1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == Opcode) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->getScalarType()->isPointerTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->getScalarType()->isPointerTy() && 631 "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 635 if (V->getType()->isVectorTy()) 636 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 637 OffsetIntPtr); 638 return OffsetIntPtr; 639 } 640 641 /// \brief Compute the constant difference between two pointer values. 642 /// If the difference is not a constant, returns zero. 643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 644 Value *RHS) { 645 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 646 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 647 648 // If LHS and RHS are not related via constant offsets to the same base 649 // value, there is nothing we can do here. 650 if (LHS != RHS) 651 return nullptr; 652 653 // Otherwise, the difference of LHS - RHS can be computed as: 654 // LHS - RHS 655 // = (LHSOffset + Base) - (RHSOffset + Base) 656 // = LHSOffset - RHSOffset 657 return ConstantExpr::getSub(LHSOffset, RHSOffset); 658 } 659 660 /// Given operands for a Sub, see if we can fold the result. 661 /// If not, this returns null. 662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const SimplifyQuery &Q, unsigned MaxRecurse) { 664 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 665 return C; 666 667 // X - undef -> undef 668 // undef - X -> undef 669 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 670 return UndefValue::get(Op0->getType()); 671 672 // X - 0 -> X 673 if (match(Op1, m_Zero())) 674 return Op0; 675 676 // X - X -> 0 677 if (Op0 == Op1) 678 return Constant::getNullValue(Op0->getType()); 679 680 // Is this a negation? 681 if (match(Op0, m_Zero())) { 682 // 0 - X -> 0 if the sub is NUW. 683 if (isNUW) 684 return Op0; 685 686 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 687 if (Known.Zero.isMaxSignedValue()) { 688 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 689 // Op1 must be 0 because negating the minimum signed value is undefined. 690 if (isNSW) 691 return Op0; 692 693 // 0 - X -> X if X is 0 or the minimum signed value. 694 return Op1; 695 } 696 } 697 698 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 699 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 700 Value *X = nullptr, *Y = nullptr, *Z = Op1; 701 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 702 // See if "V === Y - Z" simplifies. 703 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 704 // It does! Now see if "X + V" simplifies. 705 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 706 // It does, we successfully reassociated! 707 ++NumReassoc; 708 return W; 709 } 710 // See if "V === X - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "Y + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 } 719 720 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 721 // For example, X - (X + 1) -> -1 722 X = Op0; 723 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 724 // See if "V === X - Y" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 726 // It does! Now see if "V - Z" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Y" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 743 // For example, X - (X - Y) -> Y. 744 Z = Op0; 745 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 746 // See if "V === Z - X" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 748 // It does! Now see if "V + Y" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 755 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 756 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 757 match(Op1, m_Trunc(m_Value(Y)))) 758 if (X->getType() == Y->getType()) 759 // See if "V === X - Y" simplifies. 760 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 761 // It does! Now see if "trunc V" simplifies. 762 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 763 Q, MaxRecurse - 1)) 764 // It does, return the simplified "trunc V". 765 return W; 766 767 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 768 if (match(Op0, m_PtrToInt(m_Value(X))) && 769 match(Op1, m_PtrToInt(m_Value(Y)))) 770 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 771 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 772 773 // i1 sub -> xor. 774 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 775 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 776 return V; 777 778 // Threading Sub over selects and phi nodes is pointless, so don't bother. 779 // Threading over the select in "A - select(cond, B, C)" means evaluating 780 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 781 // only if B and C are equal. If B and C are equal then (since we assume 782 // that operands have already been simplified) "select(cond, B, C)" should 783 // have been simplified to the common value of B and C already. Analysing 784 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 785 // for threading over phi nodes. 786 787 return nullptr; 788 } 789 790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 791 const SimplifyQuery &Q) { 792 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 793 } 794 795 /// Given operands for an FAdd, see if we can fold the result. If not, this 796 /// returns null. 797 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 798 const SimplifyQuery &Q, unsigned MaxRecurse) { 799 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 800 return C; 801 802 // fadd X, -0 ==> X 803 if (match(Op1, m_NegZero())) 804 return Op0; 805 806 // fadd X, 0 ==> X, when we know X is not -0 807 if (match(Op1, m_Zero()) && 808 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 809 return Op0; 810 811 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 812 // where nnan and ninf have to occur at least once somewhere in this 813 // expression 814 Value *SubOp = nullptr; 815 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 816 SubOp = Op1; 817 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 818 SubOp = Op0; 819 if (SubOp) { 820 Instruction *FSub = cast<Instruction>(SubOp); 821 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 822 (FMF.noInfs() || FSub->hasNoInfs())) 823 return Constant::getNullValue(Op0->getType()); 824 } 825 826 return nullptr; 827 } 828 829 /// Given operands for an FSub, see if we can fold the result. If not, this 830 /// returns null. 831 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 832 const SimplifyQuery &Q, unsigned MaxRecurse) { 833 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 834 return C; 835 836 // fsub X, 0 ==> X 837 if (match(Op1, m_Zero())) 838 return Op0; 839 840 // fsub X, -0 ==> X, when we know X is not -0 841 if (match(Op1, m_NegZero()) && 842 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 843 return Op0; 844 845 // fsub -0.0, (fsub -0.0, X) ==> X 846 Value *X; 847 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 848 return X; 849 850 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 851 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 852 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 853 return X; 854 855 // fsub nnan x, x ==> 0.0 856 if (FMF.noNaNs() && Op0 == Op1) 857 return Constant::getNullValue(Op0->getType()); 858 859 return nullptr; 860 } 861 862 /// Given the operands for an FMul, see if we can fold the result 863 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 864 const SimplifyQuery &Q, unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 866 return C; 867 868 // fmul X, 1.0 ==> X 869 if (match(Op1, m_FPOne())) 870 return Op0; 871 872 // fmul nnan nsz X, 0 ==> 0 873 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 874 return Op1; 875 876 return nullptr; 877 } 878 879 /// Given operands for a Mul, see if we can fold the result. 880 /// If not, this returns null. 881 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 882 unsigned MaxRecurse) { 883 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 884 return C; 885 886 // X * undef -> 0 887 if (match(Op1, m_Undef())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 0 -> 0 891 if (match(Op1, m_Zero())) 892 return Op1; 893 894 // X * 1 -> X 895 if (match(Op1, m_One())) 896 return Op0; 897 898 // (X / Y) * Y -> X if the division is exact. 899 Value *X = nullptr; 900 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 901 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 902 return X; 903 904 // i1 mul -> and. 905 if (MaxRecurse && Op0->getType()->getScalarType()->isIntegerTy(1)) 906 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 907 return V; 908 909 // Try some generic simplifications for associative operations. 910 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 // Mul distributes over Add. Try some generic simplifications based on this. 915 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 916 Q, MaxRecurse)) 917 return V; 918 919 // If the operation is with the result of a select instruction, check whether 920 // operating on either branch of the select always yields the same value. 921 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 922 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 923 MaxRecurse)) 924 return V; 925 926 // If the operation is with the result of a phi instruction, check whether 927 // operating on all incoming values of the phi always yields the same value. 928 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 929 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 930 MaxRecurse)) 931 return V; 932 933 return nullptr; 934 } 935 936 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 937 const SimplifyQuery &Q) { 938 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 939 } 940 941 942 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 943 const SimplifyQuery &Q) { 944 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 945 } 946 947 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const SimplifyQuery &Q) { 949 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 950 } 951 952 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 953 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 954 } 955 956 /// Check for common or similar folds of integer division or integer remainder. 957 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 958 Type *Ty = Op0->getType(); 959 960 // X / undef -> undef 961 // X % undef -> undef 962 if (match(Op1, m_Undef())) 963 return Op1; 964 965 // X / 0 -> undef 966 // X % 0 -> undef 967 // We don't need to preserve faults! 968 if (match(Op1, m_Zero())) 969 return UndefValue::get(Ty); 970 971 // If any element of a constant divisor vector is zero, the whole op is undef. 972 auto *Op1C = dyn_cast<Constant>(Op1); 973 if (Op1C && Ty->isVectorTy()) { 974 unsigned NumElts = Ty->getVectorNumElements(); 975 for (unsigned i = 0; i != NumElts; ++i) { 976 Constant *Elt = Op1C->getAggregateElement(i); 977 if (Elt && Elt->isNullValue()) 978 return UndefValue::get(Ty); 979 } 980 } 981 982 // undef / X -> 0 983 // undef % X -> 0 984 if (match(Op0, m_Undef())) 985 return Constant::getNullValue(Ty); 986 987 // 0 / X -> 0 988 // 0 % X -> 0 989 if (match(Op0, m_Zero())) 990 return Op0; 991 992 // X / X -> 1 993 // X % X -> 0 994 if (Op0 == Op1) 995 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 996 997 // X / 1 -> X 998 // X % 1 -> 0 999 // If this is a boolean op (single-bit element type), we can't have 1000 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1001 if (match(Op1, m_One()) || Ty->getScalarType()->isIntegerTy(1)) 1002 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1003 1004 return nullptr; 1005 } 1006 1007 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1008 /// If not, this returns null. 1009 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1010 const SimplifyQuery &Q, unsigned MaxRecurse) { 1011 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1012 return C; 1013 1014 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1015 return V; 1016 1017 bool isSigned = Opcode == Instruction::SDiv; 1018 1019 // (X * Y) / Y -> X if the multiplication does not overflow. 1020 Value *X = nullptr, *Y = nullptr; 1021 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1022 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1023 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1024 // If the Mul knows it does not overflow, then we are good to go. 1025 if ((isSigned && Mul->hasNoSignedWrap()) || 1026 (!isSigned && Mul->hasNoUnsignedWrap())) 1027 return X; 1028 // If X has the form X = A / Y then X * Y cannot overflow. 1029 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1030 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1031 return X; 1032 } 1033 1034 // (X rem Y) / Y -> 0 1035 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1036 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1037 return Constant::getNullValue(Op0->getType()); 1038 1039 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1040 ConstantInt *C1, *C2; 1041 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1042 match(Op1, m_ConstantInt(C2))) { 1043 bool Overflow; 1044 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1045 if (Overflow) 1046 return Constant::getNullValue(Op0->getType()); 1047 } 1048 1049 // If the operation is with the result of a select instruction, check whether 1050 // operating on either branch of the select always yields the same value. 1051 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1052 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1053 return V; 1054 1055 // If the operation is with the result of a phi instruction, check whether 1056 // operating on all incoming values of the phi always yields the same value. 1057 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1058 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1059 return V; 1060 1061 return nullptr; 1062 } 1063 1064 /// Given operands for an SDiv, see if we can fold the result. 1065 /// If not, this returns null. 1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1067 unsigned MaxRecurse) { 1068 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1069 return V; 1070 1071 return nullptr; 1072 } 1073 1074 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1075 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1076 } 1077 1078 /// Given operands for a UDiv, see if we can fold the result. 1079 /// If not, this returns null. 1080 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1081 unsigned MaxRecurse) { 1082 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1083 return V; 1084 1085 // udiv %V, C -> 0 if %V < C 1086 if (MaxRecurse) { 1087 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1088 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1089 if (C->isAllOnesValue()) { 1090 return Constant::getNullValue(Op0->getType()); 1091 } 1092 } 1093 } 1094 1095 return nullptr; 1096 } 1097 1098 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1099 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1100 } 1101 1102 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1103 const SimplifyQuery &Q, unsigned) { 1104 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 1105 return C; 1106 1107 // undef / X -> undef (the undef could be a snan). 1108 if (match(Op0, m_Undef())) 1109 return Op0; 1110 1111 // X / undef -> undef 1112 if (match(Op1, m_Undef())) 1113 return Op1; 1114 1115 // X / 1.0 -> X 1116 if (match(Op1, m_FPOne())) 1117 return Op0; 1118 1119 // 0 / X -> 0 1120 // Requires that NaNs are off (X could be zero) and signed zeroes are 1121 // ignored (X could be positive or negative, so the output sign is unknown). 1122 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1123 return Op0; 1124 1125 if (FMF.noNaNs()) { 1126 // X / X -> 1.0 is legal when NaNs are ignored. 1127 if (Op0 == Op1) 1128 return ConstantFP::get(Op0->getType(), 1.0); 1129 1130 // -X / X -> -1.0 and 1131 // X / -X -> -1.0 are legal when NaNs are ignored. 1132 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1133 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1134 BinaryOperator::getFNegArgument(Op0) == Op1) || 1135 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1136 BinaryOperator::getFNegArgument(Op1) == Op0)) 1137 return ConstantFP::get(Op0->getType(), -1.0); 1138 } 1139 1140 return nullptr; 1141 } 1142 1143 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1144 const SimplifyQuery &Q) { 1145 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 1146 } 1147 1148 /// Given operands for an SRem or URem, see if we can fold the result. 1149 /// If not, this returns null. 1150 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1151 const SimplifyQuery &Q, unsigned MaxRecurse) { 1152 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1153 return C; 1154 1155 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1156 return V; 1157 1158 // (X % Y) % Y -> X % Y 1159 if ((Opcode == Instruction::SRem && 1160 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1161 (Opcode == Instruction::URem && 1162 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1163 return Op0; 1164 1165 // If the operation is with the result of a select instruction, check whether 1166 // operating on either branch of the select always yields the same value. 1167 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1168 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1169 return V; 1170 1171 // If the operation is with the result of a phi instruction, check whether 1172 // operating on all incoming values of the phi always yields the same value. 1173 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1174 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1175 return V; 1176 1177 return nullptr; 1178 } 1179 1180 /// Given operands for an SRem, see if we can fold the result. 