->isInBounds() && 3530 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3531 // The bases are equal and the indices are constant. Build a constant 3532 // expression GEP with the same indices and a null base pointer to see 3533 // what constant folding can make out of it. 3534 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3535 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3536 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3537 GLHS->getSourceElementType(), Null, IndicesLHS); 3538 3539 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3540 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3541 GLHS->getSourceElementType(), Null, IndicesRHS); 3542 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3543 return ConstantFoldConstant(NewICmp, Q.DL); 3544 } 3545 } 3546 } 3547 3548 // If the comparison is with the result of a select instruction, check whether 3549 // comparing with either branch of the select always yields the same value. 3550 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3551 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3552 return V; 3553 3554 // If the comparison is with the result of a phi instruction, check whether 3555 // doing the compare with each incoming phi value yields a common result. 3556 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3557 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3558 return V; 3559 3560 return nullptr; 3561 } 3562 3563 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3564 const SimplifyQuery &Q) { 3565 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3566 } 3567 3568 /// Given operands for an FCmpInst, see if we can fold the result. 3569 /// If not, this returns null. 3570 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3571 FastMathFlags FMF, const SimplifyQuery &Q, 3572 unsigned MaxRecurse) { 3573 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3574 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3575 3576 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3577 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3578 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3579 3580 // If we have a constant, make sure it is on the RHS. 3581 std::swap(LHS, RHS); 3582 Pred = CmpInst::getSwappedPredicate(Pred); 3583 } 3584 3585 // Fold trivial predicates. 3586 Type *RetTy = GetCompareTy(LHS); 3587 if (Pred == FCmpInst::FCMP_FALSE) 3588 return getFalse(RetTy); 3589 if (Pred == FCmpInst::FCMP_TRUE) 3590 return getTrue(RetTy); 3591 3592 // Fold (un)ordered comparison if we can determine there are no NaNs. 3593 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3594 if (FMF.noNaNs() || 3595 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3596 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3597 3598 // NaN is unordered; NaN is not ordered. 3599 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3600 "Comparison must be either ordered or unordered"); 3601 if (match(RHS, m_NaN())) 3602 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3603 3604 // fcmp pred x, undef and fcmp pred undef, x 3605 // fold to true if unordered, false if ordered 3606 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3607 // Choosing NaN for the undef will always make unordered comparison succeed 3608 // and ordered comparison fail. 3609 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3610 } 3611 3612 // fcmp x,x -> true/false. Not all compares are foldable. 3613 if (LHS == RHS) { 3614 if (CmpInst::isTrueWhenEqual(Pred)) 3615 return getTrue(RetTy); 3616 if (CmpInst::isFalseWhenEqual(Pred)) 3617 return getFalse(RetTy); 3618 } 3619 3620 // Handle fcmp with constant RHS. 3621 // TODO: Use match with a specific FP value, so these work with vectors with 3622 // undef lanes. 3623 const APFloat *C; 3624 if (match(RHS, m_APFloat(C))) { 3625 // Check whether the constant is an infinity. 3626 if (C->isInfinity()) { 3627 if (C->isNegative()) { 3628 switch (Pred) { 3629 case FCmpInst::FCMP_OLT: 3630 // No value is ordered and less than negative infinity. 3631 return getFalse(RetTy); 3632 case FCmpInst::FCMP_UGE: 3633 // All values are unordered with or at least negative infinity. 3634 return getTrue(RetTy); 3635 default: 3636 break; 3637 } 3638 } else { 3639 switch (Pred) { 3640 case FCmpInst::FCMP_OGT: 3641 // No value is ordered and greater than infinity. 3642 return getFalse(RetTy); 3643 case FCmpInst::FCMP_ULE: 3644 // All values are unordered with and at most infinity. 3645 return getTrue(RetTy); 3646 default: 3647 break; 3648 } 3649 } 3650 3651 // LHS == Inf 3652 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3653 return getFalse(RetTy); 3654 // LHS != Inf 3655 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3656 return getTrue(RetTy); 3657 // LHS == Inf || LHS == NaN 3658 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3659 isKnownNeverNaN(LHS, Q.TLI)) 3660 return getFalse(RetTy); 3661 // LHS != Inf && LHS != NaN 3662 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3663 isKnownNeverNaN(LHS, Q.TLI)) 3664 return getTrue(RetTy); 3665 } 3666 if (C->isNegative() && !C->isNegZero()) { 3667 assert(!C->isNaN() && "Unexpected NaN constant!"); 3668 // TODO: We can catch more cases by using a range check rather than 3669 // relying on CannotBeOrderedLessThanZero. 3670 switch (Pred) { 3671 case FCmpInst::FCMP_UGE: 3672 case FCmpInst::FCMP_UGT: 3673 case FCmpInst::FCMP_UNE: 3674 // (X >= 0) implies (X > C) when (C < 0) 3675 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3676 return getTrue(RetTy); 3677 break; 3678 case FCmpInst::FCMP_OEQ: 3679 case FCmpInst::FCMP_OLE: 3680 case FCmpInst::FCMP_OLT: 3681 // (X >= 0) implies !(X < C) when (C < 0) 3682 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3683 return getFalse(RetTy); 3684 break; 3685 default: 3686 break; 3687 } 3688 } 3689 3690 // Check comparison of [minnum/maxnum with constant] with other constant. 3691 const APFloat *C2; 3692 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3693 *C2 < *C) || 3694 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3695 *C2 > *C)) { 3696 bool IsMaxNum = 3697 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3698 // The ordered relationship and minnum/maxnum guarantee that we do not 3699 // have NaN constants, so ordered/unordered preds are handled the same. 3700 switch (Pred) { 3701 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3702 // minnum(X, LesserC) == C --> false 3703 // maxnum(X, GreaterC) == C --> false 3704 return getFalse(RetTy); 3705 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3706 // minnum(X, LesserC) != C --> true 3707 // maxnum(X, GreaterC) != C --> true 3708 return getTrue(RetTy); 3709 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3710 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3711 // minnum(X, LesserC) >= C --> false 3712 // minnum(X, LesserC) > C --> false 3713 // maxnum(X, GreaterC) >= C --> true 3714 // maxnum(X, GreaterC) > C --> true 3715 return ConstantInt::get(RetTy, IsMaxNum); 3716 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3717 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3718 // minnum(X, LesserC) <= C --> true 3719 // minnum(X, LesserC) < C --> true 3720 // maxnum(X, GreaterC) <= C --> false 3721 // maxnum(X, GreaterC) < C --> false 3722 return ConstantInt::get(RetTy, !IsMaxNum); 3723 default: 3724 // TRUE/FALSE/ORD/UNO should be handled before this. 3725 llvm_unreachable("Unexpected fcmp predicate"); 3726 } 3727 } 3728 } 3729 3730 if (match(RHS, m_AnyZeroFP())) { 3731 switch (Pred) { 3732 case FCmpInst::FCMP_OGE: 3733 case FCmpInst::FCMP_ULT: 3734 // Positive or zero X >= 0.0 --> true 3735 // Positive or zero X < 0.0 --> false 3736 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3737 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3738 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3739 break; 3740 case FCmpInst::FCMP_UGE: 3741 case FCmpInst::FCMP_OLT: 3742 // Positive or zero or nan X >= 0.0 --> true 3743 // Positive or zero or nan X < 0.0 --> false 3744 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3745 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3746 break; 3747 default: 3748 break; 3749 } 3750 } 3751 3752 // If the comparison is with the result of a select instruction, check whether 3753 // comparing with either branch of the select always yields the same value. 3754 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3755 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3756 return V; 3757 3758 // If the comparison is with the result of a phi instruction, check whether 3759 // doing the compare with each incoming phi value yields a common result. 3760 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3761 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3762 return V; 3763 3764 return nullptr; 3765 } 3766 3767 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3768 FastMathFlags FMF, const SimplifyQuery &Q) { 3769 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3770 } 3771 3772 /// See if V simplifies when its operand Op is replaced with RepOp. 3773 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3774 const SimplifyQuery &Q, 3775 unsigned MaxRecurse) { 3776 // Trivial replacement. 3777 if (V == Op) 3778 return RepOp; 3779 3780 // We cannot replace a constant, and shouldn't even try. 3781 if (isa<Constant>(Op)) 3782 return nullptr; 3783 3784 auto *I = dyn_cast<Instruction>(V); 3785 if (!I) 3786 return nullptr; 3787 3788 // If this is a binary operator, try to simplify it with the replaced op. 3789 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3790 // Consider: 3791 // %cmp = icmp eq i32 %x, 2147483647 3792 // %add = add nsw i32 %x, 1 3793 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3794 // 3795 // We can't replace %sel with %add unless we strip away the flags. 3796 // TODO: This is an unusual limitation because better analysis results in 3797 // worse simplification. InstCombine can do this fold more generally 3798 // by dropping the flags. Remove this fold to save compile-time? 3799 if (isa<OverflowingBinaryOperator>(B)) 3800 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3801 return nullptr; 3802 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3803 return nullptr; 3804 3805 if (MaxRecurse) { 3806 if (B->getOperand(0) == Op) 3807 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3808 MaxRecurse - 1); 3809 if (B->getOperand(1) == Op) 3810 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3811 MaxRecurse - 1); 3812 } 3813 } 3814 3815 // Same for CmpInsts. 