1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 67 unsigned); 68 69 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 70 Value *FalseVal) { 71 BinaryOperator::BinaryOps BinOpCode; 72 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 73 BinOpCode = BO->getOpcode(); 74 else 75 return nullptr; 76 77 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 78 if (BinOpCode == BinaryOperator::Or) { 79 ExpectedPred = ICmpInst::ICMP_NE; 80 } else if (BinOpCode == BinaryOperator::And) { 81 ExpectedPred = ICmpInst::ICMP_EQ; 82 } else 83 return nullptr; 84 85 // %A = icmp eq %TV, %FV 86 // %B = icmp eq %X, %Y (and one of these is a select operand) 87 // %C = and %A, %B 88 // %D = select %C, %TV, %FV 89 // --> 90 // %FV 91 92 // %A = icmp ne %TV, %FV 93 // %B = icmp ne %X, %Y (and one of these is a select operand) 94 // %C = or %A, %B 95 // %D = select %C, %TV, %FV 96 // --> 97 // %TV 98 Value *X, *Y; 99 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 100 m_Specific(FalseVal)), 101 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 102 Pred1 != Pred2 || Pred1 != ExpectedPred) 103 return nullptr; 104 105 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 106 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 107 108 return nullptr; 109 } 110 111 /// For a boolean type or a vector of boolean type, return false or a vector 112 /// with every element false. 113 static Constant *getFalse(Type *Ty) { 114 return ConstantInt::getFalse(Ty); 115 } 116 117 /// For a boolean type or a vector of boolean type, return true or a vector 118 /// with every element true. 119 static Constant *getTrue(Type *Ty) { 120 return ConstantInt::getTrue(Ty); 121 } 122 123 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 124 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 125 Value *RHS) { 126 CmpInst *Cmp = dyn_cast<CmpInst>(V); 127 if (!Cmp) 128 return false; 129 CmpInst::Predicate CPred = Cmp->getPredicate(); 130 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 131 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 132 return true; 133 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 134 CRHS == LHS; 135 } 136 137 /// Does the given value dominate the specified phi node? 138 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 139 Instruction *I = dyn_cast<Instruction>(V); 140 if (!I) 141 // Arguments and constants dominate all instructions. 142 return true; 143 144 // If we are processing instructions (and/or basic blocks) that have not been 145 // fully added to a function, the parent nodes may still be null. Simply 146 // return the conservative answer in these cases. 147 if (!I->getParent() || !P->getParent() || !I->getFunction()) 148 return false; 149 150 // If we have a DominatorTree then do a precise test. 151 if (DT) 152 return DT->dominates(I, P); 153 154 // Otherwise, if the instruction is in the entry block and is not an invoke, 155 // then it obviously dominates all phi nodes. 156 if (I->getParent() == &I->getFunction()->getEntryBlock() && 157 !isa<InvokeInst>(I)) 158 return true; 159 160 return false; 161 } 162 163 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 164 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 165 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 166 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 167 /// Returns the simplified value, or null if no simplification was performed. 168 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 169 Instruction::BinaryOps OpcodeToExpand, 170 const SimplifyQuery &Q, unsigned MaxRecurse) { 171 // Recursion is always used, so bail out at once if we already hit the limit. 172 if (!MaxRecurse--) 173 return nullptr; 174 175 // Check whether the expression has the form "(A op' B) op C". 176 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 177 if (Op0->getOpcode() == OpcodeToExpand) { 178 // It does! Try turning it into "(A op C) op' (B op C)". 179 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 180 // Do "A op C" and "B op C" both simplify? 181 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 182 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 183 // They do! Return "L op' R" if it simplifies or is already available. 184 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 185 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 186 && L == B && R == A)) { 187 ++NumExpand; 188 return LHS; 189 } 190 // Otherwise return "L op' R" if it simplifies. 191 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 192 ++NumExpand; 193 return V; 194 } 195 } 196 } 197 198 // Check whether the expression has the form "A op (B op' C)". 199 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 200 if (Op1->getOpcode() == OpcodeToExpand) { 201 // It does! Try turning it into "(A op B) op' (A op C)". 202 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 203 // Do "A op B" and "A op C" both simplify? 204 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 205 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 206 // They do! Return "L op' R" if it simplifies or is already available. 207 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 208 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 209 && L == C && R == B)) { 210 ++NumExpand; 211 return RHS; 212 } 213 // Otherwise return "L op' R" if it simplifies. 214 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 215 ++NumExpand; 216 return V; 217 } 218 } 219 } 220 221 return nullptr; 222 } 223 224 /// Generic simplifications for associative binary operations. 225 /// Returns the simpler value, or null if none was found. 226 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 227 Value *LHS, Value *RHS, 228 const SimplifyQuery &Q, 229 unsigned MaxRecurse) { 230 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 231 232 // Recursion is always used, so bail out at once if we already hit the limit. 