1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/Analysis/VectorUtils.h" 32 #include "llvm/IR/ConstantRange.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/GetElementPtrTypeIterator.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/ValueHandle.h" 40 #include "llvm/Support/KnownBits.h" 41 #include <algorithm> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 #define DEBUG_TYPE "instsimplify" 46 47 enum { RecursionLimit = 3 }; 48 49 STATISTIC(NumExpand, "Number of expansions"); 50 STATISTIC(NumReassoc, "Number of reassociations"); 51 52 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 53 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 54 unsigned); 55 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 60 const SimplifyQuery &Q, unsigned MaxRecurse); 61 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 62 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyCastInst(unsigned, Value *, Type *, 64 const SimplifyQuery &, unsigned); 65 66 /// For a boolean type or a vector of boolean type, return false or a vector 67 /// with every element false. 68 static Constant *getFalse(Type *Ty) { 69 return ConstantInt::getFalse(Ty); 70 } 71 72 /// For a boolean type or a vector of boolean type, return true or a vector 73 /// with every element true. 74 static Constant *getTrue(Type *Ty) { 75 return ConstantInt::getTrue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// Does the given value dominate the specified phi node? 93 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getFunction()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) 107 return DT->dominates(I, P); 108 109 // Otherwise, if the instruction is in the entry block and is not an invoke, 110 // then it obviously dominates all phi nodes. 111 if (I->getParent() == &I->getFunction()->getEntryBlock() && 112 !isa<InvokeInst>(I)) 113 return true; 114 115 return false; 116 } 117 118 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 119 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 120 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 121 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 122 /// Returns the simplified value, or null if no simplification was performed. 123 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 124 Instruction::BinaryOps OpcodeToExpand, 125 const SimplifyQuery &Q, unsigned MaxRecurse) { 126 // Recursion is always used, so bail out at once if we already hit the limit. 127 if (!MaxRecurse--) 128 return nullptr; 129 130 // Check whether the expression has the form "(A op' B) op C". 131 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 132 if (Op0->getOpcode() == OpcodeToExpand) { 133 // It does! Try turning it into "(A op C) op' (B op C)". 134 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 135 // Do "A op C" and "B op C" both simplify? 136 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 137 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 138 // They do! Return "L op' R" if it simplifies or is already available. 139 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 140 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 141 && L == B && R == A)) { 142 ++NumExpand; 143 return LHS; 144 } 145 // Otherwise return "L op' R" if it simplifies. 146 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 147 ++NumExpand; 148 return V; 149 } 150 } 151 } 152 153 // Check whether the expression has the form "A op (B op' C)". 154 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 155 if (Op1->getOpcode() == OpcodeToExpand) { 156 // It does! Try turning it into "(A op B) op' (A op C)". 157 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 158 // Do "A op B" and "A op C" both simplify? 159 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 160 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 161 // They do! Return "L op' R" if it simplifies or is already available. 162 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 163 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 164 && L == C && R == B)) { 165 ++NumExpand; 166 return RHS; 167 } 168 // Otherwise return "L op' R" if it simplifies. 169 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 170 ++NumExpand; 171 return V; 172 } 173 } 174 } 175 176 return nullptr; 177 } 178 179 /// Generic simplifications for associative binary operations. 180 /// Returns the simpler value, or null if none was found. 181 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 182 Value *LHS, Value *RHS, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 186 187 // Recursion is always used, so bail out at once if we already hit the limit. 188 if (!MaxRecurse--) 189 return nullptr; 190 191 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 192 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 193 194 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 195 if (Op0 && Op0->getOpcode() == Opcode) { 196 Value *A = Op0->getOperand(0); 197 Value *B = Op0->getOperand(1); 198 Value *C = RHS; 199 200 // Does "B op C" simplify? 201 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 202 // It does! Return "A op V" if it simplifies or is already available. 203 // If V equals B then "A op V" is just the LHS. 204 if (V == B) return LHS; 205 // Otherwise return "A op V" if it simplifies. 206 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 207 ++NumReassoc; 208 return W; 209 } 210 } 211 } 212 213 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 214 if (Op1 && Op1->getOpcode() == Opcode) { 215 Value *A = LHS; 216 Value *B = Op1->getOperand(0); 217 Value *C = Op1->getOperand(1); 218 219 // Does "A op B" simplify? 220 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 221 // It does! Return "V op C" if it simplifies or is already available. 222 // If V equals B then "V op C" is just the RHS. 223 if (V == B) return RHS; 224 // Otherwise return "V op C" if it simplifies. 225 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 226 ++NumReassoc; 227 return W; 228 } 229 } 230 } 231 232 // The remaining transforms require commutativity as well as associativity. 233 if (!Instruction::isCommutative(Opcode)) 234 return nullptr; 235 236 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 237 if (Op0 && Op0->getOpcode() == Opcode) { 238 Value *A = Op0->getOperand(0); 239 Value *B = Op0->getOperand(1); 240 Value *C = RHS; 241 242 // Does "C op A" simplify? 243 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 244 // It does! Return "V op B" if it simplifies or is already available. 245 // If V equals A then "V op B" is just the LHS. 246 if (V == A) return LHS; 247 // Otherwise return "V op B" if it simplifies. 248 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 249 ++NumReassoc; 250 return W; 251 } 252 } 253 } 254 255 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 256 if (Op1 && Op1->getOpcode() == Opcode) { 257 Value *A = LHS; 258 Value *B = Op1->getOperand(0); 259 Value *C = Op1->getOperand(1); 260 261 // Does "C op A" simplify? 262 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 263 // It does! Return "B op V" if it simplifies or is already available. 264 // If V equals C then "B op V" is just the RHS. 265 if (V == C) return RHS; 266 // Otherwise return "B op V" if it simplifies. 267 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 268 ++NumReassoc; 269 return W; 270 } 271 } 272 } 273 274 return nullptr; 275 } 276 277 /// In the case of a binary operation with a select instruction as an operand, 278 /// try to simplify the binop by seeing whether evaluating it on both branches 279 /// of the select results in the same value. Returns the common value if so, 280 /// otherwise returns null. 281 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 282 Value *RHS, const SimplifyQuery &Q, 283 unsigned MaxRecurse) { 284 // Recursion is always used, so bail out at once if we already hit the limit. 285 if (!MaxRecurse--) 286 return nullptr; 287 288 SelectInst *SI; 289 if (isa<SelectInst>(LHS)) { 290 SI = cast<SelectInst>(LHS); 291 } else { 292 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 293 SI = cast<SelectInst>(RHS); 294 } 295 296 // Evaluate the BinOp on the true and false branches of the select. 297 Value *TV; 298 Value *FV; 299 if (SI == LHS) { 300 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 301 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 302 } else { 303 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 304 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 305 } 306 307 // If they simplified to the same value, then return the common value. 308 // If they both failed to simplify then return null. 309 if (TV == FV) 310 return TV; 311 312 // If one branch simplified to undef, return the other one. 313 if (TV && isa<UndefValue>(TV)) 314 return FV; 315 if (FV && isa<UndefValue>(FV)) 316 return TV; 317 318 // If applying the operation did not change the true and false select values, 319 // then the result of the binop is the select itself. 320 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 321 return SI; 322 323 // If one branch simplified and the other did not, and the simplified 324 // value is equal to the unsimplified one, return the simplified value. 325 // For example, select (cond, X, X & Z) & Z -> X & Z. 326 if ((FV && !TV) || (TV && !FV)) { 327 // Check that the simplified value has the form "X op Y" where "op" is the 328 // same as the original operation. 329 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 330 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 331 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 332 // We already know that "op" is the same as for the simplified value. See 333 // if the operands match too. If so, return the simplified value. 334 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 335 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 336 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 337 if (Simplified->getOperand(0) == UnsimplifiedLHS && 338 Simplified->getOperand(1) == UnsimplifiedRHS) 339 return Simplified; 340 if (Simplified->isCommutative() && 341 Simplified->getOperand(1) == UnsimplifiedLHS && 342 Simplified->getOperand(0) == UnsimplifiedRHS) 343 return Simplified; 344 } 345 } 346 347 return nullptr; 348 } 349 350 /// In the case of a comparison with a select instruction, try to simplify the 351 /// comparison by seeing whether both branches of the select result in the same 352 /// value. Returns the common value if so, otherwise returns null. 353 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 354 Value *RHS, const SimplifyQuery &Q, 355 unsigned MaxRecurse) { 356 // Recursion is always used, so bail out at once if we already hit the limit. 357 if (!MaxRecurse--) 358 return nullptr; 359 360 // Make sure the select is on the LHS. 361 if (!isa<SelectInst>(LHS)) { 362 std::swap(LHS, RHS); 363 Pred = CmpInst::getSwappedPredicate(Pred); 364 } 365 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 366 SelectInst *SI = cast<SelectInst>(LHS); 367 Value *Cond = SI->getCondition(); 368 Value *TV = SI->getTrueValue(); 369 Value *FV = SI->getFalseValue(); 370 371 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 372 // Does "cmp TV, RHS" simplify? 373 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 374 if (TCmp == Cond) { 375 // It not only simplified, it simplified to the select condition. Replace 376 // it with 'true'. 377 TCmp = getTrue(Cond->getType()); 378 } else if (!TCmp) { 379 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 380 // condition then we can replace it with 'true'. Otherwise give up. 381 if (!isSameCompare(Cond, Pred, TV, RHS)) 382 return nullptr; 383 TCmp = getTrue(Cond->getType()); 384 } 385 386 // Does "cmp FV, RHS" simplify? 387 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 388 if (FCmp == Cond) { 389 // It not only simplified, it simplified to the select condition. Replace 390 // it with 'false'. 391 FCmp = getFalse(Cond->getType()); 392 } else if (!FCmp) { 393 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 394 // condition then we can replace it with 'false'. Otherwise give up. 395 if (!isSameCompare(Cond, Pred, FV, RHS)) 396 return nullptr; 397 FCmp = getFalse(Cond->getType()); 398 } 399 400 // If both sides simplified to the same value, then use it as the result of 401 // the original comparison. 402 if (TCmp == FCmp) 403 return TCmp; 404 405 // The remaining cases only make sense if the select condition has the same 406 // type as the result of the comparison, so bail out if this is not so. 407 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 408 return nullptr; 409 // If the false value simplified to false, then the result of the compare 410 // is equal to "Cond && TCmp". This also catches the case when the false 411 // value simplified to false and the true value to true, returning "Cond". 412 if (match(FCmp, m_Zero())) 413 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 414 return V; 415 // If the true value simplified to true, then the result of the compare 416 // is equal to "Cond || FCmp". 417 if (match(TCmp, m_One())) 418 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 419 return V; 420 // Finally, if the false value simplified to true and the true value to 421 // false, then the result of the compare is equal to "!Cond". 422 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 423 if (Value *V = 424 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 425 Q, MaxRecurse)) 426 return V; 427 428 return nullptr; 429 } 430 431 /// In the case of a binary operation with an operand that is a PHI instruction, 432 /// try to simplify the binop by seeing whether evaluating it on the incoming 433 /// phi values yields the same result for every value. If so returns the common 434 /// value, otherwise returns null. 435 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 436 Value *RHS, const SimplifyQuery &Q, 437 unsigned MaxRecurse) { 438 // Recursion is always used, so bail out at once if we already hit the limit. 439 if (!MaxRecurse--) 440 return nullptr; 441 442 PHINode *PI; 443 if (isa<PHINode>(LHS)) { 444 PI = cast<PHINode>(LHS); 445 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 446 if (!valueDominatesPHI(RHS, PI, Q.DT)) 447 return nullptr; 448 } else { 449 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 450 PI = cast<PHINode>(RHS); 451 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 452 if (!valueDominatesPHI(LHS, PI, Q.DT)) 453 return nullptr; 454 } 455 456 // Evaluate the BinOp on the incoming phi values. 457 Value *CommonValue = nullptr; 458 for (Value *Incoming : PI->incoming_values()) { 459 // If the incoming value is the phi node itself, it can safely be skipped. 460 if (Incoming == PI) continue; 461 Value *V = PI == LHS ? 462 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 463 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 464 // If the operation failed to simplify, or simplified to a different value 465 // to previously, then give up. 466 if (!V || (CommonValue && V != CommonValue)) 467 return nullptr; 468 CommonValue = V; 469 } 470 471 return CommonValue; 472 } 473 474 /// In the case of a comparison with a PHI instruction, try to simplify the 475 /// comparison by seeing whether comparing with all of the incoming phi values 476 /// yields the same result every time. If so returns the common result, 477 /// otherwise returns null. 478 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 479 const SimplifyQuery &Q, unsigned MaxRecurse) { 480 // Recursion is always used, so bail out at once if we already hit the limit. 481 if (!MaxRecurse--) 482 return nullptr; 483 484 // Make sure the phi is on the LHS. 485 if (!isa<PHINode>(LHS)) { 486 std::swap(LHS, RHS); 487 Pred = CmpInst::getSwappedPredicate(Pred); 488 } 489 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 490 PHINode *PI = cast<PHINode>(LHS); 491 492 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 493 if (!valueDominatesPHI(RHS, PI, Q.DT)) 494 return nullptr; 495 496 // Evaluate the BinOp on the incoming phi values. 497 Value *CommonValue = nullptr; 498 for (Value *Incoming : PI->incoming_values()) { 499 // If the incoming value is the phi node itself, it can safely be skipped. 500 if (Incoming == PI) continue; 501 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 502 // If the operation failed to simplify, or simplified to a different value 503 // to previously, then give up. 504 if (!V || (CommonValue && V != CommonValue)) 505 return nullptr; 506 CommonValue = V; 507 } 508 509 return CommonValue; 510 } 511 512 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 513 Value *&Op0, Value *&Op1, 514 const SimplifyQuery &Q) { 515 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 516 if (auto *CRHS = dyn_cast<Constant>(Op1)) 517 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 518 519 // Canonicalize the constant to the RHS if this is a commutative operation. 520 if (Instruction::isCommutative(Opcode)) 521 std::swap(Op0, Op1); 522 } 523 return nullptr; 524 } 525 526 /// Given operands for an Add, see if we can fold the result. 527 /// If not, this returns null. 528 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 529 const SimplifyQuery &Q, unsigned MaxRecurse) { 530 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 531 return C; 532 533 // X + undef -> undef 534 if (match(Op1, m_Undef())) 535 return Op1; 536 537 // X + 0 -> X 538 if (match(Op1, m_Zero())) 539 return Op0; 540 541 // X + (Y - X) -> Y 542 // (Y - X) + X -> Y 543 // Eg: X + -X -> 0 544 Value *Y = nullptr; 545 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 546 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 547 return Y; 548 549 // X + ~X -> -1 since ~X = -X-1 550 Type *Ty = Op0->getType(); 551 if (match(Op0, m_Not(m_Specific(Op1))) || 552 match(Op1, m_Not(m_Specific(Op0)))) 553 return Constant::getAllOnesValue(Ty); 554 555 // add nsw/nuw (xor Y, signmask), signmask --> Y 556 // The no-wrapping add guarantees that the top bit will be set by the add. 557 // Therefore, the xor must be clearing the already set sign bit of Y. 558 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 559 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 560 return Y; 561 562 /// i1 add -> xor. 563 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 564 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 565 return V; 566 567 // Try some generic simplifications for associative operations. 568 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 569 MaxRecurse)) 570 return V; 571 572 // Threading Add over selects and phi nodes is pointless, so don't bother. 573 // Threading over the select in "A + select(cond, B, C)" means evaluating 574 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 575 // only if B and C are equal. If B and C are equal then (since we assume 576 // that operands have already been simplified) "select(cond, B, C)" should 577 // have been simplified to the common value of B and C already. Analysing 578 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 579 // for threading over phi nodes. 580 581 return nullptr; 582 } 583 584 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 585 const SimplifyQuery &Query) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 587 } 588 589 /// \brief Compute the base pointer and cumulative constant offsets for V. 590 /// 591 /// This strips all constant offsets off of V, leaving it the base pointer, and 592 /// accumulates the total constant offset applied in the returned constant. It 593 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 594 /// no constant offsets applied. 595 /// 596 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 597 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 598 /// folding. 599 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 600 bool AllowNonInbounds = false) { 601 assert(V->getType()->isPtrOrPtrVectorTy()); 602 603 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 604 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 605 606 // Even though we don't look through PHI nodes, we could be called on an 607 // instruction in an unreachable block, which may be on a cycle. 608 SmallPtrSet<Value *, 4> Visited; 609 Visited.insert(V); 610 do { 611 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 612 if ((!AllowNonInbounds && !GEP->isInBounds()) || 613 !GEP->accumulateConstantOffset(DL, Offset)) 614 break; 615 V = GEP->getPointerOperand(); 616 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 617 V = cast<Operator>(V)->getOperand(0); 618 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 619 if (GA->isInterposable()) 620 break; 621 V = GA->getAliasee(); 622 } else { 623 if (auto CS = CallSite(V)) 624 if (Value *RV = CS.getReturnedArgOperand()) { 625 V = RV; 626 continue; 627 } 628 break; 629 } 630 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 631 } while (Visited.insert(V).second); 632 633 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 634 if (V->getType()->isVectorTy()) 635 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 636 OffsetIntPtr); 637 return OffsetIntPtr; 638 } 639 640 /// \brief Compute the constant difference between two pointer values. 641 /// If the difference is not a constant, returns zero. 642 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 643 Value *RHS) { 644 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 645 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 646 647 // If LHS and RHS are not related via constant offsets to the same base 648 // value, there is nothing we can do here. 649 if (LHS != RHS) 650 return nullptr; 651 652 // Otherwise, the difference of LHS - RHS can be computed as: 653 // LHS - RHS 654 // = (LHSOffset + Base) - (RHSOffset + Base) 655 // = LHSOffset - RHSOffset 656 return ConstantExpr::getSub(LHSOffset, RHSOffset); 657 } 658 659 /// Given operands for a Sub, see if we can fold the result. 