3816 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3817 if (MaxRecurse) { 3818 if (C->getOperand(0) == Op) 3819 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3820 MaxRecurse - 1); 3821 if (C->getOperand(1) == Op) 3822 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3823 MaxRecurse - 1); 3824 } 3825 } 3826 3827 // Same for GEPs. 3828 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3829 if (MaxRecurse) { 3830 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3831 transform(GEP->operands(), NewOps.begin(), 3832 [&](Value *V) { return V == Op ? RepOp : V; }); 3833 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3834 MaxRecurse - 1); 3835 } 3836 } 3837 3838 // TODO: We could hand off more cases to instsimplify here. 3839 3840 // If all operands are constant after substituting Op for RepOp then we can 3841 // constant fold the instruction. 3842 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3843 // Build a list of all constant operands. 3844 SmallVector<Constant *, 8> ConstOps; 3845 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3846 if (I->getOperand(i) == Op) 3847 ConstOps.push_back(CRepOp); 3848 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3849 ConstOps.push_back(COp); 3850 else 3851 break; 3852 } 3853 3854 // All operands were constants, fold it. 3855 if (ConstOps.size() == I->getNumOperands()) { 3856 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3857 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3858 ConstOps[1], Q.DL, Q.TLI); 3859 3860 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3861 if (!LI->isVolatile()) 3862 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3863 3864 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3865 } 3866 } 3867 3868 return nullptr; 3869 } 3870 3871 /// Try to simplify a select instruction when its condition operand is an 3872 /// integer comparison where one operand of the compare is a constant. 3873 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3874 const APInt *Y, bool TrueWhenUnset) { 3875 const APInt *C; 3876 3877 // (X & Y) == 0 ? X & ~Y : X --> X 3878 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3879 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3880 *Y == ~*C) 3881 return TrueWhenUnset ? FalseVal : TrueVal; 3882 3883 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3884 // (X & Y) != 0 ? X : X & ~Y --> X 3885 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3886 *Y == ~*C) 3887 return TrueWhenUnset ? FalseVal : TrueVal; 3888 3889 if (Y->isPowerOf2()) { 3890 // (X & Y) == 0 ? X | Y : X --> X | Y 3891 // (X & Y) != 0 ? X | Y : X --> X 3892 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3893 *Y == *C) 3894 return TrueWhenUnset ? TrueVal : FalseVal; 3895 3896 // (X & Y) == 0 ? X : X | Y --> X 3897 // (X & Y) != 0 ? X : X | Y --> X | Y 3898 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3899 *Y == *C) 3900 return TrueWhenUnset ? TrueVal : FalseVal; 3901 } 3902 3903 return nullptr; 3904 } 3905 3906 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3907 /// eq/ne. 3908 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3909 ICmpInst::Predicate Pred, 3910 Value *TrueVal, Value *FalseVal) { 3911 Value *X; 3912 APInt Mask; 3913 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3914 return nullptr; 3915 3916 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3917 Pred == ICmpInst::ICMP_EQ); 3918 } 3919 3920 /// Try to simplify a select instruction when its condition operand is an 3921 /// integer comparison. 3922 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3923 Value *FalseVal, const SimplifyQuery &Q, 3924 unsigned MaxRecurse) { 3925 ICmpInst::Predicate Pred; 3926 Value *CmpLHS, *CmpRHS; 3927 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3928 return nullptr; 3929 3930 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3931 Value *X; 3932 const APInt *Y; 3933 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3934 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3935 Pred == ICmpInst::ICMP_EQ)) 3936 return V; 3937 3938 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3939 Value *ShAmt; 3940 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3941 m_Value(ShAmt)), 3942 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3943 m_Value(ShAmt))); 3944 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3945 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3946 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3947 Pred == ICmpInst::ICMP_EQ) 3948 return X; 3949 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3950 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3951 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3952 Pred == ICmpInst::ICMP_NE) 3953 return X; 3954 3955 // Test for a zero-shift-guard-op around rotates. These are used to 3956 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3957 // intrinsics do not have that problem. 3958 // We do not allow this transform for the general funnel shift case because 3959 // that would not preserve the poison safety of the original code. 3960 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3961 m_Deferred(X), 3962 m_Value(ShAmt)), 3963 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3964 m_Deferred(X), 3965 m_Value(ShAmt))); 3966 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3967 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3968 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3969 Pred == ICmpInst::ICMP_NE) 3970 return TrueVal; 3971 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3972 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3973 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3974 Pred == ICmpInst::ICMP_EQ) 3975 return FalseVal; 3976 } 3977 3978 // Check for other compares that behave like bit test. 3979 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3980 TrueVal, FalseVal)) 3981 return V; 3982 3983 // If we have an equality comparison, then we know the value in one of the 3984 // arms of the select. See if substituting this value into the arm and 3985 // simplifying the result yields the same value as the other arm. 3986 if (Pred == ICmpInst::ICMP_EQ) { 3987 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3988 TrueVal || 3989 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3990 TrueVal) 3991 return FalseVal; 3992 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3993 FalseVal || 3994 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3995 FalseVal) 3996 return FalseVal; 3997 } else if (Pred == ICmpInst::ICMP_NE) { 3998 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3999 FalseVal || 4000 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 4001 FalseVal) 4002 return TrueVal; 4003 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 4004 TrueVal || 4005 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 4006 TrueVal) 4007 return TrueVal; 4008 } 4009 4010 return nullptr; 4011 } 4012 4013 /// Try to simplify a select instruction when its condition operand is a 4014 /// floating-point comparison. 4015 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4016 const SimplifyQuery &Q) { 4017 FCmpInst::Predicate Pred; 4018 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4019 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4020 return nullptr; 4021 4022 // This transform is safe if we do not have (do not care about) -0.0 or if 4023 // at least one operand is known to not be -0.0. Otherwise, the select can 4024 // change the sign of a zero operand. 4025 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4026 Q.CxtI->hasNoSignedZeros(); 4027 const APFloat *C; 4028 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4029 (match(F, m_APFloat(C)) && C->isNonZero())) { 4030 // (T == F) ? T : F --> F 4031 // (F == T) ? T : F --> F 4032 if (Pred == FCmpInst::FCMP_OEQ) 4033 return F; 4034 4035 // (T != F) ? T : F --> T 4036 // (F != T) ? T : F --> T 4037 if (Pred == FCmpInst::FCMP_UNE) 4038 return T; 4039 } 4040 4041 return nullptr; 4042 } 4043 4044 /// Given operands for a SelectInst, see if we can fold the result. 4045 /// If not, this returns null. 4046 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4047 const SimplifyQuery &Q, unsigned MaxRecurse) { 4048 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4049 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4050 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4051 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4052 4053 // select undef, X, Y -> X or Y 4054 if (Q.isUndefValue(CondC)) 4055 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4056 4057 // TODO: Vector constants with undef elements don't simplify. 4058 4059 // select true, X, Y -> X 4060 if (CondC->isAllOnesValue()) 4061 return TrueVal; 4062 // select false, X, Y -> Y 4063 if (CondC->isNullValue()) 4064 return FalseVal; 4065 } 4066 4067 // select i1 Cond, i1 true, i1 false --> i1 Cond 4068 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4069 "Select must have bool or bool vector condition"); 4070 assert(TrueVal->getType() == FalseVal->getType() && 4071 "Select must have same types for true/false ops"); 4072 if (Cond->getType() == TrueVal->getType() && 4073 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4074 return Cond; 4075 4076 // select ?, X, X -> X 4077 if (TrueVal == FalseVal) 4078 return TrueVal; 4079 4080 // If the true or false value is undef, we can fold to the other value as 4081 // long as the other value isn't poison. 4082 // select ?, undef, X -> X 4083 if (Q.isUndefValue(TrueVal) && 4084 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.CxtI, Q.DT)) 4085 return FalseVal; 4086 // select ?, X, undef -> X 4087 if (Q.isUndefValue(FalseVal) && 4088 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.CxtI, Q.DT)) 4089 return TrueVal; 4090 4091 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4092 Constant *TrueC, *FalseC; 4093 if (TrueVal->getType()->isVectorTy() && match(TrueVal, m_Constant(TrueC)) && 4094 match(FalseVal, m_Constant(FalseC))) { 4095 unsigned NumElts = 4096 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4097 SmallVector<Constant *, 16> NewC; 4098 for (unsigned i = 0; i != NumElts; ++i) { 4099 // Bail out on incomplete vector constants. 