1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/CmpInstAnalysis.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/LoopAnalysisManager.h"
28 #include "llvm/Analysis/MemoryBuiltins.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/IR/ConstantRange.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/Dominators.h"
34 #include "llvm/IR/GetElementPtrTypeIterator.h"
35 #include "llvm/IR/GlobalAlias.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
56                              const SimplifyQuery &, unsigned);
57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
58                             unsigned);
59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
60                             const SimplifyQuery &, unsigned);
61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
62                               unsigned);
63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
64                                const SimplifyQuery &Q, unsigned MaxRecurse);
65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
67 static Value *SimplifyCastInst(unsigned, Value *, Type *,
68                                const SimplifyQuery &, unsigned);
69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &,
70                               unsigned);
71 
72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
73                                      Value *FalseVal) {
74   BinaryOperator::BinaryOps BinOpCode;
75   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
76     BinOpCode = BO->getOpcode();
77   else
78     return nullptr;
79 
80   CmpInst::Predicate ExpectedPred, Pred1, Pred2;
81   if (BinOpCode == BinaryOperator::Or) {
82     ExpectedPred = ICmpInst::ICMP_NE;
83   } else if (BinOpCode == BinaryOperator::And) {
84     ExpectedPred = ICmpInst::ICMP_EQ;
85   } else
86     return nullptr;
87 
88   // %A = icmp eq %TV, %FV
89   // %B = icmp eq %X, %Y (and one of these is a select operand)
90   // %C = and %A, %B
91   // %D = select %C, %TV, %FV
92   // -->
93   // %FV
94 
95   // %A = icmp ne %TV, %FV
96   // %B = icmp ne %X, %Y (and one of these is a select operand)
97   // %C = or %A, %B
98   // %D = select %C, %TV, %FV
99   // -->
100   // %TV
101   Value *X, *Y;
102   if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal),
103                                       m_Specific(FalseVal)),
104                              m_ICmp(Pred2, m_Value(X), m_Value(Y)))) ||
105       Pred1 != Pred2 || Pred1 != ExpectedPred)
106     return nullptr;
107 
108   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
109     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
110 
111   return nullptr;
112 }
113 
114 /// For a boolean type or a vector of boolean type, return false or a vector
115 /// with every element false.
116 static Constant *getFalse(Type *Ty) {
117   return ConstantInt::getFalse(Ty);
118 }
119 
120 /// For a boolean type or a vector of boolean type, return true or a vector
121 /// with every element true.
122 static Constant *getTrue(Type *Ty) {
123   return ConstantInt::getTrue(Ty);
124 }
125 
126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
128                           Value *RHS) {
129   CmpInst *Cmp = dyn_cast<CmpInst>(V);
130   if (!Cmp)
131     return false;
132   CmpInst::Predicate CPred = Cmp->getPredicate();
133   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
134   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
135     return true;
136   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
137     CRHS == LHS;
138 }
139 
140 /// Does the given value dominate the specified phi node?
141 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
142   Instruction *I = dyn_cast<Instruction>(V);
143   if (!I)
144     // Arguments and constants dominate all instructions.
145     return true;
146 
147   // If we are processing instructions (and/or basic blocks) that have not been
148   // fully added to a function, the parent nodes may still be null. Simply
149   // return the conservative answer in these cases.
150   if (!I->getParent() || !P->getParent() || !I->getFunction())
151     return false;
152 
153   // If we have a DominatorTree then do a precise test.
154   if (DT)
155     return DT->dominates(I, P);
156 
157   // Otherwise, if the instruction is in the entry block and is not an invoke,
158   // then it obviously dominates all phi nodes.
159   if (I->getParent() == &I->getFunction()->getEntryBlock() &&
160       !isa<InvokeInst>(I))
161     return true;
162 
163   return false;
164 }
165 
166 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
167 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
168 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
169 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
170 /// Returns the simplified value, or null if no simplification was performed.
171 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
172                           Instruction::BinaryOps OpcodeToExpand,
173                           const SimplifyQuery &Q, unsigned MaxRecurse) {
174   // Recursion is always used, so bail out at once if we already hit the limit.
175   if (!MaxRecurse--)
176     return nullptr;
177 
178   // Check whether the expression has the form "(A op' B) op C".
179   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
180     if (Op0->getOpcode() == OpcodeToExpand) {
181       // It does!  Try turning it into "(A op C) op' (B op C)".
182       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
183       // Do "A op C" and "B op C" both simplify?
184       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
185         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
186           // They do! Return "L op' R" if it simplifies or is already available.
187           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
188           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
189                                      && L == B && R == A)) {
190             ++NumExpand;
191             return LHS;
192           }
193           // Otherwise return "L op' R" if it simplifies.
194           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
195             ++NumExpand;
196             return V;
197           }
198         }
199     }
200 
201   // Check whether the expression has the form "A op (B op' C)".
202   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
203     if (Op1->getOpcode() == OpcodeToExpand) {
204       // It does!  Try turning it into "(A op B) op' (A op C)".
205       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
206       // Do "A op B" and "A op C" both simplify?
207       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
208         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
209           // They do! Return "L op' R" if it simplifies or is already available.
210           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
211           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
212                                      && L == C && R == B)) {
213             ++NumExpand;
214             return RHS;
215           }
216           // Otherwise return "L op' R" if it simplifies.
217           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
218             ++NumExpand;
219             return V;
220           }
221         }
222     }
223 
224   return nullptr;
225 }
226 
227 /// Generic simplifications for associative binary operations.
228 /// Returns the simpler value, or null if none was found.
229 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
230                                        Value *LHS, Value *RHS,
231                                        const SimplifyQuery &Q,
232                                        unsigned MaxRecurse) {
233   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
234 
235   // Recursion is always used, so bail out at once if we already hit the limit.
236   if (!MaxRecurse--)
237     return nullptr;
238 
239   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
240   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
241 
242   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
243   if (Op0 && Op0->getOpcode() == Opcode) {
244     Value *A = Op0->getOperand(0);
245     Value *B = Op0->getOperand(1);
246     Value *C = RHS;
247 
248     // Does "B op C" simplify?
249     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
250       // It does!  Return "A op V" if it simplifies or is already available.
251       // If V equals B then "A op V" is just the LHS.
252       if (V == B) return LHS;
253       // Otherwise return "A op V" if it simplifies.
254       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
255         ++NumReassoc;
256         return W;
257       }
258     }
259   }
260 
261   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
262   if (Op1 && Op1->getOpcode() == Opcode) {
263     Value *A = LHS;
264     Value *B = Op1->getOperand(0);
265     Value *C = Op1->getOperand(1);
266 
267     // Does "A op B" simplify?
268     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
269       // It does!  Return "V op C" if it simplifies or is already available.
270       // If V equals B then "V op C" is just the RHS.
271       if (V == B) return RHS;
272       // Otherwise return "V op C" if it simplifies.
273       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
274         ++NumReassoc;
275         return W;
276       }
277     }
278   }
279 
280   // The remaining transforms require commutativity as well as associativity.
281   if (!Instruction::isCommutative(Opcode))
282     return nullptr;
283 
284   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
285   if (Op0 && Op0->getOpcode() == Opcode) {
286     Value *A = Op0->getOperand(0);
287     Value *B = Op0->getOperand(1);
288     Value *C = RHS;
289 
290     // Does "C op A" simplify?
291     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
292       // It does!  Return "V op B" if it simplifies or is already available.
293       // If V equals A then "V op B" is just the LHS.
294       if (V == A) return LHS;
295       // Otherwise return "V op B" if it simplifies.
296       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
297         ++NumReassoc;
298         return W;
299       }
300     }
301   }
302 
303   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
304   if (Op1 && Op1->getOpcode() == Opcode) {
305     Value *A = LHS;
306     Value *B = Op1->getOperand(0);
307     Value *C = Op1->getOperand(1);
308 
309     // Does "C op A" simplify?
310     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
311       // It does!  Return "B op V" if it simplifies or is already available.
312       // If V equals C then "B op V" is just the RHS.
313       if (V == C) return RHS;
314       // Otherwise return "B op V" if it simplifies.
315       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
316         ++NumReassoc;
317         return W;
318       }
319     }
320   }
321 
322   return nullptr;
323 }
324 
325 /// In the case of a binary operation with a select instruction as an operand,
326 /// try to simplify the binop by seeing whether evaluating it on both branches
327 /// of the select results in the same value. Returns the common value if so,
328 /// otherwise returns null.
329 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
330                                     Value *RHS, const SimplifyQuery &Q,
331                                     unsigned MaxRecurse) {
332   // Recursion is always used, so bail out at once if we already hit the limit.
333   if (!MaxRecurse--)
334     return nullptr;
335 
336   SelectInst *SI;
337   if (isa<SelectInst>(LHS)) {
338     SI = cast<SelectInst>(LHS);
339   } else {
340     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
341     SI = cast<SelectInst>(RHS);
342   }
343 
344   // Evaluate the BinOp on the true and false branches of the select.
345   Value *TV;
346   Value *FV;
347   if (SI == LHS) {
348     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
349     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
350   } else {
351     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
352     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
353   }
354 
355   // If they simplified to the same value, then return the common value.
356   // If they both failed to simplify then return null.
357   if (TV == FV)
358     return TV;
359 
360   // If one branch simplified to undef, return the other one.
361   if (TV && isa<UndefValue>(TV))
362     return FV;
363   if (FV && isa<UndefValue>(FV))
364     return TV;
365 
366   // If applying the operation did not change the true and false select values,
367   // then the result of the binop is the select itself.
368   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
369     return SI;
370 
371   // If one branch simplified and the other did not, and the simplified
372   // value is equal to the unsimplified one, return the simplified value.
373   // For example, select (cond, X, X & Z) & Z -> X & Z.
374   if ((FV && !TV) || (TV && !FV)) {
375     // Check that the simplified value has the form "X op Y" where "op" is the
376     // same as the original operation.
377     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
378     if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) {
379       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
380       // We already know that "op" is the same as for the simplified value.  See
381       // if the operands match too.  If so, return the simplified value.
382       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
383       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
384       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
385       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
386           Simplified->getOperand(1) == UnsimplifiedRHS)
387         return Simplified;
388       if (Simplified->isCommutative() &&
389           Simplified->getOperand(1) == UnsimplifiedLHS &&
390           Simplified->getOperand(0) == UnsimplifiedRHS)
391         return Simplified;
392     }
393   }
394 
395   return nullptr;
396 }
397 
398 /// In the case of a comparison with a select instruction, try to simplify the
399 /// comparison by seeing whether both branches of the select result in the same
400 /// value. Returns the common value if so, otherwise returns null.
401 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
402                                   Value *RHS, const SimplifyQuery &Q,
403                                   unsigned MaxRecurse) {
404   // Recursion is always used, so bail out at once if we already hit the limit.
405   if (!MaxRecurse--)
406     return nullptr;
407 
408   // Make sure the select is on the LHS.
409   if (!isa<SelectInst>(LHS)) {
410     std::swap(LHS, RHS);
411     Pred = CmpInst::getSwappedPredicate(Pred);
412   }
413   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
414   SelectInst *SI = cast<SelectInst>(LHS);
415   Value *Cond = SI->getCondition();
416   Value *TV = SI->getTrueValue();
417   Value *FV = SI->getFalseValue();
418 
419   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
420   // Does "cmp TV, RHS" simplify?
421   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
422   if (TCmp == Cond) {
423     // It not only simplified, it simplified to the select condition.  Replace
424     // it with 'true'.
425     TCmp = getTrue(Cond->getType());
426   } else if (!TCmp) {
427     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
428     // condition then we can replace it with 'true'.  Otherwise give up.
429     if (!isSameCompare(Cond, Pred, TV, RHS))
430       return nullptr;
431     TCmp = getTrue(Cond->getType());
432   }
433 
434   // Does "cmp FV, RHS" simplify?
435   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
436   if (FCmp == Cond) {
437     // It not only simplified, it simplified to the select condition.  Replace
438     // it with 'false'.
439     FCmp = getFalse(Cond->getType());
440   } else if (!FCmp) {
441     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
442     // condition then we can replace it with 'false'.  Otherwise give up.
443     if (!isSameCompare(Cond, Pred, FV, RHS))
444       return nullptr;
445     FCmp = getFalse(Cond->getType());
446   }
447 
448   // If both sides simplified to the same value, then use it as the result of
449   // the original comparison.
450   if (TCmp == FCmp)
451     return TCmp;
452 
453   // The remaining cases only make sense if the select condition has the same
454   // type as the result of the comparison, so bail out if this is not so.
455   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
456     return nullptr;
457   // If the false value simplified to false, then the result of the compare
458   // is equal to "Cond && TCmp".  This also catches the case when the false
459   // value simplified to false and the true value to true, returning "Cond".
460   if (match(FCmp, m_Zero()))
461     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
462       return V;
463   // If the true value simplified to true, then the result of the compare
464   // is equal to "Cond || FCmp".
465   if (match(TCmp, m_One()))
466     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
467       return V;
468   // Finally, if the false value simplified to true and the true value to
469   // false, then the result of the compare is equal to "!Cond".
470   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
471     if (Value *V =
472         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
473                         Q, MaxRecurse))
474       return V;
475 
476   return nullptr;
477 }
478 
479 /// In the case of a binary operation with an operand that is a PHI instruction,
480 /// try to simplify the binop by seeing whether evaluating it on the incoming
481 /// phi values yields the same result for every value. If so returns the common
482 /// value, otherwise returns null.
483 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
484                                  Value *RHS, const SimplifyQuery &Q,
485                                  unsigned MaxRecurse) {
486   // Recursion is always used, so bail out at once if we already hit the limit.
487   if (!MaxRecurse--)
488     return nullptr;
489 
490   PHINode *PI;
491   if (isa<PHINode>(LHS)) {
492     PI = cast<PHINode>(LHS);
493     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494     if (!valueDominatesPHI(RHS, PI, Q.DT))
495       return nullptr;
496   } else {
497     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
498     PI = cast<PHINode>(RHS);
499     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
500     if (!valueDominatesPHI(LHS, PI, Q.DT))
501       return nullptr;
502   }
503 
504   // Evaluate the BinOp on the incoming phi values.
505   Value *CommonValue = nullptr;
506   for (Value *Incoming : PI->incoming_values()) {
507     // If the incoming value is the phi node itself, it can safely be skipped.
508     if (Incoming == PI) continue;
509     Value *V = PI == LHS ?
510       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
511       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
512     // If the operation failed to simplify, or simplified to a different value
513     // to previously, then give up.
514     if (!V || (CommonValue && V != CommonValue))
515       return nullptr;
516     CommonValue = V;
517   }
518 
519   return CommonValue;
520 }
521 
522 /// In the case of a comparison with a PHI instruction, try to simplify the
523 /// comparison by seeing whether comparing with all of the incoming phi values
524 /// yields the same result every time. If so returns the common result,
525 /// otherwise returns null.
526 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
527                                const SimplifyQuery &Q, unsigned MaxRecurse) {
528   // Recursion is always used, so bail out at once if we already hit the limit.
529   if (!MaxRecurse--)
530     return nullptr;
531 
532   // Make sure the phi is on the LHS.
533   if (!isa<PHINode>(LHS)) {
534     std::swap(LHS, RHS);
535     Pred = CmpInst::getSwappedPredicate(Pred);
536   }
537   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
538   PHINode *PI = cast<PHINode>(LHS);
539 
540   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
541   if (!valueDominatesPHI(RHS, PI, Q.DT))
542     return nullptr;
543 
544   // Evaluate the BinOp on the incoming phi values.
545   Value *CommonValue = nullptr;
546   for (Value *Incoming : PI->incoming_values()) {
547     // If the incoming value is the phi node itself, it can safely be skipped.
548     if (Incoming == PI) continue;
549     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
550     // If the operation failed to simplify, or simplified to a different value
551     // to previously, then give up.
552     if (!V || (CommonValue && V != CommonValue))
553       return nullptr;
554     CommonValue = V;
555   }
556 
557   return CommonValue;
558 }
559 
560 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
561                                        Value *&Op0, Value *&Op1,
562                                        const SimplifyQuery &Q) {
563   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
564     if (auto *CRHS = dyn_cast<Constant>(Op1))
565       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
566 
567     // Canonicalize the constant to the RHS if this is a commutative operation.
568     if (Instruction::isCommutative(Opcode))
569       std::swap(Op0, Op1);
570   }
571   return nullptr;
572 }
573 
574 /// Given operands for an Add, see if we can fold the result.
575 /// If not, this returns null.
576 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
577                               const SimplifyQuery &Q, unsigned MaxRecurse) {
578   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
579     return C;
580 
581   // X + undef -> undef
582   if (match(Op1, m_Undef()))
583     return Op1;
584 
585   // X + 0 -> X
586   if (match(Op1, m_Zero()))
587     return Op0;
588 
589   // If two operands are negative, return 0.
590   if (isKnownNegation(Op0, Op1))
591     return Constant::getNullValue(Op0->getType());
592 
593   // X + (Y - X) -> Y
594   // (Y - X) + X -> Y
595   // Eg: X + -X -> 0
596   Value *Y = nullptr;
597   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
598       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
599     return Y;
600 
601   // X + ~X -> -1   since   ~X = -X-1
602   Type *Ty = Op0->getType();
603   if (match(Op0, m_Not(m_Specific(Op1))) ||
604       match(Op1, m_Not(m_Specific(Op0))))
605     return Constant::getAllOnesValue(Ty);
606 
607   // add nsw/nuw (xor Y, signmask), signmask --> Y
608   // The no-wrapping add guarantees that the top bit will be set by the add.
609   // Therefore, the xor must be clearing the already set sign bit of Y.
610   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
611       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
612     return Y;
613 
614   // add nuw %x, -1  ->  -1, because %x can only be 0.
615   if (IsNUW && match(Op1, m_AllOnes()))
616     return Op1; // Which is -1.
617 
618   /// i1 add -> xor.
619   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
620     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
621       return V;
622 
623   // Try some generic simplifications for associative operations.
624   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
625                                           MaxRecurse))
626     return V;
627 
628   // Threading Add over selects and phi nodes is pointless, so don't bother.
629   // Threading over the select in "A + select(cond, B, C)" means evaluating
630   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
631   // only if B and C are equal.  If B and C are equal then (since we assume
632   // that operands have already been simplified) "select(cond, B, C)" should
633   // have been simplified to the common value of B and C already.  Analysing
634   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
635   // for threading over phi nodes.
636 
637   return nullptr;
638 }
639 
640 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
641                              const SimplifyQuery &Query) {
642   return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
643 }
644 
645 /// Compute the base pointer and cumulative constant offsets for V.
646 ///
647 /// This strips all constant offsets off of V, leaving it the base pointer, and
648 /// accumulates the total constant offset applied in the returned constant. It
649 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
650 /// no constant offsets applied.
651 ///
652 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
653 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
654 /// folding.
655 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
656                                                 bool AllowNonInbounds = false) {
657   assert(V->getType()->isPtrOrPtrVectorTy());
658 
659   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
660   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
661 
662   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
663   // As that strip may trace through `addrspacecast`, need to sext or trunc
664   // the offset calculated.
665   IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
666   Offset = Offset.sextOrTrunc(IntPtrTy->getIntegerBitWidth());
667 
668   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
669   if (V->getType()->isVectorTy())
670     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
671                                     OffsetIntPtr);
672   return OffsetIntPtr;
673 }
674 
675 /// Compute the constant difference between two pointer values.
676 /// If the difference is not a constant, returns zero.
677 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
678                                           Value *RHS) {
679   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
680   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
681 
682   // If LHS and RHS are not related via constant offsets to the same base
683   // value, there is nothing we can do here.
684   if (LHS != RHS)
685     return nullptr;
686 
687   // Otherwise, the difference of LHS - RHS can be computed as:
688   //    LHS - RHS
689   //  = (LHSOffset + Base) - (RHSOffset + Base)
690   //  = LHSOffset - RHSOffset
691   return ConstantExpr::getSub(LHSOffset, RHSOffset);
692 }
693 
694 /// Given operands for a Sub, see if we can fold the result.