660 /// If not, this returns null. 661 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 662 const SimplifyQuery &Q, unsigned MaxRecurse) { 663 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 664 return C; 665 666 // X - undef -> undef 667 // undef - X -> undef 668 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 669 return UndefValue::get(Op0->getType()); 670 671 // X - 0 -> X 672 if (match(Op1, m_Zero())) 673 return Op0; 674 675 // X - X -> 0 676 if (Op0 == Op1) 677 return Constant::getNullValue(Op0->getType()); 678 679 // Is this a negation? 680 if (match(Op0, m_Zero())) { 681 // 0 - X -> 0 if the sub is NUW. 682 if (isNUW) 683 return Op0; 684 685 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 686 if (Known.Zero.isMaxSignedValue()) { 687 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 688 // Op1 must be 0 because negating the minimum signed value is undefined. 689 if (isNSW) 690 return Op0; 691 692 // 0 - X -> X if X is 0 or the minimum signed value. 693 return Op1; 694 } 695 } 696 697 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 698 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 699 Value *X = nullptr, *Y = nullptr, *Z = Op1; 700 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 701 // See if "V === Y - Z" simplifies. 702 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 703 // It does! Now see if "X + V" simplifies. 704 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 705 // It does, we successfully reassociated! 706 ++NumReassoc; 707 return W; 708 } 709 // See if "V === X - Z" simplifies. 710 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 711 // It does! Now see if "Y + V" simplifies. 712 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 713 // It does, we successfully reassociated! 714 ++NumReassoc; 715 return W; 716 } 717 } 718 719 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 720 // For example, X - (X + 1) -> -1 721 X = Op0; 722 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 723 // See if "V === X - Y" simplifies. 724 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 725 // It does! Now see if "V - Z" simplifies. 726 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 727 // It does, we successfully reassociated! 728 ++NumReassoc; 729 return W; 730 } 731 // See if "V === X - Z" simplifies. 732 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 733 // It does! Now see if "V - Y" simplifies. 734 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 735 // It does, we successfully reassociated! 736 ++NumReassoc; 737 return W; 738 } 739 } 740 741 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 742 // For example, X - (X - Y) -> Y. 743 Z = Op0; 744 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 745 // See if "V === Z - X" simplifies. 746 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 747 // It does! Now see if "V + Y" simplifies. 748 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 749 // It does, we successfully reassociated! 750 ++NumReassoc; 751 return W; 752 } 753 754 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 755 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 756 match(Op1, m_Trunc(m_Value(Y)))) 757 if (X->getType() == Y->getType()) 758 // See if "V === X - Y" simplifies. 759 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 760 // It does! Now see if "trunc V" simplifies. 761 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 762 Q, MaxRecurse - 1)) 763 // It does, return the simplified "trunc V". 764 return W; 765 766 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 767 if (match(Op0, m_PtrToInt(m_Value(X))) && 768 match(Op1, m_PtrToInt(m_Value(Y)))) 769 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 770 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 771 772 // i1 sub -> xor. 773 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 774 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 775 return V; 776 777 // Threading Sub over selects and phi nodes is pointless, so don't bother. 778 // Threading over the select in "A - select(cond, B, C)" means evaluating 779 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 780 // only if B and C are equal. If B and C are equal then (since we assume 781 // that operands have already been simplified) "select(cond, B, C)" should 782 // have been simplified to the common value of B and C already. Analysing 783 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 784 // for threading over phi nodes. 785 786 return nullptr; 787 } 788 789 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 790 const SimplifyQuery &Q) { 791 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 792 } 793 794 /// Given operands for a Mul, see if we can fold the result. 795 /// If not, this returns null. 796 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 797 unsigned MaxRecurse) { 798 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 799 return C; 800 801 // X * undef -> 0 802 if (match(Op1, m_Undef())) 803 return Constant::getNullValue(Op0->getType()); 804 805 // X * 0 -> 0 806 if (match(Op1, m_Zero())) 807 return Op1; 808 809 // X * 1 -> X 810 if (match(Op1, m_One())) 811 return Op0; 812 813 // (X / Y) * Y -> X if the division is exact. 814 Value *X = nullptr; 815 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 816 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 817 return X; 818 819 // i1 mul -> and. 820 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 821 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 822 return V; 823 824 // Try some generic simplifications for associative operations. 825 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 826 MaxRecurse)) 827 return V; 828 829 // Mul distributes over Add. Try some generic simplifications based on this. 830 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 831 Q, MaxRecurse)) 832 return V; 833 834 // If the operation is with the result of a select instruction, check whether 835 // operating on either branch of the select always yields the same value. 836 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 837 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 838 MaxRecurse)) 839 return V; 840 841 // If the operation is with the result of a phi instruction, check whether 842 // operating on all incoming values of the phi always yields the same value. 843 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 844 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 845 MaxRecurse)) 846 return V; 847 848 return nullptr; 849 } 850 851 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 852 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 853 } 854 855 /// Check for common or similar folds of integer division or integer remainder. 856 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 857 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 858 Type *Ty = Op0->getType(); 859 860 // X / undef -> undef 861 // X % undef -> undef 862 if (match(Op1, m_Undef())) 863 return Op1; 864 865 // X / 0 -> undef 866 // X % 0 -> undef 867 // We don't need to preserve faults! 868 if (match(Op1, m_Zero())) 869 return UndefValue::get(Ty); 870 871 // If any element of a constant divisor vector is zero or undef, the whole op 872 // is undef. 873 auto *Op1C = dyn_cast<Constant>(Op1); 874 if (Op1C && Ty->isVectorTy()) { 875 unsigned NumElts = Ty->getVectorNumElements(); 876 for (unsigned i = 0; i != NumElts; ++i) { 877 Constant *Elt = Op1C->getAggregateElement(i); 878 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 879 return UndefValue::get(Ty); 880 } 881 } 882 883 // undef / X -> 0 884 // undef % X -> 0 885 if (match(Op0, m_Undef())) 886 return Constant::getNullValue(Ty); 887 888 // 0 / X -> 0 889 // 0 % X -> 0 890 if (match(Op0, m_Zero())) 891 return Op0; 892 893 // X / X -> 1 894 // X % X -> 0 895 if (Op0 == Op1) 896 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 897 898 // X / 1 -> X 899 // X % 1 -> 0 900 // If this is a boolean op (single-bit element type), we can't have 901 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 902 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 903 return IsDiv ? Op0 : Constant::getNullValue(Ty); 904 905 return nullptr; 906 } 907 908 /// Given a predicate and two operands, return true if the comparison is true. 909 /// This is a helper for div/rem simplification where we return some other value 910 /// when we can prove a relationship between the operands. 911 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 912 const SimplifyQuery &Q, unsigned MaxRecurse) { 913 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 914 Constant *C = dyn_cast_or_null<Constant>(V); 915 return (C && C->isAllOnesValue()); 916 } 917 918 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 919 /// to simplify X % Y to X. 920 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 921 unsigned MaxRecurse, bool IsSigned) { 922 // Recursion is always used, so bail out at once if we already hit the limit. 923 if (!MaxRecurse--) 924 return false; 925 926 if (IsSigned) { 927 // |X| / |Y| --> 0 928 // 929 // We require that 1 operand is a simple constant. That could be extended to 930 // 2 variables if we computed the sign bit for each. 931 // 932 // Make sure that a constant is not the minimum signed value because taking 933 // the abs() of that is undefined. 934 Type *Ty = X->getType(); 935 const APInt *C; 936 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 937 // Is the variable divisor magnitude always greater than the constant 938 // dividend magnitude? 939 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 940 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 941 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 942 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 943 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 944 return true; 945 } 946 if (match(Y, m_APInt(C))) { 947 // Special-case: we can't take the abs() of a minimum signed value. If 948 // that's the divisor, then all we have to do is prove that the dividend 949 // is also not the minimum signed value. 950 if (C->isMinSignedValue()) 951 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 952 953 // Is the variable dividend magnitude always less than the constant 954 // divisor magnitude? 955 // |X| < |C| --> X > -abs(C) and X < abs(C) 956 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 957 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 958 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 959 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 960 return true; 961 } 962 return false; 963 } 964 965 // IsSigned == false. 966 // Is the dividend unsigned less than the divisor? 967 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 968 } 969 970 /// These are simplifications common to SDiv and UDiv. 971 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 972 const SimplifyQuery &Q, unsigned MaxRecurse) { 973 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 974 return C; 975 976 if (Value *V = simplifyDivRem(Op0, Op1, true)) 977 return V; 978 979 bool IsSigned = Opcode == Instruction::SDiv; 980 981 // (X * Y) / Y -> X if the multiplication does not overflow. 982 Value *X; 983 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 984 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 985 // If the Mul does not overflow, then we are good to go. 986 if ((IsSigned && Mul->hasNoSignedWrap()) || 987 (!IsSigned && Mul->hasNoUnsignedWrap())) 988 return X; 989 // If X has the form X = A / Y, then X * Y cannot overflow. 990 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 991 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 992 return X; 993 } 994 995 // (X rem Y) / Y -> 0 996 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 997 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 998 return Constant::getNullValue(Op0->getType()); 999 1000 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1001 ConstantInt *C1, *C2; 1002 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1003 match(Op1, m_ConstantInt(C2))) { 1004 bool Overflow; 1005 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1006 if (Overflow) 1007 return Constant::getNullValue(Op0->getType()); 1008 } 1009 1010 // If the operation is with the result of a select instruction, check whether 1011 // operating on either branch of the select always yields the same value. 1012 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1013 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1014 return V; 1015 1016 // If the operation is with the result of a phi instruction, check whether 1017 // operating on all incoming values of the phi always yields the same value. 1018 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1019 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1020 return V; 1021 1022 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1023 return Constant::getNullValue(Op0->getType()); 1024 1025 return nullptr; 1026 } 1027 1028 /// These are simplifications common to SRem and URem. 1029 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1030 const SimplifyQuery &Q, unsigned MaxRecurse) { 1031 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1032 return C; 1033 1034 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1035 return V; 1036 1037 // (X % Y) % Y -> X % Y 1038 if ((Opcode == Instruction::SRem && 1039 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1040 (Opcode == Instruction::URem && 1041 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1042 return Op0; 1043 1044 // (X << Y) % X -> 0 1045 if ((Opcode == Instruction::SRem && 1046 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1047 (Opcode == Instruction::URem && 1048 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1049 return Constant::getNullValue(Op0->getType()); 1050 1051 // If the operation is with the result of a select instruction, check whether 1052 // operating on either branch of the select always yields the same value. 1053 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1054 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1055 return V; 1056 1057 // If the operation is with the result of a phi instruction, check whether 1058 // operating on all incoming values of the phi always yields the same value. 1059 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1060 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1061 return V; 1062 1063 // If X / Y == 0, then X % Y == X. 1064 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1065 return Op0; 1066 1067 return nullptr; 1068 } 1069 1070 /// Given operands for an SDiv, see if we can fold the result. 1071 /// If not, this returns null. 1072 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1073 unsigned MaxRecurse) { 1074 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1075 } 1076 1077 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1078 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1079 } 1080 1081 /// Given operands for a UDiv, see if we can fold the result. 1082 /// If not, this returns null. 1083 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1084 unsigned MaxRecurse) { 1085 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1086 } 1087 1088 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1089 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1090 } 1091 1092 /// Given operands for an SRem, see if we can fold the result. 1093 /// If not, this returns null. 1094 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1095 unsigned MaxRecurse) { 1096 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1097 } 1098 1099 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1100 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1101 } 1102 1103 /// Given operands for a URem, see if we can fold the result. 1104 /// If not, this returns null. 1105 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1106 unsigned MaxRecurse) { 1107 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1108 } 1109 1110 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1111 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1112 } 1113 1114 /// Returns true if a shift by \c Amount always yields undef. 1115 static bool isUndefShift(Value *Amount) { 1116 Constant *C = dyn_cast<Constant>(Amount); 1117 if (!C) 1118 return false; 1119 1120 // X shift by undef -> undef because it may shift by the bitwidth. 1121 if (isa<UndefValue>(C)) 1122 return true; 1123 1124 // Shifting by the bitwidth or more is undefined. 1125 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1126 if (CI->getValue().getLimitedValue() >= 1127 CI->getType()->getScalarSizeInBits()) 1128 return true; 1129 1130 // If all lanes of a vector shift are undefined the whole shift is. 1131 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1132 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1133 if (!isUndefShift(C->getAggregateElement(I))) 1134 return false; 1135 return true; 1136 } 1137 1138 return false; 1139 } 1140 1141 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1142 /// If not, this returns null. 1143 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1144 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1145 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1146 return C; 1147 1148 // 0 shift by X -> 0 1149 if (match(Op0, m_Zero())) 1150 return Op0; 1151 1152 // X shift by 0 -> X 1153 if (match(Op1, m_Zero())) 1154 return Op0; 1155 1156 // Fold undefined shifts. 1157 if (isUndefShift(Op1)) 1158 return UndefValue::get(Op0->getType()); 1159 1160 // If the operation is with the result of a select instruction, check whether 1161 // operating on either branch of the select always yields the same value. 1162 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1163 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1164 return V; 1165 1166 // If the operation is with the result of a phi instruction, check whether 1167 // operating on all incoming values of the phi always yields the same value. 1168 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1169 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1170 return V; 1171 1172 // If any bits in the shift amount make that value greater than or equal to 1173 // the number of bits in the type, the shift is undefined. 1174 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1175 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1176 return UndefValue::get(Op0->getType()); 1177 1178 // If all valid bits in the shift amount are known zero, the first operand is 1179 // unchanged. 1180 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1181 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1182 return Op0; 1183 1184 return nullptr; 1185 } 1186 1187 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1188 /// fold the result. If not, this returns null. 1189 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1190 Value *Op1, bool isExact, const SimplifyQuery &Q, 1191 unsigned MaxRecurse) { 1192 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1193 return V; 1194 1195 // X >> X -> 0 1196 if (Op0 == Op1) 1197 return Constant::getNullValue(Op0->getType()); 1198 1199 // undef >> X -> 0 1200 // undef >> X -> undef (if it's exact) 1201 if (match(Op0, m_Undef())) 1202 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1203 1204 // The low bit cannot be shifted out of an exact shift if it is set. 1205 if (isExact) { 1206 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1207 if (Op0Known.One[0]) 1208 return Op0; 1209 } 1210 1211 return nullptr; 1212 } 1213 1214 /// Given operands for an Shl, see if we can fold the result. 1215 /// If not, this returns null. 1216 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1217 const SimplifyQuery &Q, unsigned MaxRecurse) { 1218 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1219 return V; 1220 1221 // undef << X -> 0 1222 // undef << X -> undef if (if it's NSW/NUW) 1223 if (match(Op0, m_Undef())) 1224 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1225 1226 // (X >> A) << A -> X 1227 Value *X; 1228 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1229 return X; 1230 return nullptr; 1231 } 1232 1233 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1234 const SimplifyQuery &Q) { 1235 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1236 } 1237 1238 /// Given operands for an LShr, see if we can fold the result. 1239 /// If not, this returns null. 1240 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1241 const SimplifyQuery &Q, unsigned MaxRecurse) { 1242 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1243 MaxRecurse)) 1244 return V; 1245 1246 // (X << A) >> A -> X 1247 Value *X; 1248 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1249 return X; 1250 1251 return nullptr; 1252 } 1253 1254 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1255 const SimplifyQuery &Q) { 1256 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1257 } 1258 1259 /// Given operands for an AShr, see if we can fold the result. 1260 /// If not, this returns null. 1261 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1262 const SimplifyQuery &Q, unsigned MaxRecurse) { 1263 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1264 MaxRecurse)) 1265 return V; 1266 1267 // all ones >>a X -> -1 1268 // Do not return Op0 because it may contain undef elements if it's a vector. 1269 if (match(Op0, m_AllOnes())) 1270 return Constant::getAllOnesValue(Op0->getType()); 1271 1272 // (X << A) >> A -> X 1273 Value *X; 1274 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1275 return X; 1276 1277 // Arithmetic shifting an all-sign-bit value is a no-op. 1278 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1279 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1280 return Op0; 1281 1282 return nullptr; 1283 } 1284 1285 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1286 const SimplifyQuery &Q) { 1287 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1288 } 1289 1290 /// Commuted variants are assumed to be handled by calling this function again 1291 /// with the parameters swapped. 