4100 Constant *TEltC = TrueC->getAggregateElement(i); 4101 Constant *FEltC = FalseC->getAggregateElement(i); 4102 if (!TEltC || !FEltC) 4103 break; 4104 4105 // If the elements match (undef or not), that value is the result. If only 4106 // one element is undef, choose the defined element as the safe result. 4107 if (TEltC == FEltC) 4108 NewC.push_back(TEltC); 4109 else if (Q.isUndefValue(TEltC) && 4110 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4111 NewC.push_back(FEltC); 4112 else if (Q.isUndefValue(FEltC) && 4113 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4114 NewC.push_back(TEltC); 4115 else 4116 break; 4117 } 4118 if (NewC.size() == NumElts) 4119 return ConstantVector::get(NewC); 4120 } 4121 4122 if (Value *V = 4123 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4124 return V; 4125 4126 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4127 return V; 4128 4129 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4130 return V; 4131 4132 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4133 if (Imp) 4134 return *Imp ? TrueVal : FalseVal; 4135 4136 return nullptr; 4137 } 4138 4139 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4140 const SimplifyQuery &Q) { 4141 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4142 } 4143 4144 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4145 /// If not, this returns null. 4146 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4147 const SimplifyQuery &Q, unsigned) { 4148 // The type of the GEP pointer operand. 4149 unsigned AS = 4150 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4151 4152 // getelementptr P -> P. 4153 if (Ops.size() == 1) 4154 return Ops[0]; 4155 4156 // Compute the (pointer) type returned by the GEP instruction. 4157 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4158 Type *GEPTy = PointerType::get(LastType, AS); 4159 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4160 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4161 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4162 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4163 4164 if (Q.isUndefValue(Ops[0])) 4165 return UndefValue::get(GEPTy); 4166 4167 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4168 4169 if (Ops.size() == 2) { 4170 // getelementptr P, 0 -> P. 4171 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4172 return Ops[0]; 4173 4174 Type *Ty = SrcTy; 4175 if (!IsScalableVec && Ty->isSized()) { 4176 Value *P; 4177 uint64_t C; 4178 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4179 // getelementptr P, N -> P if P points to a type of zero size. 4180 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4181 return Ops[0]; 4182 4183 // The following transforms are only safe if the ptrtoint cast 4184 // doesn't truncate the pointers. 4185 if (Ops[1]->getType()->getScalarSizeInBits() == 4186 Q.DL.getPointerSizeInBits(AS)) { 4187 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4188 if (match(P, m_Zero())) 4189 return Constant::getNullValue(GEPTy); 4190 Value *Temp; 4191 if (match(P, m_PtrToInt(m_Value(Temp)))) 4192 if (Temp->getType() == GEPTy) 4193 return Temp; 4194 return nullptr; 4195 }; 4196 4197 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4198 if (TyAllocSize == 1 && 4199 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4200 if (Value *R = PtrToIntOrZero(P)) 4201 return R; 4202 4203 // getelementptr V, (ashr (sub P, V), C) -> Q 4204 // if P points to a type of size 1 << C. 4205 if (match(Ops[1], 4206 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4207 m_ConstantInt(C))) && 4208 TyAllocSize == 1ULL << C) 4209 if (Value *R = PtrToIntOrZero(P)) 4210 return R; 4211 4212 // getelementptr V, (sdiv (sub P, V), C) -> Q 4213 // if P points to a type of size C. 4214 if (match(Ops[1], 4215 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4216 m_SpecificInt(TyAllocSize)))) 4217 if (Value *R = PtrToIntOrZero(P)) 4218 return R; 4219 } 4220 } 4221 } 4222 4223 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4224 all_of(Ops.slice(1).drop_back(1), 4225 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4226 unsigned IdxWidth = 4227 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4228 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4229 APInt BasePtrOffset(IdxWidth, 0); 4230 Value *StrippedBasePtr = 4231 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4232 BasePtrOffset); 4233 4234 // gep (gep V, C), (sub 0, V) -> C 4235 if (match(Ops.back(), 4236 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4237 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4238 return ConstantExpr::getIntToPtr(CI, GEPTy); 4239 } 4240 // gep (gep V, C), (xor V, -1) -> C-1 4241 if (match(Ops.back(), 4242 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4243 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4244 return ConstantExpr::getIntToPtr(CI, GEPTy); 4245 } 4246 } 4247 } 4248 4249 // Check to see if this is constant foldable. 4250 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4251 return nullptr; 4252 4253 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4254 Ops.slice(1)); 4255 return ConstantFoldConstant(CE, Q.DL); 4256 } 4257 4258 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4259 const SimplifyQuery &Q) { 4260 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4261 } 4262 4263 /// Given operands for an InsertValueInst, see if we can fold the result. 4264 /// If not, this returns null. 4265 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4266 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4267 unsigned) { 4268 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4269 if (Constant *CVal = dyn_cast<Constant>(Val)) 4270 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4271 4272 // insertvalue x, undef, n -> x 4273 if (Q.isUndefValue(Val)) 4274 return Agg; 4275 4276 // insertvalue x, (extractvalue y, n), n 4277 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4278 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4279 EV->getIndices() == Idxs) { 4280 // insertvalue undef, (extractvalue y, n), n -> y 4281 if (Q.isUndefValue(Agg)) 4282 return EV->getAggregateOperand(); 4283 4284 // insertvalue y, (extractvalue y, n), n -> y 4285 if (Agg == EV->getAggregateOperand()) 4286 return Agg; 4287 } 4288 4289 return nullptr; 4290 } 4291 4292 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4293 ArrayRef<unsigned> Idxs, 4294 const SimplifyQuery &Q) { 4295 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4296 } 4297 4298 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4299 const SimplifyQuery &Q) { 4300 // Try to constant fold. 4301 auto *VecC = dyn_cast<Constant>(Vec); 4302 auto *ValC = dyn_cast<Constant>(Val); 4303 auto *IdxC = dyn_cast<Constant>(Idx); 4304 if (VecC && ValC && IdxC) 4305 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4306 4307 // For fixed-length vector, fold into undef if index is out of bounds. 4308 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4309 if (isa<FixedVectorType>(Vec->getType()) && 4310 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4311 return UndefValue::get(Vec->getType()); 4312 } 4313 4314 // If index is undef, it might be out of bounds (see above case) 4315 if (Q.isUndefValue(Idx)) 4316 return UndefValue::get(Vec->getType()); 4317 4318 // If the scalar is undef, and there is no risk of propagating poison from the 4319 // vector value, simplify to the vector value. 4320 if (Q.isUndefValue(Val) && 4321 isGuaranteedNotToBeUndefOrPoison(Vec)) 4322 return Vec; 4323 4324 // If we are extracting a value from a vector, then inserting it into the same 4325 // place, that's the input vector: 4326 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4327 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4328 return Vec; 4329 4330 return nullptr; 4331 } 4332 4333 /// Given operands for an ExtractValueInst, see if we can fold the result. 4334 /// If not, this returns null. 4335 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4336 const SimplifyQuery &, unsigned) { 4337 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4338 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4339 4340 // extractvalue x, (insertvalue y, elt, n), n -> elt 4341 unsigned NumIdxs = Idxs.size(); 4342 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4343 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4344 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4345 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4346 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4347 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4348 Idxs.slice(0, NumCommonIdxs)) { 4349 if (NumIdxs == NumInsertValueIdxs) 4350 return IVI->getInsertedValueOperand(); 4351 break; 4352 } 4353 } 4354 4355 return nullptr; 4356 } 4357 4358 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4359 const SimplifyQuery &Q) { 4360 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4361 } 4362 4363 /// Given operands for an ExtractElementInst, see if we can fold the result. 4364 /// If not, this returns null. 4365 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4366 const SimplifyQuery &Q, unsigned) { 4367 auto *VecVTy = cast<VectorType>(Vec->getType()); 4368 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4369 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4370 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4371 4372 // The index is not relevant if our vector is a splat. 4373 if (auto *Splat = CVec->getSplatValue()) 4374 return Splat; 4375 4376 if (Q.isUndefValue(Vec)) 4377 return UndefValue::get(VecVTy->getElementType()); 4378 } 4379 4380 // If extracting a specified index from the vector, see if we can recursively 4381 // find a previously computed scalar that was inserted into the vector. 4382 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4383 // For fixed-length vector, fold into undef if index is out of bounds. 4384 if (isa<FixedVectorType>(VecVTy) && 4385 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4386 return UndefValue::get(VecVTy->getElementType()); 4387 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4388 return Elt; 4389 } 4390 4391 // An undef extract index can be arbitrarily chosen to be an out-of-range 4392 // index value, which would result in the instruction being undef. 