695 /// If not, this returns null.
696 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
697                               const SimplifyQuery &Q, unsigned MaxRecurse) {
698   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
699     return C;
700 
701   // X - undef -> undef
702   // undef - X -> undef
703   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
704     return UndefValue::get(Op0->getType());
705 
706   // X - 0 -> X
707   if (match(Op1, m_Zero()))
708     return Op0;
709 
710   // X - X -> 0
711   if (Op0 == Op1)
712     return Constant::getNullValue(Op0->getType());
713 
714   // Is this a negation?
715   if (match(Op0, m_Zero())) {
716     // 0 - X -> 0 if the sub is NUW.
717     if (isNUW)
718       return Constant::getNullValue(Op0->getType());
719 
720     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
721     if (Known.Zero.isMaxSignedValue()) {
722       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
723       // Op1 must be 0 because negating the minimum signed value is undefined.
724       if (isNSW)
725         return Constant::getNullValue(Op0->getType());
726 
727       // 0 - X -> X if X is 0 or the minimum signed value.
728       return Op1;
729     }
730   }
731 
732   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
733   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
734   Value *X = nullptr, *Y = nullptr, *Z = Op1;
735   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
736     // See if "V === Y - Z" simplifies.
737     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
738       // It does!  Now see if "X + V" simplifies.
739       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
740         // It does, we successfully reassociated!
741         ++NumReassoc;
742         return W;
743       }
744     // See if "V === X - Z" simplifies.
745     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
746       // It does!  Now see if "Y + V" simplifies.
747       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
748         // It does, we successfully reassociated!
749         ++NumReassoc;
750         return W;
751       }
752   }
753 
754   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
755   // For example, X - (X + 1) -> -1
756   X = Op0;
757   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
758     // See if "V === X - Y" simplifies.
759     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
760       // It does!  Now see if "V - Z" simplifies.
761       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
762         // It does, we successfully reassociated!
763         ++NumReassoc;
764         return W;
765       }
766     // See if "V === X - Z" simplifies.
767     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
768       // It does!  Now see if "V - Y" simplifies.
769       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
770         // It does, we successfully reassociated!
771         ++NumReassoc;
772         return W;
773       }
774   }
775 
776   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
777   // For example, X - (X - Y) -> Y.
778   Z = Op0;
779   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
780     // See if "V === Z - X" simplifies.
781     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
782       // It does!  Now see if "V + Y" simplifies.
783       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
784         // It does, we successfully reassociated!
785         ++NumReassoc;
786         return W;
787       }
788 
789   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
790   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
791       match(Op1, m_Trunc(m_Value(Y))))
792     if (X->getType() == Y->getType())
793       // See if "V === X - Y" simplifies.
794       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
795         // It does!  Now see if "trunc V" simplifies.
796         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
797                                         Q, MaxRecurse - 1))
798           // It does, return the simplified "trunc V".
799           return W;
800 
801   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
802   if (match(Op0, m_PtrToInt(m_Value(X))) &&
803       match(Op1, m_PtrToInt(m_Value(Y))))
804     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
805       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
806 
807   // i1 sub -> xor.
808   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
809     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
810       return V;
811 
812   // Threading Sub over selects and phi nodes is pointless, so don't bother.
813   // Threading over the select in "A - select(cond, B, C)" means evaluating
814   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
815   // only if B and C are equal.  If B and C are equal then (since we assume
816   // that operands have already been simplified) "select(cond, B, C)" should
817   // have been simplified to the common value of B and C already.  Analysing
818   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
819   // for threading over phi nodes.
820 
821   return nullptr;
822 }
823 
824 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
825                              const SimplifyQuery &Q) {
826   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
827 }
828 
829 /// Given operands for a Mul, see if we can fold the result.
830 /// If not, this returns null.
831 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
832                               unsigned MaxRecurse) {
833   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
834     return C;
835 
836   // X * undef -> 0
837   // X * 0 -> 0
838   if (match(Op1, m_CombineOr(m_Undef(), m_Zero())))
839     return Constant::getNullValue(Op0->getType());
840 
841   // X * 1 -> X
842   if (match(Op1, m_One()))
843     return Op0;
844 
845   // (X / Y) * Y -> X if the division is exact.
846   Value *X = nullptr;
847   if (Q.IIQ.UseInstrInfo &&
848       (match(Op0,
849              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
850        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
851     return X;
852 
853   // i1 mul -> and.
854   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
855     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
856       return V;
857 
858   // Try some generic simplifications for associative operations.
859   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
860                                           MaxRecurse))
861     return V;
862 
863   // Mul distributes over Add. Try some generic simplifications based on this.
864   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
865                              Q, MaxRecurse))
866     return V;
867 
868   // If the operation is with the result of a select instruction, check whether
869   // operating on either branch of the select always yields the same value.
870   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
871     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
872                                          MaxRecurse))
873       return V;
874 
875   // If the operation is with the result of a phi instruction, check whether
876   // operating on all incoming values of the phi always yields the same value.
877   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
878     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
879                                       MaxRecurse))
880       return V;
881 
882   return nullptr;
883 }
884 
885 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
886   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
887 }
888 
889 /// Check for common or similar folds of integer division or integer remainder.
890 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
891 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
892   Type *Ty = Op0->getType();
893 
894   // X / undef -> undef
895   // X % undef -> undef
896   if (match(Op1, m_Undef()))
897     return Op1;
898 
899   // X / 0 -> undef
900   // X % 0 -> undef
901   // We don't need to preserve faults!
902   if (match(Op1, m_Zero()))
903     return UndefValue::get(Ty);
904 
905   // If any element of a constant divisor vector is zero or undef, the whole op
906   // is undef.
907   auto *Op1C = dyn_cast<Constant>(Op1);
908   if (Op1C && Ty->isVectorTy()) {
909     unsigned NumElts = Ty->getVectorNumElements();
910     for (unsigned i = 0; i != NumElts; ++i) {
911       Constant *Elt = Op1C->getAggregateElement(i);
912       if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt)))
913         return UndefValue::get(Ty);
914     }
915   }
916 
917   // undef / X -> 0
918   // undef % X -> 0
919   if (match(Op0, m_Undef()))
920     return Constant::getNullValue(Ty);
921 
922   // 0 / X -> 0
923   // 0 % X -> 0
924   if (match(Op0, m_Zero()))
925     return Constant::getNullValue(Op0->getType());
926 
927   // X / X -> 1
928   // X % X -> 0
929   if (Op0 == Op1)
930     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
931 
932   // X / 1 -> X
933   // X % 1 -> 0
934   // If this is a boolean op (single-bit element type), we can't have
935   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
936   // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1.
937   Value *X;
938   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) ||
939       (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
940     return IsDiv ? Op0 : Constant::getNullValue(Ty);
941 
942   return nullptr;
943 }
944 
945 /// Given a predicate and two operands, return true if the comparison is true.
946 /// This is a helper for div/rem simplification where we return some other value
947 /// when we can prove a relationship between the operands.
948 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
949                        const SimplifyQuery &Q, unsigned MaxRecurse) {
950   Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
951   Constant *C = dyn_cast_or_null<Constant>(V);
952   return (C && C->isAllOnesValue());
953 }
954 
955 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
956 /// to simplify X % Y to X.
957 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
958                       unsigned MaxRecurse, bool IsSigned) {
959   // Recursion is always used, so bail out at once if we already hit the limit.
960   if (!MaxRecurse--)
961     return false;
962 
963   if (IsSigned) {
964     // |X| / |Y| --> 0
965     //
966     // We require that 1 operand is a simple constant. That could be extended to
967     // 2 variables if we computed the sign bit for each.
968     //
969     // Make sure that a constant is not the minimum signed value because taking
970     // the abs() of that is undefined.
971     Type *Ty = X->getType();
972     const APInt *C;
973     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
974       // Is the variable divisor magnitude always greater than the constant
975       // dividend magnitude?
976       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
977       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
978       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
979       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
980           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
981         return true;
982     }
983     if (match(Y, m_APInt(C))) {
984       // Special-case: we can't take the abs() of a minimum signed value. If
985       // that's the divisor, then all we have to do is prove that the dividend
986       // is also not the minimum signed value.
987       if (C->isMinSignedValue())
988         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
989 
990       // Is the variable dividend magnitude always less than the constant
991       // divisor magnitude?
992       // |X| < |C| --> X > -abs(C) and X < abs(C)
993       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
994       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
995       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
996           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
997         return true;
998     }
999     return false;
1000   }
1001 
1002   // IsSigned == false.
1003   // Is the dividend unsigned less than the divisor?
1004   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1005 }
1006 
1007 /// These are simplifications common to SDiv and UDiv.
1008 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1009                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1010   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1011     return C;
1012 
1013   if (Value *V = simplifyDivRem(Op0, Op1, true))
1014     return V;
1015 
1016   bool IsSigned = Opcode == Instruction::SDiv;
1017 
1018   // (X * Y) / Y -> X if the multiplication does not overflow.
1019   Value *X;
1020   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1021     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1022     // If the Mul does not overflow, then we are good to go.
1023     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1024         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)))
1025       return X;
1026     // If X has the form X = A / Y, then X * Y cannot overflow.
1027     if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1028         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1)))))
1029       return X;
1030   }
1031 
1032   // (X rem Y) / Y -> 0
1033   if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1034       (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1035     return Constant::getNullValue(Op0->getType());
1036 
1037   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1038   ConstantInt *C1, *C2;
1039   if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1040       match(Op1, m_ConstantInt(C2))) {
1041     bool Overflow;
1042     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1043     if (Overflow)
1044       return Constant::getNullValue(Op0->getType());
1045   }
1046 
1047   // If the operation is with the result of a select instruction, check whether
1048   // operating on either branch of the select always yields the same value.
1049   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1050     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1051       return V;
1052 
1053   // If the operation is with the result of a phi instruction, check whether
1054   // operating on all incoming values of the phi always yields the same value.
1055   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1056     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1057       return V;
1058 
1059   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1060     return Constant::getNullValue(Op0->getType());
1061 
1062   return nullptr;
1063 }
1064 
1065 /// These are simplifications common to SRem and URem.
1066 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1067                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1068   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1069     return C;
1070 
1071   if (Value *V = simplifyDivRem(Op0, Op1, false))
1072     return V;
1073 
1074   // (X % Y) % Y -> X % Y
1075   if ((Opcode == Instruction::SRem &&
1076        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1077       (Opcode == Instruction::URem &&
1078        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1079     return Op0;
1080 
1081   // (X << Y) % X -> 0
1082   if (Q.IIQ.UseInstrInfo &&
1083       ((Opcode == Instruction::SRem &&
1084         match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1085        (Opcode == Instruction::URem &&
1086         match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))))
1087     return Constant::getNullValue(Op0->getType());
1088 
1089   // If the operation is with the result of a select instruction, check whether
1090   // operating on either branch of the select always yields the same value.
1091   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1092     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1093       return V;
1094 
1095   // If the operation is with the result of a phi instruction, check whether
1096   // operating on all incoming values of the phi always yields the same value.
1097   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1098     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1099       return V;
1100 
1101   // If X / Y == 0, then X % Y == X.
1102   if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem))
1103     return Op0;
1104 
1105   return nullptr;
1106 }
1107 
1108 /// Given operands for an SDiv, see if we can fold the result.
1109 /// If not, this returns null.
1110 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1111                                unsigned MaxRecurse) {
1112   // If two operands are negated and no signed overflow, return -1.
1113   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1114     return Constant::getAllOnesValue(Op0->getType());
1115 
1116   return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse);
1117 }
1118 
1119 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1120   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1121 }
1122 
1123 /// Given operands for a UDiv, see if we can fold the result.
1124 /// If not, this returns null.
1125 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1126                                unsigned MaxRecurse) {
1127   return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse);
1128 }
1129 
1130 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1131   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1132 }
1133 
1134 /// Given operands for an SRem, see if we can fold the result.
1135 /// If not, this returns null.
1136 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1137                                unsigned MaxRecurse) {
1138   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1139   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1140   Value *X;
1141   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1142     return ConstantInt::getNullValue(Op0->getType());
1143 
1144   // If the two operands are negated, return 0.
1145   if (isKnownNegation(Op0, Op1))
1146     return ConstantInt::getNullValue(Op0->getType());
1147 
1148   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1149 }
1150 
1151 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1152   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1153 }
1154 
1155 /// Given operands for a URem, see if we can fold the result.
1156 /// If not, this returns null.
1157 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1158                                unsigned MaxRecurse) {
1159   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1160 }
1161 
1162 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1163   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1164 }
1165 
1166 /// Returns true if a shift by \c Amount always yields undef.
1167 static bool isUndefShift(Value *Amount) {
1168   Constant *C = dyn_cast<Constant>(Amount);
1169   if (!C)
1170     return false;
1171 
1172   // X shift by undef -> undef because it may shift by the bitwidth.
1173   if (isa<UndefValue>(C))
1174     return true;
1175 
1176   // Shifting by the bitwidth or more is undefined.
1177   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1178     if (CI->getValue().getLimitedValue() >=
1179         CI->getType()->getScalarSizeInBits())
1180       return true;
1181 
1182   // If all lanes of a vector shift are undefined the whole shift is.
1183   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1184     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1185       if (!isUndefShift(C->getAggregateElement(I)))
1186         return false;
1187     return true;
1188   }
1189 
1190   return false;
1191 }
1192 
1193 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1194 /// If not, this returns null.
1195 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1196                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1197   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1198     return C;
1199 
1200   // 0 shift by X -> 0
1201   if (match(Op0, m_Zero()))
1202     return Constant::getNullValue(Op0->getType());
1203 
1204   // X shift by 0 -> X
1205   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1206   // would be poison.
1207   Value *X;
1208   if (match(Op1, m_Zero()) ||
1209       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1210     return Op0;
1211 
1212   // Fold undefined shifts.
1213   if (isUndefShift(Op1))
1214     return UndefValue::get(Op0->getType());
1215 
1216   // If the operation is with the result of a select instruction, check whether
1217   // operating on either branch of the select always yields the same value.
1218   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1219     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1220       return V;
1221 
1222   // If the operation is with the result of a phi instruction, check whether
1223   // operating on all incoming values of the phi always yields the same value.
1224   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1225     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1226       return V;
1227 
1228   // If any bits in the shift amount make that value greater than or equal to
1229   // the number of bits in the type, the shift is undefined.
1230   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1231   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1232     return UndefValue::get(Op0->getType());
1233 
1234   // If all valid bits in the shift amount are known zero, the first operand is
1235   // unchanged.
1236   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1237   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1238     return Op0;
1239 
1240   return nullptr;
1241 }
1242 
1243 /// Given operands for an Shl, LShr or AShr, see if we can
1244 /// fold the result.  If not, this returns null.
1245 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1246                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1247                                  unsigned MaxRecurse) {
1248   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1249     return V;
1250 
1251   // X >> X -> 0
1252   if (Op0 == Op1)
1253     return Constant::getNullValue(Op0->getType());
1254 
1255   // undef >> X -> 0
1256   // undef >> X -> undef (if it's exact)
1257   if (match(Op0, m_Undef()))
1258     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1259 
1260   // The low bit cannot be shifted out of an exact shift if it is set.
1261   if (isExact) {
1262     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1263     if (Op0Known.One[0])
1264       return Op0;
1265   }
1266 
1267   return nullptr;
1268 }
1269 
1270 /// Given operands for an Shl, see if we can fold the result.
1271 /// If not, this returns null.
1272 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1273                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1274   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1275     return V;
1276 
1277   // undef << X -> 0
1278   // undef << X -> undef if (if it's NSW/NUW)
1279   if (match(Op0, m_Undef()))
1280     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1281 
1282   // (X >> A) << A -> X
1283   Value *X;
1284   if (Q.IIQ.UseInstrInfo &&
1285       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1286     return X;
1287 
1288   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1289   if (isNUW && match(Op0, m_Negative()))
1290     return Op0;
1291   // NOTE: could use computeKnownBits() / LazyValueInfo,
1292   // but the cost-benefit analysis suggests it isn't worth it.
1293 
1294   return nullptr;
1295 }
1296 
1297 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1298                              const SimplifyQuery &Q) {
1299   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1300 }
1301 
1302 /// Given operands for an LShr, see if we can fold the result.
1303 /// If not, this returns null.
1304 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1305                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1306   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1307                                     MaxRecurse))
1308       return V;
1309 
1310   // (X << A) >> A -> X
1311   Value *X;
1312   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1313     return X;
1314 
1315   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1316   // We can return X as we do in the above case since OR alters no bits in X.
1317   // SimplifyDemandedBits in InstCombine can do more general optimization for
1318   // bit manipulation. This pattern aims to provide opportunities for other
1319   // optimizers by supporting a simple but common case in InstSimplify.
1320   Value *Y;
1321   const APInt *ShRAmt, *ShLAmt;
1322   if (match(Op1, m_APInt(ShRAmt)) &&
1323       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1324       *ShRAmt == *ShLAmt) {
1325     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1326     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1327     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1328     if (ShRAmt->uge(EffWidthY))
1329       return X;
1330   }
1331 
1332   return nullptr;
1333 }
1334 
1335 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1336                               const SimplifyQuery &Q) {
1337   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1338 }
1339 
1340 /// Given operands for an AShr, see if we can fold the result.
1341 /// If not, this returns null.
1342 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1343                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1344   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1345                                     MaxRecurse))
1346     return V;
1347 
1348   // all ones >>a X -> -1
1349   // Do not return Op0 because it may contain undef elements if it's a vector.
1350   if (match(Op0, m_AllOnes()))
1351     return Constant::getAllOnesValue(Op0->getType());
1352 
1353   // (X << A) >> A -> X
1354   Value *X;
1355   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1356     return X;
1357 
1358   // Arithmetic shifting an all-sign-bit value is a no-op.
1359   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1360   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1361     return Op0;
1362 
1363   return nullptr;
1364 }
1365 
1366 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1367                               const SimplifyQuery &Q) {
1368   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1369 }
1370 
1371 /// Commuted variants are assumed to be handled by calling this function again
1372 /// with the parameters swapped.
1373 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1374                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1375   Value *X, *Y;
1376 
1377   ICmpInst::Predicate EqPred;
1378   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1379       !ICmpInst::isEquality(EqPred))
1380     return nullptr;
1381 
1382   ICmpInst::Predicate UnsignedPred;
1383   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1384       ICmpInst::isUnsigned(UnsignedPred))
1385     ;
1386   else if (match(UnsignedICmp,
1387                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1388            ICmpInst::isUnsigned(UnsignedPred))
1389     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1390   else
1391     return nullptr;
1392 
1393   // X < Y && Y != 0  -->  X < Y
1394   // X < Y || Y != 0  -->  Y != 0
1395   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1396     return IsAnd ? UnsignedICmp : ZeroICmp;
1397 
1398   // X >= Y || Y != 0  -->  true
1399   // X >= Y || Y == 0  -->  X >= Y
1400   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1401     if (EqPred == ICmpInst::ICMP_NE)
1402       return getTrue(UnsignedICmp->getType());
1403     return UnsignedICmp;
1404   }
1405 
1406   // X < Y && Y == 0  -->  false
1407   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1408       IsAnd)
1409     return getFalse(UnsignedICmp->getType());
1410 
1411   return nullptr;
1412 }
1413 
1414 /// Commuted variants are assumed to be handled by calling this function again
1415 /// with the parameters swapped.
1416 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1417   ICmpInst::Predicate Pred0, Pred1;
1418   Value *A ,*B;
1419   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1420       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1421     return nullptr;
1422 
1423   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1424   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1425   // can eliminate Op1 from this 'and'.
1426   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1427     return Op0;
1428 
1429   // Check for any combination of predicates that are guaranteed to be disjoint.
1430   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1431       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1432       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1433       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1434     return getFalse(Op0->getType());
1435 
1436   return nullptr;
1437 }
1438 
1439 /// Commuted variants are assumed to be handled by calling this function again
1440 /// with the parameters swapped.