1181 /// If not, this returns null. 1182 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1183 unsigned MaxRecurse) { 1184 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1185 return V; 1186 1187 return nullptr; 1188 } 1189 1190 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for a URem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1199 return V; 1200 1201 // urem %V, C -> %V if %V < C 1202 if (MaxRecurse) { 1203 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1204 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1205 if (C->isAllOnesValue()) { 1206 return Op0; 1207 } 1208 } 1209 } 1210 1211 return nullptr; 1212 } 1213 1214 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1215 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1216 } 1217 1218 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1219 const SimplifyQuery &Q, unsigned) { 1220 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 1221 return C; 1222 1223 // undef % X -> undef (the undef could be a snan). 1224 if (match(Op0, m_Undef())) 1225 return Op0; 1226 1227 // X % undef -> undef 1228 if (match(Op1, m_Undef())) 1229 return Op1; 1230 1231 // 0 % X -> 0 1232 // Requires that NaNs are off (X could be zero) and signed zeroes are 1233 // ignored (X could be positive or negative, so the output sign is unknown). 1234 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1235 return Op0; 1236 1237 return nullptr; 1238 } 1239 1240 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1241 const SimplifyQuery &Q) { 1242 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 1243 } 1244 1245 /// Returns true if a shift by \c Amount always yields undef. 1246 static bool isUndefShift(Value *Amount) { 1247 Constant *C = dyn_cast<Constant>(Amount); 1248 if (!C) 1249 return false; 1250 1251 // X shift by undef -> undef because it may shift by the bitwidth. 1252 if (isa<UndefValue>(C)) 1253 return true; 1254 1255 // Shifting by the bitwidth or more is undefined. 1256 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1257 if (CI->getValue().getLimitedValue() >= 1258 CI->getType()->getScalarSizeInBits()) 1259 return true; 1260 1261 // If all lanes of a vector shift are undefined the whole shift is. 1262 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1263 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1264 if (!isUndefShift(C->getAggregateElement(I))) 1265 return false; 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1273 /// If not, this returns null. 1274 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1275 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1276 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1277 return C; 1278 1279 // 0 shift by X -> 0 1280 if (match(Op0, m_Zero())) 1281 return Op0; 1282 1283 // X shift by 0 -> X 1284 if (match(Op1, m_Zero())) 1285 return Op0; 1286 1287 // Fold undefined shifts. 1288 if (isUndefShift(Op1)) 1289 return UndefValue::get(Op0->getType()); 1290 1291 // If the operation is with the result of a select instruction, check whether 1292 // operating on either branch of the select always yields the same value. 1293 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1294 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1295 return V; 1296 1297 // If the operation is with the result of a phi instruction, check whether 1298 // operating on all incoming values of the phi always yields the same value. 1299 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1300 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1301 return V; 1302 1303 // If any bits in the shift amount make that value greater than or equal to 1304 // the number of bits in the type, the shift is undefined. 1305 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1306 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1307 return UndefValue::get(Op0->getType()); 1308 1309 // If all valid bits in the shift amount are known zero, the first operand is 1310 // unchanged. 1311 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1312 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1313 return Op0; 1314 1315 return nullptr; 1316 } 1317 1318 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1319 /// fold the result. If not, this returns null. 1320 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1321 Value *Op1, bool isExact, const SimplifyQuery &Q, 1322 unsigned MaxRecurse) { 1323 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1324 return V; 1325 1326 // X >> X -> 0 1327 if (Op0 == Op1) 1328 return Constant::getNullValue(Op0->getType()); 1329 1330 // undef >> X -> 0 1331 // undef >> X -> undef (if it's exact) 1332 if (match(Op0, m_Undef())) 1333 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1334 1335 // The low bit cannot be shifted out of an exact shift if it is set. 1336 if (isExact) { 1337 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1338 if (Op0Known.One[0]) 1339 return Op0; 1340 } 1341 1342 return nullptr; 1343 } 1344 1345 /// Given operands for an Shl, see if we can fold the result. 1346 /// If not, this returns null. 1347 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1348 const SimplifyQuery &Q, unsigned MaxRecurse) { 1349 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1350 return V; 1351 1352 // undef << X -> 0 1353 // undef << X -> undef if (if it's NSW/NUW) 1354 if (match(Op0, m_Undef())) 1355 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1356 1357 // (X >> A) << A -> X 1358 Value *X; 1359 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1360 return X; 1361 return nullptr; 1362 } 1363 1364 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1365 const SimplifyQuery &Q) { 1366 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1367 } 1368 1369 /// Given operands for an LShr, see if we can fold the result. 1370 /// If not, this returns null. 1371 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1372 const SimplifyQuery &Q, unsigned MaxRecurse) { 1373 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1374 MaxRecurse)) 1375 return V; 1376 1377 // (X << A) >> A -> X 1378 Value *X; 1379 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1380 return X; 1381 1382 return nullptr; 1383 } 1384 1385 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1386 const SimplifyQuery &Q) { 1387 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1388 } 1389 1390 /// Given operands for an AShr, see if we can fold the result. 1391 /// If not, this returns null. 1392 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1393 const SimplifyQuery &Q, unsigned MaxRecurse) { 1394 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1395 MaxRecurse)) 1396 return V; 1397 1398 // all ones >>a X -> all ones 1399 if (match(Op0, m_AllOnes())) 1400 return Op0; 1401 1402 // (X << A) >> A -> X 1403 Value *X; 1404 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1405 return X; 1406 1407 // Arithmetic shifting an all-sign-bit value is a no-op. 1408 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1410 return Op0; 1411 1412 return nullptr; 1413 } 1414 1415 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1416 const SimplifyQuery &Q) { 1417 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1418 } 1419 1420 /// Commuted variants are assumed to be handled by calling this function again 1421 /// with the parameters swapped. 1422 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1423 ICmpInst *UnsignedICmp, bool IsAnd) { 1424 Value *X, *Y; 1425 1426 ICmpInst::Predicate EqPred; 1427 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1428 !ICmpInst::isEquality(EqPred)) 1429 return nullptr; 1430 1431 ICmpInst::Predicate UnsignedPred; 1432 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1433 ICmpInst::isUnsigned(UnsignedPred)) 1434 ; 1435 else if (match(UnsignedICmp, 1436 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1437 ICmpInst::isUnsigned(UnsignedPred)) 1438 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1439 else 1440 return nullptr; 1441 1442 // X < Y && Y != 0 --> X < Y 1443 // X < Y || Y != 0 --> Y != 0 1444 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1445 return IsAnd ? UnsignedICmp : ZeroICmp; 1446 1447 // X >= Y || Y != 0 --> true 1448 // X >= Y || Y == 0 --> X >= Y 1449 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1450 if (EqPred == ICmpInst::ICMP_NE) 1451 return getTrue(UnsignedICmp->getType()); 1452 return UnsignedICmp; 1453 } 1454 1455 // X < Y && Y == 0 --> false 1456 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1457 IsAnd) 1458 return getFalse(UnsignedICmp->getType()); 1459 1460 return nullptr; 1461 } 1462 1463 /// Commuted variants are assumed to be handled by calling this function again 1464 /// with the parameters swapped. 1465 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1466 ICmpInst::Predicate Pred0, Pred1; 1467 Value *A ,*B; 1468 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1469 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1470 return nullptr; 1471 1472 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1473 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1474 // can eliminate Op1 from this 'and'. 1475 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1476 return Op0; 1477 1478 // Check for any combination of predicates that are guaranteed to be disjoint. 1479 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1480 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1481 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1482 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1483 return getFalse(Op0->getType()); 1484 1485 return nullptr; 1486 } 1487 1488 /// Commuted variants are assumed to be handled by calling this function again 1489 /// with the parameters swapped. 1490 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1491 ICmpInst::Predicate Pred0, Pred1; 1492 Value *A ,*B; 1493 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1494 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1495 return nullptr; 1496 1497 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1498 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1499 // can eliminate Op0 from this 'or'. 1500 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1501 return Op1; 1502 1503 // Check for any combination of predicates that cover the entire range of 1504 // possibilities. 1505 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1506 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1507 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1508 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1509 return getTrue(Op0->getType()); 1510 1511 return nullptr; 1512 } 1513 1514 /// Test if a pair of compares with a shared operand and 2 constants has an 1515 /// empty set intersection, full set union, or if one compare is a superset of 1516 /// the other. 1517 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1518 bool IsAnd) { 1519 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1520 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1521 return nullptr; 1522 1523 const APInt *C0, *C1; 1524 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1525 !match(Cmp1->getOperand(1), m_APInt(C1))) 1526 return nullptr; 1527 1528 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1529 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1530 1531 // For and-of-compares, check if the intersection is empty: 1532 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1533 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1534 return getFalse(Cmp0->getType()); 1535 1536 // For or-of-compares, check if the union is full: 1537 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1538 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1539 return getTrue(Cmp0->getType()); 1540 1541 // Is one range a superset of the other? 1542 // If this is and-of-compares, take the smaller set: 1543 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1544 // If this is or-of-compares, take the larger set: 1545 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1546 if (Range0.contains(Range1)) 1547 return IsAnd ? Cmp1 : Cmp0; 1548 if (Range1.contains(Range0)) 1549 return IsAnd ? Cmp0 : Cmp1; 1550 1551 return nullptr; 1552 } 1553 1554 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1555 // (icmp (add V, C0), C1) & (icmp V, C0) 1556 ICmpInst::Predicate Pred0, Pred1; 1557 const APInt *C0, *C1; 1558 Value *V; 1559 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1560 return nullptr; 1561 1562 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1563 return nullptr; 1564 1565 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1566 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1567 return nullptr; 1568 1569 Type *ITy = Op0->getType(); 1570 bool isNSW = AddInst->hasNoSignedWrap(); 1571 bool isNUW = AddInst->hasNoUnsignedWrap(); 1572 1573 const APInt Delta = *C1 - *C0; 1574 if (C0->isStrictlyPositive()) { 1575 if (Delta == 2) { 1576 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1577 return getFalse(ITy); 1578 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1579 return getFalse(ITy); 1580 } 1581 if (Delta == 1) { 1582 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1583 return getFalse(ITy); 1584 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1585 return getFalse(ITy); 1586 } 1587 } 1588 if (C0->getBoolValue() && isNUW) { 1589 if (Delta == 2) 1590 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1591 return getFalse(ITy); 1592 if (Delta == 1) 1593 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1594 return getFalse(ITy); 1595 } 1596 1597 return nullptr; 1598 } 1599 1600 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1601 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1602 return X; 1603 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1604 return X; 1605 1606 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1607 return X; 1608 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1609 return X; 1610 1611 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1612 return X; 1613 1614 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1615 return X; 1616 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1617 return X; 1618 1619 return nullptr; 1620 } 1621 1622 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1623 // (icmp (add V, C0), C1) | (icmp V, C0) 1624 ICmpInst::Predicate Pred0, Pred1; 1625 const APInt *C0, *C1; 1626 Value *V; 1627 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1628 return nullptr; 1629 1630 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1631 return nullptr; 1632 1633 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1634 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1635 return nullptr; 1636 1637 Type *ITy = Op0->getType(); 1638 bool isNSW = AddInst->hasNoSignedWrap(); 1639 bool isNUW = AddInst->hasNoUnsignedWrap(); 1640 1641 const APInt Delta = *C1 - *C0; 1642 if (C0->isStrictlyPositive()) { 1643 if (Delta == 2) { 1644 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1645 return getTrue(ITy); 1646 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1647 return getTrue(ITy); 1648 } 1649 if (Delta == 1) { 1650 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1651 return getTrue(ITy); 1652 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1653 return getTrue(ITy); 1654 } 1655 } 1656 if (C0->getBoolValue() && isNUW) { 1657 if (Delta == 2) 1658 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1659 return getTrue(ITy); 1660 if (Delta == 1) 1661 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1662 return getTrue(ITy); 1663 } 1664 1665 return nullptr; 1666 } 1667 1668 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1669 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1670 return X; 1671 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1672 return X; 1673 1674 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1675 return X; 1676 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1677 return X; 1678 1679 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1680 return X; 1681 1682 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1683 return X; 1684 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1685 return X; 1686 1687 return nullptr; 1688 } 1689 1690 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) { 1691 // Look through casts of the 'and' operands to find compares. 1692 auto *Cast0 = dyn_cast<CastInst>(Op0); 1693 auto *Cast1 = dyn_cast<CastInst>(Op1); 1694 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1695 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1696 Op0 = Cast0->getOperand(0); 1697 Op1 = Cast1->getOperand(0); 1698 } 1699 1700 auto *Cmp0 = dyn_cast<ICmpInst>(Op0); 1701 auto *Cmp1 = dyn_cast<ICmpInst>(Op1); 1702 if (!Cmp0 || !Cmp1) 1703 return nullptr; 1704 1705 Value *V = 1706 IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1); 1707 if (!V) 1708 return nullptr; 1709 if (!Cast0) 1710 return V; 1711 1712 // If we looked through casts, we can only handle a constant simplification 1713 // because we are not allowed to create a cast instruction here. 1714 if (auto *C = dyn_cast<Constant>(V)) 1715 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1716 1717 return nullptr; 1718 } 1719 1720 /// Given operands for an And, see if we can fold the result. 