4393 if (Q.isUndefValue(Idx)) 4394 return UndefValue::get(VecVTy->getElementType()); 4395 4396 return nullptr; 4397 } 4398 4399 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4400 const SimplifyQuery &Q) { 4401 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4402 } 4403 4404 /// See if we can fold the given phi. If not, returns null. 4405 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4406 // If all of the PHI's incoming values are the same then replace the PHI node 4407 // with the common value. 4408 Value *CommonValue = nullptr; 4409 bool HasUndefInput = false; 4410 for (Value *Incoming : PN->incoming_values()) { 4411 // If the incoming value is the phi node itself, it can safely be skipped. 4412 if (Incoming == PN) continue; 4413 if (Q.isUndefValue(Incoming)) { 4414 // Remember that we saw an undef value, but otherwise ignore them. 4415 HasUndefInput = true; 4416 continue; 4417 } 4418 if (CommonValue && Incoming != CommonValue) 4419 return nullptr; // Not the same, bail out. 4420 CommonValue = Incoming; 4421 } 4422 4423 // If CommonValue is null then all of the incoming values were either undef or 4424 // equal to the phi node itself. 4425 if (!CommonValue) 4426 return UndefValue::get(PN->getType()); 4427 4428 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4429 // instruction, we cannot return X as the result of the PHI node unless it 4430 // dominates the PHI block. 4431 if (HasUndefInput) 4432 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4433 4434 return CommonValue; 4435 } 4436 4437 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4438 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4439 if (auto *C = dyn_cast<Constant>(Op)) 4440 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4441 4442 if (auto *CI = dyn_cast<CastInst>(Op)) { 4443 auto *Src = CI->getOperand(0); 4444 Type *SrcTy = Src->getType(); 4445 Type *MidTy = CI->getType(); 4446 Type *DstTy = Ty; 4447 if (Src->getType() == Ty) { 4448 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4449 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4450 Type *SrcIntPtrTy = 4451 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4452 Type *MidIntPtrTy = 4453 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4454 Type *DstIntPtrTy = 4455 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4456 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4457 SrcIntPtrTy, MidIntPtrTy, 4458 DstIntPtrTy) == Instruction::BitCast) 4459 return Src; 4460 } 4461 } 4462 4463 // bitcast x -> x 4464 if (CastOpc == Instruction::BitCast) 4465 if (Op->getType() == Ty) 4466 return Op; 4467 4468 return nullptr; 4469 } 4470 4471 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4472 const SimplifyQuery &Q) { 4473 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4474 } 4475 4476 /// For the given destination element of a shuffle, peek through shuffles to 4477 /// match a root vector source operand that contains that element in the same 4478 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4479 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4480 int MaskVal, Value *RootVec, 4481 unsigned MaxRecurse) { 4482 if (!MaxRecurse--) 4483 return nullptr; 4484 4485 // Bail out if any mask value is undefined. That kind of shuffle may be 4486 // simplified further based on demanded bits or other folds. 4487 if (MaskVal == -1) 4488 return nullptr; 4489 4490 // The mask value chooses which source operand we need to look at next. 4491 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4492 int RootElt = MaskVal; 4493 Value *SourceOp = Op0; 4494 if (MaskVal >= InVecNumElts) { 4495 RootElt = MaskVal - InVecNumElts; 4496 SourceOp = Op1; 4497 } 4498 4499 // If the source operand is a shuffle itself, look through it to find the 4500 // matching root vector. 4501 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4502 return foldIdentityShuffles( 4503 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4504 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4505 } 4506 4507 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4508 // size? 4509 4510 // The source operand is not a shuffle. Initialize the root vector value for 4511 // this shuffle if that has not been done yet. 4512 if (!RootVec) 4513 RootVec = SourceOp; 4514 4515 // Give up as soon as a source operand does not match the existing root value. 4516 if (RootVec != SourceOp) 4517 return nullptr; 4518 4519 // The element must be coming from the same lane in the source vector 4520 // (although it may have crossed lanes in intermediate shuffles). 4521 if (RootElt != DestElt) 4522 return nullptr; 4523 4524 return RootVec; 4525 } 4526 4527 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4528 ArrayRef<int> Mask, Type *RetTy, 4529 const SimplifyQuery &Q, 4530 unsigned MaxRecurse) { 4531 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4532 return UndefValue::get(RetTy); 4533 4534 auto *InVecTy = cast<VectorType>(Op0->getType()); 4535 unsigned MaskNumElts = Mask.size(); 4536 ElementCount InVecEltCount = InVecTy->getElementCount(); 4537 4538 bool Scalable = InVecEltCount.Scalable; 4539 4540 SmallVector<int, 32> Indices; 4541 Indices.assign(Mask.begin(), Mask.end()); 4542 4543 // Canonicalization: If mask does not select elements from an input vector, 4544 // replace that input vector with undef. 4545 if (!Scalable) { 4546 bool MaskSelects0 = false, MaskSelects1 = false; 4547 unsigned InVecNumElts = InVecEltCount.Min; 4548 for (unsigned i = 0; i != MaskNumElts; ++i) { 4549 if (Indices[i] == -1) 4550 continue; 4551 if ((unsigned)Indices[i] < InVecNumElts) 4552 MaskSelects0 = true; 4553 else 4554 MaskSelects1 = true; 4555 } 4556 if (!MaskSelects0) 4557 Op0 = UndefValue::get(InVecTy); 4558 if (!MaskSelects1) 4559 Op1 = UndefValue::get(InVecTy); 4560 } 4561 4562 auto *Op0Const = dyn_cast<Constant>(Op0); 4563 auto *Op1Const = dyn_cast<Constant>(Op1); 4564 4565 // If all operands are constant, constant fold the shuffle. This 4566 // transformation depends on the value of the mask which is not known at 4567 // compile time for scalable vectors 4568 if (!Scalable && Op0Const && Op1Const) 4569 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4570 4571 // Canonicalization: if only one input vector is constant, it shall be the 4572 // second one. This transformation depends on the value of the mask which 4573 // is not known at compile time for scalable vectors 4574 if (!Scalable && Op0Const && !Op1Const) { 4575 std::swap(Op0, Op1); 4576 ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.Min); 4577 } 4578 4579 // A splat of an inserted scalar constant becomes a vector constant: 4580 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4581 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4582 // original mask constant. 4583 // NOTE: This transformation depends on the value of the mask which is not 4584 // known at compile time for scalable vectors 4585 Constant *C; 4586 ConstantInt *IndexC; 4587 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4588 m_ConstantInt(IndexC)))) { 4589 // Match a splat shuffle mask of the insert index allowing undef elements. 4590 int InsertIndex = IndexC->getZExtValue(); 4591 if (all_of(Indices, [InsertIndex](int MaskElt) { 4592 return MaskElt == InsertIndex || MaskElt == -1; 4593 })) { 4594 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4595 4596 // Shuffle mask undefs become undefined constant result elements. 4597 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4598 for (unsigned i = 0; i != MaskNumElts; ++i) 4599 if (Indices[i] == -1) 4600 VecC[i] = UndefValue::get(C->getType()); 4601 return ConstantVector::get(VecC); 4602 } 4603 } 4604 4605 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4606 // value type is same as the input vectors' type. 4607 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4608 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4609 is_splat(OpShuf->getShuffleMask())) 4610 return Op0; 4611 4612 // All remaining transformation depend on the value of the mask, which is 4613 // not known at compile time for scalable vectors. 4614 if (Scalable) 4615 return nullptr; 4616 4617 // Don't fold a shuffle with undef mask elements. This may get folded in a 4618 // better way using demanded bits or other analysis. 4619 // TODO: Should we allow this? 4620 if (find(Indices, -1) != Indices.end()) 4621 return nullptr; 4622 4623 // Check if every element of this shuffle can be mapped back to the 4624 // corresponding element of a single root vector. If so, we don't need this 4625 // shuffle. This handles simple identity shuffles as well as chains of 4626 // shuffles that may widen/narrow and/or move elements across lanes and back. 4627 Value *RootVec = nullptr; 4628 for (unsigned i = 0; i != MaskNumElts; ++i) { 4629 // Note that recursion is limited for each vector element, so if any element 4630 // exceeds the limit, this will fail to simplify. 4631 RootVec = 4632 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4633 4634 // We can't replace a widening/narrowing shuffle with one of its operands. 4635 if (!RootVec || RootVec->getType() != RetTy) 4636 return nullptr; 4637 } 4638 return RootVec; 4639 } 4640 4641 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4642 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4643 ArrayRef<int> Mask, Type *RetTy, 4644 const SimplifyQuery &Q) { 4645 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4646 } 4647 4648 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4649 Value *&Op, const SimplifyQuery &Q) { 4650 if (auto *C = dyn_cast<Constant>(Op)) 4651 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4652 return nullptr; 4653 } 4654 4655 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4656 /// returns null. 4657 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4658 const SimplifyQuery &Q, unsigned MaxRecurse) { 4659 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4660 return C; 4661 4662 Value *X; 4663 // fneg (fneg X) ==> X 4664 if (match(Op, m_FNeg(m_Value(X)))) 4665 return X; 4666 4667 return nullptr; 4668 } 4669 4670 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4671 const SimplifyQuery &Q) { 4672 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4673 } 4674 4675 static Constant *propagateNaN(Constant *In) { 4676 // If the input is a vector with undef elements, just return a default NaN. 4677 if (!In->isNaN()) 4678 return ConstantFP::getNaN(In->getType()); 4679 4680 // Propagate the existing NaN constant when possible. 