1292 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1293 ICmpInst *UnsignedICmp, bool IsAnd) { 1294 Value *X, *Y; 1295 1296 ICmpInst::Predicate EqPred; 1297 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1298 !ICmpInst::isEquality(EqPred)) 1299 return nullptr; 1300 1301 ICmpInst::Predicate UnsignedPred; 1302 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1303 ICmpInst::isUnsigned(UnsignedPred)) 1304 ; 1305 else if (match(UnsignedICmp, 1306 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1307 ICmpInst::isUnsigned(UnsignedPred)) 1308 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1309 else 1310 return nullptr; 1311 1312 // X < Y && Y != 0 --> X < Y 1313 // X < Y || Y != 0 --> Y != 0 1314 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1315 return IsAnd ? UnsignedICmp : ZeroICmp; 1316 1317 // X >= Y || Y != 0 --> true 1318 // X >= Y || Y == 0 --> X >= Y 1319 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1320 if (EqPred == ICmpInst::ICMP_NE) 1321 return getTrue(UnsignedICmp->getType()); 1322 return UnsignedICmp; 1323 } 1324 1325 // X < Y && Y == 0 --> false 1326 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1327 IsAnd) 1328 return getFalse(UnsignedICmp->getType()); 1329 1330 return nullptr; 1331 } 1332 1333 /// Commuted variants are assumed to be handled by calling this function again 1334 /// with the parameters swapped. 1335 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1336 ICmpInst::Predicate Pred0, Pred1; 1337 Value *A ,*B; 1338 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1339 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1340 return nullptr; 1341 1342 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1343 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1344 // can eliminate Op1 from this 'and'. 1345 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1346 return Op0; 1347 1348 // Check for any combination of predicates that are guaranteed to be disjoint. 1349 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1350 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1351 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1352 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1353 return getFalse(Op0->getType()); 1354 1355 return nullptr; 1356 } 1357 1358 /// Commuted variants are assumed to be handled by calling this function again 1359 /// with the parameters swapped. 1360 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1361 ICmpInst::Predicate Pred0, Pred1; 1362 Value *A ,*B; 1363 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1364 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1365 return nullptr; 1366 1367 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1368 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1369 // can eliminate Op0 from this 'or'. 1370 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1371 return Op1; 1372 1373 // Check for any combination of predicates that cover the entire range of 1374 // possibilities. 1375 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1376 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1377 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1378 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1379 return getTrue(Op0->getType()); 1380 1381 return nullptr; 1382 } 1383 1384 /// Test if a pair of compares with a shared operand and 2 constants has an 1385 /// empty set intersection, full set union, or if one compare is a superset of 1386 /// the other. 1387 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1388 bool IsAnd) { 1389 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1390 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1391 return nullptr; 1392 1393 const APInt *C0, *C1; 1394 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1395 !match(Cmp1->getOperand(1), m_APInt(C1))) 1396 return nullptr; 1397 1398 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1399 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1400 1401 // For and-of-compares, check if the intersection is empty: 1402 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1403 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1404 return getFalse(Cmp0->getType()); 1405 1406 // For or-of-compares, check if the union is full: 1407 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1408 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1409 return getTrue(Cmp0->getType()); 1410 1411 // Is one range a superset of the other? 1412 // If this is and-of-compares, take the smaller set: 1413 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1414 // If this is or-of-compares, take the larger set: 1415 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1416 if (Range0.contains(Range1)) 1417 return IsAnd ? Cmp1 : Cmp0; 1418 if (Range1.contains(Range0)) 1419 return IsAnd ? Cmp0 : Cmp1; 1420 1421 return nullptr; 1422 } 1423 1424 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1425 bool IsAnd) { 1426 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1427 if (!match(Cmp0->getOperand(1), m_Zero()) || 1428 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1429 return nullptr; 1430 1431 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1432 return nullptr; 1433 1434 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1435 Value *X = Cmp0->getOperand(0); 1436 Value *Y = Cmp1->getOperand(0); 1437 1438 // If one of the compares is a masked version of a (not) null check, then 1439 // that compare implies the other, so we eliminate the other. Optionally, look 1440 // through a pointer-to-int cast to match a null check of a pointer type. 1441 1442 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1443 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1444 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1445 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1446 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1447 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1448 return Cmp1; 1449 1450 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1451 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1452 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1453 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1454 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1455 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1456 return Cmp0; 1457 1458 return nullptr; 1459 } 1460 1461 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1462 // (icmp (add V, C0), C1) & (icmp V, C0) 1463 ICmpInst::Predicate Pred0, Pred1; 1464 const APInt *C0, *C1; 1465 Value *V; 1466 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1467 return nullptr; 1468 1469 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1470 return nullptr; 1471 1472 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1473 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1474 return nullptr; 1475 1476 Type *ITy = Op0->getType(); 1477 bool isNSW = AddInst->hasNoSignedWrap(); 1478 bool isNUW = AddInst->hasNoUnsignedWrap(); 1479 1480 const APInt Delta = *C1 - *C0; 1481 if (C0->isStrictlyPositive()) { 1482 if (Delta == 2) { 1483 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1484 return getFalse(ITy); 1485 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1486 return getFalse(ITy); 1487 } 1488 if (Delta == 1) { 1489 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1490 return getFalse(ITy); 1491 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1492 return getFalse(ITy); 1493 } 1494 } 1495 if (C0->getBoolValue() && isNUW) { 1496 if (Delta == 2) 1497 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1498 return getFalse(ITy); 1499 if (Delta == 1) 1500 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1501 return getFalse(ITy); 1502 } 1503 1504 return nullptr; 1505 } 1506 1507 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1508 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1509 return X; 1510 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1511 return X; 1512 1513 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1514 return X; 1515 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1516 return X; 1517 1518 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1519 return X; 1520 1521 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1522 return X; 1523 1524 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1525 return X; 1526 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1527 return X; 1528 1529 return nullptr; 1530 } 1531 1532 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1533 // (icmp (add V, C0), C1) | (icmp V, C0) 1534 ICmpInst::Predicate Pred0, Pred1; 1535 const APInt *C0, *C1; 1536 Value *V; 1537 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1538 return nullptr; 1539 1540 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1541 return nullptr; 1542 1543 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1544 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1545 return nullptr; 1546 1547 Type *ITy = Op0->getType(); 1548 bool isNSW = AddInst->hasNoSignedWrap(); 1549 bool isNUW = AddInst->hasNoUnsignedWrap(); 1550 1551 const APInt Delta = *C1 - *C0; 1552 if (C0->isStrictlyPositive()) { 1553 if (Delta == 2) { 1554 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1555 return getTrue(ITy); 1556 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1557 return getTrue(ITy); 1558 } 1559 if (Delta == 1) { 1560 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1561 return getTrue(ITy); 1562 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1563 return getTrue(ITy); 1564 } 1565 } 1566 if (C0->getBoolValue() && isNUW) { 1567 if (Delta == 2) 1568 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1569 return getTrue(ITy); 1570 if (Delta == 1) 1571 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1572 return getTrue(ITy); 1573 } 1574 1575 return nullptr; 1576 } 1577 1578 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1579 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1580 return X; 1581 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1582 return X; 1583 1584 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1585 return X; 1586 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1587 return X; 1588 1589 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1590 return X; 1591 1592 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1593 return X; 1594 1595 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1596 return X; 1597 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1598 return X; 1599 1600 return nullptr; 1601 } 1602 1603 static Value *simplifyAndOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1604 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1605 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1606 if (LHS0->getType() != RHS0->getType()) 1607 return nullptr; 1608 1609 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1610 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1611 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1612 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1613 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1614 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1615 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1616 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1617 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1618 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1619 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1620 if ((isKnownNeverNaN(LHS0) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1621 (isKnownNeverNaN(LHS1) && (LHS0 == RHS0 || LHS0 == RHS1))) 1622 return RHS; 1623 1624 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1625 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1626 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1627 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1628 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1629 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1630 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1631 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1632 if ((isKnownNeverNaN(RHS0) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1633 (isKnownNeverNaN(RHS1) && (RHS0 == LHS0 || RHS0 == LHS1))) 1634 return LHS; 1635 } 1636 1637 return nullptr; 1638 } 1639 1640 static Value *simplifyAndOrOfCmps(Value *Op0, Value *Op1, bool IsAnd) { 1641 // Look through casts of the 'and' operands to find compares. 1642 auto *Cast0 = dyn_cast<CastInst>(Op0); 1643 auto *Cast1 = dyn_cast<CastInst>(Op1); 1644 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1645 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1646 Op0 = Cast0->getOperand(0); 1647 Op1 = Cast1->getOperand(0); 1648 } 1649 1650 Value *V = nullptr; 1651 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1652 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1653 if (ICmp0 && ICmp1) 1654 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1) : 1655 simplifyOrOfICmps(ICmp0, ICmp1); 1656 1657 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1658 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1659 if (FCmp0 && FCmp1) 1660 V = simplifyAndOrOfFCmps(FCmp0, FCmp1, IsAnd); 1661 1662 if (!V) 1663 return nullptr; 1664 if (!Cast0) 1665 return V; 1666 1667 // If we looked through casts, we can only handle a constant simplification 1668 // because we are not allowed to create a cast instruction here. 1669 if (auto *C = dyn_cast<Constant>(V)) 1670 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1671 1672 return nullptr; 1673 } 1674 1675 /// Given operands for an And, see if we can fold the result. 1676 /// If not, this returns null. 1677 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1678 unsigned MaxRecurse) { 1679 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1680 return C; 1681 1682 // X & undef -> 0 1683 if (match(Op1, m_Undef())) 1684 return Constant::getNullValue(Op0->getType()); 1685 1686 // X & X = X 1687 if (Op0 == Op1) 1688 return Op0; 1689 1690 // X & 0 = 0 1691 if (match(Op1, m_Zero())) 1692 return Op1; 1693 1694 // X & -1 = X 1695 if (match(Op1, m_AllOnes())) 1696 return Op0; 1697 1698 // A & ~A = ~A & A = 0 1699 if (match(Op0, m_Not(m_Specific(Op1))) || 1700 match(Op1, m_Not(m_Specific(Op0)))) 1701 return Constant::getNullValue(Op0->getType()); 1702 1703 // (A | ?) & A = A 1704 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1705 return Op1; 1706 1707 // A & (A | ?) = A 1708 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1709 return Op0; 1710 1711 // A mask that only clears known zeros of a shifted value is a no-op. 1712 Value *X; 1713 const APInt *Mask; 1714 const APInt *ShAmt; 1715 if (match(Op1, m_APInt(Mask))) { 1716 // If all bits in the inverted and shifted mask are clear: 1717 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1718 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1719 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1720 return Op0; 1721 1722 // If all bits in the inverted and shifted mask are clear: 1723 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1724 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1725 (~(*Mask)).shl(*ShAmt).isNullValue()) 1726 return Op0; 1727 } 1728 1729 // A & (-A) = A if A is a power of two or zero. 1730 if (match(Op0, m_Neg(m_Specific(Op1))) || 1731 match(Op1, m_Neg(m_Specific(Op0)))) { 1732 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1733 Q.DT)) 1734 return Op0; 1735 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1736 Q.DT)) 1737 return Op1; 1738 } 1739 1740 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, true)) 1741 return V; 1742 1743 // Try some generic simplifications for associative operations. 1744 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1745 MaxRecurse)) 1746 return V; 1747 1748 // And distributes over Or. Try some generic simplifications based on this. 1749 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1750 Q, MaxRecurse)) 1751 return V; 1752 1753 // And distributes over Xor. Try some generic simplifications based on this. 1754 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1755 Q, MaxRecurse)) 1756 return V; 1757 1758 // If the operation is with the result of a select instruction, check whether 1759 // operating on either branch of the select always yields the same value. 1760 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1761 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1762 MaxRecurse)) 1763 return V; 1764 1765 // If the operation is with the result of a phi instruction, check whether 1766 // operating on all incoming values of the phi always yields the same value. 1767 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1768 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1769 MaxRecurse)) 1770 return V; 1771 1772 return nullptr; 1773 } 1774 1775 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1776 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1777 } 1778 1779 /// Given operands for an Or, see if we can fold the result. 1780 /// If not, this returns null. 1781 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1782 unsigned MaxRecurse) { 1783 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1784 return C; 1785 1786 // X | undef -> -1 1787 // X | -1 = -1 1788 // Do not return Op1 because it may contain undef elements if it's a vector. 1789 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1790 return Constant::getAllOnesValue(Op0->getType()); 1791 1792 // X | X = X 1793 // X | 0 = X 1794 if (Op0 == Op1 || match(Op1, m_Zero())) 1795 return Op0; 1796 1797 // A | ~A = ~A | A = -1 1798 if (match(Op0, m_Not(m_Specific(Op1))) || 1799 match(Op1, m_Not(m_Specific(Op0)))) 1800 return Constant::getAllOnesValue(Op0->getType()); 1801 1802 // (A & ?) | A = A 1803 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1804 return Op1; 1805 1806 // A | (A & ?) = A 1807 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1808 return Op0; 1809 1810 // ~(A & ?) | A = -1 1811 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1812 return Constant::getAllOnesValue(Op1->getType()); 1813 1814 // A | ~(A & ?) = -1 1815 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1816 return Constant::getAllOnesValue(Op0->getType()); 1817 1818 Value *A, *B; 1819 // (A & ~B) | (A ^ B) -> (A ^ B) 1820 // (~B & A) | (A ^ B) -> (A ^ B) 1821 // (A & ~B) | (B ^ A) -> (B ^ A) 1822 // (~B & A) | (B ^ A) -> (B ^ A) 1823 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1824 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1825 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1826 return Op1; 1827 1828 // Commute the 'or' operands. 1829 // (A ^ B) | (A & ~B) -> (A ^ B) 1830 // (A ^ B) | (~B & A) -> (A ^ B) 1831 // (B ^ A) | (A & ~B) -> (B ^ A) 1832 // (B ^ A) | (~B & A) -> (B ^ A) 1833 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1834 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1835 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1836 return Op0; 1837 1838 // (A & B) | (~A ^ B) -> (~A ^ B) 1839 // (B & A) | (~A ^ B) -> (~A ^ B) 1840 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1841 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1842 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1843 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1844 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1845 return Op1; 1846 1847 // (~A ^ B) | (A & B) -> (~A ^ B) 1848 // (~A ^ B) | (B & A) -> (~A ^ B) 1849 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1850 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1851 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1852 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1853 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1854 return Op0; 1855 1856 if (Value *V = simplifyAndOrOfCmps(Op0, Op1, false)) 1857 return V; 1858 1859 // Try some generic simplifications for associative operations. 1860 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1861 MaxRecurse)) 1862 return V; 1863 1864 // Or distributes over And. Try some generic simplifications based on this. 1865 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1866 MaxRecurse)) 1867 return V; 1868 1869 // If the operation is with the result of a select instruction, check whether 1870 // operating on either branch of the select always yields the same value. 1871 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1872 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1873 MaxRecurse)) 1874 return V; 1875 1876 // (A & C1)|(B & C2) 1877 const APInt *C1, *C2; 1878 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1879 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1880 if (*C1 == ~*C2) { 1881 // (A & C1)|(B & C2) 1882 // If we have: ((V + N) & C1) | (V & C2) 1883 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1884 // replace with V+N. 1885 Value *N; 1886 if (C2->isMask() && // C2 == 0+1+ 1887 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1888 // Add commutes, try both ways. 1889 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1890 return A; 1891 } 1892 // Or commutes, try both ways. 1893 if (C1->isMask() && 1894 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1895 // Add commutes, try both ways. 1896 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1897 return B; 1898 } 1899 } 1900 } 1901 1902 // If the operation is with the result of a phi instruction, check whether 1903 // operating on all incoming values of the phi always yields the same value. 