1721 /// If not, this returns null. 1722 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1723 unsigned MaxRecurse) { 1724 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1725 return C; 1726 1727 // X & undef -> 0 1728 if (match(Op1, m_Undef())) 1729 return Constant::getNullValue(Op0->getType()); 1730 1731 // X & X = X 1732 if (Op0 == Op1) 1733 return Op0; 1734 1735 // X & 0 = 0 1736 if (match(Op1, m_Zero())) 1737 return Op1; 1738 1739 // X & -1 = X 1740 if (match(Op1, m_AllOnes())) 1741 return Op0; 1742 1743 // A & ~A = ~A & A = 0 1744 if (match(Op0, m_Not(m_Specific(Op1))) || 1745 match(Op1, m_Not(m_Specific(Op0)))) 1746 return Constant::getNullValue(Op0->getType()); 1747 1748 // (A | ?) & A = A 1749 Value *A = nullptr, *B = nullptr; 1750 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1751 (A == Op1 || B == Op1)) 1752 return Op1; 1753 1754 // A & (A | ?) = A 1755 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1756 (A == Op0 || B == Op0)) 1757 return Op0; 1758 1759 // A mask that only clears known zeros of a shifted value is a no-op. 1760 Value *X; 1761 const APInt *Mask; 1762 const APInt *ShAmt; 1763 if (match(Op1, m_APInt(Mask))) { 1764 // If all bits in the inverted and shifted mask are clear: 1765 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1766 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1767 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1768 return Op0; 1769 1770 // If all bits in the inverted and shifted mask are clear: 1771 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1772 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1773 (~(*Mask)).shl(*ShAmt).isNullValue()) 1774 return Op0; 1775 } 1776 1777 // A & (-A) = A if A is a power of two or zero. 1778 if (match(Op0, m_Neg(m_Specific(Op1))) || 1779 match(Op1, m_Neg(m_Specific(Op0)))) { 1780 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1781 Q.DT)) 1782 return Op0; 1783 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1784 Q.DT)) 1785 return Op1; 1786 } 1787 1788 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true)) 1789 return V; 1790 1791 // Try some generic simplifications for associative operations. 1792 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1793 MaxRecurse)) 1794 return V; 1795 1796 // And distributes over Or. Try some generic simplifications based on this. 1797 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1798 Q, MaxRecurse)) 1799 return V; 1800 1801 // And distributes over Xor. Try some generic simplifications based on this. 1802 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1803 Q, MaxRecurse)) 1804 return V; 1805 1806 // If the operation is with the result of a select instruction, check whether 1807 // operating on either branch of the select always yields the same value. 1808 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1809 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1810 MaxRecurse)) 1811 return V; 1812 1813 // If the operation is with the result of a phi instruction, check whether 1814 // operating on all incoming values of the phi always yields the same value. 1815 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1816 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1817 MaxRecurse)) 1818 return V; 1819 1820 return nullptr; 1821 } 1822 1823 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1824 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1825 } 1826 1827 /// Given operands for an Or, see if we can fold the result. 1828 /// If not, this returns null. 1829 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1830 unsigned MaxRecurse) { 1831 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1832 return C; 1833 1834 // X | undef -> -1 1835 if (match(Op1, m_Undef())) 1836 return Constant::getAllOnesValue(Op0->getType()); 1837 1838 // X | X = X 1839 if (Op0 == Op1) 1840 return Op0; 1841 1842 // X | 0 = X 1843 if (match(Op1, m_Zero())) 1844 return Op0; 1845 1846 // X | -1 = -1 1847 if (match(Op1, m_AllOnes())) 1848 return Op1; 1849 1850 // A | ~A = ~A | A = -1 1851 if (match(Op0, m_Not(m_Specific(Op1))) || 1852 match(Op1, m_Not(m_Specific(Op0)))) 1853 return Constant::getAllOnesValue(Op0->getType()); 1854 1855 // (A & ?) | A = A 1856 Value *A = nullptr, *B = nullptr; 1857 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1858 (A == Op1 || B == Op1)) 1859 return Op1; 1860 1861 // A | (A & ?) = A 1862 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1863 (A == Op0 || B == Op0)) 1864 return Op0; 1865 1866 // ~(A & ?) | A = -1 1867 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1868 (A == Op1 || B == Op1)) 1869 return Constant::getAllOnesValue(Op1->getType()); 1870 1871 // A | ~(A & ?) = -1 1872 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1873 (A == Op0 || B == Op0)) 1874 return Constant::getAllOnesValue(Op0->getType()); 1875 1876 // (A & ~B) | (A ^ B) -> (A ^ B) 1877 // (~B & A) | (A ^ B) -> (A ^ B) 1878 // (A & ~B) | (B ^ A) -> (B ^ A) 1879 // (~B & A) | (B ^ A) -> (B ^ A) 1880 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1881 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1882 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1883 return Op1; 1884 1885 // Commute the 'or' operands. 1886 // (A ^ B) | (A & ~B) -> (A ^ B) 1887 // (A ^ B) | (~B & A) -> (A ^ B) 1888 // (B ^ A) | (A & ~B) -> (B ^ A) 1889 // (B ^ A) | (~B & A) -> (B ^ A) 1890 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1891 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1892 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1893 return Op0; 1894 1895 // (A & B) | (~A ^ B) -> (~A ^ B) 1896 // (B & A) | (~A ^ B) -> (~A ^ B) 1897 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1898 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1899 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1900 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1901 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1902 return Op1; 1903 1904 // (~A ^ B) | (A & B) -> (~A ^ B) 1905 // (~A ^ B) | (B & A) -> (~A ^ B) 1906 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1907 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1908 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1909 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1910 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1911 return Op0; 1912 1913 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false)) 1914 return V; 1915 1916 // Try some generic simplifications for associative operations. 1917 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1918 MaxRecurse)) 1919 return V; 1920 1921 // Or distributes over And. Try some generic simplifications based on this. 1922 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1923 MaxRecurse)) 1924 return V; 1925 1926 // If the operation is with the result of a select instruction, check whether 1927 // operating on either branch of the select always yields the same value. 1928 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1929 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1930 MaxRecurse)) 1931 return V; 1932 1933 // (A & C1)|(B & C2) 1934 const APInt *C1, *C2; 1935 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1936 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1937 if (*C1 == ~*C2) { 1938 // (A & C1)|(B & C2) 1939 // If we have: ((V + N) & C1) | (V & C2) 1940 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1941 // replace with V+N. 1942 Value *N; 1943 if (C2->isMask() && // C2 == 0+1+ 1944 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1945 // Add commutes, try both ways. 1946 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1947 return A; 1948 } 1949 // Or commutes, try both ways. 1950 if (C1->isMask() && 1951 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1952 // Add commutes, try both ways. 1953 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1954 return B; 1955 } 1956 } 1957 } 1958 1959 // If the operation is with the result of a phi instruction, check whether 1960 // operating on all incoming values of the phi always yields the same value. 1961 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1962 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1963 return V; 1964 1965 return nullptr; 1966 } 1967 1968 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1969 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1970 } 1971 1972 /// Given operands for a Xor, see if we can fold the result. 1973 /// If not, this returns null. 1974 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1975 unsigned MaxRecurse) { 1976 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1977 return C; 1978 1979 // A ^ undef -> undef 1980 if (match(Op1, m_Undef())) 1981 return Op1; 1982 1983 // A ^ 0 = A 1984 if (match(Op1, m_Zero())) 1985 return Op0; 1986 1987 // A ^ A = 0 1988 if (Op0 == Op1) 1989 return Constant::getNullValue(Op0->getType()); 1990 1991 // A ^ ~A = ~A ^ A = -1 1992 if (match(Op0, m_Not(m_Specific(Op1))) || 1993 match(Op1, m_Not(m_Specific(Op0)))) 1994 return Constant::getAllOnesValue(Op0->getType()); 1995 1996 // Try some generic simplifications for associative operations. 1997 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1998 MaxRecurse)) 1999 return V; 2000 2001 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2002 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2003 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2004 // only if B and C are equal. If B and C are equal then (since we assume 2005 // that operands have already been simplified) "select(cond, B, C)" should 2006 // have been simplified to the common value of B and C already. Analysing 2007 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2008 // for threading over phi nodes. 2009 2010 return nullptr; 2011 } 2012 2013 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2014 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2015 } 2016 2017 2018 static Type *GetCompareTy(Value *Op) { 2019 return CmpInst::makeCmpResultType(Op->getType()); 2020 } 2021 2022 /// Rummage around inside V looking for something equivalent to the comparison 2023 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2024 /// Helper function for analyzing max/min idioms. 2025 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2026 Value *LHS, Value *RHS) { 2027 SelectInst *SI = dyn_cast<SelectInst>(V); 2028 if (!SI) 2029 return nullptr; 2030 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2031 if (!Cmp) 2032 return nullptr; 2033 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2034 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2035 return Cmp; 2036 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2037 LHS == CmpRHS && RHS == CmpLHS) 2038 return Cmp; 2039 return nullptr; 2040 } 2041 2042 // A significant optimization not implemented here is assuming that alloca 2043 // addresses are not equal to incoming argument values. They don't *alias*, 2044 // as we say, but that doesn't mean they aren't equal, so we take a 2045 // conservative approach. 2046 // 2047 // This is inspired in part by C++11 5.10p1: 2048 // "Two pointers of the same type compare equal if and only if they are both 2049 // null, both point to the same function, or both represent the same 2050 // address." 2051 // 2052 // This is pretty permissive. 2053 // 2054 // It's also partly due to C11 6.5.9p6: 2055 // "Two pointers compare equal if and only if both are null pointers, both are 2056 // pointers to the same object (including a pointer to an object and a 2057 // subobject at its beginning) or function, both are pointers to one past the 2058 // last element of the same array object, or one is a pointer to one past the 2059 // end of one array object and the other is a pointer to the start of a 2060 // different array object that happens to immediately follow the first array 2061 // object in the address space.) 2062 // 2063 // C11's version is more restrictive, however there's no reason why an argument 2064 // couldn't be a one-past-the-end value for a stack object in the caller and be 2065 // equal to the beginning of a stack object in the callee. 2066 // 2067 // If the C and C++ standards are ever made sufficiently restrictive in this 2068 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2069 // this optimization. 2070 static Constant * 2071 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2072 const DominatorTree *DT, CmpInst::Predicate Pred, 2073 const Instruction *CxtI, Value *LHS, Value *RHS) { 2074 // First, skip past any trivial no-ops. 2075 LHS = LHS->stripPointerCasts(); 2076 RHS = RHS->stripPointerCasts(); 2077 2078 // A non-null pointer is not equal to a null pointer. 2079 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2080 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2081 return ConstantInt::get(GetCompareTy(LHS), 2082 !CmpInst::isTrueWhenEqual(Pred)); 2083 2084 // We can only fold certain predicates on pointer comparisons. 2085 switch (Pred) { 2086 default: 2087 return nullptr; 2088 2089 // Equality comaprisons are easy to fold. 2090 case CmpInst::ICMP_EQ: 2091 case CmpInst::ICMP_NE: 2092 break; 2093 2094 // We can only handle unsigned relational comparisons because 'inbounds' on 2095 // a GEP only protects against unsigned wrapping. 2096 case CmpInst::ICMP_UGT: 2097 case CmpInst::ICMP_UGE: 2098 case CmpInst::ICMP_ULT: 2099 case CmpInst::ICMP_ULE: 2100 // However, we have to switch them to their signed variants to handle 2101 // negative indices from the base pointer. 2102 Pred = ICmpInst::getSignedPredicate(Pred); 2103 break; 2104 } 2105 2106 // Strip off any constant offsets so that we can reason about them. 2107 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2108 // here and compare base addresses like AliasAnalysis does, however there are 2109 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2110 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2111 // doesn't need to guarantee pointer inequality when it says NoAlias. 2112 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2113 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2114 2115 // If LHS and RHS are related via constant offsets to the same base 2116 // value, we can replace it with an icmp which just compares the offsets. 2117 if (LHS == RHS) 2118 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2119 2120 // Various optimizations for (in)equality comparisons. 2121 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2122 // Different non-empty allocations that exist at the same time have 2123 // different addresses (if the program can tell). Global variables always 2124 // exist, so they always exist during the lifetime of each other and all 2125 // allocas. Two different allocas usually have different addresses... 2126 // 2127 // However, if there's an @llvm.stackrestore dynamically in between two 2128 // allocas, they may have the same address. It's tempting to reduce the 2129 // scope of the problem by only looking at *static* allocas here. That would 2130 // cover the majority of allocas while significantly reducing the likelihood 2131 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2132 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2133 // an entry block. Also, if we have a block that's not attached to a 2134 // function, we can't tell if it's "static" under the current definition. 2135 // Theoretically, this problem could be fixed by creating a new kind of 2136 // instruction kind specifically for static allocas. Such a new instruction 2137 // could be required to be at the top of the entry block, thus preventing it 2138 // from being subject to a @llvm.stackrestore. Instcombine could even 2139 // convert regular allocas into these special allocas. It'd be nifty. 2140 // However, until then, this problem remains open. 2141 // 2142 // So, we'll assume that two non-empty allocas have different addresses 2143 // for now. 2144 // 2145 // With all that, if the offsets are within the bounds of their allocations 2146 // (and not one-past-the-end! so we can't use inbounds!), and their 2147 // allocations aren't the same, the pointers are not equal. 2148 // 2149 // Note that it's not necessary to check for LHS being a global variable 2150 // address, due to canonicalization and constant folding. 2151 if (isa<AllocaInst>(LHS) && 2152 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2153 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2154 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2155 uint64_t LHSSize, RHSSize; 2156 if (LHSOffsetCI && RHSOffsetCI && 2157 getObjectSize(LHS, LHSSize, DL, TLI) && 2158 getObjectSize(RHS, RHSSize, DL, TLI)) { 2159 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2160 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2161 if (!LHSOffsetValue.isNegative() && 2162 !RHSOffsetValue.isNegative() && 2163 LHSOffsetValue.ult(LHSSize) && 2164 RHSOffsetValue.ult(RHSSize)) { 2165 return ConstantInt::get(GetCompareTy(LHS), 2166 !CmpInst::isTrueWhenEqual(Pred)); 2167 } 2168 } 2169 2170 // Repeat the above check but this time without depending on DataLayout 2171 // or being able to compute a precise size. 2172 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2173 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2174 LHSOffset->isNullValue() && 2175 RHSOffset->isNullValue()) 2176 return ConstantInt::get(GetCompareTy(LHS), 2177 !CmpInst::isTrueWhenEqual(Pred)); 2178 } 2179 2180 // Even if an non-inbounds GEP occurs along the path we can still optimize 2181 // equality comparisons concerning the result. We avoid walking the whole 2182 // chain again by starting where the last calls to 2183 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2184 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2185 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2186 if (LHS == RHS) 2187 return ConstantExpr::getICmp(Pred, 2188 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2189 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2190 2191 // If one side of the equality comparison must come from a noalias call 2192 // (meaning a system memory allocation function), and the other side must 2193 // come from a pointer that cannot overlap with dynamically-allocated 2194 // memory within the lifetime of the current function (allocas, byval 2195 // arguments, globals), then determine the comparison result here. 2196 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2197 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2198 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2199 2200 // Is the set of underlying objects all noalias calls? 