1441 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1442   ICmpInst::Predicate Pred0, Pred1;
1443   Value *A ,*B;
1444   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1445       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1446     return nullptr;
1447 
1448   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1449   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1450   // can eliminate Op0 from this 'or'.
1451   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1452     return Op1;
1453 
1454   // Check for any combination of predicates that cover the entire range of
1455   // possibilities.
1456   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1457       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1458       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1459       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1460     return getTrue(Op0->getType());
1461 
1462   return nullptr;
1463 }
1464 
1465 /// Test if a pair of compares with a shared operand and 2 constants has an
1466 /// empty set intersection, full set union, or if one compare is a superset of
1467 /// the other.
1468 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1469                                                 bool IsAnd) {
1470   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1471   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1472     return nullptr;
1473 
1474   const APInt *C0, *C1;
1475   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1476       !match(Cmp1->getOperand(1), m_APInt(C1)))
1477     return nullptr;
1478 
1479   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1480   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1481 
1482   // For and-of-compares, check if the intersection is empty:
1483   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1484   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1485     return getFalse(Cmp0->getType());
1486 
1487   // For or-of-compares, check if the union is full:
1488   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1489   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1490     return getTrue(Cmp0->getType());
1491 
1492   // Is one range a superset of the other?
1493   // If this is and-of-compares, take the smaller set:
1494   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1495   // If this is or-of-compares, take the larger set:
1496   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1497   if (Range0.contains(Range1))
1498     return IsAnd ? Cmp1 : Cmp0;
1499   if (Range1.contains(Range0))
1500     return IsAnd ? Cmp0 : Cmp1;
1501 
1502   return nullptr;
1503 }
1504 
1505 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1,
1506                                            bool IsAnd) {
1507   ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate();
1508   if (!match(Cmp0->getOperand(1), m_Zero()) ||
1509       !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1)
1510     return nullptr;
1511 
1512   if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ))
1513     return nullptr;
1514 
1515   // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1516   Value *X = Cmp0->getOperand(0);
1517   Value *Y = Cmp1->getOperand(0);
1518 
1519   // If one of the compares is a masked version of a (not) null check, then
1520   // that compare implies the other, so we eliminate the other. Optionally, look
1521   // through a pointer-to-int cast to match a null check of a pointer type.
1522 
1523   // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1524   // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1525   // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1526   // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1527   if (match(Y, m_c_And(m_Specific(X), m_Value())) ||
1528       match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value())))
1529     return Cmp1;
1530 
1531   // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1532   // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1533   // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1534   // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1535   if (match(X, m_c_And(m_Specific(Y), m_Value())) ||
1536       match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value())))
1537     return Cmp0;
1538 
1539   return nullptr;
1540 }
1541 
1542 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1543                                         const InstrInfoQuery &IIQ) {
1544   // (icmp (add V, C0), C1) & (icmp V, C0)
1545   ICmpInst::Predicate Pred0, Pred1;
1546   const APInt *C0, *C1;
1547   Value *V;
1548   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1549     return nullptr;
1550 
1551   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1552     return nullptr;
1553 
1554   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1555   if (AddInst->getOperand(1) != Op1->getOperand(1))
1556     return nullptr;
1557 
1558   Type *ITy = Op0->getType();
1559   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1560   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1561 
1562   const APInt Delta = *C1 - *C0;
1563   if (C0->isStrictlyPositive()) {
1564     if (Delta == 2) {
1565       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1566         return getFalse(ITy);
1567       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1568         return getFalse(ITy);
1569     }
1570     if (Delta == 1) {
1571       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1572         return getFalse(ITy);
1573       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1574         return getFalse(ITy);
1575     }
1576   }
1577   if (C0->getBoolValue() && isNUW) {
1578     if (Delta == 2)
1579       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1580         return getFalse(ITy);
1581     if (Delta == 1)
1582       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1583         return getFalse(ITy);
1584   }
1585 
1586   return nullptr;
1587 }
1588 
1589 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1590                                  const InstrInfoQuery &IIQ) {
1591   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1592     return X;
1593   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1594     return X;
1595 
1596   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1597     return X;
1598   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1599     return X;
1600 
1601   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1602     return X;
1603 
1604   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true))
1605     return X;
1606 
1607   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ))
1608     return X;
1609   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ))
1610     return X;
1611 
1612   return nullptr;
1613 }
1614 
1615 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1616                                        const InstrInfoQuery &IIQ) {
1617   // (icmp (add V, C0), C1) | (icmp V, C0)
1618   ICmpInst::Predicate Pred0, Pred1;
1619   const APInt *C0, *C1;
1620   Value *V;
1621   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1622     return nullptr;
1623 
1624   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1625     return nullptr;
1626 
1627   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1628   if (AddInst->getOperand(1) != Op1->getOperand(1))
1629     return nullptr;
1630 
1631   Type *ITy = Op0->getType();
1632   bool isNSW = IIQ.hasNoSignedWrap(AddInst);
1633   bool isNUW = IIQ.hasNoUnsignedWrap(AddInst);
1634 
1635   const APInt Delta = *C1 - *C0;
1636   if (C0->isStrictlyPositive()) {
1637     if (Delta == 2) {
1638       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1639         return getTrue(ITy);
1640       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1641         return getTrue(ITy);
1642     }
1643     if (Delta == 1) {
1644       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1645         return getTrue(ITy);
1646       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1647         return getTrue(ITy);
1648     }
1649   }
1650   if (C0->getBoolValue() && isNUW) {
1651     if (Delta == 2)
1652       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1653         return getTrue(ITy);
1654     if (Delta == 1)
1655       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1656         return getTrue(ITy);
1657   }
1658 
1659   return nullptr;
1660 }
1661 
1662 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1663                                 const InstrInfoQuery &IIQ) {
1664   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1665     return X;
1666   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1667     return X;
1668 
1669   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1670     return X;
1671   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1672     return X;
1673 
1674   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1675     return X;
1676 
1677   if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false))
1678     return X;
1679 
1680   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ))
1681     return X;
1682   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ))
1683     return X;
1684 
1685   return nullptr;
1686 }
1687 
1688 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI,
1689                                    FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) {
1690   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1691   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1692   if (LHS0->getType() != RHS0->getType())
1693     return nullptr;
1694 
1695   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1696   if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) ||
1697       (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) {
1698     // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1699     // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1700     // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1701     // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1702     // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1703     // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1704     // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1705     // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1706     if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) ||
1707         (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1)))
1708       return RHS;
1709 
1710     // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1711     // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1712     // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1713     // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1714     // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1715     // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1716     // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1717     // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1718     if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) ||
1719         (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1)))
1720       return LHS;
1721   }
1722 
1723   return nullptr;
1724 }
1725 
1726 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q,
1727                                   Value *Op0, Value *Op1, bool IsAnd) {
1728   // Look through casts of the 'and' operands to find compares.
1729   auto *Cast0 = dyn_cast<CastInst>(Op0);
1730   auto *Cast1 = dyn_cast<CastInst>(Op1);
1731   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1732       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1733     Op0 = Cast0->getOperand(0);
1734     Op1 = Cast1->getOperand(0);
1735   }
1736 
1737   Value *V = nullptr;
1738   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1739   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1740   if (ICmp0 && ICmp1)
1741     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ)
1742               : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ);
1743 
1744   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1745   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1746   if (FCmp0 && FCmp1)
1747     V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd);
1748 
1749   if (!V)
1750     return nullptr;
1751   if (!Cast0)
1752     return V;
1753 
1754   // If we looked through casts, we can only handle a constant simplification
1755   // because we are not allowed to create a cast instruction here.
1756   if (auto *C = dyn_cast<Constant>(V))
1757     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1758 
1759   return nullptr;
1760 }
1761 
1762 /// Given operands for an And, see if we can fold the result.
1763 /// If not, this returns null.
1764 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1765                               unsigned MaxRecurse) {
1766   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1767     return C;
1768 
1769   // X & undef -> 0
1770   if (match(Op1, m_Undef()))
1771     return Constant::getNullValue(Op0->getType());
1772 
1773   // X & X = X
1774   if (Op0 == Op1)
1775     return Op0;
1776 
1777   // X & 0 = 0
1778   if (match(Op1, m_Zero()))
1779     return Constant::getNullValue(Op0->getType());
1780 
1781   // X & -1 = X
1782   if (match(Op1, m_AllOnes()))
1783     return Op0;
1784 
1785   // A & ~A  =  ~A & A  =  0
1786   if (match(Op0, m_Not(m_Specific(Op1))) ||
1787       match(Op1, m_Not(m_Specific(Op0))))
1788     return Constant::getNullValue(Op0->getType());
1789 
1790   // (A | ?) & A = A
1791   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1792     return Op1;
1793 
1794   // A & (A | ?) = A
1795   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1796     return Op0;
1797 
1798   // A mask that only clears known zeros of a shifted value is a no-op.
1799   Value *X;
1800   const APInt *Mask;
1801   const APInt *ShAmt;
1802   if (match(Op1, m_APInt(Mask))) {
1803     // If all bits in the inverted and shifted mask are clear:
1804     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1805     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1806         (~(*Mask)).lshr(*ShAmt).isNullValue())
1807       return Op0;
1808 
1809     // If all bits in the inverted and shifted mask are clear:
1810     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1811     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1812         (~(*Mask)).shl(*ShAmt).isNullValue())
1813       return Op0;
1814   }
1815 
1816   // A & (-A) = A if A is a power of two or zero.
1817   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1818       match(Op1, m_Neg(m_Specific(Op0)))) {
1819     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1820                                Q.DT))
1821       return Op0;
1822     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1823                                Q.DT))
1824       return Op1;
1825   }
1826 
1827   // This is a similar pattern used for checking if a value is a power-of-2:
1828   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1829   // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
1830   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1831       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1832     return Constant::getNullValue(Op1->getType());
1833   if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) &&
1834       isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1835     return Constant::getNullValue(Op0->getType());
1836 
1837   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
1838     return V;
1839 
1840   // Try some generic simplifications for associative operations.
1841   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1842                                           MaxRecurse))
1843     return V;
1844 
1845   // And distributes over Or.  Try some generic simplifications based on this.
1846   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1847                              Q, MaxRecurse))
1848     return V;
1849 
1850   // And distributes over Xor.  Try some generic simplifications based on this.
1851   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1852                              Q, MaxRecurse))
1853     return V;
1854 
1855   // If the operation is with the result of a select instruction, check whether
1856   // operating on either branch of the select always yields the same value.
1857   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1858     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1859                                          MaxRecurse))
1860       return V;
1861 
1862   // If the operation is with the result of a phi instruction, check whether
1863   // operating on all incoming values of the phi always yields the same value.
1864   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1865     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1866                                       MaxRecurse))
1867       return V;
1868 
1869   // Assuming the effective width of Y is not larger than A, i.e. all bits
1870   // from X and Y are disjoint in (X << A) | Y,
1871   // if the mask of this AND op covers all bits of X or Y, while it covers
1872   // no bits from the other, we can bypass this AND op. E.g.,
1873   // ((X << A) | Y) & Mask -> Y,
1874   //     if Mask = ((1 << effective_width_of(Y)) - 1)
1875   // ((X << A) | Y) & Mask -> X << A,
1876   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
1877   // SimplifyDemandedBits in InstCombine can optimize the general case.
1878   // This pattern aims to help other passes for a common case.
1879   Value *Y, *XShifted;
1880   if (match(Op1, m_APInt(Mask)) &&
1881       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
1882                                      m_Value(XShifted)),
1883                         m_Value(Y)))) {
1884     const unsigned Width = Op0->getType()->getScalarSizeInBits();
1885     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
1886     const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1887     const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros();
1888     if (EffWidthY <= ShftCnt) {
1889       const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI,
1890                                                 Q.DT);
1891       const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros();
1892       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
1893       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
1894       // If the mask is extracting all bits from X or Y as is, we can skip
1895       // this AND op.
1896       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
1897         return Y;
1898       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
1899         return XShifted;
1900     }
1901   }
1902 
1903   return nullptr;
1904 }
1905 
1906 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1907   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1908 }
1909 
1910 /// Given operands for an Or, see if we can fold the result.
1911 /// If not, this returns null.
1912 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1913                              unsigned MaxRecurse) {
1914   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1915     return C;
1916 
1917   // X | undef -> -1
1918   // X | -1 = -1
1919   // Do not return Op1 because it may contain undef elements if it's a vector.
1920   if (match(Op1, m_Undef()) || match(Op1, m_AllOnes()))
1921     return Constant::getAllOnesValue(Op0->getType());
1922 
1923   // X | X = X
1924   // X | 0 = X
1925   if (Op0 == Op1 || match(Op1, m_Zero()))
1926     return Op0;
1927 
1928   // A | ~A  =  ~A | A  =  -1
1929   if (match(Op0, m_Not(m_Specific(Op1))) ||
1930       match(Op1, m_Not(m_Specific(Op0))))
1931     return Constant::getAllOnesValue(Op0->getType());
1932 
1933   // (A & ?) | A = A
1934   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1935     return Op1;
1936 
1937   // A | (A & ?) = A
1938   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1939     return Op0;
1940 
1941   // ~(A & ?) | A = -1
1942   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1943     return Constant::getAllOnesValue(Op1->getType());
1944 
1945   // A | ~(A & ?) = -1
1946   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1947     return Constant::getAllOnesValue(Op0->getType());
1948 
1949   Value *A, *B;
1950   // (A & ~B) | (A ^ B) -> (A ^ B)
1951   // (~B & A) | (A ^ B) -> (A ^ B)
1952   // (A & ~B) | (B ^ A) -> (B ^ A)
1953   // (~B & A) | (B ^ A) -> (B ^ A)
1954   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1955       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1956        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1957     return Op1;
1958 
1959   // Commute the 'or' operands.
1960   // (A ^ B) | (A & ~B) -> (A ^ B)
1961   // (A ^ B) | (~B & A) -> (A ^ B)
1962   // (B ^ A) | (A & ~B) -> (B ^ A)
1963   // (B ^ A) | (~B & A) -> (B ^ A)
1964   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1965       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1966        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1967     return Op0;
1968 
1969   // (A & B) | (~A ^ B) -> (~A ^ B)
1970   // (B & A) | (~A ^ B) -> (~A ^ B)
1971   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1972   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1973   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1974       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1975        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1976     return Op1;
1977 
1978   // (~A ^ B) | (A & B) -> (~A ^ B)
1979   // (~A ^ B) | (B & A) -> (~A ^ B)
1980   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1981   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1982   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1983       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1984        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1985     return Op0;
1986 
1987   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
1988     return V;
1989 
1990   // Try some generic simplifications for associative operations.
1991   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1992                                           MaxRecurse))
1993     return V;
1994 
1995   // Or distributes over And.  Try some generic simplifications based on this.
1996   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1997                              MaxRecurse))
1998     return V;
1999 
2000   // If the operation is with the result of a select instruction, check whether
2001   // operating on either branch of the select always yields the same value.
2002   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
2003     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
2004                                          MaxRecurse))
2005       return V;
2006 
2007   // (A & C1)|(B & C2)
2008   const APInt *C1, *C2;
2009   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2010       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2011     if (*C1 == ~*C2) {
2012       // (A & C1)|(B & C2)
2013       // If we have: ((V + N) & C1) | (V & C2)
2014       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2015       // replace with V+N.
2016       Value *N;
2017       if (C2->isMask() && // C2 == 0+1+
2018           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2019         // Add commutes, try both ways.
2020         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2021           return A;
2022       }
2023       // Or commutes, try both ways.
2024       if (C1->isMask() &&
2025           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2026         // Add commutes, try both ways.
2027         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2028           return B;
2029       }
2030     }
2031   }
2032 
2033   // If the operation is with the result of a phi instruction, check whether
2034   // operating on all incoming values of the phi always yields the same value.
2035   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2036     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2037       return V;
2038 
2039   return nullptr;
2040 }
2041 
2042 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2043   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
2044 }
2045 
2046 /// Given operands for a Xor, see if we can fold the result.
2047 /// If not, this returns null.
2048 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2049                               unsigned MaxRecurse) {
2050   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2051     return C;
2052 
2053   // A ^ undef -> undef
2054   if (match(Op1, m_Undef()))
2055     return Op1;
2056 
2057   // A ^ 0 = A
2058   if (match(Op1, m_Zero()))
2059     return Op0;
2060 
2061   // A ^ A = 0
2062   if (Op0 == Op1)
2063     return Constant::getNullValue(Op0->getType());
2064 
2065   // A ^ ~A  =  ~A ^ A  =  -1
2066   if (match(Op0, m_Not(m_Specific(Op1))) ||
2067       match(Op1, m_Not(m_Specific(Op0))))
2068     return Constant::getAllOnesValue(Op0->getType());
2069 
2070   // Try some generic simplifications for associative operations.
2071   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
2072                                           MaxRecurse))
2073     return V;
2074 
2075   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2076   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2077   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2078   // only if B and C are equal.  If B and C are equal then (since we assume
2079   // that operands have already been simplified) "select(cond, B, C)" should
2080   // have been simplified to the common value of B and C already.  Analysing
2081   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2082   // for threading over phi nodes.
2083 
2084   return nullptr;
2085 }
2086 
2087 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2088   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2089 }
2090 
2091 
2092 static Type *GetCompareTy(Value *Op) {
2093   return CmpInst::makeCmpResultType(Op->getType());
2094 }
2095 
2096 /// Rummage around inside V looking for something equivalent to the comparison
2097 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2098 /// Helper function for analyzing max/min idioms.
2099 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2100                                          Value *LHS, Value *RHS) {
2101   SelectInst *SI = dyn_cast<SelectInst>(V);
2102   if (!SI)
2103     return nullptr;
2104   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2105   if (!Cmp)
2106     return nullptr;
2107   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2108   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2109     return Cmp;
2110   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2111       LHS == CmpRHS && RHS == CmpLHS)
2112     return Cmp;
2113   return nullptr;
2114 }
2115 
2116 // A significant optimization not implemented here is assuming that alloca
2117 // addresses are not equal to incoming argument values. They don't *alias*,
2118 // as we say, but that doesn't mean they aren't equal, so we take a
2119 // conservative approach.
2120 //
2121 // This is inspired in part by C++11 5.10p1:
2122 //   "Two pointers of the same type compare equal if and only if they are both
2123 //    null, both point to the same function, or both represent the same
2124 //    address."
2125 //
2126 // This is pretty permissive.
2127 //
2128 // It's also partly due to C11 6.5.9p6:
2129 //   "Two pointers compare equal if and only if both are null pointers, both are
2130 //    pointers to the same object (including a pointer to an object and a
2131 //    subobject at its beginning) or function, both are pointers to one past the
2132 //    last element of the same array object, or one is a pointer to one past the
2133 //    end of one array object and the other is a pointer to the start of a
2134 //    different array object that happens to immediately follow the first array
2135 //    object in the address space.)
2136 //
2137 // C11's version is more restrictive, however there's no reason why an argument
2138 // couldn't be a one-past-the-end value for a stack object in the caller and be
2139 // equal to the beginning of a stack object in the callee.
2140 //
2141 // If the C and C++ standards are ever made sufficiently restrictive in this
2142 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2143 // this optimization.
2144 static Constant *
2145 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2146                    const DominatorTree *DT, CmpInst::Predicate Pred,
2147                    AssumptionCache *AC, const Instruction *CxtI,
2148                    const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) {
2149   // First, skip past any trivial no-ops.
2150   LHS = LHS->stripPointerCasts();
2151   RHS = RHS->stripPointerCasts();
2152 
2153   // A non-null pointer is not equal to a null pointer.
2154   if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr,
2155                            IIQ.UseInstrInfo) &&
2156       isa<ConstantPointerNull>(RHS) &&
2157       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2158     return ConstantInt::get(GetCompareTy(LHS),
2159                             !CmpInst::isTrueWhenEqual(Pred));
2160 
2161   // We can only fold certain predicates on pointer comparisons.
2162   switch (Pred) {
2163   default:
2164     return nullptr;
2165 
2166     // Equality comaprisons are easy to fold.