1904 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1905 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1906 return V; 1907 1908 return nullptr; 1909 } 1910 1911 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1912 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1913 } 1914 1915 /// Given operands for a Xor, see if we can fold the result. 1916 /// If not, this returns null. 1917 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1918 unsigned MaxRecurse) { 1919 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1920 return C; 1921 1922 // A ^ undef -> undef 1923 if (match(Op1, m_Undef())) 1924 return Op1; 1925 1926 // A ^ 0 = A 1927 if (match(Op1, m_Zero())) 1928 return Op0; 1929 1930 // A ^ A = 0 1931 if (Op0 == Op1) 1932 return Constant::getNullValue(Op0->getType()); 1933 1934 // A ^ ~A = ~A ^ A = -1 1935 if (match(Op0, m_Not(m_Specific(Op1))) || 1936 match(Op1, m_Not(m_Specific(Op0)))) 1937 return Constant::getAllOnesValue(Op0->getType()); 1938 1939 // Try some generic simplifications for associative operations. 1940 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1941 MaxRecurse)) 1942 return V; 1943 1944 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1945 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1946 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1947 // only if B and C are equal. If B and C are equal then (since we assume 1948 // that operands have already been simplified) "select(cond, B, C)" should 1949 // have been simplified to the common value of B and C already. Analysing 1950 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1951 // for threading over phi nodes. 1952 1953 return nullptr; 1954 } 1955 1956 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1957 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 1958 } 1959 1960 1961 static Type *GetCompareTy(Value *Op) { 1962 return CmpInst::makeCmpResultType(Op->getType()); 1963 } 1964 1965 /// Rummage around inside V looking for something equivalent to the comparison 1966 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1967 /// Helper function for analyzing max/min idioms. 1968 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1969 Value *LHS, Value *RHS) { 1970 SelectInst *SI = dyn_cast<SelectInst>(V); 1971 if (!SI) 1972 return nullptr; 1973 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1974 if (!Cmp) 1975 return nullptr; 1976 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1977 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1978 return Cmp; 1979 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1980 LHS == CmpRHS && RHS == CmpLHS) 1981 return Cmp; 1982 return nullptr; 1983 } 1984 1985 // A significant optimization not implemented here is assuming that alloca 1986 // addresses are not equal to incoming argument values. They don't *alias*, 1987 // as we say, but that doesn't mean they aren't equal, so we take a 1988 // conservative approach. 1989 // 1990 // This is inspired in part by C++11 5.10p1: 1991 // "Two pointers of the same type compare equal if and only if they are both 1992 // null, both point to the same function, or both represent the same 1993 // address." 1994 // 1995 // This is pretty permissive. 1996 // 1997 // It's also partly due to C11 6.5.9p6: 1998 // "Two pointers compare equal if and only if both are null pointers, both are 1999 // pointers to the same object (including a pointer to an object and a 2000 // subobject at its beginning) or function, both are pointers to one past the 2001 // last element of the same array object, or one is a pointer to one past the 2002 // end of one array object and the other is a pointer to the start of a 2003 // different array object that happens to immediately follow the first array 2004 // object in the address space.) 2005 // 2006 // C11's version is more restrictive, however there's no reason why an argument 2007 // couldn't be a one-past-the-end value for a stack object in the caller and be 2008 // equal to the beginning of a stack object in the callee. 2009 // 2010 // If the C and C++ standards are ever made sufficiently restrictive in this 2011 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2012 // this optimization. 2013 static Constant * 2014 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2015 const DominatorTree *DT, CmpInst::Predicate Pred, 2016 AssumptionCache *AC, const Instruction *CxtI, 2017 Value *LHS, Value *RHS) { 2018 // First, skip past any trivial no-ops. 2019 LHS = LHS->stripPointerCasts(); 2020 RHS = RHS->stripPointerCasts(); 2021 2022 // A non-null pointer is not equal to a null pointer. 2023 if (llvm::isKnownNonZero(LHS, DL) && isa<ConstantPointerNull>(RHS) && 2024 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2025 return ConstantInt::get(GetCompareTy(LHS), 2026 !CmpInst::isTrueWhenEqual(Pred)); 2027 2028 // We can only fold certain predicates on pointer comparisons. 2029 switch (Pred) { 2030 default: 2031 return nullptr; 2032 2033 // Equality comaprisons are easy to fold. 2034 case CmpInst::ICMP_EQ: 2035 case CmpInst::ICMP_NE: 2036 break; 2037 2038 // We can only handle unsigned relational comparisons because 'inbounds' on 2039 // a GEP only protects against unsigned wrapping. 2040 case CmpInst::ICMP_UGT: 2041 case CmpInst::ICMP_UGE: 2042 case CmpInst::ICMP_ULT: 2043 case CmpInst::ICMP_ULE: 2044 // However, we have to switch them to their signed variants to handle 2045 // negative indices from the base pointer. 2046 Pred = ICmpInst::getSignedPredicate(Pred); 2047 break; 2048 } 2049 2050 // Strip off any constant offsets so that we can reason about them. 2051 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2052 // here and compare base addresses like AliasAnalysis does, however there are 2053 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2054 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2055 // doesn't need to guarantee pointer inequality when it says NoAlias. 2056 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2057 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2058 2059 // If LHS and RHS are related via constant offsets to the same base 2060 // value, we can replace it with an icmp which just compares the offsets. 2061 if (LHS == RHS) 2062 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2063 2064 // Various optimizations for (in)equality comparisons. 2065 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2066 // Different non-empty allocations that exist at the same time have 2067 // different addresses (if the program can tell). Global variables always 2068 // exist, so they always exist during the lifetime of each other and all 2069 // allocas. Two different allocas usually have different addresses... 2070 // 2071 // However, if there's an @llvm.stackrestore dynamically in between two 2072 // allocas, they may have the same address. It's tempting to reduce the 2073 // scope of the problem by only looking at *static* allocas here. That would 2074 // cover the majority of allocas while significantly reducing the likelihood 2075 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2076 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2077 // an entry block. Also, if we have a block that's not attached to a 2078 // function, we can't tell if it's "static" under the current definition. 2079 // Theoretically, this problem could be fixed by creating a new kind of 2080 // instruction kind specifically for static allocas. Such a new instruction 2081 // could be required to be at the top of the entry block, thus preventing it 2082 // from being subject to a @llvm.stackrestore. Instcombine could even 2083 // convert regular allocas into these special allocas. It'd be nifty. 2084 // However, until then, this problem remains open. 2085 // 2086 // So, we'll assume that two non-empty allocas have different addresses 2087 // for now. 2088 // 2089 // With all that, if the offsets are within the bounds of their allocations 2090 // (and not one-past-the-end! so we can't use inbounds!), and their 2091 // allocations aren't the same, the pointers are not equal. 2092 // 2093 // Note that it's not necessary to check for LHS being a global variable 2094 // address, due to canonicalization and constant folding. 2095 if (isa<AllocaInst>(LHS) && 2096 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2097 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2098 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2099 uint64_t LHSSize, RHSSize; 2100 if (LHSOffsetCI && RHSOffsetCI && 2101 getObjectSize(LHS, LHSSize, DL, TLI) && 2102 getObjectSize(RHS, RHSSize, DL, TLI)) { 2103 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2104 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2105 if (!LHSOffsetValue.isNegative() && 2106 !RHSOffsetValue.isNegative() && 2107 LHSOffsetValue.ult(LHSSize) && 2108 RHSOffsetValue.ult(RHSSize)) { 2109 return ConstantInt::get(GetCompareTy(LHS), 2110 !CmpInst::isTrueWhenEqual(Pred)); 2111 } 2112 } 2113 2114 // Repeat the above check but this time without depending on DataLayout 2115 // or being able to compute a precise size. 2116 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2117 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2118 LHSOffset->isNullValue() && 2119 RHSOffset->isNullValue()) 2120 return ConstantInt::get(GetCompareTy(LHS), 2121 !CmpInst::isTrueWhenEqual(Pred)); 2122 } 2123 2124 // Even if an non-inbounds GEP occurs along the path we can still optimize 2125 // equality comparisons concerning the result. We avoid walking the whole 2126 // chain again by starting where the last calls to 2127 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2128 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2129 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2130 if (LHS == RHS) 2131 return ConstantExpr::getICmp(Pred, 2132 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2133 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2134 2135 // If one side of the equality comparison must come from a noalias call 2136 // (meaning a system memory allocation function), and the other side must 2137 // come from a pointer that cannot overlap with dynamically-allocated 2138 // memory within the lifetime of the current function (allocas, byval 2139 // arguments, globals), then determine the comparison result here. 2140 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2141 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2142 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2143 2144 // Is the set of underlying objects all noalias calls? 2145 auto IsNAC = [](ArrayRef<Value *> Objects) { 2146 return all_of(Objects, isNoAliasCall); 2147 }; 2148 2149 // Is the set of underlying objects all things which must be disjoint from 2150 // noalias calls. For allocas, we consider only static ones (dynamic 2151 // allocas might be transformed into calls to malloc not simultaneously 2152 // live with the compared-to allocation). For globals, we exclude symbols 2153 // that might be resolve lazily to symbols in another dynamically-loaded 2154 // library (and, thus, could be malloc'ed by the implementation). 2155 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2156 return all_of(Objects, [](Value *V) { 2157 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2158 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2159 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2160 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2161 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2162 !GV->isThreadLocal(); 2163 if (const Argument *A = dyn_cast<Argument>(V)) 2164 return A->hasByValAttr(); 2165 return false; 2166 }); 2167 }; 2168 2169 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2170 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2171 return ConstantInt::get(GetCompareTy(LHS), 2172 !CmpInst::isTrueWhenEqual(Pred)); 2173 2174 // Fold comparisons for non-escaping pointer even if the allocation call 2175 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2176 // dynamic allocation call could be either of the operands. 2177 Value *MI = nullptr; 2178 if (isAllocLikeFn(LHS, TLI) && 2179 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2180 MI = LHS; 2181 else if (isAllocLikeFn(RHS, TLI) && 2182 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2183 MI = RHS; 2184 // FIXME: We should also fold the compare when the pointer escapes, but the 2185 // compare dominates the pointer escape 2186 if (MI && !PointerMayBeCaptured(MI, true, true)) 2187 return ConstantInt::get(GetCompareTy(LHS), 2188 CmpInst::isFalseWhenEqual(Pred)); 2189 } 2190 2191 // Otherwise, fail. 2192 return nullptr; 2193 } 2194 2195 /// Fold an icmp when its operands have i1 scalar type. 2196 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2197 Value *RHS, const SimplifyQuery &Q) { 2198 Type *ITy = GetCompareTy(LHS); // The return type. 2199 Type *OpTy = LHS->getType(); // The operand type. 2200 if (!OpTy->isIntOrIntVectorTy(1)) 2201 return nullptr; 2202 2203 // A boolean compared to true/false can be simplified in 14 out of the 20 2204 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2205 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2206 if (match(RHS, m_Zero())) { 2207 switch (Pred) { 2208 case CmpInst::ICMP_NE: // X != 0 -> X 2209 case CmpInst::ICMP_UGT: // X >u 0 -> X 2210 case CmpInst::ICMP_SLT: // X <s 0 -> X 2211 return LHS; 2212 2213 case CmpInst::ICMP_ULT: // X <u 0 -> false 2214 case CmpInst::ICMP_SGT: // X >s 0 -> false 2215 return getFalse(ITy); 2216 2217 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2218 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2219 return getTrue(ITy); 2220 2221 default: break; 2222 } 2223 } else if (match(RHS, m_One())) { 2224 switch (Pred) { 2225 case CmpInst::ICMP_EQ: // X == 1 -> X 2226 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2227 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2228 return LHS; 2229 2230 case CmpInst::ICMP_UGT: // X >u 1 -> false 2231 case CmpInst::ICMP_SLT: // X <s -1 -> false 2232 return getFalse(ITy); 2233 2234 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2235 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2236 return getTrue(ITy); 2237 2238 default: break; 2239 } 2240 } 2241 2242 switch (Pred) { 2243 default: 2244 break; 2245 case ICmpInst::ICMP_UGE: 2246 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2247 return getTrue(ITy); 2248 break; 2249 case ICmpInst::ICMP_SGE: 2250 /// For signed comparison, the values for an i1 are 0 and -1 2251 /// respectively. This maps into a truth table of: 2252 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2253 /// 0 | 0 | 1 (0 >= 0) | 1 2254 /// 0 | 1 | 1 (0 >= -1) | 1 2255 /// 1 | 0 | 0 (-1 >= 0) | 0 2256 /// 1 | 1 | 1 (-1 >= -1) | 1 2257 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2258 return getTrue(ITy); 2259 break; 2260 case ICmpInst::ICMP_ULE: 2261 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2262 return getTrue(ITy); 2263 break; 2264 } 2265 2266 return nullptr; 2267 } 2268 2269 /// Try hard to fold icmp with zero RHS because this is a common case. 2270 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2271 Value *RHS, const SimplifyQuery &Q) { 2272 if (!match(RHS, m_Zero())) 2273 return nullptr; 2274 2275 Type *ITy = GetCompareTy(LHS); // The return type. 2276 switch (Pred) { 2277 default: 2278 llvm_unreachable("Unknown ICmp predicate!"); 2279 case ICmpInst::ICMP_ULT: 2280 return getFalse(ITy); 2281 case ICmpInst::ICMP_UGE: 2282 return getTrue(ITy); 2283 case ICmpInst::ICMP_EQ: 2284 case ICmpInst::ICMP_ULE: 2285 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2286 return getFalse(ITy); 2287 break; 2288 case ICmpInst::ICMP_NE: 2289 case ICmpInst::ICMP_UGT: 2290 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2291 return getTrue(ITy); 2292 break; 2293 case ICmpInst::ICMP_SLT: { 2294 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2295 if (LHSKnown.isNegative()) 2296 return getTrue(ITy); 2297 if (LHSKnown.isNonNegative()) 2298 return getFalse(ITy); 2299 break; 2300 } 2301 case ICmpInst::ICMP_SLE: { 2302 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2303 if (LHSKnown.isNegative()) 2304 return getTrue(ITy); 2305 if (LHSKnown.isNonNegative() && 2306 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2307 return getFalse(ITy); 2308 break; 2309 } 2310 case ICmpInst::ICMP_SGE: { 2311 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2312 if (LHSKnown.isNegative()) 2313 return getFalse(ITy); 2314 if (LHSKnown.isNonNegative()) 2315 return getTrue(ITy); 2316 break; 2317 } 2318 case ICmpInst::ICMP_SGT: { 2319 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2320 if (LHSKnown.isNegative()) 2321 return getFalse(ITy); 2322 if (LHSKnown.isNonNegative() && 2323 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2324 return getTrue(ITy); 2325 break; 2326 } 2327 } 2328 2329 return nullptr; 2330 } 2331 2332 /// Many binary operators with a constant operand have an easy-to-compute 2333 /// range of outputs. This can be used to fold a comparison to always true or 2334 /// always false. 2335 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2336 unsigned Width = Lower.getBitWidth(); 2337 const APInt *C; 2338 switch (BO.getOpcode()) { 2339 case Instruction::Add: 2340 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2341 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2342 if (BO.hasNoUnsignedWrap()) { 2343 // 'add nuw x, C' produces [C, UINT_MAX]. 2344 Lower = *C; 2345 } else if (BO.hasNoSignedWrap()) { 2346 if (C->isNegative()) { 2347 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2348 Lower = APInt::getSignedMinValue(Width); 2349 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2350 } else { 2351 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2352 Lower = APInt::getSignedMinValue(Width) + *C; 2353 Upper = APInt::getSignedMaxValue(Width) + 1; 2354 } 2355 } 2356 } 2357 break; 2358 2359 case Instruction::And: 2360 if (match(BO.getOperand(1), m_APInt(C))) 2361 // 'and x, C' produces [0, C]. 2362 Upper = *C + 1; 2363 break; 2364 2365 case Instruction::Or: 2366 if (match(BO.getOperand(1), m_APInt(C))) 2367 // 'or x, C' produces [C, UINT_MAX]. 2368 Lower = *C; 2369 break; 2370 2371 case Instruction::AShr: 2372 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2373 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2374 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2375 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2376 } else if (match(BO.getOperand(0), m_APInt(C))) { 2377 unsigned ShiftAmount = Width - 1; 2378 if (!C->isNullValue() && BO.isExact()) 2379 ShiftAmount = C->countTrailingZeros(); 2380 if (C->isNegative()) { 2381 // 'ashr C, x' produces [C, C >> (Width-1)] 2382 Lower = *C; 2383 Upper = C->ashr(ShiftAmount) + 1; 2384 } else { 2385 // 'ashr C, x' produces [C >> (Width-1), C] 2386 Lower = C->ashr(ShiftAmount); 2387 Upper = *C + 1; 2388 } 2389 } 2390 break; 2391 2392 case Instruction::LShr: 2393 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2394 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2395 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2396 } else if (match(BO.getOperand(0), m_APInt(C))) { 2397 // 'lshr C, x' produces [C >> (Width-1), C]. 2398 unsigned ShiftAmount = Width - 1; 2399 if (!C->isNullValue() && BO.isExact()) 2400 ShiftAmount = C->countTrailingZeros(); 2401 Lower = C->lshr(ShiftAmount); 2402 Upper = *C + 1; 2403 } 2404 break; 2405 2406 case Instruction::Shl: 2407 if (match(BO.getOperand(0), m_APInt(C))) { 2408 if (BO.hasNoUnsignedWrap()) { 2409 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2410 Lower = *C; 2411 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2412 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2413 if (C->isNegative()) { 2414 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2415 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2416 Lower = C->shl(ShiftAmount); 2417 Upper = *C + 1; 2418 } else { 2419 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2420 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2421 Lower = *C; 2422 Upper = C->shl(ShiftAmount) + 1; 2423 } 2424 } 2425 } 2426 break; 2427 2428 case Instruction::SDiv: 2429 if (match(BO.getOperand(1), m_APInt(C))) { 2430 APInt IntMin = APInt::getSignedMinValue(Width); 2431 APInt IntMax = APInt::getSignedMaxValue(Width); 2432 if (C->isAllOnesValue()) { 2433 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2434 // where C != -1 and C != 0 and C != 1 2435 Lower = IntMin + 1; 2436 Upper = IntMax + 1; 2437 } else if (C->countLeadingZeros() < Width - 1) { 2438 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2439 // where C != -1 and C != 0 and C != 1 2440 Lower = IntMin.sdiv(*C); 2441 Upper = IntMax.sdiv(*C); 2442 if (Lower.sgt(Upper)) 2443 std::swap(Lower, Upper); 2444 Upper = Upper + 1; 2445 assert(Upper != Lower && "Upper part of range has wrapped!"); 2446 } 2447 } else if (match(BO.getOperand(0), m_APInt(C))) { 2448 if (C->isMinSignedValue()) { 2449 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2450 Lower = *C; 2451 Upper = Lower.lshr(1) + 1; 2452 } else { 2453 // 'sdiv C, x' produces [-|C|, |C|]. 2454 Upper = C->abs() + 1; 2455 Lower = (-Upper) + 1; 2456 } 2457 } 2458 break; 2459 2460 case Instruction::UDiv: 2461 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2462 // 'udiv x, C' produces [0, UINT_MAX / C]. 2463 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2464 } else if (match(BO.getOperand(0), m_APInt(C))) { 2465 // 'udiv C, x' produces [0, C]. 2466 Upper = *C + 1; 2467 } 2468 break; 2469 2470 case Instruction::SRem: 2471 if (match(BO.getOperand(1), m_APInt(C))) { 2472 // 'srem x, C' produces (-|C|, |C|). 2473 Upper = C->abs(); 2474 Lower = (-Upper) + 1; 2475 } 2476 break; 2477 2478 case Instruction::URem: 2479 if (match(BO.getOperand(1), m_APInt(C))) 2480 // 'urem x, C' produces [0, C). 