2201 auto IsNAC = [](ArrayRef<Value *> Objects) { 2202 return all_of(Objects, isNoAliasCall); 2203 }; 2204 2205 // Is the set of underlying objects all things which must be disjoint from 2206 // noalias calls. For allocas, we consider only static ones (dynamic 2207 // allocas might be transformed into calls to malloc not simultaneously 2208 // live with the compared-to allocation). For globals, we exclude symbols 2209 // that might be resolve lazily to symbols in another dynamically-loaded 2210 // library (and, thus, could be malloc'ed by the implementation). 2211 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2212 return all_of(Objects, [](Value *V) { 2213 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2214 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2215 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2216 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2217 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2218 !GV->isThreadLocal(); 2219 if (const Argument *A = dyn_cast<Argument>(V)) 2220 return A->hasByValAttr(); 2221 return false; 2222 }); 2223 }; 2224 2225 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2226 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2227 return ConstantInt::get(GetCompareTy(LHS), 2228 !CmpInst::isTrueWhenEqual(Pred)); 2229 2230 // Fold comparisons for non-escaping pointer even if the allocation call 2231 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2232 // dynamic allocation call could be either of the operands. 2233 Value *MI = nullptr; 2234 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2235 MI = LHS; 2236 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2237 MI = RHS; 2238 // FIXME: We should also fold the compare when the pointer escapes, but the 2239 // compare dominates the pointer escape 2240 if (MI && !PointerMayBeCaptured(MI, true, true)) 2241 return ConstantInt::get(GetCompareTy(LHS), 2242 CmpInst::isFalseWhenEqual(Pred)); 2243 } 2244 2245 // Otherwise, fail. 2246 return nullptr; 2247 } 2248 2249 /// Fold an icmp when its operands have i1 scalar type. 2250 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2251 Value *RHS, const SimplifyQuery &Q) { 2252 Type *ITy = GetCompareTy(LHS); // The return type. 2253 Type *OpTy = LHS->getType(); // The operand type. 2254 if (!OpTy->getScalarType()->isIntegerTy(1)) 2255 return nullptr; 2256 2257 // A boolean compared to true/false can be simplified in 14 out of the 20 2258 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2259 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2260 if (match(RHS, m_Zero())) { 2261 switch (Pred) { 2262 case CmpInst::ICMP_NE: // X != 0 -> X 2263 case CmpInst::ICMP_UGT: // X >u 0 -> X 2264 case CmpInst::ICMP_SLT: // X <s 0 -> X 2265 return LHS; 2266 2267 case CmpInst::ICMP_ULT: // X <u 0 -> false 2268 case CmpInst::ICMP_SGT: // X >s 0 -> false 2269 return getFalse(ITy); 2270 2271 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2272 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2273 return getTrue(ITy); 2274 2275 default: break; 2276 } 2277 } else if (match(RHS, m_One())) { 2278 switch (Pred) { 2279 case CmpInst::ICMP_EQ: // X == 1 -> X 2280 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2281 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2282 return LHS; 2283 2284 case CmpInst::ICMP_UGT: // X >u 1 -> false 2285 case CmpInst::ICMP_SLT: // X <s -1 -> false 2286 return getFalse(ITy); 2287 2288 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2289 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2290 return getTrue(ITy); 2291 2292 default: break; 2293 } 2294 } 2295 2296 switch (Pred) { 2297 default: 2298 break; 2299 case ICmpInst::ICMP_UGE: 2300 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2301 return getTrue(ITy); 2302 break; 2303 case ICmpInst::ICMP_SGE: 2304 /// For signed comparison, the values for an i1 are 0 and -1 2305 /// respectively. This maps into a truth table of: 2306 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2307 /// 0 | 0 | 1 (0 >= 0) | 1 2308 /// 0 | 1 | 1 (0 >= -1) | 1 2309 /// 1 | 0 | 0 (-1 >= 0) | 0 2310 /// 1 | 1 | 1 (-1 >= -1) | 1 2311 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2312 return getTrue(ITy); 2313 break; 2314 case ICmpInst::ICMP_ULE: 2315 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2316 return getTrue(ITy); 2317 break; 2318 } 2319 2320 return nullptr; 2321 } 2322 2323 /// Try hard to fold icmp with zero RHS because this is a common case. 2324 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2325 Value *RHS, const SimplifyQuery &Q) { 2326 if (!match(RHS, m_Zero())) 2327 return nullptr; 2328 2329 Type *ITy = GetCompareTy(LHS); // The return type. 2330 switch (Pred) { 2331 default: 2332 llvm_unreachable("Unknown ICmp predicate!"); 2333 case ICmpInst::ICMP_ULT: 2334 return getFalse(ITy); 2335 case ICmpInst::ICMP_UGE: 2336 return getTrue(ITy); 2337 case ICmpInst::ICMP_EQ: 2338 case ICmpInst::ICMP_ULE: 2339 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2340 return getFalse(ITy); 2341 break; 2342 case ICmpInst::ICMP_NE: 2343 case ICmpInst::ICMP_UGT: 2344 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2345 return getTrue(ITy); 2346 break; 2347 case ICmpInst::ICMP_SLT: { 2348 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2349 if (LHSKnown.isNegative()) 2350 return getTrue(ITy); 2351 if (LHSKnown.isNonNegative()) 2352 return getFalse(ITy); 2353 break; 2354 } 2355 case ICmpInst::ICMP_SLE: { 2356 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2357 if (LHSKnown.isNegative()) 2358 return getTrue(ITy); 2359 if (LHSKnown.isNonNegative() && 2360 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2361 return getFalse(ITy); 2362 break; 2363 } 2364 case ICmpInst::ICMP_SGE: { 2365 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2366 if (LHSKnown.isNegative()) 2367 return getFalse(ITy); 2368 if (LHSKnown.isNonNegative()) 2369 return getTrue(ITy); 2370 break; 2371 } 2372 case ICmpInst::ICMP_SGT: { 2373 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2374 if (LHSKnown.isNegative()) 2375 return getFalse(ITy); 2376 if (LHSKnown.isNonNegative() && 2377 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2378 return getTrue(ITy); 2379 break; 2380 } 2381 } 2382 2383 return nullptr; 2384 } 2385 2386 /// Many binary operators with a constant operand have an easy-to-compute 2387 /// range of outputs. This can be used to fold a comparison to always true or 2388 /// always false. 2389 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2390 unsigned Width = Lower.getBitWidth(); 2391 const APInt *C; 2392 switch (BO.getOpcode()) { 2393 case Instruction::Add: 2394 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2395 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2396 if (BO.hasNoUnsignedWrap()) { 2397 // 'add nuw x, C' produces [C, UINT_MAX]. 2398 Lower = *C; 2399 } else if (BO.hasNoSignedWrap()) { 2400 if (C->isNegative()) { 2401 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2402 Lower = APInt::getSignedMinValue(Width); 2403 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2404 } else { 2405 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2406 Lower = APInt::getSignedMinValue(Width) + *C; 2407 Upper = APInt::getSignedMaxValue(Width) + 1; 2408 } 2409 } 2410 } 2411 break; 2412 2413 case Instruction::And: 2414 if (match(BO.getOperand(1), m_APInt(C))) 2415 // 'and x, C' produces [0, C]. 2416 Upper = *C + 1; 2417 break; 2418 2419 case Instruction::Or: 2420 if (match(BO.getOperand(1), m_APInt(C))) 2421 // 'or x, C' produces [C, UINT_MAX]. 2422 Lower = *C; 2423 break; 2424 2425 case Instruction::AShr: 2426 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2427 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2428 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2429 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2430 } else if (match(BO.getOperand(0), m_APInt(C))) { 2431 unsigned ShiftAmount = Width - 1; 2432 if (!C->isNullValue() && BO.isExact()) 2433 ShiftAmount = C->countTrailingZeros(); 2434 if (C->isNegative()) { 2435 // 'ashr C, x' produces [C, C >> (Width-1)] 2436 Lower = *C; 2437 Upper = C->ashr(ShiftAmount) + 1; 2438 } else { 2439 // 'ashr C, x' produces [C >> (Width-1), C] 2440 Lower = C->ashr(ShiftAmount); 2441 Upper = *C + 1; 2442 } 2443 } 2444 break; 2445 2446 case Instruction::LShr: 2447 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2448 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2449 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2450 } else if (match(BO.getOperand(0), m_APInt(C))) { 2451 // 'lshr C, x' produces [C >> (Width-1), C]. 2452 unsigned ShiftAmount = Width - 1; 2453 if (!C->isNullValue() && BO.isExact()) 2454 ShiftAmount = C->countTrailingZeros(); 2455 Lower = C->lshr(ShiftAmount); 2456 Upper = *C + 1; 2457 } 2458 break; 2459 2460 case Instruction::Shl: 2461 if (match(BO.getOperand(0), m_APInt(C))) { 2462 if (BO.hasNoUnsignedWrap()) { 2463 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2464 Lower = *C; 2465 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2466 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2467 if (C->isNegative()) { 2468 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2469 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2470 Lower = C->shl(ShiftAmount); 2471 Upper = *C + 1; 2472 } else { 2473 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2474 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2475 Lower = *C; 2476 Upper = C->shl(ShiftAmount) + 1; 2477 } 2478 } 2479 } 2480 break; 2481 2482 case Instruction::SDiv: 2483 if (match(BO.getOperand(1), m_APInt(C))) { 2484 APInt IntMin = APInt::getSignedMinValue(Width); 2485 APInt IntMax = APInt::getSignedMaxValue(Width); 2486 if (C->isAllOnesValue()) { 2487 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2488 // where C != -1 and C != 0 and C != 1 2489 Lower = IntMin + 1; 2490 Upper = IntMax + 1; 2491 } else if (C->countLeadingZeros() < Width - 1) { 2492 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2493 // where C != -1 and C != 0 and C != 1 2494 Lower = IntMin.sdiv(*C); 2495 Upper = IntMax.sdiv(*C); 2496 if (Lower.sgt(Upper)) 2497 std::swap(Lower, Upper); 2498 Upper = Upper + 1; 2499 assert(Upper != Lower && "Upper part of range has wrapped!"); 2500 } 2501 } else if (match(BO.getOperand(0), m_APInt(C))) { 2502 if (C->isMinSignedValue()) { 2503 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2504 Lower = *C; 2505 Upper = Lower.lshr(1) + 1; 2506 } else { 2507 // 'sdiv C, x' produces [-|C|, |C|]. 2508 Upper = C->abs() + 1; 2509 Lower = (-Upper) + 1; 2510 } 2511 } 2512 break; 2513 2514 case Instruction::UDiv: 2515 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2516 // 'udiv x, C' produces [0, UINT_MAX / C]. 2517 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2518 } else if (match(BO.getOperand(0), m_APInt(C))) { 2519 // 'udiv C, x' produces [0, C]. 2520 Upper = *C + 1; 2521 } 2522 break; 2523 2524 case Instruction::SRem: 2525 if (match(BO.getOperand(1), m_APInt(C))) { 2526 // 'srem x, C' produces (-|C|, |C|). 2527 Upper = C->abs(); 2528 Lower = (-Upper) + 1; 2529 } 2530 break; 2531 2532 case Instruction::URem: 2533 if (match(BO.getOperand(1), m_APInt(C))) 2534 // 'urem x, C' produces [0, C). 2535 Upper = *C; 2536 break; 2537 2538 default: 2539 break; 2540 } 2541 } 2542 2543 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2544 Value *RHS) { 2545 const APInt *C; 2546 if (!match(RHS, m_APInt(C))) 2547 return nullptr; 2548 2549 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2550 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2551 if (RHS_CR.isEmptySet()) 2552 return ConstantInt::getFalse(GetCompareTy(RHS)); 2553 if (RHS_CR.isFullSet()) 2554 return ConstantInt::getTrue(GetCompareTy(RHS)); 2555 2556 // Find the range of possible values for binary operators. 2557 unsigned Width = C->getBitWidth(); 2558 APInt Lower = APInt(Width, 0); 2559 APInt Upper = APInt(Width, 0); 2560 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2561 setLimitsForBinOp(*BO, Lower, Upper); 2562 2563 ConstantRange LHS_CR = 2564 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2565 2566 if (auto *I = dyn_cast<Instruction>(LHS)) 2567 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2568 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2569 2570 if (!LHS_CR.isFullSet()) { 2571 if (RHS_CR.contains(LHS_CR)) 2572 return ConstantInt::getTrue(GetCompareTy(RHS)); 2573 if (RHS_CR.inverse().contains(LHS_CR)) 2574 return ConstantInt::getFalse(GetCompareTy(RHS)); 2575 } 2576 2577 return nullptr; 2578 } 2579 2580 /// TODO: A large part of this logic is duplicated in InstCombine's 2581 /// foldICmpBinOp(). We should be able to share that and avoid the code 2582 /// duplication. 2583 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2584 Value *RHS, const SimplifyQuery &Q, 2585 unsigned MaxRecurse) { 2586 Type *ITy = GetCompareTy(LHS); // The return type. 2587 2588 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2589 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2590 if (MaxRecurse && (LBO || RBO)) { 2591 // Analyze the case when either LHS or RHS is an add instruction. 2592 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2593 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2594 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2595 if (LBO && LBO->getOpcode() == Instruction::Add) { 2596 A = LBO->getOperand(0); 2597 B = LBO->getOperand(1); 2598 NoLHSWrapProblem = 2599 ICmpInst::isEquality(Pred) || 2600 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2601 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2602 } 2603 if (RBO && RBO->getOpcode() == Instruction::Add) { 2604 C = RBO->getOperand(0); 2605 D = RBO->getOperand(1); 2606 NoRHSWrapProblem = 2607 ICmpInst::isEquality(Pred) || 2608 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2609 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2610 } 2611 2612 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2613 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2614 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2615 Constant::getNullValue(RHS->getType()), Q, 2616 MaxRecurse - 1)) 2617 return V; 2618 2619 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2620 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2621 if (Value *V = 2622 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2623 C == LHS ? D : C, Q, MaxRecurse - 1)) 2624 return V; 2625 2626 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2627 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2628 NoRHSWrapProblem) { 2629 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2630 Value *Y, *Z; 2631 if (A == C) { 2632 // C + B == C + D -> B == D 2633 Y = B; 2634 Z = D; 2635 } else if (A == D) { 2636 // D + B == C + D -> B == C 2637 Y = B; 2638 Z = C; 2639 } else if (B == C) { 2640 // A + C == C + D -> A == D 2641 Y = A; 2642 Z = D; 2643 } else { 2644 assert(B == D); 2645 // A + D == C + D -> A == C 2646 Y = A; 2647 Z = C; 2648 } 2649 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2650 return V; 2651 } 2652 } 2653 2654 { 2655 Value *Y = nullptr; 2656 // icmp pred (or X, Y), X 2657 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2658 if (Pred == ICmpInst::ICMP_ULT) 2659 return getFalse(ITy); 2660 if (Pred == ICmpInst::ICMP_UGE) 2661 return getTrue(ITy); 2662 2663 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2664 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2665 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2666 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2667 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2668 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2669 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2670 } 2671 } 2672 // icmp pred X, (or X, Y) 2673 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2674 if (Pred == ICmpInst::ICMP_ULE) 2675 return getTrue(ITy); 2676 if (Pred == ICmpInst::ICMP_UGT) 2677 return getFalse(ITy); 2678 2679 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2680 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2681 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2682 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2683 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2684 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2685 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2686 } 2687 } 2688 } 2689 2690 // icmp pred (and X, Y), X 2691 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2692 m_And(m_Specific(RHS), m_Value())))) { 2693 if (Pred == ICmpInst::ICMP_UGT) 2694 return getFalse(ITy); 2695 if (Pred == ICmpInst::ICMP_ULE) 2696 return getTrue(ITy); 2697 } 2698 // icmp pred X, (and X, Y) 2699 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2700 m_And(m_Specific(LHS), m_Value())))) { 2701 if (Pred == ICmpInst::ICMP_UGE) 2702 return getTrue(ITy); 2703 if (Pred == ICmpInst::ICMP_ULT) 2704 return getFalse(ITy); 2705 } 2706 2707 // 0 - (zext X) pred C 2708 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2709 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2710 if (RHSC->getValue().isStrictlyPositive()) { 2711 if (Pred == ICmpInst::ICMP_SLT) 2712 return ConstantInt::getTrue(RHSC->getContext()); 2713 if (Pred == ICmpInst::ICMP_SGE) 2714 return ConstantInt::getFalse(RHSC->getContext()); 2715 if (Pred == ICmpInst::ICMP_EQ) 2716 return ConstantInt::getFalse(RHSC->getContext()); 2717 if (Pred == ICmpInst::ICMP_NE) 2718 return ConstantInt::getTrue(RHSC->getContext()); 2719 } 2720 if (RHSC->getValue().isNonNegative()) { 2721 if (Pred == ICmpInst::ICMP_SLE) 2722 return ConstantInt::getTrue(RHSC->getContext()); 2723 