2167   case CmpInst::ICMP_EQ:
2168   case CmpInst::ICMP_NE:
2169     break;
2170 
2171     // We can only handle unsigned relational comparisons because 'inbounds' on
2172     // a GEP only protects against unsigned wrapping.
2173   case CmpInst::ICMP_UGT:
2174   case CmpInst::ICMP_UGE:
2175   case CmpInst::ICMP_ULT:
2176   case CmpInst::ICMP_ULE:
2177     // However, we have to switch them to their signed variants to handle
2178     // negative indices from the base pointer.
2179     Pred = ICmpInst::getSignedPredicate(Pred);
2180     break;
2181   }
2182 
2183   // Strip off any constant offsets so that we can reason about them.
2184   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2185   // here and compare base addresses like AliasAnalysis does, however there are
2186   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2187   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2188   // doesn't need to guarantee pointer inequality when it says NoAlias.
2189   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2190   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2191 
2192   // If LHS and RHS are related via constant offsets to the same base
2193   // value, we can replace it with an icmp which just compares the offsets.
2194   if (LHS == RHS)
2195     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2196 
2197   // Various optimizations for (in)equality comparisons.
2198   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2199     // Different non-empty allocations that exist at the same time have
2200     // different addresses (if the program can tell). Global variables always
2201     // exist, so they always exist during the lifetime of each other and all
2202     // allocas. Two different allocas usually have different addresses...
2203     //
2204     // However, if there's an @llvm.stackrestore dynamically in between two
2205     // allocas, they may have the same address. It's tempting to reduce the
2206     // scope of the problem by only looking at *static* allocas here. That would
2207     // cover the majority of allocas while significantly reducing the likelihood
2208     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2209     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2210     // an entry block. Also, if we have a block that's not attached to a
2211     // function, we can't tell if it's "static" under the current definition.
2212     // Theoretically, this problem could be fixed by creating a new kind of
2213     // instruction kind specifically for static allocas. Such a new instruction
2214     // could be required to be at the top of the entry block, thus preventing it
2215     // from being subject to a @llvm.stackrestore. Instcombine could even
2216     // convert regular allocas into these special allocas. It'd be nifty.
2217     // However, until then, this problem remains open.
2218     //
2219     // So, we'll assume that two non-empty allocas have different addresses
2220     // for now.
2221     //
2222     // With all that, if the offsets are within the bounds of their allocations
2223     // (and not one-past-the-end! so we can't use inbounds!), and their
2224     // allocations aren't the same, the pointers are not equal.
2225     //
2226     // Note that it's not necessary to check for LHS being a global variable
2227     // address, due to canonicalization and constant folding.
2228     if (isa<AllocaInst>(LHS) &&
2229         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2230       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2231       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2232       uint64_t LHSSize, RHSSize;
2233       ObjectSizeOpts Opts;
2234       Opts.NullIsUnknownSize =
2235           NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction());
2236       if (LHSOffsetCI && RHSOffsetCI &&
2237           getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2238           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2239         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2240         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2241         if (!LHSOffsetValue.isNegative() &&
2242             !RHSOffsetValue.isNegative() &&
2243             LHSOffsetValue.ult(LHSSize) &&
2244             RHSOffsetValue.ult(RHSSize)) {
2245           return ConstantInt::get(GetCompareTy(LHS),
2246                                   !CmpInst::isTrueWhenEqual(Pred));
2247         }
2248       }
2249 
2250       // Repeat the above check but this time without depending on DataLayout
2251       // or being able to compute a precise size.
2252       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2253           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2254           LHSOffset->isNullValue() &&
2255           RHSOffset->isNullValue())
2256         return ConstantInt::get(GetCompareTy(LHS),
2257                                 !CmpInst::isTrueWhenEqual(Pred));
2258     }
2259 
2260     // Even if an non-inbounds GEP occurs along the path we can still optimize
2261     // equality comparisons concerning the result. We avoid walking the whole
2262     // chain again by starting where the last calls to
2263     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2264     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2265     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2266     if (LHS == RHS)
2267       return ConstantExpr::getICmp(Pred,
2268                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2269                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2270 
2271     // If one side of the equality comparison must come from a noalias call
2272     // (meaning a system memory allocation function), and the other side must
2273     // come from a pointer that cannot overlap with dynamically-allocated
2274     // memory within the lifetime of the current function (allocas, byval
2275     // arguments, globals), then determine the comparison result here.
2276     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2277     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2278     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2279 
2280     // Is the set of underlying objects all noalias calls?
2281     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2282       return all_of(Objects, isNoAliasCall);
2283     };
2284 
2285     // Is the set of underlying objects all things which must be disjoint from
2286     // noalias calls. For allocas, we consider only static ones (dynamic
2287     // allocas might be transformed into calls to malloc not simultaneously
2288     // live with the compared-to allocation). For globals, we exclude symbols
2289     // that might be resolve lazily to symbols in another dynamically-loaded
2290     // library (and, thus, could be malloc'ed by the implementation).
2291     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2292       return all_of(Objects, [](const Value *V) {
2293         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2294           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2295         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2296           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2297                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2298                  !GV->isThreadLocal();
2299         if (const Argument *A = dyn_cast<Argument>(V))
2300           return A->hasByValAttr();
2301         return false;
2302       });
2303     };
2304 
2305     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2306         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2307         return ConstantInt::get(GetCompareTy(LHS),
2308                                 !CmpInst::isTrueWhenEqual(Pred));
2309 
2310     // Fold comparisons for non-escaping pointer even if the allocation call
2311     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2312     // dynamic allocation call could be either of the operands.
2313     Value *MI = nullptr;
2314     if (isAllocLikeFn(LHS, TLI) &&
2315         llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT))
2316       MI = LHS;
2317     else if (isAllocLikeFn(RHS, TLI) &&
2318              llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT))
2319       MI = RHS;
2320     // FIXME: We should also fold the compare when the pointer escapes, but the
2321     // compare dominates the pointer escape
2322     if (MI && !PointerMayBeCaptured(MI, true, true))
2323       return ConstantInt::get(GetCompareTy(LHS),
2324                               CmpInst::isFalseWhenEqual(Pred));
2325   }
2326 
2327   // Otherwise, fail.
2328   return nullptr;
2329 }
2330 
2331 /// Fold an icmp when its operands have i1 scalar type.
2332 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2333                                   Value *RHS, const SimplifyQuery &Q) {
2334   Type *ITy = GetCompareTy(LHS); // The return type.
2335   Type *OpTy = LHS->getType();   // The operand type.
2336   if (!OpTy->isIntOrIntVectorTy(1))
2337     return nullptr;
2338 
2339   // A boolean compared to true/false can be simplified in 14 out of the 20
2340   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2341   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2342   if (match(RHS, m_Zero())) {
2343     switch (Pred) {
2344     case CmpInst::ICMP_NE:  // X !=  0 -> X
2345     case CmpInst::ICMP_UGT: // X >u  0 -> X
2346     case CmpInst::ICMP_SLT: // X <s  0 -> X
2347       return LHS;
2348 
2349     case CmpInst::ICMP_ULT: // X <u  0 -> false
2350     case CmpInst::ICMP_SGT: // X >s  0 -> false
2351       return getFalse(ITy);
2352 
2353     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2354     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2355       return getTrue(ITy);
2356 
2357     default: break;
2358     }
2359   } else if (match(RHS, m_One())) {
2360     switch (Pred) {
2361     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2362     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2363     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2364       return LHS;
2365 
2366     case CmpInst::ICMP_UGT: // X >u   1 -> false
2367     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2368       return getFalse(ITy);
2369 
2370     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2371     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2372       return getTrue(ITy);
2373 
2374     default: break;
2375     }
2376   }
2377 
2378   switch (Pred) {
2379   default:
2380     break;
2381   case ICmpInst::ICMP_UGE:
2382     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2383       return getTrue(ITy);
2384     break;
2385   case ICmpInst::ICMP_SGE:
2386     /// For signed comparison, the values for an i1 are 0 and -1
2387     /// respectively. This maps into a truth table of:
2388     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2389     ///  0  |  0  |  1 (0 >= 0)   |  1
2390     ///  0  |  1  |  1 (0 >= -1)  |  1
2391     ///  1  |  0  |  0 (-1 >= 0)  |  0
2392     ///  1  |  1  |  1 (-1 >= -1) |  1
2393     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2394       return getTrue(ITy);
2395     break;
2396   case ICmpInst::ICMP_ULE:
2397     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2398       return getTrue(ITy);
2399     break;
2400   }
2401 
2402   return nullptr;
2403 }
2404 
2405 /// Try hard to fold icmp with zero RHS because this is a common case.
2406 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2407                                    Value *RHS, const SimplifyQuery &Q) {
2408   if (!match(RHS, m_Zero()))
2409     return nullptr;
2410 
2411   Type *ITy = GetCompareTy(LHS); // The return type.
2412   switch (Pred) {
2413   default:
2414     llvm_unreachable("Unknown ICmp predicate!");
2415   case ICmpInst::ICMP_ULT:
2416     return getFalse(ITy);
2417   case ICmpInst::ICMP_UGE:
2418     return getTrue(ITy);
2419   case ICmpInst::ICMP_EQ:
2420   case ICmpInst::ICMP_ULE:
2421     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2422       return getFalse(ITy);
2423     break;
2424   case ICmpInst::ICMP_NE:
2425   case ICmpInst::ICMP_UGT:
2426     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo))
2427       return getTrue(ITy);
2428     break;
2429   case ICmpInst::ICMP_SLT: {
2430     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2431     if (LHSKnown.isNegative())
2432       return getTrue(ITy);
2433     if (LHSKnown.isNonNegative())
2434       return getFalse(ITy);
2435     break;
2436   }
2437   case ICmpInst::ICMP_SLE: {
2438     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2439     if (LHSKnown.isNegative())
2440       return getTrue(ITy);
2441     if (LHSKnown.isNonNegative() &&
2442         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2443       return getFalse(ITy);
2444     break;
2445   }
2446   case ICmpInst::ICMP_SGE: {
2447     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2448     if (LHSKnown.isNegative())
2449       return getFalse(ITy);
2450     if (LHSKnown.isNonNegative())
2451       return getTrue(ITy);
2452     break;
2453   }
2454   case ICmpInst::ICMP_SGT: {
2455     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2456     if (LHSKnown.isNegative())
2457       return getFalse(ITy);
2458     if (LHSKnown.isNonNegative() &&
2459         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2460       return getTrue(ITy);
2461     break;
2462   }
2463   }
2464 
2465   return nullptr;
2466 }
2467 
2468 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2469                                        Value *RHS, const InstrInfoQuery &IIQ) {
2470   Type *ITy = GetCompareTy(RHS); // The return type.
2471 
2472   Value *X;
2473   // Sign-bit checks can be optimized to true/false after unsigned
2474   // floating-point casts:
2475   // icmp slt (bitcast (uitofp X)),  0 --> false
2476   // icmp sgt (bitcast (uitofp X)), -1 --> true
2477   if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) {
2478     if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero()))
2479       return ConstantInt::getFalse(ITy);
2480     if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes()))
2481       return ConstantInt::getTrue(ITy);
2482   }
2483 
2484   const APInt *C;
2485   if (!match(RHS, m_APInt(C)))
2486     return nullptr;
2487 
2488   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2489   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2490   if (RHS_CR.isEmptySet())
2491     return ConstantInt::getFalse(ITy);
2492   if (RHS_CR.isFullSet())
2493     return ConstantInt::getTrue(ITy);
2494 
2495   ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo);
2496   if (!LHS_CR.isFullSet()) {
2497     if (RHS_CR.contains(LHS_CR))
2498       return ConstantInt::getTrue(ITy);
2499     if (RHS_CR.inverse().contains(LHS_CR))
2500       return ConstantInt::getFalse(ITy);
2501   }
2502 
2503   return nullptr;
2504 }
2505 
2506 /// TODO: A large part of this logic is duplicated in InstCombine's
2507 /// foldICmpBinOp(). We should be able to share that and avoid the code
2508 /// duplication.
2509 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2510                                     Value *RHS, const SimplifyQuery &Q,
2511                                     unsigned MaxRecurse) {
2512   Type *ITy = GetCompareTy(LHS); // The return type.
2513 
2514   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2515   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2516   if (MaxRecurse && (LBO || RBO)) {
2517     // Analyze the case when either LHS or RHS is an add instruction.
2518     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2519     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2520     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2521     if (LBO && LBO->getOpcode() == Instruction::Add) {
2522       A = LBO->getOperand(0);
2523       B = LBO->getOperand(1);
2524       NoLHSWrapProblem =
2525           ICmpInst::isEquality(Pred) ||
2526           (CmpInst::isUnsigned(Pred) &&
2527            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
2528           (CmpInst::isSigned(Pred) &&
2529            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
2530     }
2531     if (RBO && RBO->getOpcode() == Instruction::Add) {
2532       C = RBO->getOperand(0);
2533       D = RBO->getOperand(1);
2534       NoRHSWrapProblem =
2535           ICmpInst::isEquality(Pred) ||
2536           (CmpInst::isUnsigned(Pred) &&
2537            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
2538           (CmpInst::isSigned(Pred) &&
2539            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
2540     }
2541 
2542     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2543     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2544       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2545                                       Constant::getNullValue(RHS->getType()), Q,
2546                                       MaxRecurse - 1))
2547         return V;
2548 
2549     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2550     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2551       if (Value *V =
2552               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2553                                C == LHS ? D : C, Q, MaxRecurse - 1))
2554         return V;
2555 
2556     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2557     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2558         NoRHSWrapProblem) {
2559       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2560       Value *Y, *Z;
2561       if (A == C) {
2562         // C + B == C + D  ->  B == D
2563         Y = B;
2564         Z = D;
2565       } else if (A == D) {
2566         // D + B == C + D  ->  B == C
2567         Y = B;
2568         Z = C;
2569       } else if (B == C) {
2570         // A + C == C + D  ->  A == D
2571         Y = A;
2572         Z = D;
2573       } else {
2574         assert(B == D);
2575         // A + D == C + D  ->  A == C
2576         Y = A;
2577         Z = C;
2578       }
2579       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2580         return V;
2581     }
2582   }
2583 
2584   {
2585     Value *Y = nullptr;
2586     // icmp pred (or X, Y), X
2587     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2588       if (Pred == ICmpInst::ICMP_ULT)
2589         return getFalse(ITy);
2590       if (Pred == ICmpInst::ICMP_UGE)
2591         return getTrue(ITy);
2592 
2593       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2594         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2595         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2596         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2597           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2598         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2599           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2600       }
2601     }
2602     // icmp pred X, (or X, Y)
2603     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2604       if (Pred == ICmpInst::ICMP_ULE)
2605         return getTrue(ITy);
2606       if (Pred == ICmpInst::ICMP_UGT)
2607         return getFalse(ITy);
2608 
2609       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2610         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2611         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2612         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2613           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2614         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2615           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2616       }
2617     }
2618   }
2619 
2620   // icmp pred (and X, Y), X
2621   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2622     if (Pred == ICmpInst::ICMP_UGT)
2623       return getFalse(ITy);
2624     if (Pred == ICmpInst::ICMP_ULE)
2625       return getTrue(ITy);
2626   }
2627   // icmp pred X, (and X, Y)
2628   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2629     if (Pred == ICmpInst::ICMP_UGE)
2630       return getTrue(ITy);
2631     if (Pred == ICmpInst::ICMP_ULT)
2632       return getFalse(ITy);
2633   }
2634 
2635   // 0 - (zext X) pred C
2636   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2637     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2638       if (RHSC->getValue().isStrictlyPositive()) {
2639         if (Pred == ICmpInst::ICMP_SLT)
2640           return ConstantInt::getTrue(RHSC->getContext());
2641         if (Pred == ICmpInst::ICMP_SGE)
2642           return ConstantInt::getFalse(RHSC->getContext());
2643         if (Pred == ICmpInst::ICMP_EQ)
2644           return ConstantInt::getFalse(RHSC->getContext());
2645         if (Pred == ICmpInst::ICMP_NE)
2646           return ConstantInt::getTrue(RHSC->getContext());
2647       }
2648       if (RHSC->getValue().isNonNegative()) {
2649         if (Pred == ICmpInst::ICMP_SLE)
2650           return ConstantInt::getTrue(RHSC->getContext());
2651         if (Pred == ICmpInst::ICMP_SGT)
2652           return ConstantInt::getFalse(RHSC->getContext());
2653       }
2654     }
2655   }
2656 
2657   // icmp pred (urem X, Y), Y
2658   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2659     switch (Pred) {
2660     default:
2661       break;
2662     case ICmpInst::ICMP_SGT:
2663     case ICmpInst::ICMP_SGE: {
2664       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2665       if (!Known.isNonNegative())
2666         break;
2667       LLVM_FALLTHROUGH;
2668     }
2669     case ICmpInst::ICMP_EQ:
2670     case ICmpInst::ICMP_UGT:
2671     case ICmpInst::ICMP_UGE:
2672       return getFalse(ITy);
2673     case ICmpInst::ICMP_SLT:
2674     case ICmpInst::ICMP_SLE: {
2675       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2676       if (!Known.isNonNegative())
2677         break;
2678       LLVM_FALLTHROUGH;
2679     }
2680     case ICmpInst::ICMP_NE:
2681     case ICmpInst::ICMP_ULT:
2682     case ICmpInst::ICMP_ULE:
2683       return getTrue(ITy);
2684     }
2685   }
2686 
2687   // icmp pred X, (urem Y, X)
2688   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2689     switch (Pred) {
2690     default:
2691       break;
2692     case ICmpInst::ICMP_SGT:
2693     case ICmpInst::ICMP_SGE: {
2694       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2695       if (!Known.isNonNegative())
2696         break;
2697       LLVM_FALLTHROUGH;
2698     }
2699     case ICmpInst::ICMP_NE:
2700     case ICmpInst::ICMP_UGT:
2701     case ICmpInst::ICMP_UGE:
2702       return getTrue(ITy);
2703     case ICmpInst::ICMP_SLT:
2704     case ICmpInst::ICMP_SLE: {
2705       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2706       if (!Known.isNonNegative())
2707         break;
2708       LLVM_FALLTHROUGH;
2709     }
2710     case ICmpInst::ICMP_EQ:
2711     case ICmpInst::ICMP_ULT:
2712     case ICmpInst::ICMP_ULE:
2713       return getFalse(ITy);
2714     }
2715   }
2716 
2717   // x >> y <=u x
2718   // x udiv y <=u x.
2719   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2720               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2721     // icmp pred (X op Y), X
2722     if (Pred == ICmpInst::ICMP_UGT)
2723       return getFalse(ITy);
2724     if (Pred == ICmpInst::ICMP_ULE)
2725       return getTrue(ITy);
2726   }
2727 
2728   // x >=u x >> y
2729   // x >=u x udiv y.
2730   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2731               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2732     // icmp pred X, (X op Y)
2733     if (Pred == ICmpInst::ICMP_ULT)
2734       return getFalse(ITy);
2735     if (Pred == ICmpInst::ICMP_UGE)
2736       return getTrue(ITy);
2737   }
2738 
2739   // handle:
2740   //   CI2 << X == CI
2741   //   CI2 << X != CI
2742   //
2743   //   where CI2 is a power of 2 and CI isn't
2744   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2745     const APInt *CI2Val, *CIVal = &CI->getValue();
2746     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2747         CI2Val->isPowerOf2()) {
2748       if (!CIVal->isPowerOf2()) {
2749         // CI2 << X can equal zero in some circumstances,
2750         // this simplification is unsafe if CI is zero.
2751         //
2752         // We know it is safe if:
2753         // - The shift is nsw, we can't shift out the one bit.
2754         // - The shift is nuw, we can't shift out the one bit.