4681 // TODO: Should we quiet a signaling NaN? 4682 return In; 4683 } 4684 4685 /// Perform folds that are common to any floating-point operation. This implies 4686 /// transforms based on undef/NaN because the operation itself makes no 4687 /// difference to the result. 4688 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4689 FastMathFlags FMF, 4690 const SimplifyQuery &Q) { 4691 for (Value *V : Ops) { 4692 bool IsNan = match(V, m_NaN()); 4693 bool IsInf = match(V, m_Inf()); 4694 bool IsUndef = Q.isUndefValue(V); 4695 4696 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4697 // (an undef operand can be chosen to be Nan/Inf), then the result of 4698 // this operation is poison. That result can be relaxed to undef. 4699 if (FMF.noNaNs() && (IsNan || IsUndef)) 4700 return UndefValue::get(V->getType()); 4701 if (FMF.noInfs() && (IsInf || IsUndef)) 4702 return UndefValue::get(V->getType()); 4703 4704 if (IsUndef || IsNan) 4705 return propagateNaN(cast<Constant>(V)); 4706 } 4707 return nullptr; 4708 } 4709 4710 /// Given operands for an FAdd, see if we can fold the result. If not, this 4711 /// returns null. 4712 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4713 const SimplifyQuery &Q, unsigned MaxRecurse) { 4714 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4715 return C; 4716 4717 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4718 return C; 4719 4720 // fadd X, -0 ==> X 4721 if (match(Op1, m_NegZeroFP())) 4722 return Op0; 4723 4724 // fadd X, 0 ==> X, when we know X is not -0 4725 if (match(Op1, m_PosZeroFP()) && 4726 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4727 return Op0; 4728 4729 // With nnan: -X + X --> 0.0 (and commuted variant) 4730 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4731 // Negative zeros are allowed because we always end up with positive zero: 4732 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4733 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4734 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4735 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4736 if (FMF.noNaNs()) { 4737 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4738 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4739 return ConstantFP::getNullValue(Op0->getType()); 4740 4741 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4742 match(Op1, m_FNeg(m_Specific(Op0)))) 4743 return ConstantFP::getNullValue(Op0->getType()); 4744 } 4745 4746 // (X - Y) + Y --> X 4747 // Y + (X - Y) --> X 4748 Value *X; 4749 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4750 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4751 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4752 return X; 4753 4754 return nullptr; 4755 } 4756 4757 /// Given operands for an FSub, see if we can fold the result. If not, this 4758 /// returns null. 4759 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4760 const SimplifyQuery &Q, unsigned MaxRecurse) { 4761 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4762 return C; 4763 4764 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4765 return C; 4766 4767 // fsub X, +0 ==> X 4768 if (match(Op1, m_PosZeroFP())) 4769 return Op0; 4770 4771 // fsub X, -0 ==> X, when we know X is not -0 4772 if (match(Op1, m_NegZeroFP()) && 4773 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4774 return Op0; 4775 4776 // fsub -0.0, (fsub -0.0, X) ==> X 4777 // fsub -0.0, (fneg X) ==> X 4778 Value *X; 4779 if (match(Op0, m_NegZeroFP()) && 4780 match(Op1, m_FNeg(m_Value(X)))) 4781 return X; 4782 4783 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4784 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4785 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4786 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4787 match(Op1, m_FNeg(m_Value(X))))) 4788 return X; 4789 4790 // fsub nnan x, x ==> 0.0 4791 if (FMF.noNaNs() && Op0 == Op1) 4792 return Constant::getNullValue(Op0->getType()); 4793 4794 // Y - (Y - X) --> X 4795 // (X + Y) - Y --> X 4796 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4797 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4798 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4799 return X; 4800 4801 return nullptr; 4802 } 4803 4804 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4805 const SimplifyQuery &Q, unsigned MaxRecurse) { 4806 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4807 return C; 4808 4809 // fmul X, 1.0 ==> X 4810 if (match(Op1, m_FPOne())) 4811 return Op0; 4812 4813 // fmul 1.0, X ==> X 4814 if (match(Op0, m_FPOne())) 4815 return Op1; 4816 4817 // fmul nnan nsz X, 0 ==> 0 4818 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4819 return ConstantFP::getNullValue(Op0->getType()); 4820 4821 // fmul nnan nsz 0, X ==> 0 4822 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4823 return ConstantFP::getNullValue(Op1->getType()); 4824 4825 // sqrt(X) * sqrt(X) --> X, if we can: 4826 // 1. Remove the intermediate rounding (reassociate). 4827 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4828 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4829 Value *X; 4830 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4831 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4832 return X; 4833 4834 return nullptr; 4835 } 4836 4837 /// Given the operands for an FMul, see if we can fold the result 4838 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4839 const SimplifyQuery &Q, unsigned MaxRecurse) { 4840 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4841 return C; 4842 4843 // Now apply simplifications that do not require rounding. 4844 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4845 } 4846 4847 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4848 const SimplifyQuery &Q) { 4849 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4850 } 4851 4852 4853 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4854 const SimplifyQuery &Q) { 4855 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4856 } 4857 4858 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4859 const SimplifyQuery &Q) { 4860 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4861 } 4862 4863 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4864 const SimplifyQuery &Q) { 4865 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4866 } 4867 4868 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4869 const SimplifyQuery &Q, unsigned) { 4870 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4871 return C; 4872 4873 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4874 return C; 4875 4876 // X / 1.0 -> X 4877 if (match(Op1, m_FPOne())) 4878 return Op0; 4879 4880 // 0 / X -> 0 4881 // Requires that NaNs are off (X could be zero) and signed zeroes are 4882 // ignored (X could be positive or negative, so the output sign is unknown). 4883 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4884 return ConstantFP::getNullValue(Op0->getType()); 4885 4886 if (FMF.noNaNs()) { 4887 // X / X -> 1.0 is legal when NaNs are ignored. 4888 // We can ignore infinities because INF/INF is NaN. 4889 if (Op0 == Op1) 4890 return ConstantFP::get(Op0->getType(), 1.0); 4891 4892 // (X * Y) / Y --> X if we can reassociate to the above form. 4893 Value *X; 4894 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4895 return X; 4896 4897 // -X / X -> -1.0 and 4898 // X / -X -> -1.0 are legal when NaNs are ignored. 4899 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4900 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4901 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4902 return ConstantFP::get(Op0->getType(), -1.0); 4903 } 4904 4905 return nullptr; 4906 } 4907 4908 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4909 const SimplifyQuery &Q) { 4910 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4911 } 4912 4913 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4914 const SimplifyQuery &Q, unsigned) { 4915 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4916 return C; 4917 4918 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4919 return C; 4920 4921 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4922 // The constant match may include undef elements in a vector, so return a full 4923 // zero constant as the result. 4924 if (FMF.noNaNs()) { 4925 // +0 % X -> 0 4926 if (match(Op0, m_PosZeroFP())) 4927 return ConstantFP::getNullValue(Op0->getType()); 4928 // -0 % X -> -0 4929 if (match(Op0, m_NegZeroFP())) 4930 return ConstantFP::getNegativeZero(Op0->getType()); 4931 } 4932 4933 return nullptr; 4934 } 4935 4936 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4937 const SimplifyQuery &Q) { 4938 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4939 } 4940 4941 //=== Helper functions for higher up the class hierarchy. 4942 4943 /// Given the operand for a UnaryOperator, see if we can fold the result. 4944 /// If not, this returns null. 4945 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4946 unsigned MaxRecurse) { 4947 switch (Opcode) { 4948 case Instruction::FNeg: 4949 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4950 default: 4951 llvm_unreachable("Unexpected opcode"); 4952 } 4953 } 4954 4955 /// Given the operand for a UnaryOperator, see if we can fold the result. 4956 /// If not, this returns null. 4957 /// Try to use FastMathFlags when folding the result. 4958 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4959 const FastMathFlags &FMF, 4960 const SimplifyQuery &Q, unsigned MaxRecurse) { 4961 switch (Opcode) { 4962 case Instruction::FNeg: 4963 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4964 default: 4965 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4966 } 4967 } 4968 4969 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4970 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4971 } 4972 4973 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4974 const SimplifyQuery &Q) { 4975 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4976 } 4977 4978 /// Given operands for a BinaryOperator, see if we can fold the result. 