2481 Upper = *C; 2482 break; 2483 2484 default: 2485 break; 2486 } 2487 } 2488 2489 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2490 Value *RHS) { 2491 Type *ITy = GetCompareTy(RHS); // The return type. 2492 2493 Value *X; 2494 // Sign-bit checks can be optimized to true/false after unsigned 2495 // floating-point casts: 2496 // icmp slt (bitcast (uitofp X)), 0 --> false 2497 // icmp sgt (bitcast (uitofp X)), -1 --> true 2498 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2499 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2500 return ConstantInt::getFalse(ITy); 2501 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2502 return ConstantInt::getTrue(ITy); 2503 } 2504 2505 const APInt *C; 2506 if (!match(RHS, m_APInt(C))) 2507 return nullptr; 2508 2509 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2510 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2511 if (RHS_CR.isEmptySet()) 2512 return ConstantInt::getFalse(ITy); 2513 if (RHS_CR.isFullSet()) 2514 return ConstantInt::getTrue(ITy); 2515 2516 // Find the range of possible values for binary operators. 2517 unsigned Width = C->getBitWidth(); 2518 APInt Lower = APInt(Width, 0); 2519 APInt Upper = APInt(Width, 0); 2520 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2521 setLimitsForBinOp(*BO, Lower, Upper); 2522 2523 ConstantRange LHS_CR = 2524 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2525 2526 if (auto *I = dyn_cast<Instruction>(LHS)) 2527 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2528 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2529 2530 if (!LHS_CR.isFullSet()) { 2531 if (RHS_CR.contains(LHS_CR)) 2532 return ConstantInt::getTrue(ITy); 2533 if (RHS_CR.inverse().contains(LHS_CR)) 2534 return ConstantInt::getFalse(ITy); 2535 } 2536 2537 return nullptr; 2538 } 2539 2540 /// TODO: A large part of this logic is duplicated in InstCombine's 2541 /// foldICmpBinOp(). We should be able to share that and avoid the code 2542 /// duplication. 2543 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2544 Value *RHS, const SimplifyQuery &Q, 2545 unsigned MaxRecurse) { 2546 Type *ITy = GetCompareTy(LHS); // The return type. 2547 2548 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2549 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2550 if (MaxRecurse && (LBO || RBO)) { 2551 // Analyze the case when either LHS or RHS is an add instruction. 2552 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2553 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2554 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2555 if (LBO && LBO->getOpcode() == Instruction::Add) { 2556 A = LBO->getOperand(0); 2557 B = LBO->getOperand(1); 2558 NoLHSWrapProblem = 2559 ICmpInst::isEquality(Pred) || 2560 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2561 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2562 } 2563 if (RBO && RBO->getOpcode() == Instruction::Add) { 2564 C = RBO->getOperand(0); 2565 D = RBO->getOperand(1); 2566 NoRHSWrapProblem = 2567 ICmpInst::isEquality(Pred) || 2568 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2569 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2570 } 2571 2572 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2573 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2574 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2575 Constant::getNullValue(RHS->getType()), Q, 2576 MaxRecurse - 1)) 2577 return V; 2578 2579 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2580 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2581 if (Value *V = 2582 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2583 C == LHS ? D : C, Q, MaxRecurse - 1)) 2584 return V; 2585 2586 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2587 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2588 NoRHSWrapProblem) { 2589 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2590 Value *Y, *Z; 2591 if (A == C) { 2592 // C + B == C + D -> B == D 2593 Y = B; 2594 Z = D; 2595 } else if (A == D) { 2596 // D + B == C + D -> B == C 2597 Y = B; 2598 Z = C; 2599 } else if (B == C) { 2600 // A + C == C + D -> A == D 2601 Y = A; 2602 Z = D; 2603 } else { 2604 assert(B == D); 2605 // A + D == C + D -> A == C 2606 Y = A; 2607 Z = C; 2608 } 2609 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2610 return V; 2611 } 2612 } 2613 2614 { 2615 Value *Y = nullptr; 2616 // icmp pred (or X, Y), X 2617 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2618 if (Pred == ICmpInst::ICMP_ULT) 2619 return getFalse(ITy); 2620 if (Pred == ICmpInst::ICMP_UGE) 2621 return getTrue(ITy); 2622 2623 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2624 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2625 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2626 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2627 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2628 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2629 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2630 } 2631 } 2632 // icmp pred X, (or X, Y) 2633 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2634 if (Pred == ICmpInst::ICMP_ULE) 2635 return getTrue(ITy); 2636 if (Pred == ICmpInst::ICMP_UGT) 2637 return getFalse(ITy); 2638 2639 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2640 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2641 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2642 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2643 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2644 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2645 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2646 } 2647 } 2648 } 2649 2650 // icmp pred (and X, Y), X 2651 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2652 if (Pred == ICmpInst::ICMP_UGT) 2653 return getFalse(ITy); 2654 if (Pred == ICmpInst::ICMP_ULE) 2655 return getTrue(ITy); 2656 } 2657 // icmp pred X, (and X, Y) 2658 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2659 if (Pred == ICmpInst::ICMP_UGE) 2660 return getTrue(ITy); 2661 if (Pred == ICmpInst::ICMP_ULT) 2662 return getFalse(ITy); 2663 } 2664 2665 // 0 - (zext X) pred C 2666 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2667 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2668 if (RHSC->getValue().isStrictlyPositive()) { 2669 if (Pred == ICmpInst::ICMP_SLT) 2670 return ConstantInt::getTrue(RHSC->getContext()); 2671 if (Pred == ICmpInst::ICMP_SGE) 2672 return ConstantInt::getFalse(RHSC->getContext()); 2673 if (Pred == ICmpInst::ICMP_EQ) 2674 return ConstantInt::getFalse(RHSC->getContext()); 2675 if (Pred == ICmpInst::ICMP_NE) 2676 return ConstantInt::getTrue(RHSC->getContext()); 2677 } 2678 if (RHSC->getValue().isNonNegative()) { 2679 if (Pred == ICmpInst::ICMP_SLE) 2680 return ConstantInt::getTrue(RHSC->getContext()); 2681 if (Pred == ICmpInst::ICMP_SGT) 2682 return ConstantInt::getFalse(RHSC->getContext()); 2683 } 2684 } 2685 } 2686 2687 // icmp pred (urem X, Y), Y 2688 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2689 switch (Pred) { 2690 default: 2691 break; 2692 case ICmpInst::ICMP_SGT: 2693 case ICmpInst::ICMP_SGE: { 2694 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2695 if (!Known.isNonNegative()) 2696 break; 2697 LLVM_FALLTHROUGH; 2698 } 2699 case ICmpInst::ICMP_EQ: 2700 case ICmpInst::ICMP_UGT: 2701 case ICmpInst::ICMP_UGE: 2702 return getFalse(ITy); 2703 case ICmpInst::ICMP_SLT: 2704 case ICmpInst::ICMP_SLE: { 2705 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2706 if (!Known.isNonNegative()) 2707 break; 2708 LLVM_FALLTHROUGH; 2709 } 2710 case ICmpInst::ICMP_NE: 2711 case ICmpInst::ICMP_ULT: 2712 case ICmpInst::ICMP_ULE: 2713 return getTrue(ITy); 2714 } 2715 } 2716 2717 // icmp pred X, (urem Y, X) 2718 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2719 switch (Pred) { 2720 default: 2721 break; 2722 case ICmpInst::ICMP_SGT: 2723 case ICmpInst::ICMP_SGE: { 2724 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2725 if (!Known.isNonNegative()) 2726 break; 2727 LLVM_FALLTHROUGH; 2728 } 2729 case ICmpInst::ICMP_NE: 2730 case ICmpInst::ICMP_UGT: 2731 case ICmpInst::ICMP_UGE: 2732 return getTrue(ITy); 2733 case ICmpInst::ICMP_SLT: 2734 case ICmpInst::ICMP_SLE: { 2735 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2736 if (!Known.isNonNegative()) 2737 break; 2738 LLVM_FALLTHROUGH; 2739 } 2740 case ICmpInst::ICMP_EQ: 2741 case ICmpInst::ICMP_ULT: 2742 case ICmpInst::ICMP_ULE: 2743 return getFalse(ITy); 2744 } 2745 } 2746 2747 // x >> y <=u x 2748 // x udiv y <=u x. 2749 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2750 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2751 // icmp pred (X op Y), X 2752 if (Pred == ICmpInst::ICMP_UGT) 2753 return getFalse(ITy); 2754 if (Pred == ICmpInst::ICMP_ULE) 2755 return getTrue(ITy); 2756 } 2757 2758 // x >=u x >> y 2759 // x >=u x udiv y. 2760 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2761 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2762 // icmp pred X, (X op Y) 2763 if (Pred == ICmpInst::ICMP_ULT) 2764 return getFalse(ITy); 2765 if (Pred == ICmpInst::ICMP_UGE) 2766 return getTrue(ITy); 2767 } 2768 2769 // handle: 2770 // CI2 << X == CI 2771 // CI2 << X != CI 2772 // 2773 // where CI2 is a power of 2 and CI isn't 2774 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2775 const APInt *CI2Val, *CIVal = &CI->getValue(); 2776 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2777 CI2Val->isPowerOf2()) { 2778 if (!CIVal->isPowerOf2()) { 2779 // CI2 << X can equal zero in some circumstances, 2780 // this simplification is unsafe if CI is zero. 2781 // 2782 // We know it is safe if: 2783 // - The shift is nsw, we can't shift out the one bit. 2784 // - The shift is nuw, we can't shift out the one bit. 2785 // - CI2 is one 2786 // - CI isn't zero 2787 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2788 CI2Val->isOneValue() || !CI->isZero()) { 2789 if (Pred == ICmpInst::ICMP_EQ) 2790 return ConstantInt::getFalse(RHS->getContext()); 2791 if (Pred == ICmpInst::ICMP_NE) 2792 return ConstantInt::getTrue(RHS->getContext()); 2793 } 2794 } 2795 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2796 if (Pred == ICmpInst::ICMP_UGT) 2797 return ConstantInt::getFalse(RHS->getContext()); 2798 if (Pred == ICmpInst::ICMP_ULE) 2799 return ConstantInt::getTrue(RHS->getContext()); 2800 } 2801 } 2802 } 2803 2804 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2805 LBO->getOperand(1) == RBO->getOperand(1)) { 2806 switch (LBO->getOpcode()) { 2807 default: 2808 break; 2809 case Instruction::UDiv: 2810 case Instruction::LShr: 2811 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2812 break; 2813 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2814 RBO->getOperand(0), Q, MaxRecurse - 1)) 2815 return V; 2816 break; 2817 case Instruction::SDiv: 2818 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2819 break; 2820 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2821 RBO->getOperand(0), Q, MaxRecurse - 1)) 2822 return V; 2823 break; 2824 case Instruction::AShr: 2825 if (!LBO->isExact() || !RBO->isExact()) 2826 break; 2827 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2828 RBO->getOperand(0), Q, MaxRecurse - 1)) 2829 return V; 2830 break; 2831 case Instruction::Shl: { 2832 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2833 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2834 if (!NUW && !NSW) 2835 break; 2836 if (!NSW && ICmpInst::isSigned(Pred)) 2837 break; 2838 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2839 RBO->getOperand(0), Q, MaxRecurse - 1)) 2840 return V; 2841 break; 2842 } 2843 } 2844 } 2845 return nullptr; 2846 } 2847 2848 /// Simplify integer comparisons where at least one operand of the compare 2849 /// matches an integer min/max idiom. 2850 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2851 Value *RHS, const SimplifyQuery &Q, 2852 unsigned MaxRecurse) { 2853 Type *ITy = GetCompareTy(LHS); // The return type. 2854 Value *A, *B; 2855 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2856 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2857 2858 // Signed variants on "max(a,b)>=a -> true". 2859 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2860 if (A != RHS) 2861 std::swap(A, B); // smax(A, B) pred A. 2862 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2863 // We analyze this as smax(A, B) pred A. 2864 P = Pred; 2865 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2866 (A == LHS || B == LHS)) { 2867 if (A != LHS) 2868 std::swap(A, B); // A pred smax(A, B). 2869 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2870 // We analyze this as smax(A, B) swapped-pred A. 2871 P = CmpInst::getSwappedPredicate(Pred); 2872 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2873 (A == RHS || B == RHS)) { 2874 if (A != RHS) 2875 std::swap(A, B); // smin(A, B) pred A. 2876 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2877 // We analyze this as smax(-A, -B) swapped-pred -A. 2878 // Note that we do not need to actually form -A or -B thanks to EqP. 2879 P = CmpInst::getSwappedPredicate(Pred); 2880 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2881 (A == LHS || B == LHS)) { 2882 if (A != LHS) 2883 std::swap(A, B); // A pred smin(A, B). 2884 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2885 // We analyze this as smax(-A, -B) pred -A. 2886 // Note that we do not need to actually form -A or -B thanks to EqP. 2887 P = Pred; 2888 } 2889 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2890 // Cases correspond to "max(A, B) p A". 2891 switch (P) { 2892 default: 2893 break; 2894 case CmpInst::ICMP_EQ: 2895 case CmpInst::ICMP_SLE: 2896 // Equivalent to "A EqP B". This may be the same as the condition tested 2897 // in the max/min; if so, we can just return that. 2898 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2899 return V; 2900 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2901 return V; 2902 // Otherwise, see if "A EqP B" simplifies. 2903 if (MaxRecurse) 2904 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2905 return V; 2906 break; 2907 case CmpInst::ICMP_NE: 2908 case CmpInst::ICMP_SGT: { 2909 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2910 // Equivalent to "A InvEqP B". This may be the same as the condition 2911 // tested in the max/min; if so, we can just return that. 2912 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2913 return V; 2914 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2915 return V; 2916 // Otherwise, see if "A InvEqP B" simplifies. 2917 if (MaxRecurse) 2918 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2919 return V; 2920 break; 2921 } 2922 case CmpInst::ICMP_SGE: 2923 // Always true. 2924 return getTrue(ITy); 2925 case CmpInst::ICMP_SLT: 2926 // Always false. 2927 return getFalse(ITy); 2928 } 2929 } 2930 2931 // Unsigned variants on "max(a,b)>=a -> true". 2932 P = CmpInst::BAD_ICMP_PREDICATE; 2933 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2934 if (A != RHS) 2935 std::swap(A, B); // umax(A, B) pred A. 2936 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2937 // We analyze this as umax(A, B) pred A. 2938 P = Pred; 2939 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2940 (A == LHS || B == LHS)) { 2941 if (A != LHS) 2942 std::swap(A, B); // A pred umax(A, B). 2943 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2944 // We analyze this as umax(A, B) swapped-pred A. 2945 P = CmpInst::getSwappedPredicate(Pred); 2946 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2947 (A == RHS || B == RHS)) { 2948 if (A != RHS) 2949 std::swap(A, B); // umin(A, B) pred A. 2950 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2951 // We analyze this as umax(-A, -B) swapped-pred -A. 2952 // Note that we do not need to actually form -A or -B thanks to EqP. 2953 P = CmpInst::getSwappedPredicate(Pred); 2954 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2955 (A == LHS || B == LHS)) { 2956 if (A != LHS) 2957 std::swap(A, B); // A pred umin(A, B). 2958 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2959 // We analyze this as umax(-A, -B) pred -A. 2960 // Note that we do not need to actually form -A or -B thanks to EqP. 2961 P = Pred; 2962 } 2963 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2964 // Cases correspond to "max(A, B) p A". 2965 switch (P) { 2966 default: 2967 break; 2968 case CmpInst::ICMP_EQ: 2969 case CmpInst::ICMP_ULE: 2970 // Equivalent to "A EqP B". This may be the same as the condition tested 2971 // in the max/min; if so, we can just return that. 2972 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2973 return V; 2974 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2975 return V; 2976 // Otherwise, see if "A EqP B" simplifies. 2977 if (MaxRecurse) 2978 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2979 return V; 2980 break; 2981 case CmpInst::ICMP_NE: 2982 case CmpInst::ICMP_UGT: { 2983 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2984 // Equivalent to "A InvEqP B". This may be the same as the condition 2985 // tested in the max/min; if so, we can just return that. 2986 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2987 return V; 2988 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2989 return V; 2990 // Otherwise, see if "A InvEqP B" simplifies. 2991 if (MaxRecurse) 2992 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2993 return V; 2994 break; 2995 } 2996 case CmpInst::ICMP_UGE: 2997 // Always true. 2998 return getTrue(ITy); 2999 case CmpInst::ICMP_ULT: 3000 // Always false. 3001 return getFalse(ITy); 3002 } 3003 } 3004 3005 // Variants on "max(x,y) >= min(x,z)". 3006 Value *C, *D; 3007 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3008 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3009 (A == C || A == D || B == C || B == D)) { 3010 // max(x, ?) pred min(x, ?). 3011 if (Pred == CmpInst::ICMP_SGE) 3012 // Always true. 3013 return getTrue(ITy); 3014 if (Pred == CmpInst::ICMP_SLT) 3015 // Always false. 3016 return getFalse(ITy); 3017 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3018 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3019 (A == C || A == D || B == C || B == D)) { 3020 // min(x, ?) pred max(x, ?). 3021 if (Pred == CmpInst::ICMP_SLE) 3022 // Always true. 3023 return getTrue(ITy); 3024 if (Pred == CmpInst::ICMP_SGT) 3025 // Always false. 3026 return getFalse(ITy); 3027 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3028 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3029 (A == C || A == D || B == C || B == D)) { 3030 // max(x, ?) pred min(x, ?). 3031 if (Pred == CmpInst::ICMP_UGE) 3032 // Always true. 3033 return getTrue(ITy); 3034 if (Pred == CmpInst::ICMP_ULT) 3035 // Always false. 3036 return getFalse(ITy); 3037 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3038 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3039 (A == C || A == D || B == C || B == D)) { 3040 // min(x, ?) pred max(x, ?). 3041 if (Pred == CmpInst::ICMP_ULE) 3042 // Always true. 3043 return getTrue(ITy); 3044 if (Pred == CmpInst::ICMP_UGT) 3045 // Always false. 3046 return getFalse(ITy); 3047 } 3048 3049 return nullptr; 3050 } 3051 3052 /// Given operands for an ICmpInst, see if we can fold the result. 3053 /// If not, this returns null. 3054 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3055 const SimplifyQuery &Q, unsigned MaxRecurse) { 3056 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3057 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3058 3059 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3060 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3061 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3062 3063 // If we have a constant, make sure it is on the RHS. 3064 std::swap(LHS, RHS); 3065 Pred = CmpInst::getSwappedPredicate(Pred); 3066 } 3067 3068 Type *ITy = GetCompareTy(LHS); // The return type. 3069 3070 // icmp X, X -> true/false 3071 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3072 // because X could be 0. 3073 if (LHS == RHS || isa<UndefValue>(RHS)) 3074 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3075 3076 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3077 return V; 3078 3079 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3080 return V; 3081 3082 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3083 return V; 3084 3085 // If both operands have range metadata, use the metadata 3086 // to simplify the comparison. 3087 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3088 auto RHS_Instr = cast<Instruction>(RHS); 3089 auto LHS_Instr = cast<Instruction>(LHS); 3090 3091 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3092 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3093 auto RHS_CR = getConstantRangeFromMetadata( 3094 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3095 auto LHS_CR = getConstantRangeFromMetadata( 3096 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3097 3098 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3099 if (Satisfied_CR.contains(LHS_CR)) 3100 return ConstantInt::getTrue(RHS->getContext()); 3101 3102 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3103 CmpInst::getInversePredicate(Pred), RHS_CR); 3104 if (InversedSatisfied_CR.contains(LHS_CR)) 3105 return ConstantInt::getFalse(RHS->getContext()); 3106 } 3107 } 3108 3109 // Compare of cast, for example (zext X) != 0 -> X != 0 3110 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3111 Instruction *LI = cast<CastInst>(LHS); 3112 Value *SrcOp = LI->getOperand(0); 3113 Type *SrcTy = SrcOp->getType(); 3114 Type *DstTy = LI->getType(); 3115 3116 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3117 // if the integer type is the same size as the pointer type. 3118 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3119 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3120 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3121 // Transfer the cast to the constant. 