2755         // - CI2 is one
2756         // - CI isn't zero
2757         if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2758             Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
2759             CI2Val->isOneValue() || !CI->isZero()) {
2760           if (Pred == ICmpInst::ICMP_EQ)
2761             return ConstantInt::getFalse(RHS->getContext());
2762           if (Pred == ICmpInst::ICMP_NE)
2763             return ConstantInt::getTrue(RHS->getContext());
2764         }
2765       }
2766       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2767         if (Pred == ICmpInst::ICMP_UGT)
2768           return ConstantInt::getFalse(RHS->getContext());
2769         if (Pred == ICmpInst::ICMP_ULE)
2770           return ConstantInt::getTrue(RHS->getContext());
2771       }
2772     }
2773   }
2774 
2775   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2776       LBO->getOperand(1) == RBO->getOperand(1)) {
2777     switch (LBO->getOpcode()) {
2778     default:
2779       break;
2780     case Instruction::UDiv:
2781     case Instruction::LShr:
2782       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
2783           !Q.IIQ.isExact(RBO))
2784         break;
2785       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2786                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2787           return V;
2788       break;
2789     case Instruction::SDiv:
2790       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
2791           !Q.IIQ.isExact(RBO))
2792         break;
2793       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2794                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2795         return V;
2796       break;
2797     case Instruction::AShr:
2798       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
2799         break;
2800       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2801                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2802         return V;
2803       break;
2804     case Instruction::Shl: {
2805       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
2806       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
2807       if (!NUW && !NSW)
2808         break;
2809       if (!NSW && ICmpInst::isSigned(Pred))
2810         break;
2811       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2812                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2813         return V;
2814       break;
2815     }
2816     }
2817   }
2818   return nullptr;
2819 }
2820 
2821 /// Simplify integer comparisons where at least one operand of the compare
2822 /// matches an integer min/max idiom.
2823 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2824                                      Value *RHS, const SimplifyQuery &Q,
2825                                      unsigned MaxRecurse) {
2826   Type *ITy = GetCompareTy(LHS); // The return type.
2827   Value *A, *B;
2828   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2829   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2830 
2831   // Signed variants on "max(a,b)>=a -> true".
2832   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2833     if (A != RHS)
2834       std::swap(A, B);       // smax(A, B) pred A.
2835     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2836     // We analyze this as smax(A, B) pred A.
2837     P = Pred;
2838   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2839              (A == LHS || B == LHS)) {
2840     if (A != LHS)
2841       std::swap(A, B);       // A pred smax(A, B).
2842     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2843     // We analyze this as smax(A, B) swapped-pred A.
2844     P = CmpInst::getSwappedPredicate(Pred);
2845   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2846              (A == RHS || B == RHS)) {
2847     if (A != RHS)
2848       std::swap(A, B);       // smin(A, B) pred A.
2849     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2850     // We analyze this as smax(-A, -B) swapped-pred -A.
2851     // Note that we do not need to actually form -A or -B thanks to EqP.
2852     P = CmpInst::getSwappedPredicate(Pred);
2853   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2854              (A == LHS || B == LHS)) {
2855     if (A != LHS)
2856       std::swap(A, B);       // A pred smin(A, B).
2857     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2858     // We analyze this as smax(-A, -B) pred -A.
2859     // Note that we do not need to actually form -A or -B thanks to EqP.
2860     P = Pred;
2861   }
2862   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2863     // Cases correspond to "max(A, B) p A".
2864     switch (P) {
2865     default:
2866       break;
2867     case CmpInst::ICMP_EQ:
2868     case CmpInst::ICMP_SLE:
2869       // Equivalent to "A EqP B".  This may be the same as the condition tested
2870       // in the max/min; if so, we can just return that.
2871       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2872         return V;
2873       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2874         return V;
2875       // Otherwise, see if "A EqP B" simplifies.
2876       if (MaxRecurse)
2877         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2878           return V;
2879       break;
2880     case CmpInst::ICMP_NE:
2881     case CmpInst::ICMP_SGT: {
2882       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2883       // Equivalent to "A InvEqP B".  This may be the same as the condition
2884       // tested in the max/min; if so, we can just return that.
2885       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2886         return V;
2887       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2888         return V;
2889       // Otherwise, see if "A InvEqP B" simplifies.
2890       if (MaxRecurse)
2891         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2892           return V;
2893       break;
2894     }
2895     case CmpInst::ICMP_SGE:
2896       // Always true.
2897       return getTrue(ITy);
2898     case CmpInst::ICMP_SLT:
2899       // Always false.
2900       return getFalse(ITy);
2901     }
2902   }
2903 
2904   // Unsigned variants on "max(a,b)>=a -> true".
2905   P = CmpInst::BAD_ICMP_PREDICATE;
2906   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2907     if (A != RHS)
2908       std::swap(A, B);       // umax(A, B) pred A.
2909     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2910     // We analyze this as umax(A, B) pred A.
2911     P = Pred;
2912   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2913              (A == LHS || B == LHS)) {
2914     if (A != LHS)
2915       std::swap(A, B);       // A pred umax(A, B).
2916     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2917     // We analyze this as umax(A, B) swapped-pred A.
2918     P = CmpInst::getSwappedPredicate(Pred);
2919   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2920              (A == RHS || B == RHS)) {
2921     if (A != RHS)
2922       std::swap(A, B);       // umin(A, B) pred A.
2923     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2924     // We analyze this as umax(-A, -B) swapped-pred -A.
2925     // Note that we do not need to actually form -A or -B thanks to EqP.
2926     P = CmpInst::getSwappedPredicate(Pred);
2927   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2928              (A == LHS || B == LHS)) {
2929     if (A != LHS)
2930       std::swap(A, B);       // A pred umin(A, B).
2931     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2932     // We analyze this as umax(-A, -B) pred -A.
2933     // Note that we do not need to actually form -A or -B thanks to EqP.
2934     P = Pred;
2935   }
2936   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2937     // Cases correspond to "max(A, B) p A".
2938     switch (P) {
2939     default:
2940       break;
2941     case CmpInst::ICMP_EQ:
2942     case CmpInst::ICMP_ULE:
2943       // Equivalent to "A EqP B".  This may be the same as the condition tested
2944       // in the max/min; if so, we can just return that.
2945       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2946         return V;
2947       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2948         return V;
2949       // Otherwise, see if "A EqP B" simplifies.
2950       if (MaxRecurse)
2951         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2952           return V;
2953       break;
2954     case CmpInst::ICMP_NE:
2955     case CmpInst::ICMP_UGT: {
2956       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2957       // Equivalent to "A InvEqP B".  This may be the same as the condition
2958       // tested in the max/min; if so, we can just return that.
2959       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2960         return V;
2961       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2962         return V;
2963       // Otherwise, see if "A InvEqP B" simplifies.
2964       if (MaxRecurse)
2965         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2966           return V;
2967       break;
2968     }
2969     case CmpInst::ICMP_UGE:
2970       // Always true.
2971       return getTrue(ITy);
2972     case CmpInst::ICMP_ULT:
2973       // Always false.
2974       return getFalse(ITy);
2975     }
2976   }
2977 
2978   // Variants on "max(x,y) >= min(x,z)".
2979   Value *C, *D;
2980   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2981       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2982       (A == C || A == D || B == C || B == D)) {
2983     // max(x, ?) pred min(x, ?).
2984     if (Pred == CmpInst::ICMP_SGE)
2985       // Always true.
2986       return getTrue(ITy);
2987     if (Pred == CmpInst::ICMP_SLT)
2988       // Always false.
2989       return getFalse(ITy);
2990   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2991              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2992              (A == C || A == D || B == C || B == D)) {
2993     // min(x, ?) pred max(x, ?).
2994     if (Pred == CmpInst::ICMP_SLE)
2995       // Always true.
2996       return getTrue(ITy);
2997     if (Pred == CmpInst::ICMP_SGT)
2998       // Always false.
2999       return getFalse(ITy);
3000   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3001              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3002              (A == C || A == D || B == C || B == D)) {
3003     // max(x, ?) pred min(x, ?).
3004     if (Pred == CmpInst::ICMP_UGE)
3005       // Always true.
3006       return getTrue(ITy);
3007     if (Pred == CmpInst::ICMP_ULT)
3008       // Always false.
3009       return getFalse(ITy);
3010   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3011              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3012              (A == C || A == D || B == C || B == D)) {
3013     // min(x, ?) pred max(x, ?).
3014     if (Pred == CmpInst::ICMP_ULE)
3015       // Always true.
3016       return getTrue(ITy);
3017     if (Pred == CmpInst::ICMP_UGT)
3018       // Always false.
3019       return getFalse(ITy);
3020   }
3021 
3022   return nullptr;
3023 }
3024 
3025 /// Given operands for an ICmpInst, see if we can fold the result.
3026 /// If not, this returns null.
3027 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3028                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3029   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3030   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3031 
3032   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3033     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3034       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3035 
3036     // If we have a constant, make sure it is on the RHS.
3037     std::swap(LHS, RHS);
3038     Pred = CmpInst::getSwappedPredicate(Pred);
3039   }
3040   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3041 
3042   Type *ITy = GetCompareTy(LHS); // The return type.
3043 
3044   // For EQ and NE, we can always pick a value for the undef to make the
3045   // predicate pass or fail, so we can return undef.
3046   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3047   if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred))
3048     return UndefValue::get(ITy);
3049 
3050   // icmp X, X -> true/false
3051   // icmp X, undef -> true/false because undef could be X.
3052   if (LHS == RHS || isa<UndefValue>(RHS))
3053     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3054 
3055   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3056     return V;
3057 
3058   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3059     return V;
3060 
3061   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3062     return V;
3063 
3064   // If both operands have range metadata, use the metadata
3065   // to simplify the comparison.
3066   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3067     auto RHS_Instr = cast<Instruction>(RHS);
3068     auto LHS_Instr = cast<Instruction>(LHS);
3069 
3070     if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) &&
3071         Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) {
3072       auto RHS_CR = getConstantRangeFromMetadata(
3073           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3074       auto LHS_CR = getConstantRangeFromMetadata(
3075           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3076 
3077       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3078       if (Satisfied_CR.contains(LHS_CR))
3079         return ConstantInt::getTrue(RHS->getContext());
3080 
3081       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3082                 CmpInst::getInversePredicate(Pred), RHS_CR);
3083       if (InversedSatisfied_CR.contains(LHS_CR))
3084         return ConstantInt::getFalse(RHS->getContext());
3085     }
3086   }
3087 
3088   // Compare of cast, for example (zext X) != 0 -> X != 0
3089   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3090     Instruction *LI = cast<CastInst>(LHS);
3091     Value *SrcOp = LI->getOperand(0);
3092     Type *SrcTy = SrcOp->getType();
3093     Type *DstTy = LI->getType();
3094 
3095     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3096     // if the integer type is the same size as the pointer type.
3097     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3098         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3099       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3100         // Transfer the cast to the constant.
3101         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3102                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3103                                         Q, MaxRecurse-1))
3104           return V;
3105       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3106         if (RI->getOperand(0)->getType() == SrcTy)
3107           // Compare without the cast.
3108           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3109                                           Q, MaxRecurse-1))
3110             return V;
3111       }
3112     }
3113 
3114     if (isa<ZExtInst>(LHS)) {
3115       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3116       // same type.
3117       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3118         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3119           // Compare X and Y.  Note that signed predicates become unsigned.
3120           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3121                                           SrcOp, RI->getOperand(0), Q,
3122                                           MaxRecurse-1))
3123             return V;
3124       }
3125       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3126       // too.  If not, then try to deduce the result of the comparison.
3127       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3128         // Compute the constant that would happen if we truncated to SrcTy then
3129         // reextended to DstTy.
3130         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3131         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3132 
3133         // If the re-extended constant didn't change then this is effectively
3134         // also a case of comparing two zero-extended values.
3135         if (RExt == CI && MaxRecurse)
3136           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3137                                         SrcOp, Trunc, Q, MaxRecurse-1))
3138             return V;
3139 
3140         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3141         // there.  Use this to work out the result of the comparison.
3142         if (RExt != CI) {
3143           switch (Pred) {
3144           default: llvm_unreachable("Unknown ICmp predicate!");
3145           // LHS <u RHS.
3146           case ICmpInst::ICMP_EQ:
3147           case ICmpInst::ICMP_UGT:
3148           case ICmpInst::ICMP_UGE:
3149             return ConstantInt::getFalse(CI->getContext());
3150 
3151           case ICmpInst::ICMP_NE:
3152           case ICmpInst::ICMP_ULT:
3153           case ICmpInst::ICMP_ULE:
3154             return ConstantInt::getTrue(CI->getContext());
3155 
3156           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3157           // is non-negative then LHS <s RHS.
3158           case ICmpInst::ICMP_SGT:
3159           case ICmpInst::ICMP_SGE:
3160             return CI->getValue().isNegative() ?
3161               ConstantInt::getTrue(CI->getContext()) :
3162               ConstantInt::getFalse(CI->getContext());
3163 
3164           case ICmpInst::ICMP_SLT:
3165           case ICmpInst::ICMP_SLE:
3166             return CI->getValue().isNegative() ?
3167               ConstantInt::getFalse(CI->getContext()) :
3168               ConstantInt::getTrue(CI->getContext());
3169           }
3170         }
3171       }
3172     }
3173 
3174     if (isa<SExtInst>(LHS)) {
3175       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3176       // same type.
3177       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3178         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3179           // Compare X and Y.  Note that the predicate does not change.
3180           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3181                                           Q, MaxRecurse-1))
3182             return V;
3183       }
3184       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3185       // too.  If not, then try to deduce the result of the comparison.
3186       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3187         // Compute the constant that would happen if we truncated to SrcTy then
3188         // reextended to DstTy.
3189         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3190         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3191 
3192         // If the re-extended constant didn't change then this is effectively
3193         // also a case of comparing two sign-extended values.
3194         if (RExt == CI && MaxRecurse)
3195           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3196             return V;
3197 
3198         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3199         // bits there.  Use this to work out the result of the comparison.
3200         if (RExt != CI) {
3201           switch (Pred) {
3202           default: llvm_unreachable("Unknown ICmp predicate!");
3203           case ICmpInst::ICMP_EQ:
3204             return ConstantInt::getFalse(CI->getContext());
3205           case ICmpInst::ICMP_NE:
3206             return ConstantInt::getTrue(CI->getContext());
3207 
3208           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3209           // LHS >s RHS.
3210           case ICmpInst::ICMP_SGT:
3211           case ICmpInst::ICMP_SGE:
3212             return CI->getValue().isNegative() ?
3213               ConstantInt::getTrue(CI->getContext()) :
3214               ConstantInt::getFalse(CI->getContext());
3215           case ICmpInst::ICMP_SLT:
3216           case ICmpInst::ICMP_SLE:
3217             return CI->getValue().isNegative() ?
3218               ConstantInt::getFalse(CI->getContext()) :
3219               ConstantInt::getTrue(CI->getContext());
3220 
3221           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3222           // LHS >u RHS.
3223           case ICmpInst::ICMP_UGT:
3224           case ICmpInst::ICMP_UGE:
3225             // Comparison is true iff the LHS <s 0.
3226             if (MaxRecurse)
3227               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3228                                               Constant::getNullValue(SrcTy),
3229                                               Q, MaxRecurse-1))
3230                 return V;
3231             break;
3232           case ICmpInst::ICMP_ULT:
3233           case ICmpInst::ICMP_ULE:
3234             // Comparison is true iff the LHS >=s 0.
3235             if (MaxRecurse)
3236               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3237                                               Constant::getNullValue(SrcTy),
3238                                               Q, MaxRecurse-1))
3239                 return V;
3240             break;
3241           }
3242         }
3243       }
3244     }
3245   }
3246 
3247   // icmp eq|ne X, Y -> false|true if X != Y
3248   if (ICmpInst::isEquality(Pred) &&
3249       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3250     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3251   }
3252 
3253   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3254     return V;
3255 
3256   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3257     return V;
3258 
3259   // Simplify comparisons of related pointers using a powerful, recursive
3260   // GEP-walk when we have target data available..
3261   if (LHS->getType()->isPointerTy())
3262     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3263                                      Q.IIQ, LHS, RHS))
3264       return C;
3265   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3266     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3267       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3268               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3269           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3270               Q.DL.getTypeSizeInBits(CRHS->getType()))
3271         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI,
3272                                          Q.IIQ, CLHS->getPointerOperand(),
3273                                          CRHS->getPointerOperand()))
3274           return C;
3275 
3276   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3277     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3278       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3279           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3280           (ICmpInst::isEquality(Pred) ||
3281            (GLHS->isInBounds() && GRHS->isInBounds() &&
3282             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3283         // The bases are equal and the indices are constant.  Build a constant
3284         // expression GEP with the same indices and a null base pointer to see
3285         // what constant folding can make out of it.
3286         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3287         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3288         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3289             GLHS->getSourceElementType(), Null, IndicesLHS);
3290 
3291         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3292         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3293             GLHS->getSourceElementType(), Null, IndicesRHS);
3294         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3295       }
3296     }
3297   }
3298 
3299   // If the comparison is with the result of a select instruction, check whether
3300   // comparing with either branch of the select always yields the same value.
3301   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3302     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3303       return V;
3304 
3305   // If the comparison is with the result of a phi instruction, check whether
3306   // doing the compare with each incoming phi value yields a common result.
3307   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3308     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3309       return V;
3310 
3311   return nullptr;
3312 }
3313 
3314 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3315                               const SimplifyQuery &Q) {
3316   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3317 }
3318 
3319 /// Given operands for an FCmpInst, see if we can fold the result.
3320 /// If not, this returns null.
3321 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3322                                FastMathFlags FMF, const SimplifyQuery &Q,
3323                                unsigned MaxRecurse) {
3324   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3325   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3326 
3327   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3328     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3329       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3330 
3331     // If we have a constant, make sure it is on the RHS.
3332     std::swap(LHS, RHS);
3333     Pred = CmpInst::getSwappedPredicate(Pred);
3334   }
3335 
3336   // Fold trivial predicates.
3337   Type *RetTy = GetCompareTy(LHS);
3338   if (Pred == FCmpInst::FCMP_FALSE)
3339     return getFalse(RetTy);
3340   if (Pred == FCmpInst::FCMP_TRUE)
3341     return getTrue(RetTy);
3342 
3343   // Fold (un)ordered comparison if we can determine there are no NaNs.
3344   if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD)
3345     if (FMF.noNaNs() ||
3346         (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI)))
3347       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
3348 
3349   // NaN is unordered; NaN is not ordered.
3350   assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) &&
3351          "Comparison must be either ordered or unordered");
3352   if (match(RHS, m_NaN()))
3353     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3354 
3355   // fcmp pred x, undef  and  fcmp pred undef, x
3356   // fold to true if unordered, false if ordered
3357   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3358     // Choosing NaN for the undef will always make unordered comparison succeed
3359     // and ordered comparison fail.
3360     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3361   }
3362 
3363   // fcmp x,x -> true/false.  Not all compares are foldable.
3364   if (LHS == RHS) {
3365     if (CmpInst::isTrueWhenEqual(Pred))
3366       return getTrue(RetTy);
3367     if (CmpInst::isFalseWhenEqual(Pred))
3368       return getFalse(RetTy);
3369   }
3370 
3371   // Handle fcmp with constant RHS.
3372   // TODO: Use match with a specific FP value, so these work with vectors with
3373   // undef lanes.
3374   const APFloat *C;
3375   if (match(RHS, m_APFloat(C))) {
3376     // Check whether the constant is an infinity.
3377     if (C->isInfinity()) {
3378       if (C->isNegative()) {
3379         switch (Pred) {
3380         case FCmpInst::FCMP_OLT:
3381           // No value is ordered and less than negative infinity.
3382           return getFalse(RetTy);
3383         case FCmpInst::FCMP_UGE:
3384           // All values are unordered with or at least negative infinity.
3385           return getTrue(RetTy);
3386         default:
3387           break;
3388         }
3389       } else {
3390         switch (Pred) {
3391         case FCmpInst::FCMP_OGT:
3392           // No value is ordered and greater than infinity.
3393           return getFalse(RetTy);
3394         case FCmpInst::FCMP_ULE:
3395           // All values are unordered with and at most infinity.