if (Pred == ICmpInst::ICMP_SGT) 2724 return ConstantInt::getFalse(RHSC->getContext()); 2725 } 2726 } 2727 } 2728 2729 // icmp pred (urem X, Y), Y 2730 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2731 switch (Pred) { 2732 default: 2733 break; 2734 case ICmpInst::ICMP_SGT: 2735 case ICmpInst::ICMP_SGE: { 2736 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2737 if (!Known.isNonNegative()) 2738 break; 2739 LLVM_FALLTHROUGH; 2740 } 2741 case ICmpInst::ICMP_EQ: 2742 case ICmpInst::ICMP_UGT: 2743 case ICmpInst::ICMP_UGE: 2744 return getFalse(ITy); 2745 case ICmpInst::ICMP_SLT: 2746 case ICmpInst::ICMP_SLE: { 2747 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2748 if (!Known.isNonNegative()) 2749 break; 2750 LLVM_FALLTHROUGH; 2751 } 2752 case ICmpInst::ICMP_NE: 2753 case ICmpInst::ICMP_ULT: 2754 case ICmpInst::ICMP_ULE: 2755 return getTrue(ITy); 2756 } 2757 } 2758 2759 // icmp pred X, (urem Y, X) 2760 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2761 switch (Pred) { 2762 default: 2763 break; 2764 case ICmpInst::ICMP_SGT: 2765 case ICmpInst::ICMP_SGE: { 2766 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2767 if (!Known.isNonNegative()) 2768 break; 2769 LLVM_FALLTHROUGH; 2770 } 2771 case ICmpInst::ICMP_NE: 2772 case ICmpInst::ICMP_UGT: 2773 case ICmpInst::ICMP_UGE: 2774 return getTrue(ITy); 2775 case ICmpInst::ICMP_SLT: 2776 case ICmpInst::ICMP_SLE: { 2777 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2778 if (!Known.isNonNegative()) 2779 break; 2780 LLVM_FALLTHROUGH; 2781 } 2782 case ICmpInst::ICMP_EQ: 2783 case ICmpInst::ICMP_ULT: 2784 case ICmpInst::ICMP_ULE: 2785 return getFalse(ITy); 2786 } 2787 } 2788 2789 // x >> y <=u x 2790 // x udiv y <=u x. 2791 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2792 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2793 // icmp pred (X op Y), X 2794 if (Pred == ICmpInst::ICMP_UGT) 2795 return getFalse(ITy); 2796 if (Pred == ICmpInst::ICMP_ULE) 2797 return getTrue(ITy); 2798 } 2799 2800 // x >=u x >> y 2801 // x >=u x udiv y. 2802 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2803 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2804 // icmp pred X, (X op Y) 2805 if (Pred == ICmpInst::ICMP_ULT) 2806 return getFalse(ITy); 2807 if (Pred == ICmpInst::ICMP_UGE) 2808 return getTrue(ITy); 2809 } 2810 2811 // handle: 2812 // CI2 << X == CI 2813 // CI2 << X != CI 2814 // 2815 // where CI2 is a power of 2 and CI isn't 2816 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2817 const APInt *CI2Val, *CIVal = &CI->getValue(); 2818 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2819 CI2Val->isPowerOf2()) { 2820 if (!CIVal->isPowerOf2()) { 2821 // CI2 << X can equal zero in some circumstances, 2822 // this simplification is unsafe if CI is zero. 2823 // 2824 // We know it is safe if: 2825 // - The shift is nsw, we can't shift out the one bit. 2826 // - The shift is nuw, we can't shift out the one bit. 2827 // - CI2 is one 2828 // - CI isn't zero 2829 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2830 CI2Val->isOneValue() || !CI->isZero()) { 2831 if (Pred == ICmpInst::ICMP_EQ) 2832 return ConstantInt::getFalse(RHS->getContext()); 2833 if (Pred == ICmpInst::ICMP_NE) 2834 return ConstantInt::getTrue(RHS->getContext()); 2835 } 2836 } 2837 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2838 if (Pred == ICmpInst::ICMP_UGT) 2839 return ConstantInt::getFalse(RHS->getContext()); 2840 if (Pred == ICmpInst::ICMP_ULE) 2841 return ConstantInt::getTrue(RHS->getContext()); 2842 } 2843 } 2844 } 2845 2846 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2847 LBO->getOperand(1) == RBO->getOperand(1)) { 2848 switch (LBO->getOpcode()) { 2849 default: 2850 break; 2851 case Instruction::UDiv: 2852 case Instruction::LShr: 2853 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2854 break; 2855 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2856 RBO->getOperand(0), Q, MaxRecurse - 1)) 2857 return V; 2858 break; 2859 case Instruction::SDiv: 2860 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2861 break; 2862 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2863 RBO->getOperand(0), Q, MaxRecurse - 1)) 2864 return V; 2865 break; 2866 case Instruction::AShr: 2867 if (!LBO->isExact() || !RBO->isExact()) 2868 break; 2869 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2870 RBO->getOperand(0), Q, MaxRecurse - 1)) 2871 return V; 2872 break; 2873 case Instruction::Shl: { 2874 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2875 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2876 if (!NUW && !NSW) 2877 break; 2878 if (!NSW && ICmpInst::isSigned(Pred)) 2879 break; 2880 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2881 RBO->getOperand(0), Q, MaxRecurse - 1)) 2882 return V; 2883 break; 2884 } 2885 } 2886 } 2887 return nullptr; 2888 } 2889 2890 /// Simplify integer comparisons where at least one operand of the compare 2891 /// matches an integer min/max idiom. 2892 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2893 Value *RHS, const SimplifyQuery &Q, 2894 unsigned MaxRecurse) { 2895 Type *ITy = GetCompareTy(LHS); // The return type. 2896 Value *A, *B; 2897 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2898 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2899 2900 // Signed variants on "max(a,b)>=a -> true". 2901 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2902 if (A != RHS) 2903 std::swap(A, B); // smax(A, B) pred A. 2904 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2905 // We analyze this as smax(A, B) pred A. 2906 P = Pred; 2907 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2908 (A == LHS || B == LHS)) { 2909 if (A != LHS) 2910 std::swap(A, B); // A pred smax(A, B). 2911 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2912 // We analyze this as smax(A, B) swapped-pred A. 2913 P = CmpInst::getSwappedPredicate(Pred); 2914 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2915 (A == RHS || B == RHS)) { 2916 if (A != RHS) 2917 std::swap(A, B); // smin(A, B) pred A. 2918 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2919 // We analyze this as smax(-A, -B) swapped-pred -A. 2920 // Note that we do not need to actually form -A or -B thanks to EqP. 2921 P = CmpInst::getSwappedPredicate(Pred); 2922 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2923 (A == LHS || B == LHS)) { 2924 if (A != LHS) 2925 std::swap(A, B); // A pred smin(A, B). 2926 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2927 // We analyze this as smax(-A, -B) pred -A. 2928 // Note that we do not need to actually form -A or -B thanks to EqP. 2929 P = Pred; 2930 } 2931 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2932 // Cases correspond to "max(A, B) p A". 2933 switch (P) { 2934 default: 2935 break; 2936 case CmpInst::ICMP_EQ: 2937 case CmpInst::ICMP_SLE: 2938 // Equivalent to "A EqP B". This may be the same as the condition tested 2939 // in the max/min; if so, we can just return that. 2940 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2941 return V; 2942 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2943 return V; 2944 // Otherwise, see if "A EqP B" simplifies. 2945 if (MaxRecurse) 2946 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2947 return V; 2948 break; 2949 case CmpInst::ICMP_NE: 2950 case CmpInst::ICMP_SGT: { 2951 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2952 // Equivalent to "A InvEqP B". This may be the same as the condition 2953 // tested in the max/min; if so, we can just return that. 2954 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2955 return V; 2956 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2957 return V; 2958 // Otherwise, see if "A InvEqP B" simplifies. 2959 if (MaxRecurse) 2960 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2961 return V; 2962 break; 2963 } 2964 case CmpInst::ICMP_SGE: 2965 // Always true. 2966 return getTrue(ITy); 2967 case CmpInst::ICMP_SLT: 2968 // Always false. 2969 return getFalse(ITy); 2970 } 2971 } 2972 2973 // Unsigned variants on "max(a,b)>=a -> true". 2974 P = CmpInst::BAD_ICMP_PREDICATE; 2975 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2976 if (A != RHS) 2977 std::swap(A, B); // umax(A, B) pred A. 2978 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2979 // We analyze this as umax(A, B) pred A. 2980 P = Pred; 2981 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2982 (A == LHS || B == LHS)) { 2983 if (A != LHS) 2984 std::swap(A, B); // A pred umax(A, B). 2985 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2986 // We analyze this as umax(A, B) swapped-pred A. 2987 P = CmpInst::getSwappedPredicate(Pred); 2988 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2989 (A == RHS || B == RHS)) { 2990 if (A != RHS) 2991 std::swap(A, B); // umin(A, B) pred A. 2992 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2993 // We analyze this as umax(-A, -B) swapped-pred -A. 2994 // Note that we do not need to actually form -A or -B thanks to EqP. 2995 P = CmpInst::getSwappedPredicate(Pred); 2996 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2997 (A == LHS || B == LHS)) { 2998 if (A != LHS) 2999 std::swap(A, B); // A pred umin(A, B). 3000 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3001 // We analyze this as umax(-A, -B) pred -A. 3002 // Note that we do not need to actually form -A or -B thanks to EqP. 3003 P = Pred; 3004 } 3005 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3006 // Cases correspond to "max(A, B) p A". 3007 switch (P) { 3008 default: 3009 break; 3010 case CmpInst::ICMP_EQ: 3011 case CmpInst::ICMP_ULE: 3012 // Equivalent to "A EqP B". This may be the same as the condition tested 3013 // in the max/min; if so, we can just return that. 3014 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3015 return V; 3016 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3017 return V; 3018 // Otherwise, see if "A EqP B" simplifies. 3019 if (MaxRecurse) 3020 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3021 return V; 3022 break; 3023 case CmpInst::ICMP_NE: 3024 case CmpInst::ICMP_UGT: { 3025 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3026 // Equivalent to "A InvEqP B". This may be the same as the condition 3027 // tested in the max/min; if so, we can just return that. 3028 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3029 return V; 3030 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3031 return V; 3032 // Otherwise, see if "A InvEqP B" simplifies. 3033 if (MaxRecurse) 3034 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3035 return V; 3036 break; 3037 } 3038 case CmpInst::ICMP_UGE: 3039 // Always true. 3040 return getTrue(ITy); 3041 case CmpInst::ICMP_ULT: 3042 // Always false. 3043 return getFalse(ITy); 3044 } 3045 } 3046 3047 // Variants on "max(x,y) >= min(x,z)". 3048 Value *C, *D; 3049 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3050 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3051 (A == C || A == D || B == C || B == D)) { 3052 // max(x, ?) pred min(x, ?). 3053 if (Pred == CmpInst::ICMP_SGE) 3054 // Always true. 3055 return getTrue(ITy); 3056 if (Pred == CmpInst::ICMP_SLT) 3057 // Always false. 3058 return getFalse(ITy); 3059 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3060 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3061 (A == C || A == D || B == C || B == D)) { 3062 // min(x, ?) pred max(x, ?). 3063 if (Pred == CmpInst::ICMP_SLE) 3064 // Always true. 3065 return getTrue(ITy); 3066 if (Pred == CmpInst::ICMP_SGT) 3067 // Always false. 3068 return getFalse(ITy); 3069 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3070 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3071 (A == C || A == D || B == C || B == D)) { 3072 // max(x, ?) pred min(x, ?). 3073 if (Pred == CmpInst::ICMP_UGE) 3074 // Always true. 3075 return getTrue(ITy); 3076 if (Pred == CmpInst::ICMP_ULT) 3077 // Always false. 3078 return getFalse(ITy); 3079 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3080 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3081 (A == C || A == D || B == C || B == D)) { 3082 // min(x, ?) pred max(x, ?). 3083 if (Pred == CmpInst::ICMP_ULE) 3084 // Always true. 3085 return getTrue(ITy); 3086 if (Pred == CmpInst::ICMP_UGT) 3087 // Always false. 3088 return getFalse(ITy); 3089 } 3090 3091 return nullptr; 3092 } 3093 3094 /// Given operands for an ICmpInst, see if we can fold the result. 3095 /// If not, this returns null. 3096 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3097 const SimplifyQuery &Q, unsigned MaxRecurse) { 3098 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3099 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3100 3101 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3102 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3103 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3104 3105 // If we have a constant, make sure it is on the RHS. 3106 std::swap(LHS, RHS); 3107 Pred = CmpInst::getSwappedPredicate(Pred); 3108 } 3109 3110 Type *ITy = GetCompareTy(LHS); // The return type. 3111 3112 // icmp X, X -> true/false 3113 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3114 // because X could be 0. 3115 if (LHS == RHS || isa<UndefValue>(RHS)) 3116 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3117 3118 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3119 return V; 3120 3121 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3122 return V; 3123 3124 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3125 return V; 3126 3127 // If both operands have range metadata, use the metadata 3128 // to simplify the comparison. 3129 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3130 auto RHS_Instr = cast<Instruction>(RHS); 3131 auto LHS_Instr = cast<Instruction>(LHS); 3132 3133 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3134 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3135 auto RHS_CR = getConstantRangeFromMetadata( 3136 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3137 auto LHS_CR = getConstantRangeFromMetadata( 3138 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3139 3140 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3141 if (Satisfied_CR.contains(LHS_CR)) 3142 return ConstantInt::getTrue(RHS->getContext()); 3143 3144 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3145 CmpInst::getInversePredicate(Pred), RHS_CR); 3146 if (InversedSatisfied_CR.contains(LHS_CR)) 3147 return ConstantInt::getFalse(RHS->getContext()); 3148 } 3149 } 3150 3151 // Compare of cast, for example (zext X) != 0 -> X != 0 3152 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3153 Instruction *LI = cast<CastInst>(LHS); 3154 Value *SrcOp = LI->getOperand(0); 3155 Type *SrcTy = SrcOp->getType(); 3156 Type *DstTy = LI->getType(); 3157 3158 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3159 // if the integer type is the same size as the pointer type. 3160 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3161 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3162 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3163 // Transfer the cast to the constant. 3164 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3165 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3166 Q, MaxRecurse-1)) 3167 return V; 3168 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3169 if (RI->getOperand(0)->getType() == SrcTy) 3170 // Compare without the cast. 3171 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3172 Q, MaxRecurse-1)) 3173 return V; 3174 } 3175 } 3176 3177 if (isa<ZExtInst>(LHS)) { 3178 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3179 // same type. 3180 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3181 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3182 // Compare X and Y. Note that signed predicates become unsigned. 3183 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3184 SrcOp, RI->getOperand(0), Q, 3185 MaxRecurse-1)) 3186 return V; 3187 } 3188 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3189 // too. If not, then try to deduce the result of the comparison. 3190 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3191 // Compute the constant that would happen if we truncated to SrcTy then 3192 // reextended to DstTy. 3193 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3194 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3195 3196 // If the re-extended constant didn't change then this is effectively 3197 // also a case of comparing two zero-extended values. 3198 if (RExt == CI && MaxRecurse) 3199 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3200 SrcOp, Trunc, Q, MaxRecurse-1)) 3201 return V; 3202 3203 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3204 // there. Use this to work out the result of the comparison. 3205 if (RExt != CI) { 3206 switch (Pred) { 3207 default: llvm_unreachable("Unknown ICmp predicate!"); 3208 // LHS <u RHS. 3209 case ICmpInst::ICMP_EQ: 3210 case ICmpInst::ICMP_UGT: 3211 case ICmpInst::ICMP_UGE: 3212 return ConstantInt::getFalse(CI->getContext()); 3213 3214 case ICmpInst::ICMP_NE: 3215 case ICmpInst::ICMP_ULT: 3216 case ICmpInst::ICMP_ULE: 3217 return ConstantInt::getTrue(CI->getContext()); 3218 3219 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3220 // is non-negative then LHS <s RHS. 3221 case ICmpInst::ICMP_SGT: 3222 case ICmpInst::ICMP_SGE: 3223 return CI->getValue().isNegative() ? 3224 ConstantInt::getTrue(CI->getContext()) : 3225 ConstantInt::getFalse(CI->getContext()); 3226 3227 case ICmpInst::ICMP_SLT: 3228 case ICmpInst::ICMP_SLE: 3229 return CI->getValue().isNegative() ? 3230 ConstantInt::getFalse(CI->getContext()) : 3231 ConstantInt::getTrue(CI->getContext()); 3232 } 3233 } 3234 } 3235 } 3236 3237 if (isa<SExtInst>(LHS)) { 3238 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3239 // same type. 3240 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3241 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3242 // Compare X and Y. Note that the predicate does not change. 