3122 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3123 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3124 Q, MaxRecurse-1)) 3125 return V; 3126 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3127 if (RI->getOperand(0)->getType() == SrcTy) 3128 // Compare without the cast. 3129 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3130 Q, MaxRecurse-1)) 3131 return V; 3132 } 3133 } 3134 3135 if (isa<ZExtInst>(LHS)) { 3136 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3137 // same type. 3138 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3139 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3140 // Compare X and Y. Note that signed predicates become unsigned. 3141 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3142 SrcOp, RI->getOperand(0), Q, 3143 MaxRecurse-1)) 3144 return V; 3145 } 3146 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3147 // too. If not, then try to deduce the result of the comparison. 3148 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3149 // Compute the constant that would happen if we truncated to SrcTy then 3150 // reextended to DstTy. 3151 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3152 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3153 3154 // If the re-extended constant didn't change then this is effectively 3155 // also a case of comparing two zero-extended values. 3156 if (RExt == CI && MaxRecurse) 3157 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3158 SrcOp, Trunc, Q, MaxRecurse-1)) 3159 return V; 3160 3161 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3162 // there. Use this to work out the result of the comparison. 3163 if (RExt != CI) { 3164 switch (Pred) { 3165 default: llvm_unreachable("Unknown ICmp predicate!"); 3166 // LHS <u RHS. 3167 case ICmpInst::ICMP_EQ: 3168 case ICmpInst::ICMP_UGT: 3169 case ICmpInst::ICMP_UGE: 3170 return ConstantInt::getFalse(CI->getContext()); 3171 3172 case ICmpInst::ICMP_NE: 3173 case ICmpInst::ICMP_ULT: 3174 case ICmpInst::ICMP_ULE: 3175 return ConstantInt::getTrue(CI->getContext()); 3176 3177 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3178 // is non-negative then LHS <s RHS. 3179 case ICmpInst::ICMP_SGT: 3180 case ICmpInst::ICMP_SGE: 3181 return CI->getValue().isNegative() ? 3182 ConstantInt::getTrue(CI->getContext()) : 3183 ConstantInt::getFalse(CI->getContext()); 3184 3185 case ICmpInst::ICMP_SLT: 3186 case ICmpInst::ICMP_SLE: 3187 return CI->getValue().isNegative() ? 3188 ConstantInt::getFalse(CI->getContext()) : 3189 ConstantInt::getTrue(CI->getContext()); 3190 } 3191 } 3192 } 3193 } 3194 3195 if (isa<SExtInst>(LHS)) { 3196 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3197 // same type. 3198 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3199 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3200 // Compare X and Y. Note that the predicate does not change. 3201 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3202 Q, MaxRecurse-1)) 3203 return V; 3204 } 3205 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3206 // too. If not, then try to deduce the result of the comparison. 3207 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3208 // Compute the constant that would happen if we truncated to SrcTy then 3209 // reextended to DstTy. 3210 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3211 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3212 3213 // If the re-extended constant didn't change then this is effectively 3214 // also a case of comparing two sign-extended values. 3215 if (RExt == CI && MaxRecurse) 3216 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3217 return V; 3218 3219 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3220 // bits there. Use this to work out the result of the comparison. 3221 if (RExt != CI) { 3222 switch (Pred) { 3223 default: llvm_unreachable("Unknown ICmp predicate!"); 3224 case ICmpInst::ICMP_EQ: 3225 return ConstantInt::getFalse(CI->getContext()); 3226 case ICmpInst::ICMP_NE: 3227 return ConstantInt::getTrue(CI->getContext()); 3228 3229 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3230 // LHS >s RHS. 3231 case ICmpInst::ICMP_SGT: 3232 case ICmpInst::ICMP_SGE: 3233 return CI->getValue().isNegative() ? 3234 ConstantInt::getTrue(CI->getContext()) : 3235 ConstantInt::getFalse(CI->getContext()); 3236 case ICmpInst::ICMP_SLT: 3237 case ICmpInst::ICMP_SLE: 3238 return CI->getValue().isNegative() ? 3239 ConstantInt::getFalse(CI->getContext()) : 3240 ConstantInt::getTrue(CI->getContext()); 3241 3242 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3243 // LHS >u RHS. 3244 case ICmpInst::ICMP_UGT: 3245 case ICmpInst::ICMP_UGE: 3246 // Comparison is true iff the LHS <s 0. 3247 if (MaxRecurse) 3248 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3249 Constant::getNullValue(SrcTy), 3250 Q, MaxRecurse-1)) 3251 return V; 3252 break; 3253 case ICmpInst::ICMP_ULT: 3254 case ICmpInst::ICMP_ULE: 3255 // Comparison is true iff the LHS >=s 0. 3256 if (MaxRecurse) 3257 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3258 Constant::getNullValue(SrcTy), 3259 Q, MaxRecurse-1)) 3260 return V; 3261 break; 3262 } 3263 } 3264 } 3265 } 3266 } 3267 3268 // icmp eq|ne X, Y -> false|true if X != Y 3269 if (ICmpInst::isEquality(Pred) && 3270 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3271 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3272 } 3273 3274 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3275 return V; 3276 3277 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3278 return V; 3279 3280 // Simplify comparisons of related pointers using a powerful, recursive 3281 // GEP-walk when we have target data available.. 3282 if (LHS->getType()->isPointerTy()) 3283 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, LHS, 3284 RHS)) 3285 return C; 3286 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3287 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3288 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3289 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3290 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3291 Q.DL.getTypeSizeInBits(CRHS->getType())) 3292 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3293 CLHS->getPointerOperand(), 3294 CRHS->getPointerOperand())) 3295 return C; 3296 3297 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3298 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3299 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3300 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3301 (ICmpInst::isEquality(Pred) || 3302 (GLHS->isInBounds() && GRHS->isInBounds() && 3303 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3304 // The bases are equal and the indices are constant. Build a constant 3305 // expression GEP with the same indices and a null base pointer to see 3306 // what constant folding can make out of it. 3307 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3308 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3309 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3310 GLHS->getSourceElementType(), Null, IndicesLHS); 3311 3312 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3313 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3314 GLHS->getSourceElementType(), Null, IndicesRHS); 3315 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3316 } 3317 } 3318 } 3319 3320 // If the comparison is with the result of a select instruction, check whether 3321 // comparing with either branch of the select always yields the same value. 3322 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3323 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3324 return V; 3325 3326 // If the comparison is with the result of a phi instruction, check whether 3327 // doing the compare with each incoming phi value yields a common result. 3328 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3329 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3330 return V; 3331 3332 return nullptr; 3333 } 3334 3335 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3336 const SimplifyQuery &Q) { 3337 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3338 } 3339 3340 /// Given operands for an FCmpInst, see if we can fold the result. 3341 /// If not, this returns null. 3342 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3343 FastMathFlags FMF, const SimplifyQuery &Q, 3344 unsigned MaxRecurse) { 3345 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3346 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3347 3348 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3349 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3350 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3351 3352 // If we have a constant, make sure it is on the RHS. 3353 std::swap(LHS, RHS); 3354 Pred = CmpInst::getSwappedPredicate(Pred); 3355 } 3356 3357 // Fold trivial predicates. 3358 Type *RetTy = GetCompareTy(LHS); 3359 if (Pred == FCmpInst::FCMP_FALSE) 3360 return getFalse(RetTy); 3361 if (Pred == FCmpInst::FCMP_TRUE) 3362 return getTrue(RetTy); 3363 3364 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3365 if (FMF.noNaNs()) { 3366 if (Pred == FCmpInst::FCMP_UNO) 3367 return getFalse(RetTy); 3368 if (Pred == FCmpInst::FCMP_ORD) 3369 return getTrue(RetTy); 3370 } 3371 3372 // NaN is unordered; NaN is not ordered. 3373 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3374 "Comparison must be either ordered or unordered"); 3375 if (match(RHS, m_NaN())) 3376 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3377 3378 // fcmp pred x, undef and fcmp pred undef, x 3379 // fold to true if unordered, false if ordered 3380 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3381 // Choosing NaN for the undef will always make unordered comparison succeed 3382 // and ordered comparison fail. 3383 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3384 } 3385 3386 // fcmp x,x -> true/false. Not all compares are foldable. 3387 if (LHS == RHS) { 3388 if (CmpInst::isTrueWhenEqual(Pred)) 3389 return getTrue(RetTy); 3390 if (CmpInst::isFalseWhenEqual(Pred)) 3391 return getFalse(RetTy); 3392 } 3393 3394 // Handle fcmp with constant RHS. 3395 const APFloat *C; 3396 if (match(RHS, m_APFloat(C))) { 3397 // Check whether the constant is an infinity. 3398 if (C->isInfinity()) { 3399 if (C->isNegative()) { 3400 switch (Pred) { 3401 case FCmpInst::FCMP_OLT: 3402 // No value is ordered and less than negative infinity. 3403 return getFalse(RetTy); 3404 case FCmpInst::FCMP_UGE: 3405 // All values are unordered with or at least negative infinity. 3406 return getTrue(RetTy); 3407 default: 3408 break; 3409 } 3410 } else { 3411 switch (Pred) { 3412 case FCmpInst::FCMP_OGT: 3413 // No value is ordered and greater than infinity. 3414 return getFalse(RetTy); 3415 case FCmpInst::FCMP_ULE: 3416 // All values are unordered with and at most infinity. 3417 return getTrue(RetTy); 3418 default: 3419 break; 3420 } 3421 } 3422 } 3423 if (C->isZero()) { 3424 switch (Pred) { 3425 case FCmpInst::FCMP_UGE: 3426 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3427 return getTrue(RetTy); 3428 break; 3429 case FCmpInst::FCMP_OLT: 3430 // X < 0 3431 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3432 return getFalse(RetTy); 3433 break; 3434 default: 3435 break; 3436 } 3437 } else if (C->isNegative()) { 3438 assert(!C->isNaN() && "Unexpected NaN constant!"); 3439 // TODO: We can catch more cases by using a range check rather than 3440 // relying on CannotBeOrderedLessThanZero. 3441 switch (Pred) { 3442 case FCmpInst::FCMP_UGE: 3443 case FCmpInst::FCMP_UGT: 3444 case FCmpInst::FCMP_UNE: 3445 // (X >= 0) implies (X > C) when (C < 0) 3446 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3447 return getTrue(RetTy); 3448 break; 3449 case FCmpInst::FCMP_OEQ: 3450 case FCmpInst::FCMP_OLE: 3451 case FCmpInst::FCMP_OLT: 3452 // (X >= 0) implies !(X < C) when (C < 0) 3453 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3454 return getFalse(RetTy); 3455 break; 3456 default: 3457 break; 3458 } 3459 } 3460 } 3461 3462 // If the comparison is with the result of a select instruction, check whether 3463 // comparing with either branch of the select always yields the same value. 3464 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3465 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3466 return V; 3467 3468 // If the comparison is with the result of a phi instruction, check whether 3469 // doing the compare with each incoming phi value yields a common result. 3470 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3471 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3472 return V; 3473 3474 return nullptr; 3475 } 3476 3477 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3478 FastMathFlags FMF, const SimplifyQuery &Q) { 3479 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3480 } 3481 3482 /// See if V simplifies when its operand Op is replaced with RepOp. 3483 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3484 const SimplifyQuery &Q, 3485 unsigned MaxRecurse) { 3486 // Trivial replacement. 3487 if (V == Op) 3488 return RepOp; 3489 3490 // We cannot replace a constant, and shouldn't even try. 3491 if (isa<Constant>(Op)) 3492 return nullptr; 3493 3494 auto *I = dyn_cast<Instruction>(V); 3495 if (!I) 3496 return nullptr; 3497 3498 // If this is a binary operator, try to simplify it with the replaced op. 3499 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3500 // Consider: 3501 // %cmp = icmp eq i32 %x, 2147483647 3502 // %add = add nsw i32 %x, 1 3503 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3504 // 3505 // We can't replace %sel with %add unless we strip away the flags. 3506 if (isa<OverflowingBinaryOperator>(B)) 3507 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3508 return nullptr; 3509 if (isa<PossiblyExactOperator>(B)) 3510 if (B->isExact()) 3511 return nullptr; 3512 3513 if (MaxRecurse) { 3514 if (B->getOperand(0) == Op) 3515 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3516 MaxRecurse - 1); 3517 if (B->getOperand(1) == Op) 3518 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3519 MaxRecurse - 1); 3520 } 3521 } 3522 3523 // Same for CmpInsts. 3524 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3525 if (MaxRecurse) { 3526 if (C->getOperand(0) == Op) 3527 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3528 MaxRecurse - 1); 3529 if (C->getOperand(1) == Op) 3530 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3531 MaxRecurse - 1); 3532 } 3533 } 3534 3535 // TODO: We could hand off more cases to instsimplify here. 3536 3537 // If all operands are constant after substituting Op for RepOp then we can 3538 // constant fold the instruction. 3539 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3540 // Build a list of all constant operands. 3541 SmallVector<Constant *, 8> ConstOps; 3542 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3543 if (I->getOperand(i) == Op) 3544 ConstOps.push_back(CRepOp); 3545 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3546 ConstOps.push_back(COp); 3547 else 3548 break; 3549 } 3550 3551 // All operands were constants, fold it. 3552 if (ConstOps.size() == I->getNumOperands()) { 3553 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3554 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3555 ConstOps[1], Q.DL, Q.TLI); 3556 3557 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3558 if (!LI->isVolatile()) 3559 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3560 3561 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3562 } 3563 } 3564 3565 return nullptr; 3566 } 3567 3568 /// Try to simplify a select instruction when its condition operand is an 3569 /// integer comparison where one operand of the compare is a constant. 3570 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3571 const APInt *Y, bool TrueWhenUnset) { 3572 const APInt *C; 3573 3574 // (X & Y) == 0 ? X & ~Y : X --> X 3575 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3576 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3577 *Y == ~*C) 3578 return TrueWhenUnset ? FalseVal : TrueVal; 3579 3580 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3581 // (X & Y) != 0 ? X : X & ~Y --> X 3582 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3583 *Y == ~*C) 3584 return TrueWhenUnset ? FalseVal : TrueVal; 3585 3586 if (Y->isPowerOf2()) { 3587 // (X & Y) == 0 ? X | Y : X --> X | Y 3588 // (X & Y) != 0 ? X | Y : X --> X 3589 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3590 *Y == *C) 3591 return TrueWhenUnset ? TrueVal : FalseVal; 3592 3593 // (X & Y) == 0 ? X : X | Y --> X 3594 // (X & Y) != 0 ? X : X | Y --> X | Y 3595 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3596 *Y == *C) 3597 return TrueWhenUnset ? TrueVal : FalseVal; 3598 } 3599 3600 return nullptr; 3601 } 3602 3603 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3604 /// eq/ne. 3605 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3606 ICmpInst::Predicate Pred, 3607 Value *TrueVal, Value *FalseVal) { 3608 Value *X; 3609 APInt Mask; 3610 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3611 return nullptr; 3612 3613 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3614 Pred == ICmpInst::ICMP_EQ); 3615 } 3616 3617 /// Try to simplify a select instruction when its condition operand is an 3618 /// integer comparison. 3619 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3620 Value *FalseVal, const SimplifyQuery &Q, 3621 unsigned MaxRecurse) { 3622 ICmpInst::Predicate Pred; 3623 Value *CmpLHS, *CmpRHS; 3624 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3625 return nullptr; 3626 3627 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3628 Value *X; 3629 const APInt *Y; 3630 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3631 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3632 Pred == ICmpInst::ICMP_EQ)) 3633 return V; 3634 } 3635 3636 // Check for other compares that behave like bit test. 3637 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3638 TrueVal, FalseVal)) 3639 return V; 3640 3641 // If we have an equality comparison, then we know the value in one of the 3642 // arms of the select. See if substituting this value into the arm and 3643 // simplifying the result yields the same value as the other arm. 3644 if (Pred == ICmpInst::ICMP_EQ) { 3645 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3646 TrueVal || 3647 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3648 TrueVal) 3649 return FalseVal; 3650 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3651 FalseVal || 3652 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3653 FalseVal) 3654 return FalseVal; 3655 } else if (Pred == ICmpInst::ICMP_NE) { 3656 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3657 FalseVal || 3658 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3659 FalseVal) 3660 return TrueVal; 3661 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3662 TrueVal || 3663 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3664 TrueVal) 3665 return TrueVal; 3666 } 3667 3668 return nullptr; 3669 } 3670 3671 /// Given operands for a SelectInst, see if we can fold the result. 3672 /// If not, this returns null. 3673 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3674 const SimplifyQuery &Q, unsigned MaxRecurse) { 3675 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3676 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 3677 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 3678 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 3679 3680 // select undef, X, Y -> X or Y 3681 if (isa<UndefValue>(CondC)) 3682 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 3683 3684 // TODO: Vector constants with undef elements don't simplify. 3685 3686 // select true, X, Y -> X 3687 if (CondC->isAllOnesValue()) 3688 return TrueVal; 3689 // select false, X, Y -> Y 3690 if (CondC->isNullValue()) 3691 return FalseVal; 3692 } 3693 3694 // select ?, X, X -> X 3695 if (TrueVal == FalseVal) 3696 return TrueVal; 3697 3698 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 3699 return FalseVal; 3700 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 3701 return TrueVal; 3702 3703 if (Value *V = 3704 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 3705 return V; 3706 3707 return nullptr; 3708 } 3709 3710 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3711 const SimplifyQuery &Q) { 3712 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3713 } 3714 3715 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3716 /// If not, this returns null. 3717 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3718 const SimplifyQuery &Q, unsigned) { 3719 // The type of the GEP pointer operand. 3720 unsigned AS = 3721 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3722 3723 // getelementptr P -> P. 3724 if (Ops.size() == 1) 3725 return Ops[0]; 3726 3727 // Compute the (pointer) type returned by the GEP instruction. 3728 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3729 Type *GEPTy = PointerType::get(LastType, AS); 3730 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3731 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3732 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3733 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3734 3735 if (isa<UndefValue>(Ops[0])) 3736 return UndefValue::get(GEPTy); 3737 3738 if (Ops.size() == 2) { 3739 // getelementptr P, 0 -> P. 3740 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 3741 return Ops[0]; 3742 3743 Type *Ty = SrcTy; 3744 if (Ty->isSized()) { 3745 Value *P; 3746 uint64_t C; 3747 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3748 // getelementptr P, N -> P if P points to a type of zero size. 3749 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 3750 return Ops[0]; 3751 3752 // The following transforms are only safe if the ptrtoint cast 3753 // doesn't truncate the pointers. 