4979 /// If not, this returns null. 4980 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4981 const SimplifyQuery &Q, unsigned MaxRecurse) { 4982 switch (Opcode) { 4983 case Instruction::Add: 4984 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4985 case Instruction::Sub: 4986 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4987 case Instruction::Mul: 4988 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4989 case Instruction::SDiv: 4990 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4991 case Instruction::UDiv: 4992 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4993 case Instruction::SRem: 4994 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4995 case Instruction::URem: 4996 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4997 case Instruction::Shl: 4998 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4999 case Instruction::LShr: 5000 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5001 case Instruction::AShr: 5002 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5003 case Instruction::And: 5004 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5005 case Instruction::Or: 5006 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5007 case Instruction::Xor: 5008 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5009 case Instruction::FAdd: 5010 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5011 case Instruction::FSub: 5012 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5013 case Instruction::FMul: 5014 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5015 case Instruction::FDiv: 5016 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5017 case Instruction::FRem: 5018 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5019 default: 5020 llvm_unreachable("Unexpected opcode"); 5021 } 5022 } 5023 5024 /// Given operands for a BinaryOperator, see if we can fold the result. 5025 /// If not, this returns null. 5026 /// Try to use FastMathFlags when folding the result. 5027 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5028 const FastMathFlags &FMF, const SimplifyQuery &Q, 5029 unsigned MaxRecurse) { 5030 switch (Opcode) { 5031 case Instruction::FAdd: 5032 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5033 case Instruction::FSub: 5034 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5035 case Instruction::FMul: 5036 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5037 case Instruction::FDiv: 5038 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5039 default: 5040 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5041 } 5042 } 5043 5044 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5045 const SimplifyQuery &Q) { 5046 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5047 } 5048 5049 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5050 FastMathFlags FMF, const SimplifyQuery &Q) { 5051 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5052 } 5053 5054 /// Given operands for a CmpInst, see if we can fold the result. 5055 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5056 const SimplifyQuery &Q, unsigned MaxRecurse) { 5057 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5058 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5059 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5060 } 5061 5062 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5063 const SimplifyQuery &Q) { 5064 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5065 } 5066 5067 static bool IsIdempotent(Intrinsic::ID ID) { 5068 switch (ID) { 5069 default: return false; 5070 5071 // Unary idempotent: f(f(x)) = f(x) 5072 case Intrinsic::fabs: 5073 case Intrinsic::floor: 5074 case Intrinsic::ceil: 5075 case Intrinsic::trunc: 5076 case Intrinsic::rint: 5077 case Intrinsic::nearbyint: 5078 case Intrinsic::round: 5079 case Intrinsic::roundeven: 5080 case Intrinsic::canonicalize: 5081 return true; 5082 } 5083 } 5084 5085 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5086 const DataLayout &DL) { 5087 GlobalValue *PtrSym; 5088 APInt PtrOffset; 5089 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5090 return nullptr; 5091 5092 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5093 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5094 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5095 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5096 5097 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5098 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5099 return nullptr; 5100 5101 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5102 if (OffsetInt % 4 != 0) 5103 return nullptr; 5104 5105 Constant *C = ConstantExpr::getGetElementPtr( 5106 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5107 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5108 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5109 if (!Loaded) 5110 return nullptr; 5111 5112 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5113 if (!LoadedCE) 5114 return nullptr; 5115 5116 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5117 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5118 if (!LoadedCE) 5119 return nullptr; 5120 } 5121 5122 if (LoadedCE->getOpcode() != Instruction::Sub) 5123 return nullptr; 5124 5125 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5126 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5127 return nullptr; 5128 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5129 5130 Constant *LoadedRHS = LoadedCE->getOperand(1); 5131 GlobalValue *LoadedRHSSym; 5132 APInt LoadedRHSOffset; 5133 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5134 DL) || 5135 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5136 return nullptr; 5137 5138 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5139 } 5140 5141 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5142 const SimplifyQuery &Q) { 5143 // Idempotent functions return the same result when called repeatedly. 5144 Intrinsic::ID IID = F->getIntrinsicID(); 5145 if (IsIdempotent(IID)) 5146 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5147 if (II->getIntrinsicID() == IID) 5148 return II; 5149 5150 Value *X; 5151 switch (IID) { 5152 case Intrinsic::fabs: 5153 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5154 break; 5155 case Intrinsic::bswap: 5156 // bswap(bswap(x)) -> x 5157 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5158 break; 5159 case Intrinsic::bitreverse: 5160 // bitreverse(bitreverse(x)) -> x 5161 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5162 break; 5163 case Intrinsic::exp: 5164 // exp(log(x)) -> x 5165 if (Q.CxtI->hasAllowReassoc() && 5166 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5167 break; 5168 case Intrinsic::exp2: 5169 // exp2(log2(x)) -> x 5170 if (Q.CxtI->hasAllowReassoc() && 5171 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5172 break; 5173 case Intrinsic::log: 5174 // log(exp(x)) -> x 5175 if (Q.CxtI->hasAllowReassoc() && 5176 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5177 break; 5178 case Intrinsic::log2: 5179 // log2(exp2(x)) -> x 5180 if (Q.CxtI->hasAllowReassoc() && 5181 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5182 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5183 m_Value(X))))) return X; 5184 break; 5185 case Intrinsic::log10: 5186 // log10(pow(10.0, x)) -> x 5187 if (Q.CxtI->hasAllowReassoc() && 5188 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5189 m_Value(X)))) return X; 5190 break; 5191 case Intrinsic::floor: 5192 case Intrinsic::trunc: 5193 case Intrinsic::ceil: 5194 case Intrinsic::round: 5195 case Intrinsic::roundeven: 5196 case Intrinsic::nearbyint: 5197 case Intrinsic::rint: { 5198 // floor (sitofp x) -> sitofp x 5199 // floor (uitofp x) -> uitofp x 5200 // 5201 // Converting from int always results in a finite integral number or 5202 // infinity. For either of those inputs, these rounding functions always 5203 // return the same value, so the rounding can be eliminated. 5204 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5205 return Op0; 5206 break; 5207 } 5208 default: 5209 break; 5210 } 5211 5212 return nullptr; 5213 } 5214 5215 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5216 switch (IID) { 5217 case Intrinsic::smax: return Intrinsic::smin; 5218 case Intrinsic::smin: return Intrinsic::smax; 5219 case Intrinsic::umax: return Intrinsic::umin; 5220 case Intrinsic::umin: return Intrinsic::umax; 5221 default: llvm_unreachable("Unexpected intrinsic"); 5222 } 5223 } 5224 5225 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5226 switch (IID) { 5227 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5228 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5229 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5230 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5231 default: llvm_unreachable("Unexpected intrinsic"); 5232 } 5233 } 5234 5235 /// Given a min/max intrinsic, see if it can be removed based on having an 5236 /// operand that is another min/max intrinsic with shared operand(s). The caller 5237 /// is expected to swap the operand arguments to handle commutation. 5238 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5239 Value *X, *Y; 5240 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5241 return nullptr; 5242 5243 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5244 if (!MM0) 5245 return nullptr; 5246 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5247 5248 if (Op1 == X || Op1 == Y || 5249 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5250 // max (max X, Y), X --> max X, Y 5251 if (IID0 == IID) 5252 return MM0; 5253 // max (min X, Y), X --> X 5254 if (IID0 == getMaxMinOpposite(IID)) 5255 return Op1; 5256 } 5257 return nullptr; 5258 } 5259 5260 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5261 const SimplifyQuery &Q) { 5262 Intrinsic::ID IID = F->getIntrinsicID(); 5263 Type *ReturnType = F->getReturnType(); 5264 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5265 switch (IID) { 5266 case Intrinsic::abs: 5267 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5268 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5269 // on the outer abs. 5270 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5271 return Op0; 5272 // If the sign bit is clear already, then abs does not do anything. 