3243 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3244 Q, MaxRecurse-1)) 3245 return V; 3246 } 3247 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3248 // too. If not, then try to deduce the result of the comparison. 3249 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3250 // Compute the constant that would happen if we truncated to SrcTy then 3251 // reextended to DstTy. 3252 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3253 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3254 3255 // If the re-extended constant didn't change then this is effectively 3256 // also a case of comparing two sign-extended values. 3257 if (RExt == CI && MaxRecurse) 3258 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3259 return V; 3260 3261 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3262 // bits there. Use this to work out the result of the comparison. 3263 if (RExt != CI) { 3264 switch (Pred) { 3265 default: llvm_unreachable("Unknown ICmp predicate!"); 3266 case ICmpInst::ICMP_EQ: 3267 return ConstantInt::getFalse(CI->getContext()); 3268 case ICmpInst::ICMP_NE: 3269 return ConstantInt::getTrue(CI->getContext()); 3270 3271 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3272 // LHS >s RHS. 3273 case ICmpInst::ICMP_SGT: 3274 case ICmpInst::ICMP_SGE: 3275 return CI->getValue().isNegative() ? 3276 ConstantInt::getTrue(CI->getContext()) : 3277 ConstantInt::getFalse(CI->getContext()); 3278 case ICmpInst::ICMP_SLT: 3279 case ICmpInst::ICMP_SLE: 3280 return CI->getValue().isNegative() ? 3281 ConstantInt::getFalse(CI->getContext()) : 3282 ConstantInt::getTrue(CI->getContext()); 3283 3284 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3285 // LHS >u RHS. 3286 case ICmpInst::ICMP_UGT: 3287 case ICmpInst::ICMP_UGE: 3288 // Comparison is true iff the LHS <s 0. 3289 if (MaxRecurse) 3290 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3291 Constant::getNullValue(SrcTy), 3292 Q, MaxRecurse-1)) 3293 return V; 3294 break; 3295 case ICmpInst::ICMP_ULT: 3296 case ICmpInst::ICMP_ULE: 3297 // Comparison is true iff the LHS >=s 0. 3298 if (MaxRecurse) 3299 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3300 Constant::getNullValue(SrcTy), 3301 Q, MaxRecurse-1)) 3302 return V; 3303 break; 3304 } 3305 } 3306 } 3307 } 3308 } 3309 3310 // icmp eq|ne X, Y -> false|true if X != Y 3311 if (ICmpInst::isEquality(Pred) && 3312 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3313 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3314 } 3315 3316 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3317 return V; 3318 3319 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3320 return V; 3321 3322 // Simplify comparisons of related pointers using a powerful, recursive 3323 // GEP-walk when we have target data available.. 3324 if (LHS->getType()->isPointerTy()) 3325 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3326 return C; 3327 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3328 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3329 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3330 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3331 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3332 Q.DL.getTypeSizeInBits(CRHS->getType())) 3333 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3334 CLHS->getPointerOperand(), 3335 CRHS->getPointerOperand())) 3336 return C; 3337 3338 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3339 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3340 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3341 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3342 (ICmpInst::isEquality(Pred) || 3343 (GLHS->isInBounds() && GRHS->isInBounds() && 3344 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3345 // The bases are equal and the indices are constant. Build a constant 3346 // expression GEP with the same indices and a null base pointer to see 3347 // what constant folding can make out of it. 3348 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3349 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3350 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3351 GLHS->getSourceElementType(), Null, IndicesLHS); 3352 3353 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3354 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3355 GLHS->getSourceElementType(), Null, IndicesRHS); 3356 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3357 } 3358 } 3359 } 3360 3361 // If the comparison is with the result of a select instruction, check whether 3362 // comparing with either branch of the select always yields the same value. 3363 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3364 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3365 return V; 3366 3367 // If the comparison is with the result of a phi instruction, check whether 3368 // doing the compare with each incoming phi value yields a common result. 3369 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3370 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3371 return V; 3372 3373 return nullptr; 3374 } 3375 3376 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3377 const SimplifyQuery &Q) { 3378 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3379 } 3380 3381 /// Given operands for an FCmpInst, see if we can fold the result. 3382 /// If not, this returns null. 3383 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3384 FastMathFlags FMF, const SimplifyQuery &Q, 3385 unsigned MaxRecurse) { 3386 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3387 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3388 3389 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3390 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3391 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3392 3393 // If we have a constant, make sure it is on the RHS. 3394 std::swap(LHS, RHS); 3395 Pred = CmpInst::getSwappedPredicate(Pred); 3396 } 3397 3398 // Fold trivial predicates. 3399 Type *RetTy = GetCompareTy(LHS); 3400 if (Pred == FCmpInst::FCMP_FALSE) 3401 return getFalse(RetTy); 3402 if (Pred == FCmpInst::FCMP_TRUE) 3403 return getTrue(RetTy); 3404 3405 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3406 if (FMF.noNaNs()) { 3407 if (Pred == FCmpInst::FCMP_UNO) 3408 return getFalse(RetTy); 3409 if (Pred == FCmpInst::FCMP_ORD) 3410 return getTrue(RetTy); 3411 } 3412 3413 // fcmp pred x, undef and fcmp pred undef, x 3414 // fold to true if unordered, false if ordered 3415 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3416 // Choosing NaN for the undef will always make unordered comparison succeed 3417 // and ordered comparison fail. 3418 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3419 } 3420 3421 // fcmp x,x -> true/false. Not all compares are foldable. 3422 if (LHS == RHS) { 3423 if (CmpInst::isTrueWhenEqual(Pred)) 3424 return getTrue(RetTy); 3425 if (CmpInst::isFalseWhenEqual(Pred)) 3426 return getFalse(RetTy); 3427 } 3428 3429 // Handle fcmp with constant RHS 3430 const ConstantFP *CFP = nullptr; 3431 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3432 if (RHS->getType()->isVectorTy()) 3433 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3434 else 3435 CFP = dyn_cast<ConstantFP>(RHSC); 3436 } 3437 if (CFP) { 3438 // If the constant is a nan, see if we can fold the comparison based on it. 3439 if (CFP->getValueAPF().isNaN()) { 3440 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3441 return getFalse(RetTy); 3442 assert(FCmpInst::isUnordered(Pred) && 3443 "Comparison must be either ordered or unordered!"); 3444 // True if unordered. 3445 return getTrue(RetTy); 3446 } 3447 // Check whether the constant is an infinity. 3448 if (CFP->getValueAPF().isInfinity()) { 3449 if (CFP->getValueAPF().isNegative()) { 3450 switch (Pred) { 3451 case FCmpInst::FCMP_OLT: 3452 // No value is ordered and less than negative infinity. 3453 return getFalse(RetTy); 3454 case FCmpInst::FCMP_UGE: 3455 // All values are unordered with or at least negative infinity. 3456 return getTrue(RetTy); 3457 default: 3458 break; 3459 } 3460 } else { 3461 switch (Pred) { 3462 case FCmpInst::FCMP_OGT: 3463 // No value is ordered and greater than infinity. 3464 return getFalse(RetTy); 3465 case FCmpInst::FCMP_ULE: 3466 // All values are unordered with and at most infinity. 3467 return getTrue(RetTy); 3468 default: 3469 break; 3470 } 3471 } 3472 } 3473 if (CFP->getValueAPF().isZero()) { 3474 switch (Pred) { 3475 case FCmpInst::FCMP_UGE: 3476 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3477 return getTrue(RetTy); 3478 break; 3479 case FCmpInst::FCMP_OLT: 3480 // X < 0 3481 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3482 return getFalse(RetTy); 3483 break; 3484 default: 3485 break; 3486 } 3487 } 3488 } 3489 3490 // If the comparison is with the result of a select instruction, check whether 3491 // comparing with either branch of the select always yields the same value. 3492 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3493 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3494 return V; 3495 3496 // If the comparison is with the result of a phi instruction, check whether 3497 // doing the compare with each incoming phi value yields a common result. 3498 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3499 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3500 return V; 3501 3502 return nullptr; 3503 } 3504 3505 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3506 FastMathFlags FMF, const SimplifyQuery &Q) { 3507 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3508 } 3509 3510 /// See if V simplifies when its operand Op is replaced with RepOp. 3511 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3512 const SimplifyQuery &Q, 3513 unsigned MaxRecurse) { 3514 // Trivial replacement. 3515 if (V == Op) 3516 return RepOp; 3517 3518 // We cannot replace a constant, and shouldn't even try. 3519 if (isa<Constant>(Op)) 3520 return nullptr; 3521 3522 auto *I = dyn_cast<Instruction>(V); 3523 if (!I) 3524 return nullptr; 3525 3526 // If this is a binary operator, try to simplify it with the replaced op. 3527 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3528 // Consider: 3529 // %cmp = icmp eq i32 %x, 2147483647 3530 // %add = add nsw i32 %x, 1 3531 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3532 // 3533 // We can't replace %sel with %add unless we strip away the flags. 3534 if (isa<OverflowingBinaryOperator>(B)) 3535 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3536 return nullptr; 3537 if (isa<PossiblyExactOperator>(B)) 3538 if (B->isExact()) 3539 return nullptr; 3540 3541 if (MaxRecurse) { 3542 if (B->getOperand(0) == Op) 3543 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3544 MaxRecurse - 1); 3545 if (B->getOperand(1) == Op) 3546 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3547 MaxRecurse - 1); 3548 } 3549 } 3550 3551 // Same for CmpInsts. 3552 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3553 if (MaxRecurse) { 3554 if (C->getOperand(0) == Op) 3555 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3556 MaxRecurse - 1); 3557 if (C->getOperand(1) == Op) 3558 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3559 MaxRecurse - 1); 3560 } 3561 } 3562 3563 // TODO: We could hand off more cases to instsimplify here. 3564 3565 // If all operands are constant after substituting Op for RepOp then we can 3566 // constant fold the instruction. 3567 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3568 // Build a list of all constant operands. 3569 SmallVector<Constant *, 8> ConstOps; 3570 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3571 if (I->getOperand(i) == Op) 3572 ConstOps.push_back(CRepOp); 3573 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3574 ConstOps.push_back(COp); 3575 else 3576 break; 3577 } 3578 3579 // All operands were constants, fold it. 3580 if (ConstOps.size() == I->getNumOperands()) { 3581 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3582 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3583 ConstOps[1], Q.DL, Q.TLI); 3584 3585 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3586 if (!LI->isVolatile()) 3587 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3588 3589 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3590 } 3591 } 3592 3593 return nullptr; 3594 } 3595 3596 /// Try to simplify a select instruction when its condition operand is an 3597 /// integer comparison where one operand of the compare is a constant. 3598 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3599 const APInt *Y, bool TrueWhenUnset) { 3600 const APInt *C; 3601 3602 // (X & Y) == 0 ? X & ~Y : X --> X 3603 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3604 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3605 *Y == ~*C) 3606 return TrueWhenUnset ? FalseVal : TrueVal; 3607 3608 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3609 // (X & Y) != 0 ? X : X & ~Y --> X 3610 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3611 *Y == ~*C) 3612 return TrueWhenUnset ? FalseVal : TrueVal; 3613 3614 if (Y->isPowerOf2()) { 3615 // (X & Y) == 0 ? X | Y : X --> X | Y 3616 // (X & Y) != 0 ? X | Y : X --> X 3617 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3618 *Y == *C) 3619 return TrueWhenUnset ? TrueVal : FalseVal; 3620 3621 // (X & Y) == 0 ? X : X | Y --> X 3622 // (X & Y) != 0 ? X : X | Y --> X | Y 3623 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3624 *Y == *C) 3625 return TrueWhenUnset ? TrueVal : FalseVal; 3626 } 3627 3628 return nullptr; 3629 } 3630 3631 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3632 /// eq/ne. 3633 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *TrueVal, 3634 Value *FalseVal, 3635 bool TrueWhenUnset) { 3636 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 3637 if (!BitWidth) 3638 return nullptr; 3639 3640 APInt MinSignedValue; 3641 Value *X; 3642 if (match(CmpLHS, m_Trunc(m_Value(X))) && (X == TrueVal || X == FalseVal)) { 3643 // icmp slt (trunc X), 0 <--> icmp ne (and X, C), 0 3644 // icmp sgt (trunc X), -1 <--> icmp eq (and X, C), 0 3645 unsigned DestSize = CmpLHS->getType()->getScalarSizeInBits(); 3646 MinSignedValue = APInt::getSignedMinValue(DestSize).zext(BitWidth); 3647 } else { 3648 // icmp slt X, 0 <--> icmp ne (and X, C), 0 3649 // icmp sgt X, -1 <--> icmp eq (and X, C), 0 3650 X = CmpLHS; 3651 MinSignedValue = APInt::getSignedMinValue(BitWidth); 3652 } 3653 3654 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, &MinSignedValue, 3655 TrueWhenUnset)) 3656 return V; 3657 3658 return nullptr; 3659 } 3660 3661 /// Try to simplify a select instruction when its condition operand is an 3662 /// integer comparison. 3663 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3664 Value *FalseVal, const SimplifyQuery &Q, 3665 unsigned MaxRecurse) { 3666 ICmpInst::Predicate Pred; 3667 Value *CmpLHS, *CmpRHS; 3668 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3669 return nullptr; 3670 3671 // FIXME: This code is nearly duplicated in InstCombine. Using/refactoring 3672 // decomposeBitTestICmp() might help. 3673 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3674 Value *X; 3675 const APInt *Y; 3676 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3677 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3678 Pred == ICmpInst::ICMP_EQ)) 3679 return V; 3680 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3681 // Comparing signed-less-than 0 checks if the sign bit is set. 3682 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3683 false)) 3684 return V; 3685 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3686 // Comparing signed-greater-than -1 checks if the sign bit is not set. 3687 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, TrueVal, FalseVal, 3688 true)) 3689 return V; 3690 } 3691 3692 if (CondVal->hasOneUse()) { 3693 const APInt *C; 3694 if (match(CmpRHS, m_APInt(C))) { 3695 // X < MIN ? T : F --> F 3696 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3697 return FalseVal; 3698 // X < MIN ? T : F --> F 3699 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3700 return FalseVal; 3701 // X > MAX ? T : F --> F 3702 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3703 return FalseVal; 3704 // X > MAX ? T : F --> F 3705 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3706 return FalseVal; 3707 } 3708 } 3709 3710 // If we have an equality comparison, then we know the value in one of the 3711 // arms of the select. See if substituting this value into the arm and 3712 // simplifying the result yields the same value as the other arm. 3713 if (Pred == ICmpInst::ICMP_EQ) { 3714 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3715 TrueVal || 3716 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3717 TrueVal) 3718 return FalseVal; 3719 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3720 FalseVal || 3721 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3722 FalseVal) 3723 return FalseVal; 3724 } else if (Pred == ICmpInst::ICMP_NE) { 3725 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3726 FalseVal || 3727 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3728 FalseVal) 3729 return TrueVal; 3730 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3731 TrueVal || 3732 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3733 TrueVal) 3734 return TrueVal; 3735 } 3736 3737 return nullptr; 3738 } 3739 3740 /// Given operands for a SelectInst, see if we can fold the result. 