3754 if (Ops[1]->getType()->getScalarSizeInBits() == 3755 Q.DL.getIndexSizeInBits(AS)) { 3756 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3757 if (match(P, m_Zero())) 3758 return Constant::getNullValue(GEPTy); 3759 Value *Temp; 3760 if (match(P, m_PtrToInt(m_Value(Temp)))) 3761 if (Temp->getType() == GEPTy) 3762 return Temp; 3763 return nullptr; 3764 }; 3765 3766 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3767 if (TyAllocSize == 1 && 3768 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3769 if (Value *R = PtrToIntOrZero(P)) 3770 return R; 3771 3772 // getelementptr V, (ashr (sub P, V), C) -> Q 3773 // if P points to a type of size 1 << C. 3774 if (match(Ops[1], 3775 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3776 m_ConstantInt(C))) && 3777 TyAllocSize == 1ULL << C) 3778 if (Value *R = PtrToIntOrZero(P)) 3779 return R; 3780 3781 // getelementptr V, (sdiv (sub P, V), C) -> Q 3782 // if P points to a type of size C. 3783 if (match(Ops[1], 3784 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3785 m_SpecificInt(TyAllocSize)))) 3786 if (Value *R = PtrToIntOrZero(P)) 3787 return R; 3788 } 3789 } 3790 } 3791 3792 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3793 all_of(Ops.slice(1).drop_back(1), 3794 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3795 unsigned IdxWidth = 3796 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3797 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 3798 APInt BasePtrOffset(IdxWidth, 0); 3799 Value *StrippedBasePtr = 3800 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3801 BasePtrOffset); 3802 3803 // gep (gep V, C), (sub 0, V) -> C 3804 if (match(Ops.back(), 3805 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3806 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3807 return ConstantExpr::getIntToPtr(CI, GEPTy); 3808 } 3809 // gep (gep V, C), (xor V, -1) -> C-1 3810 if (match(Ops.back(), 3811 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3812 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3813 return ConstantExpr::getIntToPtr(CI, GEPTy); 3814 } 3815 } 3816 } 3817 3818 // Check to see if this is constant foldable. 3819 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3820 return nullptr; 3821 3822 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3823 Ops.slice(1)); 3824 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3825 return CEFolded; 3826 return CE; 3827 } 3828 3829 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3830 const SimplifyQuery &Q) { 3831 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3832 } 3833 3834 /// Given operands for an InsertValueInst, see if we can fold the result. 3835 /// If not, this returns null. 3836 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3837 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3838 unsigned) { 3839 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3840 if (Constant *CVal = dyn_cast<Constant>(Val)) 3841 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3842 3843 // insertvalue x, undef, n -> x 3844 if (match(Val, m_Undef())) 3845 return Agg; 3846 3847 // insertvalue x, (extractvalue y, n), n 3848 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3849 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3850 EV->getIndices() == Idxs) { 3851 // insertvalue undef, (extractvalue y, n), n -> y 3852 if (match(Agg, m_Undef())) 3853 return EV->getAggregateOperand(); 3854 3855 // insertvalue y, (extractvalue y, n), n -> y 3856 if (Agg == EV->getAggregateOperand()) 3857 return Agg; 3858 } 3859 3860 return nullptr; 3861 } 3862 3863 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3864 ArrayRef<unsigned> Idxs, 3865 const SimplifyQuery &Q) { 3866 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3867 } 3868 3869 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 3870 const SimplifyQuery &Q) { 3871 // Try to constant fold. 3872 auto *VecC = dyn_cast<Constant>(Vec); 3873 auto *ValC = dyn_cast<Constant>(Val); 3874 auto *IdxC = dyn_cast<Constant>(Idx); 3875 if (VecC && ValC && IdxC) 3876 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 3877 3878 // Fold into undef if index is out of bounds. 3879 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 3880 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 3881 if (CI->uge(NumElements)) 3882 return UndefValue::get(Vec->getType()); 3883 } 3884 3885 // If index is undef, it might be out of bounds (see above case) 3886 if (isa<UndefValue>(Idx)) 3887 return UndefValue::get(Vec->getType()); 3888 3889 return nullptr; 3890 } 3891 3892 /// Given operands for an ExtractValueInst, see if we can fold the result. 3893 /// If not, this returns null. 3894 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3895 const SimplifyQuery &, unsigned) { 3896 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3897 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3898 3899 // extractvalue x, (insertvalue y, elt, n), n -> elt 3900 unsigned NumIdxs = Idxs.size(); 3901 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3902 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3903 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3904 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3905 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3906 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3907 Idxs.slice(0, NumCommonIdxs)) { 3908 if (NumIdxs == NumInsertValueIdxs) 3909 return IVI->getInsertedValueOperand(); 3910 break; 3911 } 3912 } 3913 3914 return nullptr; 3915 } 3916 3917 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3918 const SimplifyQuery &Q) { 3919 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3920 } 3921 3922 /// Given operands for an ExtractElementInst, see if we can fold the result. 3923 /// If not, this returns null. 3924 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3925 unsigned) { 3926 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3927 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3928 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3929 3930 // The index is not relevant if our vector is a splat. 3931 if (auto *Splat = CVec->getSplatValue()) 3932 return Splat; 3933 3934 if (isa<UndefValue>(Vec)) 3935 return UndefValue::get(Vec->getType()->getVectorElementType()); 3936 } 3937 3938 // If extracting a specified index from the vector, see if we can recursively 3939 // find a previously computed scalar that was inserted into the vector. 3940 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 3941 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 3942 // definitely out of bounds, thus undefined result 3943 return UndefValue::get(Vec->getType()->getVectorElementType()); 3944 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3945 return Elt; 3946 } 3947 3948 // An undef extract index can be arbitrarily chosen to be an out-of-range 3949 // index value, which would result in the instruction being undef. 3950 if (isa<UndefValue>(Idx)) 3951 return UndefValue::get(Vec->getType()->getVectorElementType()); 3952 3953 return nullptr; 3954 } 3955 3956 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3957 const SimplifyQuery &Q) { 3958 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3959 } 3960 3961 /// See if we can fold the given phi. If not, returns null. 3962 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3963 // If all of the PHI's incoming values are the same then replace the PHI node 3964 // with the common value. 3965 Value *CommonValue = nullptr; 3966 bool HasUndefInput = false; 3967 for (Value *Incoming : PN->incoming_values()) { 3968 // If the incoming value is the phi node itself, it can safely be skipped. 3969 if (Incoming == PN) continue; 3970 if (isa<UndefValue>(Incoming)) { 3971 // Remember that we saw an undef value, but otherwise ignore them. 3972 HasUndefInput = true; 3973 continue; 3974 } 3975 if (CommonValue && Incoming != CommonValue) 3976 return nullptr; // Not the same, bail out. 3977 CommonValue = Incoming; 3978 } 3979 3980 // If CommonValue is null then all of the incoming values were either undef or 3981 // equal to the phi node itself. 3982 if (!CommonValue) 3983 return UndefValue::get(PN->getType()); 3984 3985 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3986 // instruction, we cannot return X as the result of the PHI node unless it 3987 // dominates the PHI block. 3988 if (HasUndefInput) 3989 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3990 3991 return CommonValue; 3992 } 3993 3994 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3995 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3996 if (auto *C = dyn_cast<Constant>(Op)) 3997 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3998 3999 if (auto *CI = dyn_cast<CastInst>(Op)) { 4000 auto *Src = CI->getOperand(0); 4001 Type *SrcTy = Src->getType(); 4002 Type *MidTy = CI->getType(); 4003 Type *DstTy = Ty; 4004 if (Src->getType() == Ty) { 4005 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4006 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4007 Type *SrcIntPtrTy = 4008 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4009 Type *MidIntPtrTy = 4010 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4011 Type *DstIntPtrTy = 4012 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4013 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4014 SrcIntPtrTy, MidIntPtrTy, 4015 DstIntPtrTy) == Instruction::BitCast) 4016 return Src; 4017 } 4018 } 4019 4020 // bitcast x -> x 4021 if (CastOpc == Instruction::BitCast) 4022 if (Op->getType() == Ty) 4023 return Op; 4024 4025 return nullptr; 4026 } 4027 4028 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4029 const SimplifyQuery &Q) { 4030 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4031 } 4032 4033 /// For the given destination element of a shuffle, peek through shuffles to 4034 /// match a root vector source operand that contains that element in the same 4035 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4036 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4037 int MaskVal, Value *RootVec, 4038 unsigned MaxRecurse) { 4039 if (!MaxRecurse--) 4040 return nullptr; 4041 4042 // Bail out if any mask value is undefined. That kind of shuffle may be 4043 // simplified further based on demanded bits or other folds. 4044 if (MaskVal == -1) 4045 return nullptr; 4046 4047 // The mask value chooses which source operand we need to look at next. 4048 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4049 int RootElt = MaskVal; 4050 Value *SourceOp = Op0; 4051 if (MaskVal >= InVecNumElts) { 4052 RootElt = MaskVal - InVecNumElts; 4053 SourceOp = Op1; 4054 } 4055 4056 // If the source operand is a shuffle itself, look through it to find the 4057 // matching root vector. 4058 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4059 return foldIdentityShuffles( 4060 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4061 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4062 } 4063 4064 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4065 // size? 4066 4067 // The source operand is not a shuffle. Initialize the root vector value for 4068 // this shuffle if that has not been done yet. 4069 if (!RootVec) 4070 RootVec = SourceOp; 4071 4072 // Give up as soon as a source operand does not match the existing root value. 4073 if (RootVec != SourceOp) 4074 return nullptr; 4075 4076 // The element must be coming from the same lane in the source vector 4077 // (although it may have crossed lanes in intermediate shuffles). 4078 if (RootElt != DestElt) 4079 return nullptr; 4080 4081 return RootVec; 4082 } 4083 4084 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4085 Type *RetTy, const SimplifyQuery &Q, 4086 unsigned MaxRecurse) { 4087 if (isa<UndefValue>(Mask)) 4088 return UndefValue::get(RetTy); 4089 4090 Type *InVecTy = Op0->getType(); 4091 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4092 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4093 4094 SmallVector<int, 32> Indices; 4095 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4096 assert(MaskNumElts == Indices.size() && 4097 "Size of Indices not same as number of mask elements?"); 4098 4099 // Canonicalization: If mask does not select elements from an input vector, 4100 // replace that input vector with undef. 4101 bool MaskSelects0 = false, MaskSelects1 = false; 4102 for (unsigned i = 0; i != MaskNumElts; ++i) { 4103 if (Indices[i] == -1) 4104 continue; 4105 if ((unsigned)Indices[i] < InVecNumElts) 4106 MaskSelects0 = true; 4107 else 4108 MaskSelects1 = true; 4109 } 4110 if (!MaskSelects0) 4111 Op0 = UndefValue::get(InVecTy); 4112 if (!MaskSelects1) 4113 Op1 = UndefValue::get(InVecTy); 4114 4115 auto *Op0Const = dyn_cast<Constant>(Op0); 4116 auto *Op1Const = dyn_cast<Constant>(Op1); 4117 4118 // If all operands are constant, constant fold the shuffle. 4119 if (Op0Const && Op1Const) 4120 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4121 4122 // Canonicalization: if only one input vector is constant, it shall be the 4123 // second one. 4124 if (Op0Const && !Op1Const) { 4125 std::swap(Op0, Op1); 4126 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4127 } 4128 4129 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4130 // value type is same as the input vectors' type. 4131 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4132 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4133 OpShuf->getMask()->getSplatValue()) 4134 return Op0; 4135 4136 // Don't fold a shuffle with undef mask elements. This may get folded in a 4137 // better way using demanded bits or other analysis. 4138 // TODO: Should we allow this? 4139 if (find(Indices, -1) != Indices.end()) 4140 return nullptr; 4141 4142 // Check if every element of this shuffle can be mapped back to the 4143 // corresponding element of a single root vector. If so, we don't need this 4144 // shuffle. This handles simple identity shuffles as well as chains of 4145 // shuffles that may widen/narrow and/or move elements across lanes and back. 4146 Value *RootVec = nullptr; 4147 for (unsigned i = 0; i != MaskNumElts; ++i) { 4148 // Note that recursion is limited for each vector element, so if any element 4149 // exceeds the limit, this will fail to simplify. 4150 RootVec = 4151 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4152 4153 // We can't replace a widening/narrowing shuffle with one of its operands. 4154 if (!RootVec || RootVec->getType() != RetTy) 4155 return nullptr; 4156 } 4157 return RootVec; 4158 } 4159 4160 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4161 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4162 Type *RetTy, const SimplifyQuery &Q) { 4163 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4164 } 4165 4166 static Constant *propagateNaN(Constant *In) { 4167 // If the input is a vector with undef elements, just return a default NaN. 4168 if (!In->isNaN()) 4169 return ConstantFP::getNaN(In->getType()); 4170 4171 // Propagate the existing NaN constant when possible. 4172 // TODO: Should we quiet a signaling NaN? 4173 return In; 4174 } 4175 4176 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4177 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4178 return ConstantFP::getNaN(Op0->getType()); 4179 4180 if (match(Op0, m_NaN())) 4181 return propagateNaN(cast<Constant>(Op0)); 4182 if (match(Op1, m_NaN())) 4183 return propagateNaN(cast<Constant>(Op1)); 4184 4185 return nullptr; 4186 } 4187 4188 /// Given operands for an FAdd, see if we can fold the result. If not, this 4189 /// returns null. 4190 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4191 const SimplifyQuery &Q, unsigned MaxRecurse) { 4192 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4193 return C; 4194 4195 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4196 return C; 4197 4198 // fadd X, -0 ==> X 4199 if (match(Op1, m_NegZeroFP())) 4200 return Op0; 4201 4202 // fadd X, 0 ==> X, when we know X is not -0 4203 if (match(Op1, m_PosZeroFP()) && 4204 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4205 return Op0; 4206 4207 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4208 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4209 // Negative zeros are allowed because we always end up with positive zero: 4210 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4211 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4212 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4213 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4214 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4215 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4216 return ConstantFP::getNullValue(Op0->getType()); 4217 4218 return nullptr; 4219 } 4220 4221 /// Given operands for an FSub, see if we can fold the result. If not, this 4222 /// returns null. 4223 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4224 const SimplifyQuery &Q, unsigned MaxRecurse) { 4225 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4226 return C; 4227 4228 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4229 return C; 4230 4231 // fsub X, +0 ==> X 4232 if (match(Op1, m_PosZeroFP())) 4233 return Op0; 4234 4235 // fsub X, -0 ==> X, when we know X is not -0 4236 if (match(Op1, m_NegZeroFP()) && 4237 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4238 return Op0; 4239 4240 // fsub -0.0, (fsub -0.0, X) ==> X 4241 Value *X; 4242 if (match(Op0, m_NegZeroFP()) && 4243 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4244 return X; 4245 4246 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4247 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4248 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4249 return X; 4250 4251 // fsub nnan x, x ==> 0.0 4252 if (FMF.noNaNs() && Op0 == Op1) 4253 return Constant::getNullValue(Op0->getType()); 4254 4255 return nullptr; 4256 } 4257 4258 /// Given the operands for an FMul, see if we can fold the result 4259 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4260 const SimplifyQuery &Q, unsigned MaxRecurse) { 4261 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4262 return C; 4263 4264 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4265 return C; 4266 4267 // fmul X, 1.0 ==> X 4268 if (match(Op1, m_FPOne())) 4269 return Op0; 4270 4271 // fmul nnan nsz X, 0 ==> 0 4272 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4273 return ConstantFP::getNullValue(Op0->getType()); 4274 4275 // sqrt(X) * sqrt(X) --> X, if we can: 4276 // 1. Remove the intermediate rounding (reassociate). 4277 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4278 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4279 Value *X; 4280 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4281 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4282 return X; 4283 4284 return nullptr; 4285 } 4286 4287 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4288 const SimplifyQuery &Q) { 4289 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4290 } 4291 4292 4293 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4294 const SimplifyQuery &Q) { 4295 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4296 } 4297 4298 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4299 const SimplifyQuery &Q) { 4300 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4301 } 4302 4303 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4304 const SimplifyQuery &Q, unsigned) { 4305 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4306 return C; 4307 4308 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4309 return C; 4310 4311 // X / 1.0 -> X 4312 if (match(Op1, m_FPOne())) 4313 return Op0; 4314 4315 // 0 / X -> 0 4316 // Requires that NaNs are off (X could be zero) and signed zeroes are 4317 // ignored (X could be positive or negative, so the output sign is unknown). 4318 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4319 return ConstantFP::getNullValue(Op0->getType()); 4320 4321 if (FMF.noNaNs()) { 4322 // X / X -> 1.0 is legal when NaNs are ignored. 4323 // We can ignore infinities because INF/INF is NaN. 4324 if (Op0 == Op1) 4325 return ConstantFP::get(Op0->getType(), 1.0); 4326 4327 // (X * Y) / Y --> X if we can reassociate to the above form. 4328 Value *X; 4329 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4330 return X; 4331 4332 // -X / X -> -1.0 and 4333 // X / -X -> -1.0 are legal when NaNs are ignored. 4334 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4335 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 4336 BinaryOperator::getFNegArgument(Op0) == Op1) || 4337 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 4338 BinaryOperator::getFNegArgument(Op1) == Op0)) 4339 return ConstantFP::get(Op0->getType(), -1.0); 4340 } 4341 4342 return nullptr; 4343 } 4344 4345 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4346 const SimplifyQuery &Q) { 4347 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4348 } 4349 4350 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4351 const SimplifyQuery &Q, unsigned) { 4352 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4353 return C; 4354 4355 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4356 return C; 4357 4358 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4359 // The constant match may include undef elements in a vector, so return a full 4360 // zero constant as the result. 4361 if (FMF.noNaNs()) { 4362 // +0 % X -> 0 4363 if (match(Op0, m_PosZeroFP())) 4364 return ConstantFP::getNullValue(Op0->getType()); 4365 // -0 % X -> -0 4366 if (match(Op0, m_NegZeroFP())) 4367 return ConstantFP::getNegativeZero(Op0->getType()); 4368 } 4369 4370 return nullptr; 4371 } 4372 4373 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4374 const SimplifyQuery &Q) { 4375 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4376 } 4377 4378 //=== Helper functions for higher up the class hierarchy. 4379 4380 /// Given operands for a BinaryOperator, see if we can fold the result. 