3396           return getTrue(RetTy);
3397         default:
3398           break;
3399         }
3400       }
3401     }
3402     if (C->isNegative() && !C->isNegZero()) {
3403       assert(!C->isNaN() && "Unexpected NaN constant!");
3404       // TODO: We can catch more cases by using a range check rather than
3405       //       relying on CannotBeOrderedLessThanZero.
3406       switch (Pred) {
3407       case FCmpInst::FCMP_UGE:
3408       case FCmpInst::FCMP_UGT:
3409       case FCmpInst::FCMP_UNE:
3410         // (X >= 0) implies (X > C) when (C < 0)
3411         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3412           return getTrue(RetTy);
3413         break;
3414       case FCmpInst::FCMP_OEQ:
3415       case FCmpInst::FCMP_OLE:
3416       case FCmpInst::FCMP_OLT:
3417         // (X >= 0) implies !(X < C) when (C < 0)
3418         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3419           return getFalse(RetTy);
3420         break;
3421       default:
3422         break;
3423       }
3424     }
3425 
3426     // Check comparison of [minnum/maxnum with constant] with other constant.
3427     const APFloat *C2;
3428     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
3429          C2->compare(*C) == APFloat::cmpLessThan) ||
3430         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
3431          C2->compare(*C) == APFloat::cmpGreaterThan)) {
3432       bool IsMaxNum =
3433           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
3434       // The ordered relationship and minnum/maxnum guarantee that we do not
3435       // have NaN constants, so ordered/unordered preds are handled the same.
3436       switch (Pred) {
3437       case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ:
3438         // minnum(X, LesserC)  == C --> false
3439         // maxnum(X, GreaterC) == C --> false
3440         return getFalse(RetTy);
3441       case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE:
3442         // minnum(X, LesserC)  != C --> true
3443         // maxnum(X, GreaterC) != C --> true
3444         return getTrue(RetTy);
3445       case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE:
3446       case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT:
3447         // minnum(X, LesserC)  >= C --> false
3448         // minnum(X, LesserC)  >  C --> false
3449         // maxnum(X, GreaterC) >= C --> true
3450         // maxnum(X, GreaterC) >  C --> true
3451         return ConstantInt::get(RetTy, IsMaxNum);
3452       case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE:
3453       case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT:
3454         // minnum(X, LesserC)  <= C --> true
3455         // minnum(X, LesserC)  <  C --> true
3456         // maxnum(X, GreaterC) <= C --> false
3457         // maxnum(X, GreaterC) <  C --> false
3458         return ConstantInt::get(RetTy, !IsMaxNum);
3459       default:
3460         // TRUE/FALSE/ORD/UNO should be handled before this.
3461         llvm_unreachable("Unexpected fcmp predicate");
3462       }
3463     }
3464   }
3465 
3466   if (match(RHS, m_AnyZeroFP())) {
3467     switch (Pred) {
3468     case FCmpInst::FCMP_OGE:
3469     case FCmpInst::FCMP_ULT:
3470       // Positive or zero X >= 0.0 --> true
3471       // Positive or zero X <  0.0 --> false
3472       if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) &&
3473           CannotBeOrderedLessThanZero(LHS, Q.TLI))
3474         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
3475       break;
3476     case FCmpInst::FCMP_UGE:
3477     case FCmpInst::FCMP_OLT:
3478       // Positive or zero or nan X >= 0.0 --> true
3479       // Positive or zero or nan X <  0.0 --> false
3480       if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3481         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
3482       break;
3483     default:
3484       break;
3485     }
3486   }
3487 
3488   // If the comparison is with the result of a select instruction, check whether
3489   // comparing with either branch of the select always yields the same value.
3490   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3491     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3492       return V;
3493 
3494   // If the comparison is with the result of a phi instruction, check whether
3495   // doing the compare with each incoming phi value yields a common result.
3496   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3497     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3498       return V;
3499 
3500   return nullptr;
3501 }
3502 
3503 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3504                               FastMathFlags FMF, const SimplifyQuery &Q) {
3505   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3506 }
3507 
3508 /// See if V simplifies when its operand Op is replaced with RepOp.
3509 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3510                                            const SimplifyQuery &Q,
3511                                            unsigned MaxRecurse) {
3512   // Trivial replacement.
3513   if (V == Op)
3514     return RepOp;
3515 
3516   // We cannot replace a constant, and shouldn't even try.
3517   if (isa<Constant>(Op))
3518     return nullptr;
3519 
3520   auto *I = dyn_cast<Instruction>(V);
3521   if (!I)
3522     return nullptr;
3523 
3524   // If this is a binary operator, try to simplify it with the replaced op.
3525   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3526     // Consider:
3527     //   %cmp = icmp eq i32 %x, 2147483647
3528     //   %add = add nsw i32 %x, 1
3529     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3530     //
3531     // We can't replace %sel with %add unless we strip away the flags.
3532     // TODO: This is an unusual limitation because better analysis results in
3533     //       worse simplification. InstCombine can do this fold more generally
3534     //       by dropping the flags. Remove this fold to save compile-time?
3535     if (isa<OverflowingBinaryOperator>(B))
3536       if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B))
3537         return nullptr;
3538     if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B))
3539       return nullptr;
3540 
3541     if (MaxRecurse) {
3542       if (B->getOperand(0) == Op)
3543         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3544                              MaxRecurse - 1);
3545       if (B->getOperand(1) == Op)
3546         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3547                              MaxRecurse - 1);
3548     }
3549   }
3550 
3551   // Same for CmpInsts.
3552   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3553     if (MaxRecurse) {
3554       if (C->getOperand(0) == Op)
3555         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3556                                MaxRecurse - 1);
3557       if (C->getOperand(1) == Op)
3558         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3559                                MaxRecurse - 1);
3560     }
3561   }
3562 
3563   // Same for GEPs.
3564   if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
3565     if (MaxRecurse) {
3566       SmallVector<Value *, 8> NewOps(GEP->getNumOperands());
3567       transform(GEP->operands(), NewOps.begin(),
3568                 [&](Value *V) { return V == Op ? RepOp : V; });
3569       return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q,
3570                              MaxRecurse - 1);
3571     }
3572   }
3573 
3574   // TODO: We could hand off more cases to instsimplify here.
3575 
3576   // If all operands are constant after substituting Op for RepOp then we can
3577   // constant fold the instruction.
3578   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3579     // Build a list of all constant operands.
3580     SmallVector<Constant *, 8> ConstOps;
3581     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3582       if (I->getOperand(i) == Op)
3583         ConstOps.push_back(CRepOp);
3584       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3585         ConstOps.push_back(COp);
3586       else
3587         break;
3588     }
3589 
3590     // All operands were constants, fold it.
3591     if (ConstOps.size() == I->getNumOperands()) {
3592       if (CmpInst *C = dyn_cast<CmpInst>(I))
3593         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3594                                                ConstOps[1], Q.DL, Q.TLI);
3595 
3596       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3597         if (!LI->isVolatile())
3598           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3599 
3600       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3601     }
3602   }
3603 
3604   return nullptr;
3605 }
3606 
3607 /// Try to simplify a select instruction when its condition operand is an
3608 /// integer comparison where one operand of the compare is a constant.
3609 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3610                                     const APInt *Y, bool TrueWhenUnset) {
3611   const APInt *C;
3612 
3613   // (X & Y) == 0 ? X & ~Y : X  --> X
3614   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3615   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3616       *Y == ~*C)
3617     return TrueWhenUnset ? FalseVal : TrueVal;
3618 
3619   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3620   // (X & Y) != 0 ? X : X & ~Y  --> X
3621   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3622       *Y == ~*C)
3623     return TrueWhenUnset ? FalseVal : TrueVal;
3624 
3625   if (Y->isPowerOf2()) {
3626     // (X & Y) == 0 ? X | Y : X  --> X | Y
3627     // (X & Y) != 0 ? X | Y : X  --> X
3628     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3629         *Y == *C)
3630       return TrueWhenUnset ? TrueVal : FalseVal;
3631 
3632     // (X & Y) == 0 ? X : X | Y  --> X
3633     // (X & Y) != 0 ? X : X | Y  --> X | Y
3634     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3635         *Y == *C)
3636       return TrueWhenUnset ? TrueVal : FalseVal;
3637   }
3638 
3639   return nullptr;
3640 }
3641 
3642 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3643 /// eq/ne.
3644 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3645                                            ICmpInst::Predicate Pred,
3646                                            Value *TrueVal, Value *FalseVal) {
3647   Value *X;
3648   APInt Mask;
3649   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3650     return nullptr;
3651 
3652   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3653                                Pred == ICmpInst::ICMP_EQ);
3654 }
3655 
3656 /// Try to simplify a select instruction when its condition operand is an
3657 /// integer comparison.
3658 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3659                                          Value *FalseVal, const SimplifyQuery &Q,
3660                                          unsigned MaxRecurse) {
3661   ICmpInst::Predicate Pred;
3662   Value *CmpLHS, *CmpRHS;
3663   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3664     return nullptr;
3665 
3666   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3667     Value *X;
3668     const APInt *Y;
3669     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3670       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3671                                            Pred == ICmpInst::ICMP_EQ))
3672         return V;
3673 
3674     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
3675     Value *ShAmt;
3676     auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(),
3677                                                           m_Value(ShAmt)),
3678                              m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X),
3679                                                           m_Value(ShAmt)));
3680     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
3681     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
3682     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt &&
3683         Pred == ICmpInst::ICMP_EQ)
3684       return X;
3685     // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X
3686     // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X
3687     if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt &&
3688         Pred == ICmpInst::ICMP_NE)
3689       return X;
3690 
3691     // Test for a zero-shift-guard-op around rotates. These are used to
3692     // avoid UB from oversized shifts in raw IR rotate patterns, but the
3693     // intrinsics do not have that problem.
3694     // We do not allow this transform for the general funnel shift case because
3695     // that would not preserve the poison safety of the original code.
3696     auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X),
3697                                                              m_Deferred(X),
3698                                                              m_Value(ShAmt)),
3699                                 m_Intrinsic<Intrinsic::fshr>(m_Value(X),
3700                                                              m_Deferred(X),
3701                                                              m_Value(ShAmt)));
3702     // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt)
3703     // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt)
3704     if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt &&
3705         Pred == ICmpInst::ICMP_NE)
3706       return TrueVal;
3707     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
3708     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
3709     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
3710         Pred == ICmpInst::ICMP_EQ)
3711       return FalseVal;
3712   }
3713 
3714   // Check for other compares that behave like bit test.
3715   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3716                                               TrueVal, FalseVal))
3717     return V;
3718 
3719   // If we have an equality comparison, then we know the value in one of the
3720   // arms of the select. See if substituting this value into the arm and
3721   // simplifying the result yields the same value as the other arm.
3722   if (Pred == ICmpInst::ICMP_EQ) {
3723     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3724             TrueVal ||
3725         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3726             TrueVal)
3727       return FalseVal;
3728     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3729             FalseVal ||
3730         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3731             FalseVal)
3732       return FalseVal;
3733   } else if (Pred == ICmpInst::ICMP_NE) {
3734     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3735             FalseVal ||
3736         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3737             FalseVal)
3738       return TrueVal;
3739     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3740             TrueVal ||
3741         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3742             TrueVal)
3743       return TrueVal;
3744   }
3745 
3746   return nullptr;
3747 }
3748 
3749 /// Try to simplify a select instruction when its condition operand is a
3750 /// floating-point comparison.
3751 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) {
3752   FCmpInst::Predicate Pred;
3753   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
3754       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
3755     return nullptr;
3756 
3757   // TODO: The transform may not be valid with -0.0. An incomplete way of
3758   // testing for that possibility is to check if at least one operand is a
3759   // non-zero constant.
3760   const APFloat *C;
3761   if ((match(T, m_APFloat(C)) && C->isNonZero()) ||
3762       (match(F, m_APFloat(C)) && C->isNonZero())) {
3763     // (T == F) ? T : F --> F
3764     // (F == T) ? T : F --> F
3765     if (Pred == FCmpInst::FCMP_OEQ)
3766       return F;
3767 
3768     // (T != F) ? T : F --> T
3769     // (F != T) ? T : F --> T
3770     if (Pred == FCmpInst::FCMP_UNE)
3771       return T;
3772   }
3773 
3774   return nullptr;
3775 }
3776 
3777 /// Given operands for a SelectInst, see if we can fold the result.
3778 /// If not, this returns null.
3779 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3780                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
3781   if (auto *CondC = dyn_cast<Constant>(Cond)) {
3782     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
3783       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
3784         return ConstantFoldSelectInstruction(CondC, TrueC, FalseC);
3785 
3786     // select undef, X, Y -> X or Y
3787     if (isa<UndefValue>(CondC))
3788       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
3789 
3790     // TODO: Vector constants with undef elements don't simplify.
3791 
3792     // select true, X, Y  -> X
3793     if (CondC->isAllOnesValue())
3794       return TrueVal;
3795     // select false, X, Y -> Y
3796     if (CondC->isNullValue())
3797       return FalseVal;
3798   }
3799 
3800   // select ?, X, X -> X
3801   if (TrueVal == FalseVal)
3802     return TrueVal;
3803 
3804   if (isa<UndefValue>(TrueVal))   // select ?, undef, X -> X
3805     return FalseVal;
3806   if (isa<UndefValue>(FalseVal))   // select ?, X, undef -> X
3807     return TrueVal;
3808 
3809   if (Value *V =
3810           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
3811     return V;
3812 
3813   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal))
3814     return V;
3815 
3816   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
3817     return V;
3818 
3819   Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
3820   if (Imp)
3821     return *Imp ? TrueVal : FalseVal;
3822 
3823   return nullptr;
3824 }
3825 
3826 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3827                                 const SimplifyQuery &Q) {
3828   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3829 }
3830 
3831 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3832 /// If not, this returns null.
3833 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3834                               const SimplifyQuery &Q, unsigned) {
3835   // The type of the GEP pointer operand.
3836   unsigned AS =
3837       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3838 
3839   // getelementptr P -> P.
3840   if (Ops.size() == 1)
3841     return Ops[0];
3842 
3843   // Compute the (pointer) type returned by the GEP instruction.
3844   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3845   Type *GEPTy = PointerType::get(LastType, AS);
3846   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3847     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3848   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3849     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3850 
3851   if (isa<UndefValue>(Ops[0]))
3852     return UndefValue::get(GEPTy);
3853 
3854   if (Ops.size() == 2) {
3855     // getelementptr P, 0 -> P.
3856     if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy)
3857       return Ops[0];
3858 
3859     Type *Ty = SrcTy;
3860     if (Ty->isSized()) {
3861       Value *P;
3862       uint64_t C;
3863       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3864       // getelementptr P, N -> P if P points to a type of zero size.
3865       if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy)
3866         return Ops[0];
3867 
3868       // The following transforms are only safe if the ptrtoint cast
3869       // doesn't truncate the pointers.
3870       if (Ops[1]->getType()->getScalarSizeInBits() ==
3871           Q.DL.getIndexSizeInBits(AS)) {
3872         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3873           if (match(P, m_Zero()))
3874             return Constant::getNullValue(GEPTy);
3875           Value *Temp;
3876           if (match(P, m_PtrToInt(m_Value(Temp))))
3877             if (Temp->getType() == GEPTy)
3878               return Temp;
3879           return nullptr;
3880         };
3881 
3882         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3883         if (TyAllocSize == 1 &&
3884             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3885           if (Value *R = PtrToIntOrZero(P))
3886             return R;
3887 
3888         // getelementptr V, (ashr (sub P, V), C) -> Q
3889         // if P points to a type of size 1 << C.
3890         if (match(Ops[1],
3891                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3892                          m_ConstantInt(C))) &&
3893             TyAllocSize == 1ULL << C)
3894           if (Value *R = PtrToIntOrZero(P))
3895             return R;
3896 
3897         // getelementptr V, (sdiv (sub P, V), C) -> Q
3898         // if P points to a type of size C.
3899         if (match(Ops[1],
3900                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3901                          m_SpecificInt(TyAllocSize))))
3902           if (Value *R = PtrToIntOrZero(P))
3903             return R;
3904       }
3905     }
3906   }
3907 
3908   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3909       all_of(Ops.slice(1).drop_back(1),
3910              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3911     unsigned IdxWidth =
3912         Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3913     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) {
3914       APInt BasePtrOffset(IdxWidth, 0);
3915       Value *StrippedBasePtr =
3916           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3917                                                             BasePtrOffset);
3918 
3919       // gep (gep V, C), (sub 0, V) -> C
3920       if (match(Ops.back(),
3921                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3922         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3923         return ConstantExpr::getIntToPtr(CI, GEPTy);
3924       }
3925       // gep (gep V, C), (xor V, -1) -> C-1
3926       if (match(Ops.back(),
3927                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3928         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3929         return ConstantExpr::getIntToPtr(CI, GEPTy);
3930       }
3931     }
3932   }
3933 
3934   // Check to see if this is constant foldable.
3935   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3936     return nullptr;
3937 
3938   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3939                                             Ops.slice(1));
3940   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3941     return CEFolded;
3942   return CE;
3943 }
3944 
3945 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3946                              const SimplifyQuery &Q) {
3947   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3948 }
3949 
3950 /// Given operands for an InsertValueInst, see if we can fold the result.
3951 /// If not, this returns null.
3952 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3953                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3954                                       unsigned) {
3955   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3956     if (Constant *CVal = dyn_cast<Constant>(Val))
3957       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3958 
3959   // insertvalue x, undef, n -> x
3960   if (match(Val, m_Undef()))
3961     return Agg;
3962 
3963   // insertvalue x, (extractvalue y, n), n
3964   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3965     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3966         EV->getIndices() == Idxs) {
3967       // insertvalue undef, (extractvalue y, n), n -> y
3968       if (match(Agg, m_Undef()))
3969         return EV->getAggregateOperand();
3970 
3971       // insertvalue y, (extractvalue y, n), n -> y
3972       if (Agg == EV->getAggregateOperand())
3973         return Agg;
3974     }
3975 
3976   return nullptr;
3977 }
3978 
3979 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3980                                      ArrayRef<unsigned> Idxs,
3981                                      const SimplifyQuery &Q) {
3982   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3983 }
3984 
3985 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
3986                                        const SimplifyQuery &Q) {
3987   // Try to constant fold.
3988   auto *VecC = dyn_cast<Constant>(Vec);
3989   auto *ValC = dyn_cast<Constant>(Val);
3990   auto *IdxC = dyn_cast<Constant>(Idx);
3991   if (VecC && ValC && IdxC)
3992     return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC);
3993 
3994   // Fold into undef if index is out of bounds.
3995   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
3996     uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements();
3997     if (CI->uge(NumElements))
3998       return UndefValue::get(Vec->getType());
3999   }
4000 
4001   // If index is undef, it might be out of bounds (see above case)
4002   if (isa<UndefValue>(Idx))
4003     return UndefValue::get(Vec->getType());
4004 
4005   // Inserting an undef scalar? Assume it is the same value as the existing
4006   // vector element.
4007   if (isa<UndefValue>(Val))
4008     return Vec;
4009 
4010   // If we are extracting a value from a vector, then inserting it into the same
4011   // place, that's the input vector:
4012   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
4013   if (match(Val, m_ExtractElement(m_Specific(Vec), m_Specific(Idx))))
4014     return Vec;
4015 
4016   return nullptr;
4017 }
4018 
4019 /// Given operands for an ExtractValueInst, see if we can fold the result.
4020 /// If not, this returns null.
4021 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4022                                        const SimplifyQuery &, unsigned) {
4023   if (auto *CAgg = dyn_cast<Constant>(Agg))
4024     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
4025 
4026   // extractvalue x, (insertvalue y, elt, n), n -> elt
4027   unsigned NumIdxs = Idxs.size();
4028   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
4029        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
4030     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
4031     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
4032     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
4033     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
4034         Idxs.slice(0, NumCommonIdxs)) {
4035       if (NumIdxs == NumInsertValueIdxs)
4036         return IVI->getInsertedValueOperand();
4037       break;
4038     }
4039   }
4040 
4041   return nullptr;
4042 }
4043 
4044 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
4045                                       const SimplifyQuery &Q) {
4046   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
4047 }
4048 
4049 /// Given operands for an ExtractElementInst, see if we can fold the result.