3741 /// If not, this returns null. 3742 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3743 Value *FalseVal, const SimplifyQuery &Q, 3744 unsigned MaxRecurse) { 3745 // select true, X, Y -> X 3746 // select false, X, Y -> Y 3747 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3748 if (CB->isAllOnesValue()) 3749 return TrueVal; 3750 if (CB->isNullValue()) 3751 return FalseVal; 3752 } 3753 3754 // select C, X, X -> X 3755 if (TrueVal == FalseVal) 3756 return TrueVal; 3757 3758 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3759 if (isa<Constant>(FalseVal)) 3760 return FalseVal; 3761 return TrueVal; 3762 } 3763 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3764 return FalseVal; 3765 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3766 return TrueVal; 3767 3768 if (Value *V = 3769 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3770 return V; 3771 3772 return nullptr; 3773 } 3774 3775 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3776 const SimplifyQuery &Q) { 3777 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3778 } 3779 3780 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3781 /// If not, this returns null. 3782 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3783 const SimplifyQuery &Q, unsigned) { 3784 // The type of the GEP pointer operand. 3785 unsigned AS = 3786 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3787 3788 // getelementptr P -> P. 3789 if (Ops.size() == 1) 3790 return Ops[0]; 3791 3792 // Compute the (pointer) type returned by the GEP instruction. 3793 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3794 Type *GEPTy = PointerType::get(LastType, AS); 3795 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3796 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3797 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3798 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3799 3800 if (isa<UndefValue>(Ops[0])) 3801 return UndefValue::get(GEPTy); 3802 3803 if (Ops.size() == 2) { 3804 // getelementptr P, 0 -> P. 3805 if (match(Ops[1], m_Zero())) 3806 return Ops[0]; 3807 3808 Type *Ty = SrcTy; 3809 if (Ty->isSized()) { 3810 Value *P; 3811 uint64_t C; 3812 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3813 // getelementptr P, N -> P if P points to a type of zero size. 3814 if (TyAllocSize == 0) 3815 return Ops[0]; 3816 3817 // The following transforms are only safe if the ptrtoint cast 3818 // doesn't truncate the pointers. 3819 if (Ops[1]->getType()->getScalarSizeInBits() == 3820 Q.DL.getPointerSizeInBits(AS)) { 3821 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3822 if (match(P, m_Zero())) 3823 return Constant::getNullValue(GEPTy); 3824 Value *Temp; 3825 if (match(P, m_PtrToInt(m_Value(Temp)))) 3826 if (Temp->getType() == GEPTy) 3827 return Temp; 3828 return nullptr; 3829 }; 3830 3831 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3832 if (TyAllocSize == 1 && 3833 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3834 if (Value *R = PtrToIntOrZero(P)) 3835 return R; 3836 3837 // getelementptr V, (ashr (sub P, V), C) -> Q 3838 // if P points to a type of size 1 << C. 3839 if (match(Ops[1], 3840 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3841 m_ConstantInt(C))) && 3842 TyAllocSize == 1ULL << C) 3843 if (Value *R = PtrToIntOrZero(P)) 3844 return R; 3845 3846 // getelementptr V, (sdiv (sub P, V), C) -> Q 3847 // if P points to a type of size C. 3848 if (match(Ops[1], 3849 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3850 m_SpecificInt(TyAllocSize)))) 3851 if (Value *R = PtrToIntOrZero(P)) 3852 return R; 3853 } 3854 } 3855 } 3856 3857 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3858 all_of(Ops.slice(1).drop_back(1), 3859 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3860 unsigned PtrWidth = 3861 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3862 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3863 APInt BasePtrOffset(PtrWidth, 0); 3864 Value *StrippedBasePtr = 3865 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3866 BasePtrOffset); 3867 3868 // gep (gep V, C), (sub 0, V) -> C 3869 if (match(Ops.back(), 3870 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3871 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3872 return ConstantExpr::getIntToPtr(CI, GEPTy); 3873 } 3874 // gep (gep V, C), (xor V, -1) -> C-1 3875 if (match(Ops.back(), 3876 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3877 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3878 return ConstantExpr::getIntToPtr(CI, GEPTy); 3879 } 3880 } 3881 } 3882 3883 // Check to see if this is constant foldable. 3884 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3885 return nullptr; 3886 3887 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3888 Ops.slice(1)); 3889 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3890 return CEFolded; 3891 return CE; 3892 } 3893 3894 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3895 const SimplifyQuery &Q) { 3896 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3897 } 3898 3899 /// Given operands for an InsertValueInst, see if we can fold the result. 3900 /// If not, this returns null. 3901 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3902 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3903 unsigned) { 3904 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3905 if (Constant *CVal = dyn_cast<Constant>(Val)) 3906 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3907 3908 // insertvalue x, undef, n -> x 3909 if (match(Val, m_Undef())) 3910 return Agg; 3911 3912 // insertvalue x, (extractvalue y, n), n 3913 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3914 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3915 EV->getIndices() == Idxs) { 3916 // insertvalue undef, (extractvalue y, n), n -> y 3917 if (match(Agg, m_Undef())) 3918 return EV->getAggregateOperand(); 3919 3920 // insertvalue y, (extractvalue y, n), n -> y 3921 if (Agg == EV->getAggregateOperand()) 3922 return Agg; 3923 } 3924 3925 return nullptr; 3926 } 3927 3928 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3929 ArrayRef<unsigned> Idxs, 3930 const SimplifyQuery &Q) { 3931 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3932 } 3933 3934 /// Given operands for an ExtractValueInst, see if we can fold the result. 3935 /// If not, this returns null. 3936 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3937 const SimplifyQuery &, unsigned) { 3938 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3939 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3940 3941 // extractvalue x, (insertvalue y, elt, n), n -> elt 3942 unsigned NumIdxs = Idxs.size(); 3943 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3944 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3945 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3946 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3947 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3948 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3949 Idxs.slice(0, NumCommonIdxs)) { 3950 if (NumIdxs == NumInsertValueIdxs) 3951 return IVI->getInsertedValueOperand(); 3952 break; 3953 } 3954 } 3955 3956 return nullptr; 3957 } 3958 3959 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3960 const SimplifyQuery &Q) { 3961 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3962 } 3963 3964 /// Given operands for an ExtractElementInst, see if we can fold the result. 3965 /// If not, this returns null. 3966 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3967 unsigned) { 3968 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3969 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3970 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3971 3972 // The index is not relevant if our vector is a splat. 3973 if (auto *Splat = CVec->getSplatValue()) 3974 return Splat; 3975 3976 if (isa<UndefValue>(Vec)) 3977 return UndefValue::get(Vec->getType()->getVectorElementType()); 3978 } 3979 3980 // If extracting a specified index from the vector, see if we can recursively 3981 // find a previously computed scalar that was inserted into the vector. 3982 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3983 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3984 return Elt; 3985 3986 return nullptr; 3987 } 3988 3989 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3990 const SimplifyQuery &Q) { 3991 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3992 } 3993 3994 /// See if we can fold the given phi. If not, returns null. 3995 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3996 // If all of the PHI's incoming values are the same then replace the PHI node 3997 // with the common value. 3998 Value *CommonValue = nullptr; 3999 bool HasUndefInput = false; 4000 for (Value *Incoming : PN->incoming_values()) { 4001 // If the incoming value is the phi node itself, it can safely be skipped. 4002 if (Incoming == PN) continue; 4003 if (isa<UndefValue>(Incoming)) { 4004 // Remember that we saw an undef value, but otherwise ignore them. 4005 HasUndefInput = true; 4006 continue; 4007 } 4008 if (CommonValue && Incoming != CommonValue) 4009 return nullptr; // Not the same, bail out. 4010 CommonValue = Incoming; 4011 } 4012 4013 // If CommonValue is null then all of the incoming values were either undef or 4014 // equal to the phi node itself. 4015 if (!CommonValue) 4016 return UndefValue::get(PN->getType()); 4017 4018 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4019 // instruction, we cannot return X as the result of the PHI node unless it 4020 // dominates the PHI block. 4021 if (HasUndefInput) 4022 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4023 4024 return CommonValue; 4025 } 4026 4027 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4028 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4029 if (auto *C = dyn_cast<Constant>(Op)) 4030 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4031 4032 if (auto *CI = dyn_cast<CastInst>(Op)) { 4033 auto *Src = CI->getOperand(0); 4034 Type *SrcTy = Src->getType(); 4035 Type *MidTy = CI->getType(); 4036 Type *DstTy = Ty; 4037 if (Src->getType() == Ty) { 4038 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4039 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4040 Type *SrcIntPtrTy = 4041 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4042 Type *MidIntPtrTy = 4043 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4044 Type *DstIntPtrTy = 4045 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4046 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4047 SrcIntPtrTy, MidIntPtrTy, 4048 DstIntPtrTy) == Instruction::BitCast) 4049 return Src; 4050 } 4051 } 4052 4053 // bitcast x -> x 4054 if (CastOpc == Instruction::BitCast) 4055 if (Op->getType() == Ty) 4056 return Op; 4057 4058 return nullptr; 4059 } 4060 4061 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4062 const SimplifyQuery &Q) { 4063 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4064 } 4065 4066 /// For the given destination element of a shuffle, peek through shuffles to 4067 /// match a root vector source operand that contains that element in the same 4068 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4069 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4070 int MaskVal, Value *RootVec, 4071 unsigned MaxRecurse) { 4072 if (!MaxRecurse--) 4073 return nullptr; 4074 4075 // Bail out if any mask value is undefined. That kind of shuffle may be 4076 // simplified further based on demanded bits or other folds. 4077 if (MaskVal == -1) 4078 return nullptr; 4079 4080 // The mask value chooses which source operand we need to look at next. 4081 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4082 int RootElt = MaskVal; 4083 Value *SourceOp = Op0; 4084 if (MaskVal >= InVecNumElts) { 4085 RootElt = MaskVal - InVecNumElts; 4086 SourceOp = Op1; 4087 } 4088 4089 // If the source operand is a shuffle itself, look through it to find the 4090 // matching root vector. 4091 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4092 return foldIdentityShuffles( 4093 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4094 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4095 } 4096 4097 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4098 // size? 4099 4100 // The source operand is not a shuffle. Initialize the root vector value for 4101 // this shuffle if that has not been done yet. 4102 if (!RootVec) 4103 RootVec = SourceOp; 4104 4105 // Give up as soon as a source operand does not match the existing root value. 4106 if (RootVec != SourceOp) 4107 return nullptr; 4108 4109 // The element must be coming from the same lane in the source vector 4110 // (although it may have crossed lanes in intermediate shuffles). 4111 if (RootElt != DestElt) 4112 return nullptr; 4113 4114 return RootVec; 4115 } 4116 4117 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4118 Type *RetTy, const SimplifyQuery &Q, 4119 unsigned MaxRecurse) { 4120 if (isa<UndefValue>(Mask)) 4121 return UndefValue::get(RetTy); 4122 4123 Type *InVecTy = Op0->getType(); 4124 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4125 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4126 4127 SmallVector<int, 32> Indices; 4128 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4129 assert(MaskNumElts == Indices.size() && 4130 "Size of Indices not same as number of mask elements?"); 4131 4132 // Canonicalization: If mask does not select elements from an input vector, 4133 // replace that input vector with undef. 4134 bool MaskSelects0 = false, MaskSelects1 = false; 4135 for (unsigned i = 0; i != MaskNumElts; ++i) { 4136 if (Indices[i] == -1) 4137 continue; 4138 if ((unsigned)Indices[i] < InVecNumElts) 4139 MaskSelects0 = true; 4140 else 4141 MaskSelects1 = true; 4142 } 4143 if (!MaskSelects0) 4144 Op0 = UndefValue::get(InVecTy); 4145 if (!MaskSelects1) 4146 Op1 = UndefValue::get(InVecTy); 4147 4148 auto *Op0Const = dyn_cast<Constant>(Op0); 4149 auto *Op1Const = dyn_cast<Constant>(Op1); 4150 4151 // If all operands are constant, constant fold the shuffle. 4152 if (Op0Const && Op1Const) 4153 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4154 4155 // Canonicalization: if only one input vector is constant, it shall be the 4156 // second one. 4157 if (Op0Const && !Op1Const) { 4158 std::swap(Op0, Op1); 4159 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4160 } 4161 4162 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4163 // value type is same as the input vectors' type. 4164 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4165 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4166 OpShuf->getMask()->getSplatValue()) 4167 return Op0; 4168 4169 // Don't fold a shuffle with undef mask elements. This may get folded in a 4170 // better way using demanded bits or other analysis. 4171 // TODO: Should we allow this? 4172 if (find(Indices, -1) != Indices.end()) 4173 return nullptr; 4174 4175 // Check if every element of this shuffle can be mapped back to the 4176 // corresponding element of a single root vector. If so, we don't need this 4177 // shuffle. This handles simple identity shuffles as well as chains of 4178 // shuffles that may widen/narrow and/or move elements across lanes and back. 4179 Value *RootVec = nullptr; 4180 for (unsigned i = 0; i != MaskNumElts; ++i) { 4181 // Note that recursion is limited for each vector element, so if any element 4182 // exceeds the limit, this will fail to simplify. 4183 RootVec = 4184 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4185 4186 // We can't replace a widening/narrowing shuffle with one of its operands. 4187 if (!RootVec || RootVec->getType() != RetTy) 4188 return nullptr; 4189 } 4190 return RootVec; 4191 } 4192 4193 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4194 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4195 Type *RetTy, const SimplifyQuery &Q) { 4196 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4197 } 4198 4199 //=== Helper functions for higher up the class hierarchy. 4200 4201 /// Given operands for a BinaryOperator, see if we can fold the result. 4202 /// If not, this returns null. 4203 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4204 const SimplifyQuery &Q, unsigned MaxRecurse) { 4205 switch (Opcode) { 4206 case Instruction::Add: 4207 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4208 case Instruction::FAdd: 4209 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4210 case Instruction::Sub: 4211 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4212 case Instruction::FSub: 4213 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4214 case Instruction::Mul: 4215 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4216 case Instruction::FMul: 4217 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4218 case Instruction::SDiv: 4219 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4220 case Instruction::UDiv: 4221 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4222 case Instruction::FDiv: 4223 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4224 case Instruction::SRem: 4225 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4226 case Instruction::URem: 4227 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4228 case Instruction::FRem: 4229 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4230 case Instruction::Shl: 4231 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4232 case Instruction::LShr: 4233 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4234 case Instruction::AShr: 4235 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4236 case Instruction::And: 4237 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4238 case Instruction::Or: 4239 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4240 case Instruction::Xor: 4241 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4242 default: 4243 llvm_unreachable("Unexpected opcode"); 4244 } 4245 } 4246 4247 /// Given operands for a BinaryOperator, see if we can fold the result. 