5273 if (isKnownNonNegative(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5274 return Op0; 5275 break; 5276 5277 case Intrinsic::smax: 5278 case Intrinsic::smin: 5279 case Intrinsic::umax: 5280 case Intrinsic::umin: { 5281 // If the arguments are the same, this is a no-op. 5282 if (Op0 == Op1) 5283 return Op0; 5284 5285 // Canonicalize constant operand as Op1. 5286 if (isa<Constant>(Op0)) 5287 std::swap(Op0, Op1); 5288 5289 // Assume undef is the limit value. 5290 if (Q.isUndefValue(Op1)) 5291 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5292 5293 const APInt *C; 5294 if (match(Op1, m_APIntAllowUndef(C))) { 5295 // Clamp to limit value. For example: 5296 // umax(i8 %x, i8 255) --> 255 5297 if (*C == getMaxMinLimit(IID, BitWidth)) 5298 return ConstantInt::get(ReturnType, *C); 5299 5300 // If the constant op is the opposite of the limit value, the other must 5301 // be larger/smaller or equal. For example: 5302 // umin(i8 %x, i8 255) --> %x 5303 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5304 return Op0; 5305 5306 // Remove nested call if constant operands allow it. Example: 5307 // max (max X, 7), 5 -> max X, 7 5308 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5309 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5310 // TODO: loosen undef/splat restrictions for vector constants. 5311 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5312 const APInt *InnerC; 5313 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5314 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5315 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5316 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5317 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5318 return Op0; 5319 } 5320 } 5321 5322 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5323 return V; 5324 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5325 return V; 5326 5327 break; 5328 } 5329 case Intrinsic::usub_with_overflow: 5330 case Intrinsic::ssub_with_overflow: 5331 // X - X -> { 0, false } 5332 if (Op0 == Op1) 5333 return Constant::getNullValue(ReturnType); 5334 LLVM_FALLTHROUGH; 5335 case Intrinsic::uadd_with_overflow: 5336 case Intrinsic::sadd_with_overflow: 5337 // X - undef -> { undef, false } 5338 // undef - X -> { undef, false } 5339 // X + undef -> { undef, false } 5340 // undef + x -> { undef, false } 5341 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5342 return ConstantStruct::get( 5343 cast<StructType>(ReturnType), 5344 {UndefValue::get(ReturnType->getStructElementType(0)), 5345 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5346 } 5347 break; 5348 case Intrinsic::umul_with_overflow: 5349 case Intrinsic::smul_with_overflow: 5350 // 0 * X -> { 0, false } 5351 // X * 0 -> { 0, false } 5352 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5353 return Constant::getNullValue(ReturnType); 5354 // undef * X -> { 0, false } 5355 // X * undef -> { 0, false } 5356 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5357 return Constant::getNullValue(ReturnType); 5358 break; 5359 case Intrinsic::uadd_sat: 5360 // sat(MAX + X) -> MAX 5361 // sat(X + MAX) -> MAX 5362 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5363 return Constant::getAllOnesValue(ReturnType); 5364 LLVM_FALLTHROUGH; 5365 case Intrinsic::sadd_sat: 5366 // sat(X + undef) -> -1 5367 // sat(undef + X) -> -1 5368 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5369 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5370 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5371 return Constant::getAllOnesValue(ReturnType); 5372 5373 // X + 0 -> X 5374 if (match(Op1, m_Zero())) 5375 return Op0; 5376 // 0 + X -> X 5377 if (match(Op0, m_Zero())) 5378 return Op1; 5379 break; 5380 case Intrinsic::usub_sat: 5381 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5382 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5383 return Constant::getNullValue(ReturnType); 5384 LLVM_FALLTHROUGH; 5385 case Intrinsic::ssub_sat: 5386 // X - X -> 0, X - undef -> 0, undef - X -> 0 5387 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5388 return Constant::getNullValue(ReturnType); 5389 // X - 0 -> X 5390 if (match(Op1, m_Zero())) 5391 return Op0; 5392 break; 5393 case Intrinsic::load_relative: 5394 if (auto *C0 = dyn_cast<Constant>(Op0)) 5395 if (auto *C1 = dyn_cast<Constant>(Op1)) 5396 return SimplifyRelativeLoad(C0, C1, Q.DL); 5397 break; 5398 case Intrinsic::powi: 5399 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5400 // powi(x, 0) -> 1.0 5401 if (Power->isZero()) 5402 return ConstantFP::get(Op0->getType(), 1.0); 5403 // powi(x, 1) -> x 5404 if (Power->isOne()) 5405 return Op0; 5406 } 5407 break; 5408 case Intrinsic::copysign: 5409 // copysign X, X --> X 5410 if (Op0 == Op1) 5411 return Op0; 5412 // copysign -X, X --> X 5413 // copysign X, -X --> -X 5414 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5415 match(Op1, m_FNeg(m_Specific(Op0)))) 5416 return Op1; 5417 break; 5418 case Intrinsic::maxnum: 5419 case Intrinsic::minnum: 5420 case Intrinsic::maximum: 5421 case Intrinsic::minimum: { 5422 // If the arguments are the same, this is a no-op. 5423 if (Op0 == Op1) return Op0; 5424 5425 // If one argument is undef, return the other argument. 5426 if (Q.isUndefValue(Op0)) 5427 return Op1; 5428 if (Q.isUndefValue(Op1)) 5429 return Op0; 5430 5431 // If one argument is NaN, return other or NaN appropriately. 5432 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5433 if (match(Op0, m_NaN())) 5434 return PropagateNaN ? Op0 : Op1; 5435 if (match(Op1, m_NaN())) 5436 return PropagateNaN ? Op1 : Op0; 5437 5438 // Min/max of the same operation with common operand: 5439 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5440 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5441 if (M0->getIntrinsicID() == IID && 5442 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5443 return Op0; 5444 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5445 if (M1->getIntrinsicID() == IID && 5446 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5447 return Op1; 5448 5449 // min(X, -Inf) --> -Inf (and commuted variant) 5450 // max(X, +Inf) --> +Inf (and commuted variant) 5451 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5452 const APFloat *C; 5453 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5454 C->isNegative() == UseNegInf) || 5455 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5456 C->isNegative() == UseNegInf)) 5457 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5458 5459 // TODO: minnum(nnan x, inf) -> x 5460 // TODO: minnum(nnan ninf x, flt_max) -> x 5461 // TODO: maxnum(nnan x, -inf) -> x 5462 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5463 break; 5464 } 5465 default: 5466 break; 5467 } 5468 5469 return nullptr; 5470 } 5471 5472 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5473 5474 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5475 unsigned NumOperands = Call->getNumArgOperands(); 5476 if (!NumOperands) 5477 return nullptr; 5478 5479 Function *F = cast<Function>(Call->getCalledFunction()); 5480 Intrinsic::ID IID = F->getIntrinsicID(); 5481 if (NumOperands == 1) 5482 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5483 5484 if (NumOperands == 2) 5485 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5486 Call->getArgOperand(1), Q); 5487 5488 // Handle intrinsics with 3 or more arguments. 5489 switch (IID) { 5490 case Intrinsic::masked_load: 5491 case Intrinsic::masked_gather: { 5492 Value *MaskArg = Call->getArgOperand(2); 5493 Value *PassthruArg = Call->getArgOperand(3); 5494 // If the mask is all zeros or undef, the "passthru" argument is the result. 5495 if (maskIsAllZeroOrUndef(MaskArg)) 5496 return PassthruArg; 5497 return nullptr; 5498 } 5499 case Intrinsic::fshl: 5500 case Intrinsic::fshr: { 5501 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5502 *ShAmtArg = Call->getArgOperand(2); 5503 5504 // If both operands are undef, the result is undef. 5505 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5506 return UndefValue::get(F->getReturnType()); 5507 5508 // If shift amount is undef, assume it is zero. 5509 if (Q.isUndefValue(ShAmtArg)) 5510 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5511 5512 const APInt *ShAmtC; 5513 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5514 // If there's effectively no shift, return the 1st arg or 2nd arg. 5515 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5516 if (ShAmtC->urem(BitWidth).isNullValue()) 5517 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5518 } 5519 return nullptr; 5520 } 5521 case Intrinsic::fma: 5522 case Intrinsic::fmuladd: { 5523 Value *Op0 = Call->getArgOperand(0); 5524 Value *Op1 = Call->getArgOperand(1); 5525 Value *Op2 = Call->getArgOperand(2); 5526 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5527 return V; 5528 return nullptr; 5529 } 5530 default: 5531 return nullptr; 5532 } 5533 } 5534 5535 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5536 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5537 if (!F || !canConstantFoldCallTo(Call, F)) 5538 return nullptr; 5539 5540 SmallVector<Constant *, 4> ConstantArgs; 5541 unsigned NumArgs = Call->getNumArgOperands(); 5542 ConstantArgs.reserve(NumArgs); 5543 for (auto &Arg : Call->args()) { 5544 Constant *C = dyn_cast<Constant>(&Arg); 5545 if (!C) { 5546 if (isa<MetadataAsValue>(Arg.get())) 5547 continue; 5548 return nullptr; 5549 } 5550 ConstantArgs.push_back(C); 5551 } 5552 5553 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5554 } 5555 5556 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5557 // musttail calls can only be simplified if they are also DCEd. 5558 // As we can't guarantee this here, don't simplify them. 5559 if (Call->isMustTailCall()) 5560 return nullptr; 5561 5562 // call undef -> undef 5563 // call null -> undef 5564 Value *Callee = Call->getCalledOperand(); 5565 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5566 return UndefValue::get(Call->getType()); 5567 5568 if (Value *V = tryConstantFoldCall(Call, Q)) 5569 return V; 5570 5571 auto *F = dyn_cast<Function>(Callee); 5572 if (F && F->isIntrinsic()) 5573 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5574 return Ret; 5575 5576 return nullptr; 5577 } 5578 5579 /// Given operands for a Freeze, see if we can fold the result. 5580 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5581 // Use a utility function defined in ValueTracking. 