4050 /// If not, this returns null.
4051 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
4052                                          unsigned) {
4053   if (auto *CVec = dyn_cast<Constant>(Vec)) {
4054     if (auto *CIdx = dyn_cast<Constant>(Idx))
4055       return ConstantFoldExtractElementInstruction(CVec, CIdx);
4056 
4057     // The index is not relevant if our vector is a splat.
4058     if (auto *Splat = CVec->getSplatValue())
4059       return Splat;
4060 
4061     if (isa<UndefValue>(Vec))
4062       return UndefValue::get(Vec->getType()->getVectorElementType());
4063   }
4064 
4065   // If extracting a specified index from the vector, see if we can recursively
4066   // find a previously computed scalar that was inserted into the vector.
4067   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
4068     if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements()))
4069       // definitely out of bounds, thus undefined result
4070       return UndefValue::get(Vec->getType()->getVectorElementType());
4071     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
4072       return Elt;
4073   }
4074 
4075   // An undef extract index can be arbitrarily chosen to be an out-of-range
4076   // index value, which would result in the instruction being undef.
4077   if (isa<UndefValue>(Idx))
4078     return UndefValue::get(Vec->getType()->getVectorElementType());
4079 
4080   return nullptr;
4081 }
4082 
4083 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
4084                                         const SimplifyQuery &Q) {
4085   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
4086 }
4087 
4088 /// See if we can fold the given phi. If not, returns null.
4089 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
4090   // If all of the PHI's incoming values are the same then replace the PHI node
4091   // with the common value.
4092   Value *CommonValue = nullptr;
4093   bool HasUndefInput = false;
4094   for (Value *Incoming : PN->incoming_values()) {
4095     // If the incoming value is the phi node itself, it can safely be skipped.
4096     if (Incoming == PN) continue;
4097     if (isa<UndefValue>(Incoming)) {
4098       // Remember that we saw an undef value, but otherwise ignore them.
4099       HasUndefInput = true;
4100       continue;
4101     }
4102     if (CommonValue && Incoming != CommonValue)
4103       return nullptr;  // Not the same, bail out.
4104     CommonValue = Incoming;
4105   }
4106 
4107   // If CommonValue is null then all of the incoming values were either undef or
4108   // equal to the phi node itself.
4109   if (!CommonValue)
4110     return UndefValue::get(PN->getType());
4111 
4112   // If we have a PHI node like phi(X, undef, X), where X is defined by some
4113   // instruction, we cannot return X as the result of the PHI node unless it
4114   // dominates the PHI block.
4115   if (HasUndefInput)
4116     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
4117 
4118   return CommonValue;
4119 }
4120 
4121 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
4122                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
4123   if (auto *C = dyn_cast<Constant>(Op))
4124     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
4125 
4126   if (auto *CI = dyn_cast<CastInst>(Op)) {
4127     auto *Src = CI->getOperand(0);
4128     Type *SrcTy = Src->getType();
4129     Type *MidTy = CI->getType();
4130     Type *DstTy = Ty;
4131     if (Src->getType() == Ty) {
4132       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4133       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4134       Type *SrcIntPtrTy =
4135           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4136       Type *MidIntPtrTy =
4137           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4138       Type *DstIntPtrTy =
4139           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4140       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4141                                          SrcIntPtrTy, MidIntPtrTy,
4142                                          DstIntPtrTy) == Instruction::BitCast)
4143         return Src;
4144     }
4145   }
4146 
4147   // bitcast x -> x
4148   if (CastOpc == Instruction::BitCast)
4149     if (Op->getType() == Ty)
4150       return Op;
4151 
4152   return nullptr;
4153 }
4154 
4155 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4156                               const SimplifyQuery &Q) {
4157   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4158 }
4159 
4160 /// For the given destination element of a shuffle, peek through shuffles to
4161 /// match a root vector source operand that contains that element in the same
4162 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4163 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4164                                    int MaskVal, Value *RootVec,
4165                                    unsigned MaxRecurse) {
4166   if (!MaxRecurse--)
4167     return nullptr;
4168 
4169   // Bail out if any mask value is undefined. That kind of shuffle may be
4170   // simplified further based on demanded bits or other folds.
4171   if (MaskVal == -1)
4172     return nullptr;
4173 
4174   // The mask value chooses which source operand we need to look at next.
4175   int InVecNumElts = Op0->getType()->getVectorNumElements();
4176   int RootElt = MaskVal;
4177   Value *SourceOp = Op0;
4178   if (MaskVal >= InVecNumElts) {
4179     RootElt = MaskVal - InVecNumElts;
4180     SourceOp = Op1;
4181   }
4182 
4183   // If the source operand is a shuffle itself, look through it to find the
4184   // matching root vector.
4185   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4186     return foldIdentityShuffles(
4187         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4188         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4189   }
4190 
4191   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4192   // size?
4193 
4194   // The source operand is not a shuffle. Initialize the root vector value for
4195   // this shuffle if that has not been done yet.
4196   if (!RootVec)
4197     RootVec = SourceOp;
4198 
4199   // Give up as soon as a source operand does not match the existing root value.
4200   if (RootVec != SourceOp)
4201     return nullptr;
4202 
4203   // The element must be coming from the same lane in the source vector
4204   // (although it may have crossed lanes in intermediate shuffles).
4205   if (RootElt != DestElt)
4206     return nullptr;
4207 
4208   return RootVec;
4209 }
4210 
4211 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4212                                         Type *RetTy, const SimplifyQuery &Q,
4213                                         unsigned MaxRecurse) {
4214   if (isa<UndefValue>(Mask))
4215     return UndefValue::get(RetTy);
4216 
4217   Type *InVecTy = Op0->getType();
4218   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4219   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4220 
4221   SmallVector<int, 32> Indices;
4222   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4223   assert(MaskNumElts == Indices.size() &&
4224          "Size of Indices not same as number of mask elements?");
4225 
4226   // Canonicalization: If mask does not select elements from an input vector,
4227   // replace that input vector with undef.
4228   bool MaskSelects0 = false, MaskSelects1 = false;
4229   for (unsigned i = 0; i != MaskNumElts; ++i) {
4230     if (Indices[i] == -1)
4231       continue;
4232     if ((unsigned)Indices[i] < InVecNumElts)
4233       MaskSelects0 = true;
4234     else
4235       MaskSelects1 = true;
4236   }
4237   if (!MaskSelects0)
4238     Op0 = UndefValue::get(InVecTy);
4239   if (!MaskSelects1)
4240     Op1 = UndefValue::get(InVecTy);
4241 
4242   auto *Op0Const = dyn_cast<Constant>(Op0);
4243   auto *Op1Const = dyn_cast<Constant>(Op1);
4244 
4245   // If all operands are constant, constant fold the shuffle.
4246   if (Op0Const && Op1Const)
4247     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4248 
4249   // Canonicalization: if only one input vector is constant, it shall be the
4250   // second one.
4251   if (Op0Const && !Op1Const) {
4252     std::swap(Op0, Op1);
4253     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4254   }
4255 
4256   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4257   // value type is same as the input vectors' type.
4258   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4259     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4260         OpShuf->getMask()->getSplatValue())
4261       return Op0;
4262 
4263   // Don't fold a shuffle with undef mask elements. This may get folded in a
4264   // better way using demanded bits or other analysis.
4265   // TODO: Should we allow this?
4266   if (find(Indices, -1) != Indices.end())
4267     return nullptr;
4268 
4269   // Check if every element of this shuffle can be mapped back to the
4270   // corresponding element of a single root vector. If so, we don't need this
4271   // shuffle. This handles simple identity shuffles as well as chains of
4272   // shuffles that may widen/narrow and/or move elements across lanes and back.
4273   Value *RootVec = nullptr;
4274   for (unsigned i = 0; i != MaskNumElts; ++i) {
4275     // Note that recursion is limited for each vector element, so if any element
4276     // exceeds the limit, this will fail to simplify.
4277     RootVec =
4278         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4279 
4280     // We can't replace a widening/narrowing shuffle with one of its operands.
4281     if (!RootVec || RootVec->getType() != RetTy)
4282       return nullptr;
4283   }
4284   return RootVec;
4285 }
4286 
4287 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4288 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4289                                        Type *RetTy, const SimplifyQuery &Q) {
4290   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4291 }
4292 
4293 static Constant *foldConstant(Instruction::UnaryOps Opcode,
4294                               Value *&Op, const SimplifyQuery &Q) {
4295   if (auto *C = dyn_cast<Constant>(Op))
4296     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
4297   return nullptr;
4298 }
4299 
4300 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
4301 /// returns null.
4302 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
4303                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4304   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
4305     return C;
4306 
4307   Value *X;
4308   // fneg (fneg X) ==> X
4309   if (match(Op, m_FNeg(m_Value(X))))
4310     return X;
4311 
4312   return nullptr;
4313 }
4314 
4315 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF,
4316                               const SimplifyQuery &Q) {
4317   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
4318 }
4319 
4320 static Constant *propagateNaN(Constant *In) {
4321   // If the input is a vector with undef elements, just return a default NaN.
4322   if (!In->isNaN())
4323     return ConstantFP::getNaN(In->getType());
4324 
4325   // Propagate the existing NaN constant when possible.
4326   // TODO: Should we quiet a signaling NaN?
4327   return In;
4328 }
4329 
4330 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) {
4331   if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1))
4332     return ConstantFP::getNaN(Op0->getType());
4333 
4334   if (match(Op0, m_NaN()))
4335     return propagateNaN(cast<Constant>(Op0));
4336   if (match(Op1, m_NaN()))
4337     return propagateNaN(cast<Constant>(Op1));
4338 
4339   return nullptr;
4340 }
4341 
4342 /// Given operands for an FAdd, see if we can fold the result.  If not, this
4343 /// returns null.
4344 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4345                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4346   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
4347     return C;
4348 
4349   if (Constant *C = simplifyFPBinop(Op0, Op1))
4350     return C;
4351 
4352   // fadd X, -0 ==> X
4353   if (match(Op1, m_NegZeroFP()))
4354     return Op0;
4355 
4356   // fadd X, 0 ==> X, when we know X is not -0
4357   if (match(Op1, m_PosZeroFP()) &&
4358       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4359     return Op0;
4360 
4361   // With nnan: -X + X --> 0.0 (and commuted variant)
4362   // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
4363   // Negative zeros are allowed because we always end up with positive zero:
4364   // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4365   // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
4366   // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
4367   // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
4368   if (FMF.noNaNs()) {
4369     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
4370         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
4371       return ConstantFP::getNullValue(Op0->getType());
4372 
4373     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
4374         match(Op1, m_FNeg(m_Specific(Op0))))
4375       return ConstantFP::getNullValue(Op0->getType());
4376   }
4377 
4378   // (X - Y) + Y --> X
4379   // Y + (X - Y) --> X
4380   Value *X;
4381   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4382       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
4383        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
4384     return X;
4385 
4386   return nullptr;
4387 }
4388 
4389 /// Given operands for an FSub, see if we can fold the result.  If not, this
4390 /// returns null.
4391 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4392                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4393   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
4394     return C;
4395 
4396   if (Constant *C = simplifyFPBinop(Op0, Op1))
4397     return C;
4398 
4399   // fsub X, +0 ==> X
4400   if (match(Op1, m_PosZeroFP()))
4401     return Op0;
4402 
4403   // fsub X, -0 ==> X, when we know X is not -0
4404   if (match(Op1, m_NegZeroFP()) &&
4405       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
4406     return Op0;
4407 
4408   // fsub -0.0, (fsub -0.0, X) ==> X
4409   // fsub -0.0, (fneg X) ==> X
4410   Value *X;
4411   if (match(Op0, m_NegZeroFP()) &&
4412       match(Op1, m_FNeg(m_Value(X))))
4413     return X;
4414 
4415   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
4416   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
4417   if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
4418       (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
4419        match(Op1, m_FNeg(m_Value(X)))))
4420     return X;
4421 
4422   // fsub nnan x, x ==> 0.0
4423   if (FMF.noNaNs() && Op0 == Op1)
4424     return Constant::getNullValue(Op0->getType());
4425 
4426   // Y - (Y - X) --> X
4427   // (X + Y) - Y --> X
4428   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
4429       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
4430        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
4431     return X;
4432 
4433   return nullptr;
4434 }
4435 
4436 /// Given the operands for an FMul, see if we can fold the result
4437 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4438                                const SimplifyQuery &Q, unsigned MaxRecurse) {
4439   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
4440     return C;
4441 
4442   if (Constant *C = simplifyFPBinop(Op0, Op1))
4443     return C;
4444 
4445   // fmul X, 1.0 ==> X
4446   if (match(Op1, m_FPOne()))
4447     return Op0;
4448 
4449   // fmul nnan nsz X, 0 ==> 0
4450   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP()))
4451     return ConstantFP::getNullValue(Op0->getType());
4452 
4453   // sqrt(X) * sqrt(X) --> X, if we can:
4454   // 1. Remove the intermediate rounding (reassociate).
4455   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
4456   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
4457   Value *X;
4458   if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) &&
4459       FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros())
4460     return X;
4461 
4462   return nullptr;
4463 }
4464 
4465 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4466                               const SimplifyQuery &Q) {
4467   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
4468 }
4469 
4470 
4471 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4472                               const SimplifyQuery &Q) {
4473   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
4474 }
4475 
4476 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4477                               const SimplifyQuery &Q) {
4478   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
4479 }
4480 
4481 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4482                                const SimplifyQuery &Q, unsigned) {
4483   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
4484     return C;
4485 
4486   if (Constant *C = simplifyFPBinop(Op0, Op1))
4487     return C;
4488 
4489   // X / 1.0 -> X
4490   if (match(Op1, m_FPOne()))
4491     return Op0;
4492 
4493   // 0 / X -> 0
4494   // Requires that NaNs are off (X could be zero) and signed zeroes are
4495   // ignored (X could be positive or negative, so the output sign is unknown).
4496   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
4497     return ConstantFP::getNullValue(Op0->getType());
4498 
4499   if (FMF.noNaNs()) {
4500     // X / X -> 1.0 is legal when NaNs are ignored.
4501     // We can ignore infinities because INF/INF is NaN.
4502     if (Op0 == Op1)
4503       return ConstantFP::get(Op0->getType(), 1.0);
4504 
4505     // (X * Y) / Y --> X if we can reassociate to the above form.
4506     Value *X;
4507     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
4508       return X;
4509 
4510     // -X /  X -> -1.0 and
4511     //  X / -X -> -1.0 are legal when NaNs are ignored.
4512     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
4513     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
4514         match(Op1, m_FNegNSZ(m_Specific(Op0))))
4515       return ConstantFP::get(Op0->getType(), -1.0);
4516   }
4517 
4518   return nullptr;
4519 }
4520 
4521 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4522                               const SimplifyQuery &Q) {
4523   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
4524 }
4525 
4526 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4527                                const SimplifyQuery &Q, unsigned) {
4528   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
4529     return C;
4530 
4531   if (Constant *C = simplifyFPBinop(Op0, Op1))
4532     return C;
4533 
4534   // Unlike fdiv, the result of frem always matches the sign of the dividend.
4535   // The constant match may include undef elements in a vector, so return a full
4536   // zero constant as the result.
4537   if (FMF.noNaNs()) {
4538     // +0 % X -> 0
4539     if (match(Op0, m_PosZeroFP()))
4540       return ConstantFP::getNullValue(Op0->getType());
4541     // -0 % X -> -0
4542     if (match(Op0, m_NegZeroFP()))
4543       return ConstantFP::getNegativeZero(Op0->getType());
4544   }
4545 
4546   return nullptr;
4547 }
4548 
4549 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
4550                               const SimplifyQuery &Q) {
4551   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
4552 }
4553 
4554 //=== Helper functions for higher up the class hierarchy.
4555 
4556 /// Given the operand for a UnaryOperator, see if we can fold the result.
4557 /// If not, this returns null.
4558 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
4559                            unsigned MaxRecurse) {
4560   switch (Opcode) {
4561   case Instruction::FNeg:
4562     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
4563   default:
4564     llvm_unreachable("Unexpected opcode");
4565   }
4566 }
4567 
4568 /// Given the operand for a UnaryOperator, see if we can fold the result.
4569 /// If not, this returns null.
4570 /// Try to use FastMathFlags when folding the result.
4571 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
4572                              const FastMathFlags &FMF,
4573                              const SimplifyQuery &Q, unsigned MaxRecurse) {
4574   switch (Opcode) {
4575   case Instruction::FNeg:
4576     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
4577   default:
4578     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
4579   }
4580 }
4581 
4582 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
4583   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
4584 }
4585 
4586 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
4587                           const SimplifyQuery &Q) {
4588   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
4589 }
4590 
4591 /// Given operands for a BinaryOperator, see if we can fold the result.
4592 /// If not, this returns null.
4593 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4594                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4595   switch (Opcode) {
4596   case Instruction::Add:
4597     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4598   case Instruction::Sub:
4599     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4600   case Instruction::Mul:
4601     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4602   case Instruction::SDiv:
4603     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4604   case Instruction::UDiv:
4605     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4606   case Instruction::SRem:
4607     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4608   case Instruction::URem:
4609     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4610   case Instruction::Shl:
4611     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4612   case Instruction::LShr:
4613     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4614   case Instruction::AShr:
4615     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4616   case Instruction::And:
4617     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4618   case Instruction::Or:
4619     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4620   case Instruction::Xor:
4621     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4622   case Instruction::FAdd:
4623     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4624   case Instruction::FSub:
4625     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4626   case Instruction::FMul:
4627     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4628   case Instruction::FDiv:
4629     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4630   case Instruction::FRem:
4631     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4632   default:
4633     llvm_unreachable("Unexpected opcode");
4634   }
4635 }
4636 
4637 /// Given operands for a BinaryOperator, see if we can fold the result.
4638 /// If not, this returns null.
4639 /// Try to use FastMathFlags when folding the result.
4640 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4641                             const FastMathFlags &FMF, const SimplifyQuery &Q,
4642                             unsigned MaxRecurse) {
4643   switch (Opcode) {
4644   case Instruction::FAdd:
4645     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4646   case Instruction::FSub:
4647     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4648   case Instruction::FMul:
4649     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4650   case Instruction::FDiv:
4651     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4652   default:
4653     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4654   }
4655 }
4656 
4657 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4658                            const SimplifyQuery &Q) {
4659   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4660 }
4661 
4662 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4663                            FastMathFlags FMF, const SimplifyQuery &Q) {
4664   return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4665 }
4666 
4667 /// Given operands for a CmpInst, see if we can fold the result.
4668 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4669                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4670   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4671     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4672   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4673 }
4674 
4675 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4676                              const SimplifyQuery &Q) {
4677   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4678 }
4679 
4680 static bool IsIdempotent(Intrinsic::ID ID) {
4681   switch (ID) {
4682   default: return false;
4683 
4684   // Unary idempotent: f(f(x)) = f(x)
4685   case Intrinsic::fabs:
4686   case Intrinsic::floor:
4687   case Intrinsic::ceil:
4688   case Intrinsic::trunc:
4689   case Intrinsic::rint:
4690   case Intrinsic::nearbyint:
4691   case Intrinsic::round:
4692   case Intrinsic::canonicalize:
4693     return true;
4694   }
4695 }
4696 
4697 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4698                                    const DataLayout &DL) {
4699   GlobalValue *PtrSym;
4700   APInt PtrOffset;
4701   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4702     return nullptr;
4703 
4704   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4705   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4706   Type *Int32PtrTy = Int32Ty->getPointerTo();
4707   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4708 
4709   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4710   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4711     return nullptr;
4712 
4713   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4714   if (OffsetInt % 4 != 0)
4715     return nullptr;
4716 
4717   Constant *C = ConstantExpr::getGetElementPtr(
4718       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4719       ConstantInt::get(Int64Ty, OffsetInt / 4));
4720   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4721   if (!Loaded)
4722     return nullptr;
4723 
4724   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4725   if (!LoadedCE)
4726     return nullptr;
4727 
4728   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4729     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4730     if (!LoadedCE)
4731       return nullptr;
4732   }
4733 
4734   if (LoadedCE->getOpcode() != Instruction::Sub)
4735     return nullptr;
4736 
4737   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4738   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4739     return nullptr;
4740   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4741 
4742   Constant *LoadedRHS = LoadedCE->getOperand(1);
4743   GlobalValue *LoadedRHSSym;
4744   APInt LoadedRHSOffset;
4745   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4746                                   DL) ||
4747       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4748     return nullptr;
4749 
4750   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4751 }
4752 
4753 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
4754                                      const SimplifyQuery &Q) {
4755   // Idempotent functions return the same result when called repeatedly.