4248 /// If not, this returns null. 4249 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4250 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4251 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4252 const FastMathFlags &FMF, const SimplifyQuery &Q, 4253 unsigned MaxRecurse) { 4254 switch (Opcode) { 4255 case Instruction::FAdd: 4256 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4257 case Instruction::FSub: 4258 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4259 case Instruction::FMul: 4260 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4261 case Instruction::FDiv: 4262 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4263 default: 4264 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4265 } 4266 } 4267 4268 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4269 const SimplifyQuery &Q) { 4270 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4271 } 4272 4273 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4274 FastMathFlags FMF, const SimplifyQuery &Q) { 4275 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4276 } 4277 4278 /// Given operands for a CmpInst, see if we can fold the result. 4279 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4280 const SimplifyQuery &Q, unsigned MaxRecurse) { 4281 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4282 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4283 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4284 } 4285 4286 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4287 const SimplifyQuery &Q) { 4288 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4289 } 4290 4291 static bool IsIdempotent(Intrinsic::ID ID) { 4292 switch (ID) { 4293 default: return false; 4294 4295 // Unary idempotent: f(f(x)) = f(x) 4296 case Intrinsic::fabs: 4297 case Intrinsic::floor: 4298 case Intrinsic::ceil: 4299 case Intrinsic::trunc: 4300 case Intrinsic::rint: 4301 case Intrinsic::nearbyint: 4302 case Intrinsic::round: 4303 return true; 4304 } 4305 } 4306 4307 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4308 const DataLayout &DL) { 4309 GlobalValue *PtrSym; 4310 APInt PtrOffset; 4311 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4312 return nullptr; 4313 4314 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4315 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4316 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4317 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4318 4319 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4320 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4321 return nullptr; 4322 4323 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4324 if (OffsetInt % 4 != 0) 4325 return nullptr; 4326 4327 Constant *C = ConstantExpr::getGetElementPtr( 4328 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4329 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4330 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4331 if (!Loaded) 4332 return nullptr; 4333 4334 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4335 if (!LoadedCE) 4336 return nullptr; 4337 4338 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4339 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4340 if (!LoadedCE) 4341 return nullptr; 4342 } 4343 4344 if (LoadedCE->getOpcode() != Instruction::Sub) 4345 return nullptr; 4346 4347 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4348 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4349 return nullptr; 4350 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4351 4352 Constant *LoadedRHS = LoadedCE->getOperand(1); 4353 GlobalValue *LoadedRHSSym; 4354 APInt LoadedRHSOffset; 4355 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4356 DL) || 4357 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4358 return nullptr; 4359 4360 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4361 } 4362 4363 static bool maskIsAllZeroOrUndef(Value *Mask) { 4364 auto *ConstMask = dyn_cast<Constant>(Mask); 4365 if (!ConstMask) 4366 return false; 4367 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4368 return true; 4369 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4370 ++I) { 4371 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4372 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4373 continue; 4374 return false; 4375 } 4376 return true; 4377 } 4378 4379 template <typename IterTy> 4380 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4381 const SimplifyQuery &Q, unsigned MaxRecurse) { 4382 Intrinsic::ID IID = F->getIntrinsicID(); 4383 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4384 4385 // Unary Ops 4386 if (NumOperands == 1) { 4387 // Perform idempotent optimizations 4388 if (IsIdempotent(IID)) { 4389 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4390 if (II->getIntrinsicID() == IID) 4391 return II; 4392 } 4393 } 4394 4395 switch (IID) { 4396 case Intrinsic::fabs: { 4397 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4398 return *ArgBegin; 4399 return nullptr; 4400 } 4401 default: 4402 return nullptr; 4403 } 4404 } 4405 4406 // Binary Ops 4407 if (NumOperands == 2) { 4408 Value *LHS = *ArgBegin; 4409 Value *RHS = *(ArgBegin + 1); 4410 Type *ReturnType = F->getReturnType(); 4411 4412 switch (IID) { 4413 case Intrinsic::usub_with_overflow: 4414 case Intrinsic::ssub_with_overflow: { 4415 // X - X -> { 0, false } 4416 if (LHS == RHS) 4417 return Constant::getNullValue(ReturnType); 4418 4419 // X - undef -> undef 4420 // undef - X -> undef 4421 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4422 return UndefValue::get(ReturnType); 4423 4424 return nullptr; 4425 } 4426 case Intrinsic::uadd_with_overflow: 4427 case Intrinsic::sadd_with_overflow: { 4428 // X + undef -> undef 4429 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4430 return UndefValue::get(ReturnType); 4431 4432 return nullptr; 4433 } 4434 case Intrinsic::umul_with_overflow: 4435 case Intrinsic::smul_with_overflow: { 4436 // 0 * X -> { 0, false } 4437 // X * 0 -> { 0, false } 4438 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4439 return Constant::getNullValue(ReturnType); 4440 4441 // undef * X -> { 0, false } 4442 // X * undef -> { 0, false } 4443 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4444 return Constant::getNullValue(ReturnType); 4445 4446 return nullptr; 4447 } 4448 case Intrinsic::load_relative: { 4449 Constant *C0 = dyn_cast<Constant>(LHS); 4450 Constant *C1 = dyn_cast<Constant>(RHS); 4451 if (C0 && C1) 4452 return SimplifyRelativeLoad(C0, C1, Q.DL); 4453 return nullptr; 4454 } 4455 default: 4456 return nullptr; 4457 } 4458 } 4459 4460 // Simplify calls to llvm.masked.load.* 4461 switch (IID) { 4462 case Intrinsic::masked_load: { 4463 Value *MaskArg = ArgBegin[2]; 4464 Value *PassthruArg = ArgBegin[3]; 4465 // If the mask is all zeros or undef, the "passthru" argument is the result. 4466 if (maskIsAllZeroOrUndef(MaskArg)) 4467 return PassthruArg; 4468 return nullptr; 4469 } 4470 default: 4471 return nullptr; 4472 } 4473 } 4474 4475 template <typename IterTy> 4476 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4477 const SimplifyQuery &Q, unsigned MaxRecurse) { 4478 Type *Ty = V->getType(); 4479 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4480 Ty = PTy->getElementType(); 4481 FunctionType *FTy = cast<FunctionType>(Ty); 4482 4483 // call undef -> undef 4484 // call null -> undef 4485 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4486 return UndefValue::get(FTy->getReturnType()); 4487 4488 Function *F = dyn_cast<Function>(V); 4489 if (!F) 4490 return nullptr; 4491 4492 if (F->isIntrinsic()) 4493 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4494 return Ret; 4495 4496 if (!canConstantFoldCallTo(F)) 4497 return nullptr; 4498 4499 SmallVector<Constant *, 4> ConstantArgs; 4500 ConstantArgs.reserve(ArgEnd - ArgBegin); 4501 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4502 Constant *C = dyn_cast<Constant>(*I); 4503 if (!C) 4504 return nullptr; 4505 ConstantArgs.push_back(C); 4506 } 4507 4508 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4509 } 4510 4511 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4512 User::op_iterator ArgEnd, const SimplifyQuery &Q) { 4513 return ::SimplifyCall(V, ArgBegin, ArgEnd, Q, RecursionLimit); 4514 } 4515 4516 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4517 const SimplifyQuery &Q) { 4518 return ::SimplifyCall(V, Args.begin(), Args.end(), Q, RecursionLimit); 4519 } 4520 4521 /// See if we can compute a simplified version of this instruction. 4522 /// If not, this returns null. 4523 4524 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4525 OptimizationRemarkEmitter *ORE) { 4526 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4527 Value *Result; 4528 4529 switch (I->getOpcode()) { 4530 default: 4531 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4532 break; 4533 case Instruction::FAdd: 4534 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4535 I->getFastMathFlags(), Q); 4536 break; 4537 case Instruction::Add: 4538 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4539 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4540 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4541 break; 4542 case Instruction::FSub: 4543 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4544 I->getFastMathFlags(), Q); 4545 break; 4546 case Instruction::Sub: 4547 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4548 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4549 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4550 break; 4551 case Instruction::FMul: 4552 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4553 I->getFastMathFlags(), Q); 4554 break; 4555 case Instruction::Mul: 4556 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4557 break; 4558 case Instruction::SDiv: 4559 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4560 break; 4561 case Instruction::UDiv: 4562 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4563 break; 4564 case Instruction::FDiv: 4565 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4566 I->getFastMathFlags(), Q); 4567 break; 4568 case Instruction::SRem: 4569 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4570 break; 4571 case Instruction::URem: 4572 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4573 break; 4574 case Instruction::FRem: 4575 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4576 I->getFastMathFlags(), Q); 4577 break; 4578 case Instruction::Shl: 4579 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4580 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4581 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4582 break; 4583 case Instruction::LShr: 4584 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4585 cast<BinaryOperator>(I)->isExact(), Q); 4586 break; 4587 case Instruction::AShr: 4588 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4589 cast<BinaryOperator>(I)->isExact(), Q); 4590 break; 4591 case Instruction::And: 4592 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4593 break; 4594 case Instruction::Or: 4595 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4596 break; 4597 case Instruction::Xor: 4598 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4599 break; 4600 case Instruction::ICmp: 4601 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4602 I->getOperand(0), I->getOperand(1), Q); 4603 break; 4604 case Instruction::FCmp: 4605 Result = 4606 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4607 I->getOperand(1), I->getFastMathFlags(), Q); 4608 break; 4609 case Instruction::Select: 4610 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4611 I->getOperand(2), Q); 4612 break; 4613 case Instruction::GetElementPtr: { 4614 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4615 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4616 Ops, Q); 4617 break; 4618 } 4619 case Instruction::InsertValue: { 4620 InsertValueInst *IV = cast<InsertValueInst>(I); 4621 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4622 IV->getInsertedValueOperand(), 4623 IV->getIndices(), Q); 4624 break; 4625 } 4626 case Instruction::ExtractValue: { 4627 auto *EVI = cast<ExtractValueInst>(I); 4628 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4629 EVI->getIndices(), Q); 4630 break; 4631 } 4632 case Instruction::ExtractElement: { 4633 auto *EEI = cast<ExtractElementInst>(I); 4634 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4635 EEI->getIndexOperand(), Q); 4636 break; 4637 } 4638 case Instruction::ShuffleVector: { 4639 auto *SVI = cast<ShuffleVectorInst>(I); 4640 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4641 SVI->getMask(), SVI->getType(), Q); 4642 break; 4643 } 4644 case Instruction::PHI: 4645 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4646 break; 4647 case Instruction::Call: { 4648 CallSite CS(cast<CallInst>(I)); 4649 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), Q); 4650 break; 4651 } 4652 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4653 #include "llvm/IR/Instruction.def" 4654 #undef HANDLE_CAST_INST 4655 Result = 4656 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4657 break; 4658 case Instruction::Alloca: 4659 // No simplifications for Alloca and it can't be constant folded. 4660 Result = nullptr; 4661 break; 4662 } 4663 4664 // In general, it is possible for computeKnownBits to determine all bits in a 4665 // value even when the operands are not all constants. 4666 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4667 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4668 if (Known.isConstant()) 4669 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4670 } 4671 4672 /// If called on unreachable code, the above logic may report that the 4673 /// instruction simplified to itself. Make life easier for users by 4674 /// detecting that case here, returning a safe value instead. 4675 return Result == I ? UndefValue::get(I->getType()) : Result; 4676 } 4677 4678 /// \brief Implementation of recursive simplification through an instruction's 4679 /// uses. 4680 /// 4681 /// This is the common implementation of the recursive simplification routines. 4682 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4683 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4684 /// instructions to process and attempt to simplify it using 4685 /// InstructionSimplify. 4686 /// 4687 /// This routine returns 'true' only when *it* simplifies something. The passed 4688 /// in simplified value does not count toward this. 4689 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4690 const TargetLibraryInfo *TLI, 4691 const DominatorTree *DT, 4692 AssumptionCache *AC) { 4693 bool Simplified = false; 4694 SmallSetVector<Instruction *, 8> Worklist; 4695 const DataLayout &DL = I->getModule()->getDataLayout(); 4696 4697 // If we have an explicit value to collapse to, do that round of the 4698 // simplification loop by hand initially. 4699 if (SimpleV) { 4700 for (User *U : I->users()) 4701 if (U != I) 4702 Worklist.insert(cast<Instruction>(U)); 4703 4704 // Replace the instruction with its simplified value. 4705 I->replaceAllUsesWith(SimpleV); 4706 4707 // Gracefully handle edge cases where the instruction is not wired into any 4708 // parent block. 4709 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4710 !I->mayHaveSideEffects()) 4711 I->eraseFromParent(); 4712 } else { 4713 Worklist.insert(I); 4714 } 4715 4716 // Note that we must test the size on each iteration, the worklist can grow. 4717 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4718 I = Worklist[Idx]; 4719 4720 // See if this instruction simplifies. 4721 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4722 if (!SimpleV) 4723 continue; 4724 4725 Simplified = true; 4726 4727 // Stash away all the uses of the old instruction so we can check them for 4728 // recursive simplifications after a RAUW. This is cheaper than checking all 4729 // uses of To on the recursive step in most cases. 4730 for (User *U : I->users()) 4731 Worklist.insert(cast<Instruction>(U)); 4732 4733 // Replace the instruction with its simplified value. 4734 I->replaceAllUsesWith(SimpleV); 4735 4736 // Gracefully handle edge cases where the instruction is not wired into any 4737 // parent block. 4738 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4739 !I->mayHaveSideEffects()) 4740 I->eraseFromParent(); 4741 } 4742 return Simplified; 4743 } 4744 4745 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4746 const TargetLibraryInfo *TLI, 4747 const DominatorTree *DT, 4748 AssumptionCache *AC) { 4749 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4750 } 4751 4752 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4753 const TargetLibraryInfo *TLI, 4754 const DominatorTree *DT, 4755 AssumptionCache *AC) { 4756 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4757 assert(SimpleV && "Must provide a simplified value."); 4758 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4759 } 4760 4761 namespace llvm { 4762 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4763 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4764 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4765 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4766 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4767 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4768 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4769 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4770 } 4771 4772 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4773 const DataLayout &DL) { 4774 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4775 } 4776 4777 template <class T, class... TArgs> 4778 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4779 Function &F) { 4780 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4781 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4782 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4783 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4784 } 4785 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4786 Function &); 4787 } 4788