5582 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.CxtI, Q.DT)) 5583 return Op0; 5584 // We have room for improvement. 5585 return nullptr; 5586 } 5587 5588 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5589 return ::SimplifyFreezeInst(Op0, Q); 5590 } 5591 5592 /// See if we can compute a simplified version of this instruction. 5593 /// If not, this returns null. 5594 5595 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5596 OptimizationRemarkEmitter *ORE) { 5597 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5598 Value *Result; 5599 5600 switch (I->getOpcode()) { 5601 default: 5602 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5603 break; 5604 case Instruction::FNeg: 5605 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5606 break; 5607 case Instruction::FAdd: 5608 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5609 I->getFastMathFlags(), Q); 5610 break; 5611 case Instruction::Add: 5612 Result = 5613 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5614 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5615 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5616 break; 5617 case Instruction::FSub: 5618 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5619 I->getFastMathFlags(), Q); 5620 break; 5621 case Instruction::Sub: 5622 Result = 5623 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5624 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5625 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5626 break; 5627 case Instruction::FMul: 5628 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5629 I->getFastMathFlags(), Q); 5630 break; 5631 case Instruction::Mul: 5632 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5633 break; 5634 case Instruction::SDiv: 5635 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5636 break; 5637 case Instruction::UDiv: 5638 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5639 break; 5640 case Instruction::FDiv: 5641 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5642 I->getFastMathFlags(), Q); 5643 break; 5644 case Instruction::SRem: 5645 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5646 break; 5647 case Instruction::URem: 5648 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5649 break; 5650 case Instruction::FRem: 5651 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5652 I->getFastMathFlags(), Q); 5653 break; 5654 case Instruction::Shl: 5655 Result = 5656 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5657 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5658 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5659 break; 5660 case Instruction::LShr: 5661 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5662 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5663 break; 5664 case Instruction::AShr: 5665 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5666 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5667 break; 5668 case Instruction::And: 5669 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5670 break; 5671 case Instruction::Or: 5672 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5673 break; 5674 case Instruction::Xor: 5675 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5676 break; 5677 case Instruction::ICmp: 5678 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5679 I->getOperand(0), I->getOperand(1), Q); 5680 break; 5681 case Instruction::FCmp: 5682 Result = 5683 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5684 I->getOperand(1), I->getFastMathFlags(), Q); 5685 break; 5686 case Instruction::Select: 5687 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5688 I->getOperand(2), Q); 5689 break; 5690 case Instruction::GetElementPtr: { 5691 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5692 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5693 Ops, Q); 5694 break; 5695 } 5696 case Instruction::InsertValue: { 5697 InsertValueInst *IV = cast<InsertValueInst>(I); 5698 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5699 IV->getInsertedValueOperand(), 5700 IV->getIndices(), Q); 5701 break; 5702 } 5703 case Instruction::InsertElement: { 5704 auto *IE = cast<InsertElementInst>(I); 5705 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5706 IE->getOperand(2), Q); 5707 break; 5708 } 5709 case Instruction::ExtractValue: { 5710 auto *EVI = cast<ExtractValueInst>(I); 5711 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5712 EVI->getIndices(), Q); 5713 break; 5714 } 5715 case Instruction::ExtractElement: { 5716 auto *EEI = cast<ExtractElementInst>(I); 5717 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5718 EEI->getIndexOperand(), Q); 5719 break; 5720 } 5721 case Instruction::ShuffleVector: { 5722 auto *SVI = cast<ShuffleVectorInst>(I); 5723 Result = 5724 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5725 SVI->getShuffleMask(), SVI->getType(), Q); 5726 break; 5727 } 5728 case Instruction::PHI: 5729 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5730 break; 5731 case Instruction::Call: { 5732 Result = SimplifyCall(cast<CallInst>(I), Q); 5733 break; 5734 } 5735 case Instruction::Freeze: 5736 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5737 break; 5738 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5739 #include "llvm/IR/Instruction.def" 5740 #undef HANDLE_CAST_INST 5741 Result = 5742 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5743 break; 5744 case Instruction::Alloca: 5745 // No simplifications for Alloca and it can't be constant folded. 5746 Result = nullptr; 5747 break; 5748 } 5749 5750 /// If called on unreachable code, the above logic may report that the 5751 /// instruction simplified to itself. Make life easier for users by 5752 /// detecting that case here, returning a safe value instead. 5753 return Result == I ? UndefValue::get(I->getType()) : Result; 5754 } 5755 5756 /// Implementation of recursive simplification through an instruction's 5757 /// uses. 5758 /// 5759 /// This is the common implementation of the recursive simplification routines. 5760 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5761 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5762 /// instructions to process and attempt to simplify it using 5763 /// InstructionSimplify. Recursively visited users which could not be 5764 /// simplified themselves are to the optional UnsimplifiedUsers set for 5765 /// further processing by the caller. 5766 /// 5767 /// This routine returns 'true' only when *it* simplifies something. The passed 5768 /// in simplified value does not count toward this. 5769 static bool replaceAndRecursivelySimplifyImpl( 5770 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5771 const DominatorTree *DT, AssumptionCache *AC, 5772 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5773 bool Simplified = false; 5774 SmallSetVector<Instruction *, 8> Worklist; 5775 const DataLayout &DL = I->getModule()->getDataLayout(); 5776 5777 // If we have an explicit value to collapse to, do that round of the 5778 // simplification loop by hand initially. 5779 if (SimpleV) { 5780 for (User *U : I->users()) 5781 if (U != I) 5782 Worklist.insert(cast<Instruction>(U)); 5783 5784 // Replace the instruction with its simplified value. 5785 I->replaceAllUsesWith(SimpleV); 5786 5787 // Gracefully handle edge cases where the instruction is not wired into any 5788 // parent block. 5789 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5790 !I->mayHaveSideEffects()) 5791 I->eraseFromParent(); 5792 } else { 5793 Worklist.insert(I); 5794 } 5795 5796 // Note that we must test the size on each iteration, the worklist can grow. 5797 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5798 I = Worklist[Idx]; 5799 5800 // See if this instruction simplifies. 5801 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5802 if (!SimpleV) { 5803 if (UnsimplifiedUsers) 5804 UnsimplifiedUsers->insert(I); 5805 continue; 5806 } 5807 5808 Simplified = true; 5809 5810 // Stash away all the uses of the old instruction so we can check them for 5811 // recursive simplifications after a RAUW. This is cheaper than checking all 5812 // uses of To on the recursive step in most cases. 5813 for (User *U : I->users()) 5814 Worklist.insert(cast<Instruction>(U)); 5815 5816 // Replace the instruction with its simplified value. 5817 I->replaceAllUsesWith(SimpleV); 5818 5819 // Gracefully handle edge cases where the instruction is not wired into any 5820 // parent block. 5821 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5822 !I->mayHaveSideEffects()) 5823 I->eraseFromParent(); 5824 } 5825 return Simplified; 5826 } 5827 5828 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5829 const TargetLibraryInfo *TLI, 5830 const DominatorTree *DT, 5831 AssumptionCache *AC) { 5832 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5833 } 5834 5835 bool llvm::replaceAndRecursivelySimplify( 5836 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5837 const DominatorTree *DT, AssumptionCache *AC, 5838 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5839 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5840 assert(SimpleV && "Must provide a simplified value."); 5841 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5842 UnsimplifiedUsers); 5843 } 5844 5845 namespace llvm { 5846 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5847 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5848 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5849 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5850 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5851 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5852 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5853 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5854 } 5855 5856 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5857 const DataLayout &DL) { 5858 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5859 } 5860 5861 template <class T, class... TArgs> 5862 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5863 Function &F) { 5864 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5865 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5866 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5867 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5868 } 5869 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5870 Function &); 5871 } 5872