4381 /// If not, this returns null. 4382 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4383 const SimplifyQuery &Q, unsigned MaxRecurse) { 4384 switch (Opcode) { 4385 case Instruction::Add: 4386 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4387 case Instruction::Sub: 4388 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4389 case Instruction::Mul: 4390 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4391 case Instruction::SDiv: 4392 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4393 case Instruction::UDiv: 4394 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4395 case Instruction::SRem: 4396 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4397 case Instruction::URem: 4398 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4399 case Instruction::Shl: 4400 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4401 case Instruction::LShr: 4402 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4403 case Instruction::AShr: 4404 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4405 case Instruction::And: 4406 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4407 case Instruction::Or: 4408 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4409 case Instruction::Xor: 4410 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4411 case Instruction::FAdd: 4412 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4413 case Instruction::FSub: 4414 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4415 case Instruction::FMul: 4416 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4417 case Instruction::FDiv: 4418 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4419 case Instruction::FRem: 4420 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4421 default: 4422 llvm_unreachable("Unexpected opcode"); 4423 } 4424 } 4425 4426 /// Given operands for a BinaryOperator, see if we can fold the result. 4427 /// If not, this returns null. 4428 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4429 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4430 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4431 const FastMathFlags &FMF, const SimplifyQuery &Q, 4432 unsigned MaxRecurse) { 4433 switch (Opcode) { 4434 case Instruction::FAdd: 4435 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4436 case Instruction::FSub: 4437 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4438 case Instruction::FMul: 4439 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4440 case Instruction::FDiv: 4441 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4442 default: 4443 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4444 } 4445 } 4446 4447 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4448 const SimplifyQuery &Q) { 4449 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4450 } 4451 4452 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4453 FastMathFlags FMF, const SimplifyQuery &Q) { 4454 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4455 } 4456 4457 /// Given operands for a CmpInst, see if we can fold the result. 4458 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4459 const SimplifyQuery &Q, unsigned MaxRecurse) { 4460 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4461 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4462 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4463 } 4464 4465 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4466 const SimplifyQuery &Q) { 4467 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4468 } 4469 4470 static bool IsIdempotent(Intrinsic::ID ID) { 4471 switch (ID) { 4472 default: return false; 4473 4474 // Unary idempotent: f(f(x)) = f(x) 4475 case Intrinsic::fabs: 4476 case Intrinsic::floor: 4477 case Intrinsic::ceil: 4478 case Intrinsic::trunc: 4479 case Intrinsic::rint: 4480 case Intrinsic::nearbyint: 4481 case Intrinsic::round: 4482 case Intrinsic::canonicalize: 4483 return true; 4484 } 4485 } 4486 4487 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4488 const DataLayout &DL) { 4489 GlobalValue *PtrSym; 4490 APInt PtrOffset; 4491 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4492 return nullptr; 4493 4494 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4495 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4496 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4497 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4498 4499 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4500 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4501 return nullptr; 4502 4503 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4504 if (OffsetInt % 4 != 0) 4505 return nullptr; 4506 4507 Constant *C = ConstantExpr::getGetElementPtr( 4508 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4509 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4510 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4511 if (!Loaded) 4512 return nullptr; 4513 4514 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4515 if (!LoadedCE) 4516 return nullptr; 4517 4518 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4519 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4520 if (!LoadedCE) 4521 return nullptr; 4522 } 4523 4524 if (LoadedCE->getOpcode() != Instruction::Sub) 4525 return nullptr; 4526 4527 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4528 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4529 return nullptr; 4530 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4531 4532 Constant *LoadedRHS = LoadedCE->getOperand(1); 4533 GlobalValue *LoadedRHSSym; 4534 APInt LoadedRHSOffset; 4535 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4536 DL) || 4537 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4538 return nullptr; 4539 4540 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4541 } 4542 4543 static bool maskIsAllZeroOrUndef(Value *Mask) { 4544 auto *ConstMask = dyn_cast<Constant>(Mask); 4545 if (!ConstMask) 4546 return false; 4547 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4548 return true; 4549 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4550 ++I) { 4551 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4552 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4553 continue; 4554 return false; 4555 } 4556 return true; 4557 } 4558 4559 template <typename IterTy> 4560 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4561 const SimplifyQuery &Q, unsigned MaxRecurse) { 4562 Intrinsic::ID IID = F->getIntrinsicID(); 4563 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4564 4565 // Unary Ops 4566 if (NumOperands == 1) { 4567 // Perform idempotent optimizations 4568 if (IsIdempotent(IID)) { 4569 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4570 if (II->getIntrinsicID() == IID) 4571 return II; 4572 } 4573 } 4574 4575 Value *IIOperand = *ArgBegin; 4576 Value *X; 4577 switch (IID) { 4578 case Intrinsic::fabs: { 4579 if (SignBitMustBeZero(IIOperand, Q.TLI)) 4580 return IIOperand; 4581 return nullptr; 4582 } 4583 case Intrinsic::bswap: { 4584 // bswap(bswap(x)) -> x 4585 if (match(IIOperand, m_BSwap(m_Value(X)))) 4586 return X; 4587 return nullptr; 4588 } 4589 case Intrinsic::bitreverse: { 4590 // bitreverse(bitreverse(x)) -> x 4591 if (match(IIOperand, m_BitReverse(m_Value(X)))) 4592 return X; 4593 return nullptr; 4594 } 4595 case Intrinsic::exp: { 4596 // exp(log(x)) -> x 4597 if (Q.CxtI->hasAllowReassoc() && 4598 match(IIOperand, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 4599 return X; 4600 return nullptr; 4601 } 4602 case Intrinsic::exp2: { 4603 // exp2(log2(x)) -> x 4604 if (Q.CxtI->hasAllowReassoc() && 4605 match(IIOperand, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 4606 return X; 4607 return nullptr; 4608 } 4609 case Intrinsic::log: { 4610 // log(exp(x)) -> x 4611 if (Q.CxtI->hasAllowReassoc() && 4612 match(IIOperand, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 4613 return X; 4614 return nullptr; 4615 } 4616 case Intrinsic::log2: { 4617 // log2(exp2(x)) -> x 4618 if (Q.CxtI->hasAllowReassoc() && 4619 match(IIOperand, m_Intrinsic<Intrinsic::exp2>(m_Value(X)))) { 4620 return X; 4621 } 4622 return nullptr; 4623 } 4624 default: 4625 return nullptr; 4626 } 4627 } 4628 4629 // Binary Ops 4630 if (NumOperands == 2) { 4631 Value *LHS = *ArgBegin; 4632 Value *RHS = *(ArgBegin + 1); 4633 Type *ReturnType = F->getReturnType(); 4634 4635 switch (IID) { 4636 case Intrinsic::usub_with_overflow: 4637 case Intrinsic::ssub_with_overflow: { 4638 // X - X -> { 0, false } 4639 if (LHS == RHS) 4640 return Constant::getNullValue(ReturnType); 4641 4642 // X - undef -> undef 4643 // undef - X -> undef 4644 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4645 return UndefValue::get(ReturnType); 4646 4647 return nullptr; 4648 } 4649 case Intrinsic::uadd_with_overflow: 4650 case Intrinsic::sadd_with_overflow: { 4651 // X + undef -> undef 4652 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4653 return UndefValue::get(ReturnType); 4654 4655 return nullptr; 4656 } 4657 case Intrinsic::umul_with_overflow: 4658 case Intrinsic::smul_with_overflow: { 4659 // 0 * X -> { 0, false } 4660 // X * 0 -> { 0, false } 4661 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4662 return Constant::getNullValue(ReturnType); 4663 4664 // undef * X -> { 0, false } 4665 // X * undef -> { 0, false } 4666 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4667 return Constant::getNullValue(ReturnType); 4668 4669 return nullptr; 4670 } 4671 case Intrinsic::load_relative: { 4672 Constant *C0 = dyn_cast<Constant>(LHS); 4673 Constant *C1 = dyn_cast<Constant>(RHS); 4674 if (C0 && C1) 4675 return SimplifyRelativeLoad(C0, C1, Q.DL); 4676 return nullptr; 4677 } 4678 case Intrinsic::powi: 4679 if (ConstantInt *Power = dyn_cast<ConstantInt>(RHS)) { 4680 // powi(x, 0) -> 1.0 4681 if (Power->isZero()) 4682 return ConstantFP::get(LHS->getType(), 1.0); 4683 // powi(x, 1) -> x 4684 if (Power->isOne()) 4685 return LHS; 4686 } 4687 return nullptr; 4688 default: 4689 return nullptr; 4690 } 4691 } 4692 4693 // Simplify calls to llvm.masked.load.* 4694 switch (IID) { 4695 case Intrinsic::masked_load: { 4696 Value *MaskArg = ArgBegin[2]; 4697 Value *PassthruArg = ArgBegin[3]; 4698 // If the mask is all zeros or undef, the "passthru" argument is the result. 4699 if (maskIsAllZeroOrUndef(MaskArg)) 4700 return PassthruArg; 4701 return nullptr; 4702 } 4703 default: 4704 return nullptr; 4705 } 4706 } 4707 4708 template <typename IterTy> 4709 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4710 IterTy ArgEnd, const SimplifyQuery &Q, 4711 unsigned MaxRecurse) { 4712 Type *Ty = V->getType(); 4713 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4714 Ty = PTy->getElementType(); 4715 FunctionType *FTy = cast<FunctionType>(Ty); 4716 4717 // call undef -> undef 4718 // call null -> undef 4719 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4720 return UndefValue::get(FTy->getReturnType()); 4721 4722 Function *F = dyn_cast<Function>(V); 4723 if (!F) 4724 return nullptr; 4725 4726 if (F->isIntrinsic()) 4727 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4728 return Ret; 4729 4730 if (!canConstantFoldCallTo(CS, F)) 4731 return nullptr; 4732 4733 SmallVector<Constant *, 4> ConstantArgs; 4734 ConstantArgs.reserve(ArgEnd - ArgBegin); 4735 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4736 Constant *C = dyn_cast<Constant>(*I); 4737 if (!C) 4738 return nullptr; 4739 ConstantArgs.push_back(C); 4740 } 4741 4742 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4743 } 4744 4745 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4746 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4747 const SimplifyQuery &Q) { 4748 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4749 } 4750 4751 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4752 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4753 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4754 } 4755 4756 Value *llvm::SimplifyCall(ImmutableCallSite ICS, const SimplifyQuery &Q) { 4757 CallSite CS(const_cast<Instruction*>(ICS.getInstruction())); 4758 return ::SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4759 Q, RecursionLimit); 4760 } 4761 4762 /// See if we can compute a simplified version of this instruction. 4763 /// If not, this returns null. 4764 4765 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4766 OptimizationRemarkEmitter *ORE) { 4767 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4768 Value *Result; 4769 4770 switch (I->getOpcode()) { 4771 default: 4772 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4773 break; 4774 case Instruction::FAdd: 4775 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4776 I->getFastMathFlags(), Q); 4777 break; 4778 case Instruction::Add: 4779 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4780 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4781 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4782 break; 4783 case Instruction::FSub: 4784 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4785 I->getFastMathFlags(), Q); 4786 break; 4787 case Instruction::Sub: 4788 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4789 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4790 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4791 break; 4792 case Instruction::FMul: 4793 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4794 I->getFastMathFlags(), Q); 4795 break; 4796 case Instruction::Mul: 4797 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4798 break; 4799 case Instruction::SDiv: 4800 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4801 break; 4802 case Instruction::UDiv: 4803 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4804 break; 4805 case Instruction::FDiv: 4806 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4807 I->getFastMathFlags(), Q); 4808 break; 4809 case Instruction::SRem: 4810 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4811 break; 4812 case Instruction::URem: 4813 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4814 break; 4815 case Instruction::FRem: 4816 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4817 I->getFastMathFlags(), Q); 4818 break; 4819 case Instruction::Shl: 4820 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4821 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4822 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4823 break; 4824 case Instruction::LShr: 4825 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4826 cast<BinaryOperator>(I)->isExact(), Q); 4827 break; 4828 case Instruction::AShr: 4829 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4830 cast<BinaryOperator>(I)->isExact(), Q); 4831 break; 4832 case Instruction::And: 4833 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4834 break; 4835 case Instruction::Or: 4836 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4837 break; 4838 case Instruction::Xor: 4839 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4840 break; 4841 case Instruction::ICmp: 4842 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4843 I->getOperand(0), I->getOperand(1), Q); 4844 break; 4845 case Instruction::FCmp: 4846 Result = 4847 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4848 I->getOperand(1), I->getFastMathFlags(), Q); 4849 break; 4850 case Instruction::Select: 4851 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4852 I->getOperand(2), Q); 4853 break; 4854 case Instruction::GetElementPtr: { 4855 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4856 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4857 Ops, Q); 4858 break; 4859 } 4860 case Instruction::InsertValue: { 4861 InsertValueInst *IV = cast<InsertValueInst>(I); 4862 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4863 IV->getInsertedValueOperand(), 4864 IV->getIndices(), Q); 4865 break; 4866 } 4867 case Instruction::InsertElement: { 4868 auto *IE = cast<InsertElementInst>(I); 4869 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 4870 IE->getOperand(2), Q); 4871 break; 4872 } 4873 case Instruction::ExtractValue: { 4874 auto *EVI = cast<ExtractValueInst>(I); 4875 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4876 EVI->getIndices(), Q); 4877 break; 4878 } 4879 case Instruction::ExtractElement: { 4880 auto *EEI = cast<ExtractElementInst>(I); 4881 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4882 EEI->getIndexOperand(), Q); 4883 break; 4884 } 4885 case Instruction::ShuffleVector: { 4886 auto *SVI = cast<ShuffleVectorInst>(I); 4887 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4888 SVI->getMask(), SVI->getType(), Q); 4889 break; 4890 } 4891 case Instruction::PHI: 4892 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4893 break; 4894 case Instruction::Call: { 4895 CallSite CS(cast<CallInst>(I)); 4896 Result = SimplifyCall(CS, Q); 4897 break; 4898 } 4899 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4900 #include "llvm/IR/Instruction.def" 4901 #undef HANDLE_CAST_INST 4902 Result = 4903 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4904 break; 4905 case Instruction::Alloca: 4906 // No simplifications for Alloca and it can't be constant folded. 4907 Result = nullptr; 4908 break; 4909 } 4910 4911 // In general, it is possible for computeKnownBits to determine all bits in a 4912 // value even when the operands are not all constants. 4913 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4914 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4915 if (Known.isConstant()) 4916 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4917 } 4918 4919 /// If called on unreachable code, the above logic may report that the 4920 /// instruction simplified to itself. Make life easier for users by 4921 /// detecting that case here, returning a safe value instead. 4922 return Result == I ? UndefValue::get(I->getType()) : Result; 4923 } 4924 4925 /// \brief Implementation of recursive simplification through an instruction's 4926 /// uses. 4927 /// 4928 /// This is the common implementation of the recursive simplification routines. 4929 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4930 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4931 /// instructions to process and attempt to simplify it using 4932 /// InstructionSimplify. 4933 /// 4934 /// This routine returns 'true' only when *it* simplifies something. The passed 4935 /// in simplified value does not count toward this. 4936 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4937 const TargetLibraryInfo *TLI, 4938 const DominatorTree *DT, 4939 AssumptionCache *AC) { 4940 bool Simplified = false; 4941 SmallSetVector<Instruction *, 8> Worklist; 4942 const DataLayout &DL = I->getModule()->getDataLayout(); 4943 4944 // If we have an explicit value to collapse to, do that round of the 4945 // simplification loop by hand initially. 4946 if (SimpleV) { 4947 for (User *U : I->users()) 4948 if (U != I) 4949 Worklist.insert(cast<Instruction>(U)); 4950 4951 // Replace the instruction with its simplified value. 4952 I->replaceAllUsesWith(SimpleV); 4953 4954 // Gracefully handle edge cases where the instruction is not wired into any 4955 // parent block. 4956 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4957 !I->mayHaveSideEffects()) 4958 I->eraseFromParent(); 4959 } else { 4960 Worklist.insert(I); 4961 } 4962 4963 // Note that we must test the size on each iteration, the worklist can grow. 4964 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4965 I = Worklist[Idx]; 4966 4967 // See if this instruction simplifies. 4968 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4969 if (!SimpleV) 4970 continue; 4971 4972 Simplified = true; 4973 4974 // Stash away all the uses of the old instruction so we can check them for 4975 // recursive simplifications after a RAUW. This is cheaper than checking all 4976 // uses of To on the recursive step in most cases. 4977 for (User *U : I->users()) 4978 Worklist.insert(cast<Instruction>(U)); 4979 4980 // Replace the instruction with its simplified value. 4981 I->replaceAllUsesWith(SimpleV); 4982 4983 // Gracefully handle edge cases where the instruction is not wired into any 4984 // parent block. 4985 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4986 !I->mayHaveSideEffects()) 4987 I->eraseFromParent(); 4988 } 4989 return Simplified; 4990 } 4991 4992 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4993 const TargetLibraryInfo *TLI, 4994 const DominatorTree *DT, 4995 AssumptionCache *AC) { 4996 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4997 } 4998 4999 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5000 const TargetLibraryInfo *TLI, 5001 const DominatorTree *DT, 5002 AssumptionCache *AC) { 5003 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5004 assert(SimpleV && "Must provide a simplified value."); 5005 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5006 } 5007 5008 namespace llvm { 5009 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5010 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5011 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5012 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5013 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5014 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5015 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5016 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5017 } 5018 5019 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5020 const DataLayout &DL) { 5021 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5022 } 5023 5024 template <class T, class... TArgs> 5025 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5026 Function &F) { 5027 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5028 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5029 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5030 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5031 } 5032 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5033 Function &); 5034 } 5035