4756   Intrinsic::ID IID = F->getIntrinsicID();
4757   if (IsIdempotent(IID))
4758     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
4759       if (II->getIntrinsicID() == IID)
4760         return II;
4761 
4762   Value *X;
4763   switch (IID) {
4764   case Intrinsic::fabs:
4765     if (SignBitMustBeZero(Op0, Q.TLI)) return Op0;
4766     break;
4767   case Intrinsic::bswap:
4768     // bswap(bswap(x)) -> x
4769     if (match(Op0, m_BSwap(m_Value(X)))) return X;
4770     break;
4771   case Intrinsic::bitreverse:
4772     // bitreverse(bitreverse(x)) -> x
4773     if (match(Op0, m_BitReverse(m_Value(X)))) return X;
4774     break;
4775   case Intrinsic::exp:
4776     // exp(log(x)) -> x
4777     if (Q.CxtI->hasAllowReassoc() &&
4778         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X;
4779     break;
4780   case Intrinsic::exp2:
4781     // exp2(log2(x)) -> x
4782     if (Q.CxtI->hasAllowReassoc() &&
4783         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X;
4784     break;
4785   case Intrinsic::log:
4786     // log(exp(x)) -> x
4787     if (Q.CxtI->hasAllowReassoc() &&
4788         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X;
4789     break;
4790   case Intrinsic::log2:
4791     // log2(exp2(x)) -> x
4792     if (Q.CxtI->hasAllowReassoc() &&
4793         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
4794          match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0),
4795                                                 m_Value(X))))) return X;
4796     break;
4797   case Intrinsic::log10:
4798     // log10(pow(10.0, x)) -> x
4799     if (Q.CxtI->hasAllowReassoc() &&
4800         match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0),
4801                                                m_Value(X)))) return X;
4802     break;
4803   case Intrinsic::floor:
4804   case Intrinsic::trunc:
4805   case Intrinsic::ceil:
4806   case Intrinsic::round:
4807   case Intrinsic::nearbyint:
4808   case Intrinsic::rint: {
4809     // floor (sitofp x) -> sitofp x
4810     // floor (uitofp x) -> uitofp x
4811     //
4812     // Converting from int always results in a finite integral number or
4813     // infinity. For either of those inputs, these rounding functions always
4814     // return the same value, so the rounding can be eliminated.
4815     if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
4816       return Op0;
4817     break;
4818   }
4819   default:
4820     break;
4821   }
4822 
4823   return nullptr;
4824 }
4825 
4826 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1,
4827                                       const SimplifyQuery &Q) {
4828   Intrinsic::ID IID = F->getIntrinsicID();
4829   Type *ReturnType = F->getReturnType();
4830   switch (IID) {
4831   case Intrinsic::usub_with_overflow:
4832   case Intrinsic::ssub_with_overflow:
4833     // X - X -> { 0, false }
4834     if (Op0 == Op1)
4835       return Constant::getNullValue(ReturnType);
4836     LLVM_FALLTHROUGH;
4837   case Intrinsic::uadd_with_overflow:
4838   case Intrinsic::sadd_with_overflow:
4839     // X - undef -> { undef, false }
4840     // undef - X -> { undef, false }
4841     // X + undef -> { undef, false }
4842     // undef + x -> { undef, false }
4843     if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) {
4844       return ConstantStruct::get(
4845           cast<StructType>(ReturnType),
4846           {UndefValue::get(ReturnType->getStructElementType(0)),
4847            Constant::getNullValue(ReturnType->getStructElementType(1))});
4848     }
4849     break;
4850   case Intrinsic::umul_with_overflow:
4851   case Intrinsic::smul_with_overflow:
4852     // 0 * X -> { 0, false }
4853     // X * 0 -> { 0, false }
4854     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
4855       return Constant::getNullValue(ReturnType);
4856     // undef * X -> { 0, false }
4857     // X * undef -> { 0, false }
4858     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4859       return Constant::getNullValue(ReturnType);
4860     break;
4861   case Intrinsic::uadd_sat:
4862     // sat(MAX + X) -> MAX
4863     // sat(X + MAX) -> MAX
4864     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
4865       return Constant::getAllOnesValue(ReturnType);
4866     LLVM_FALLTHROUGH;
4867   case Intrinsic::sadd_sat:
4868     // sat(X + undef) -> -1
4869     // sat(undef + X) -> -1
4870     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
4871     // For signed: Assume undef is ~X, in which case X + ~X = -1.
4872     if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
4873       return Constant::getAllOnesValue(ReturnType);
4874 
4875     // X + 0 -> X
4876     if (match(Op1, m_Zero()))
4877       return Op0;
4878     // 0 + X -> X
4879     if (match(Op0, m_Zero()))
4880       return Op1;
4881     break;
4882   case Intrinsic::usub_sat:
4883     // sat(0 - X) -> 0, sat(X - MAX) -> 0
4884     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
4885       return Constant::getNullValue(ReturnType);
4886     LLVM_FALLTHROUGH;
4887   case Intrinsic::ssub_sat:
4888     // X - X -> 0, X - undef -> 0, undef - X -> 0
4889     if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef()))
4890       return Constant::getNullValue(ReturnType);
4891     // X - 0 -> X
4892     if (match(Op1, m_Zero()))
4893       return Op0;
4894     break;
4895   case Intrinsic::load_relative:
4896     if (auto *C0 = dyn_cast<Constant>(Op0))
4897       if (auto *C1 = dyn_cast<Constant>(Op1))
4898         return SimplifyRelativeLoad(C0, C1, Q.DL);
4899     break;
4900   case Intrinsic::powi:
4901     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
4902       // powi(x, 0) -> 1.0
4903       if (Power->isZero())
4904         return ConstantFP::get(Op0->getType(), 1.0);
4905       // powi(x, 1) -> x
4906       if (Power->isOne())
4907         return Op0;
4908     }
4909     break;
4910   case Intrinsic::maxnum:
4911   case Intrinsic::minnum:
4912   case Intrinsic::maximum:
4913   case Intrinsic::minimum: {
4914     // If the arguments are the same, this is a no-op.
4915     if (Op0 == Op1) return Op0;
4916 
4917     // If one argument is undef, return the other argument.
4918     if (match(Op0, m_Undef()))
4919       return Op1;
4920     if (match(Op1, m_Undef()))
4921       return Op0;
4922 
4923     // If one argument is NaN, return other or NaN appropriately.
4924     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
4925     if (match(Op0, m_NaN()))
4926       return PropagateNaN ? Op0 : Op1;
4927     if (match(Op1, m_NaN()))
4928       return PropagateNaN ? Op1 : Op0;
4929 
4930     // Min/max of the same operation with common operand:
4931     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
4932     if (auto *M0 = dyn_cast<IntrinsicInst>(Op0))
4933       if (M0->getIntrinsicID() == IID &&
4934           (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1))
4935         return Op0;
4936     if (auto *M1 = dyn_cast<IntrinsicInst>(Op1))
4937       if (M1->getIntrinsicID() == IID &&
4938           (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0))
4939         return Op1;
4940 
4941     // min(X, -Inf) --> -Inf (and commuted variant)
4942     // max(X, +Inf) --> +Inf (and commuted variant)
4943     bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum;
4944     const APFloat *C;
4945     if ((match(Op0, m_APFloat(C)) && C->isInfinity() &&
4946          C->isNegative() == UseNegInf) ||
4947         (match(Op1, m_APFloat(C)) && C->isInfinity() &&
4948          C->isNegative() == UseNegInf))
4949       return ConstantFP::getInfinity(ReturnType, UseNegInf);
4950 
4951     // TODO: minnum(nnan x, inf) -> x
4952     // TODO: minnum(nnan ninf x, flt_max) -> x
4953     // TODO: maxnum(nnan x, -inf) -> x
4954     // TODO: maxnum(nnan ninf x, -flt_max) -> x
4955     break;
4956   }
4957   default:
4958     break;
4959   }
4960 
4961   return nullptr;
4962 }
4963 
4964 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) {
4965 
4966   // Intrinsics with no operands have some kind of side effect. Don't simplify.
4967   unsigned NumOperands = Call->getNumArgOperands();
4968   if (!NumOperands)
4969     return nullptr;
4970 
4971   Function *F = cast<Function>(Call->getCalledFunction());
4972   Intrinsic::ID IID = F->getIntrinsicID();
4973   if (NumOperands == 1)
4974     return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q);
4975 
4976   if (NumOperands == 2)
4977     return simplifyBinaryIntrinsic(F, Call->getArgOperand(0),
4978                                    Call->getArgOperand(1), Q);
4979 
4980   // Handle intrinsics with 3 or more arguments.
4981   switch (IID) {
4982   case Intrinsic::masked_load:
4983   case Intrinsic::masked_gather: {
4984     Value *MaskArg = Call->getArgOperand(2);
4985     Value *PassthruArg = Call->getArgOperand(3);
4986     // If the mask is all zeros or undef, the "passthru" argument is the result.
4987     if (maskIsAllZeroOrUndef(MaskArg))
4988       return PassthruArg;
4989     return nullptr;
4990   }
4991   case Intrinsic::fshl:
4992   case Intrinsic::fshr: {
4993     Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1),
4994           *ShAmtArg = Call->getArgOperand(2);
4995 
4996     // If both operands are undef, the result is undef.
4997     if (match(Op0, m_Undef()) && match(Op1, m_Undef()))
4998       return UndefValue::get(F->getReturnType());
4999 
5000     // If shift amount is undef, assume it is zero.
5001     if (match(ShAmtArg, m_Undef()))
5002       return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5003 
5004     const APInt *ShAmtC;
5005     if (match(ShAmtArg, m_APInt(ShAmtC))) {
5006       // If there's effectively no shift, return the 1st arg or 2nd arg.
5007       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
5008       if (ShAmtC->urem(BitWidth).isNullValue())
5009         return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1);
5010     }
5011     return nullptr;
5012   }
5013   default:
5014     return nullptr;
5015   }
5016 }
5017 
5018 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) {
5019   Value *Callee = Call->getCalledValue();
5020 
5021   // call undef -> undef
5022   // call null -> undef
5023   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
5024     return UndefValue::get(Call->getType());
5025 
5026   Function *F = dyn_cast<Function>(Callee);
5027   if (!F)
5028     return nullptr;
5029 
5030   if (F->isIntrinsic())
5031     if (Value *Ret = simplifyIntrinsic(Call, Q))
5032       return Ret;
5033 
5034   if (!canConstantFoldCallTo(Call, F))
5035     return nullptr;
5036 
5037   SmallVector<Constant *, 4> ConstantArgs;
5038   unsigned NumArgs = Call->getNumArgOperands();
5039   ConstantArgs.reserve(NumArgs);
5040   for (auto &Arg : Call->args()) {
5041     Constant *C = dyn_cast<Constant>(&Arg);
5042     if (!C)
5043       return nullptr;
5044     ConstantArgs.push_back(C);
5045   }
5046 
5047   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
5048 }
5049 
5050 /// See if we can compute a simplified version of this instruction.
5051 /// If not, this returns null.
5052 
5053 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
5054                                  OptimizationRemarkEmitter *ORE) {
5055   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
5056   Value *Result;
5057 
5058   switch (I->getOpcode()) {
5059   default:
5060     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
5061     break;
5062   case Instruction::FNeg:
5063     Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q);
5064     break;
5065   case Instruction::FAdd:
5066     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
5067                               I->getFastMathFlags(), Q);
5068     break;
5069   case Instruction::Add:
5070     Result =
5071         SimplifyAddInst(I->getOperand(0), I->getOperand(1),
5072                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5073                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5074     break;
5075   case Instruction::FSub:
5076     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
5077                               I->getFastMathFlags(), Q);
5078     break;
5079   case Instruction::Sub:
5080     Result =
5081         SimplifySubInst(I->getOperand(0), I->getOperand(1),
5082                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5083                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5084     break;
5085   case Instruction::FMul:
5086     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
5087                               I->getFastMathFlags(), Q);
5088     break;
5089   case Instruction::Mul:
5090     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
5091     break;
5092   case Instruction::SDiv:
5093     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
5094     break;
5095   case Instruction::UDiv:
5096     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
5097     break;
5098   case Instruction::FDiv:
5099     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
5100                               I->getFastMathFlags(), Q);
5101     break;
5102   case Instruction::SRem:
5103     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
5104     break;
5105   case Instruction::URem:
5106     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
5107     break;
5108   case Instruction::FRem:
5109     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
5110                               I->getFastMathFlags(), Q);
5111     break;
5112   case Instruction::Shl:
5113     Result =
5114         SimplifyShlInst(I->getOperand(0), I->getOperand(1),
5115                         Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
5116                         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q);
5117     break;
5118   case Instruction::LShr:
5119     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
5120                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5121     break;
5122   case Instruction::AShr:
5123     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
5124                               Q.IIQ.isExact(cast<BinaryOperator>(I)), Q);
5125     break;
5126   case Instruction::And:
5127     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
5128     break;
5129   case Instruction::Or:
5130     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
5131     break;
5132   case Instruction::Xor:
5133     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
5134     break;
5135   case Instruction::ICmp:
5136     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
5137                               I->getOperand(0), I->getOperand(1), Q);
5138     break;
5139   case Instruction::FCmp:
5140     Result =
5141         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
5142                          I->getOperand(1), I->getFastMathFlags(), Q);
5143     break;
5144   case Instruction::Select:
5145     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
5146                                 I->getOperand(2), Q);
5147     break;
5148   case Instruction::GetElementPtr: {
5149     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
5150     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
5151                              Ops, Q);
5152     break;
5153   }
5154   case Instruction::InsertValue: {
5155     InsertValueInst *IV = cast<InsertValueInst>(I);
5156     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
5157                                      IV->getInsertedValueOperand(),
5158                                      IV->getIndices(), Q);
5159     break;
5160   }
5161   case Instruction::InsertElement: {
5162     auto *IE = cast<InsertElementInst>(I);
5163     Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1),
5164                                        IE->getOperand(2), Q);
5165     break;
5166   }
5167   case Instruction::ExtractValue: {
5168     auto *EVI = cast<ExtractValueInst>(I);
5169     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
5170                                       EVI->getIndices(), Q);
5171     break;
5172   }
5173   case Instruction::ExtractElement: {
5174     auto *EEI = cast<ExtractElementInst>(I);
5175     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
5176                                         EEI->getIndexOperand(), Q);
5177     break;
5178   }
5179   case Instruction::ShuffleVector: {
5180     auto *SVI = cast<ShuffleVectorInst>(I);
5181     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
5182                                        SVI->getMask(), SVI->getType(), Q);
5183     break;
5184   }
5185   case Instruction::PHI:
5186     Result = SimplifyPHINode(cast<PHINode>(I), Q);
5187     break;
5188   case Instruction::Call: {
5189     Result = SimplifyCall(cast<CallInst>(I), Q);
5190     break;
5191   }
5192 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
5193 #include "llvm/IR/Instruction.def"
5194 #undef HANDLE_CAST_INST
5195     Result =
5196         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
5197     break;
5198   case Instruction::Alloca:
5199     // No simplifications for Alloca and it can't be constant folded.
5200     Result = nullptr;
5201     break;
5202   }
5203 
5204   // In general, it is possible for computeKnownBits to determine all bits in a
5205   // value even when the operands are not all constants.
5206   if (!Result && I->getType()->isIntOrIntVectorTy()) {
5207     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
5208     if (Known.isConstant())
5209       Result = ConstantInt::get(I->getType(), Known.getConstant());
5210   }
5211 
5212   /// If called on unreachable code, the above logic may report that the
5213   /// instruction simplified to itself.  Make life easier for users by
5214   /// detecting that case here, returning a safe value instead.
5215   return Result == I ? UndefValue::get(I->getType()) : Result;
5216 }
5217 
5218 /// Implementation of recursive simplification through an instruction's
5219 /// uses.
5220 ///
5221 /// This is the common implementation of the recursive simplification routines.
5222 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
5223 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
5224 /// instructions to process and attempt to simplify it using
5225 /// InstructionSimplify.
5226 ///
5227 /// This routine returns 'true' only when *it* simplifies something. The passed
5228 /// in simplified value does not count toward this.
5229 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
5230                                               const TargetLibraryInfo *TLI,
5231                                               const DominatorTree *DT,
5232                                               AssumptionCache *AC) {
5233   bool Simplified = false;
5234   SmallSetVector<Instruction *, 8> Worklist;
5235   const DataLayout &DL = I->getModule()->getDataLayout();
5236 
5237   // If we have an explicit value to collapse to, do that round of the
5238   // simplification loop by hand initially.
5239   if (SimpleV) {
5240     for (User *U : I->users())
5241       if (U != I)
5242         Worklist.insert(cast<Instruction>(U));
5243 
5244     // Replace the instruction with its simplified value.
5245     I->replaceAllUsesWith(SimpleV);
5246 
5247     // Gracefully handle edge cases where the instruction is not wired into any
5248     // parent block.
5249     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5250         !I->mayHaveSideEffects())
5251       I->eraseFromParent();
5252   } else {
5253     Worklist.insert(I);
5254   }
5255 
5256   // Note that we must test the size on each iteration, the worklist can grow.
5257   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
5258     I = Worklist[Idx];
5259 
5260     // See if this instruction simplifies.
5261     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
5262     if (!SimpleV)
5263       continue;
5264 
5265     Simplified = true;
5266 
5267     // Stash away all the uses of the old instruction so we can check them for
5268     // recursive simplifications after a RAUW. This is cheaper than checking all
5269     // uses of To on the recursive step in most cases.
5270     for (User *U : I->users())
5271       Worklist.insert(cast<Instruction>(U));
5272 
5273     // Replace the instruction with its simplified value.
5274     I->replaceAllUsesWith(SimpleV);
5275 
5276     // Gracefully handle edge cases where the instruction is not wired into any
5277     // parent block.
5278     if (I->getParent() && !I->isEHPad() && !I->isTerminator() &&
5279         !I->mayHaveSideEffects())
5280       I->eraseFromParent();
5281   }
5282   return Simplified;
5283 }
5284 
5285 bool llvm::recursivelySimplifyInstruction(Instruction *I,
5286                                           const TargetLibraryInfo *TLI,
5287                                           const DominatorTree *DT,
5288                                           AssumptionCache *AC) {
5289   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
5290 }
5291 
5292 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
5293                                          const TargetLibraryInfo *TLI,
5294                                          const DominatorTree *DT,
5295                                          AssumptionCache *AC) {
5296   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
5297   assert(SimpleV && "Must provide a simplified value.");
5298   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
5299 }
5300 
5301 namespace llvm {
5302 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
5303   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
5304   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
5305   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5306   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
5307   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
5308   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
5309   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5310 }
5311 
5312 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
5313                                          const DataLayout &DL) {
5314   return {DL, &AR.TLI, &AR.DT, &AR.AC};
5315 }
5316 
5317 template <class T, class... TArgs>
5318 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
5319                                          Function &F) {
5320   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
5321   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
5322   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
5323   return {F.getParent()->getDataLayout(), TLI, DT, AC};
5324 }
5325 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
5326                                                   Function &);
5327 }
5328