233 if (!MaxRecurse--) 234 return nullptr; 235 236 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 237 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 238 239 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 240 if (Op0 && Op0->getOpcode() == Opcode) { 241 Value *A = Op0->getOperand(0); 242 Value *B = Op0->getOperand(1); 243 Value *C = RHS; 244 245 // Does "B op C" simplify? 246 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 247 // It does! Return "A op V" if it simplifies or is already available. 248 // If V equals B then "A op V" is just the LHS. 249 if (V == B) return LHS; 250 // Otherwise return "A op V" if it simplifies. 251 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 252 ++NumReassoc; 253 return W; 254 } 255 } 256 } 257 258 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 259 if (Op1 && Op1->getOpcode() == Opcode) { 260 Value *A = LHS; 261 Value *B = Op1->getOperand(0); 262 Value *C = Op1->getOperand(1); 263 264 // Does "A op B" simplify? 265 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 266 // It does! Return "V op C" if it simplifies or is already available. 267 // If V equals B then "V op C" is just the RHS. 268 if (V == B) return RHS; 269 // Otherwise return "V op C" if it simplifies. 270 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 271 ++NumReassoc; 272 return W; 273 } 274 } 275 } 276 277 // The remaining transforms require commutativity as well as associativity. 278 if (!Instruction::isCommutative(Opcode)) 279 return nullptr; 280 281 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 282 if (Op0 && Op0->getOpcode() == Opcode) { 283 Value *A = Op0->getOperand(0); 284 Value *B = Op0->getOperand(1); 285 Value *C = RHS; 286 287 // Does "C op A" simplify? 288 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 289 // It does! Return "V op B" if it simplifies or is already available. 290 // If V equals A then "V op B" is just the LHS. 291 if (V == A) return LHS; 292 // Otherwise return "V op B" if it simplifies. 293 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 294 ++NumReassoc; 295 return W; 296 } 297 } 298 } 299 300 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 301 if (Op1 && Op1->getOpcode() == Opcode) { 302 Value *A = LHS; 303 Value *B = Op1->getOperand(0); 304 Value *C = Op1->getOperand(1); 305 306 // Does "C op A" simplify? 307 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 308 // It does! Return "B op V" if it simplifies or is already available. 309 // If V equals C then "B op V" is just the RHS. 310 if (V == C) return RHS; 311 // Otherwise return "B op V" if it simplifies. 312 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 313 ++NumReassoc; 314 return W; 315 } 316 } 317 } 318 319 return nullptr; 320 } 321 322 /// In the case of a binary operation with a select instruction as an operand, 323 /// try to simplify the binop by seeing whether evaluating it on both branches 324 /// of the select results in the same value. Returns the common value if so, 325 /// otherwise returns null. 326 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 327 Value *RHS, const SimplifyQuery &Q, 328 unsigned MaxRecurse) { 329 // Recursion is always used, so bail out at once if we already hit the limit. 330 if (!MaxRecurse--) 331 return nullptr; 332 333 SelectInst *SI; 334 if (isa<SelectInst>(LHS)) { 335 SI = cast<SelectInst>(LHS); 336 } else { 337 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 338 SI = cast<SelectInst>(RHS); 339 } 340 341 // Evaluate the BinOp on the true and false branches of the select. 342 Value *TV; 343 Value *FV; 344 if (SI == LHS) { 345 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 346 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 347 } else { 348 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 349 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 350 } 351 352 // If they simplified to the same value, then return the common value. 353 // If they both failed to simplify then return null. 354 if (TV == FV) 355 return TV; 356 357 // If one branch simplified to undef, return the other one. 358 if (TV && isa<UndefValue>(TV)) 359 return FV; 360 if (FV && isa<UndefValue>(FV)) 361 return TV; 362 363 // If applying the operation did not change the true and false select values, 364 // then the result of the binop is the select itself. 365 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 366 return SI; 367 368 // If one branch simplified and the other did not, and the simplified 369 // value is equal to the unsimplified one, return the simplified value. 370 // For example, select (cond, X, X & Z) & Z -> X & Z. 371 if ((FV && !TV) || (TV && !FV)) { 372 // Check that the simplified value has the form "X op Y" where "op" is the 373 // same as the original operation. 374 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 375 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 376 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 377 // We already know that "op" is the same as for the simplified value. See 378 // if the operands match too. If so, return the simplified value. 379 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 380 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 381 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 382 if (Simplified->getOperand(0) == UnsimplifiedLHS && 383 Simplified->getOperand(1) == UnsimplifiedRHS) 384 return Simplified; 385 if (Simplified->isCommutative() && 386 Simplified->getOperand(1) == UnsimplifiedLHS && 387 Simplified->getOperand(0) == UnsimplifiedRHS) 388 return Simplified; 389 } 390 } 391 392 return nullptr; 393 } 394 395 /// In the case of a comparison with a select instruction, try to simplify the 396 /// comparison by seeing whether both branches of the select result in the same 397 /// value. Returns the common value if so, otherwise returns null. 398 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 399 Value *RHS, const SimplifyQuery &Q, 400 unsigned MaxRecurse) { 401 // Recursion is always used, so bail out at once if we already hit the limit. 402 if (!MaxRecurse--) 403 return nullptr; 404 405 // Make sure the select is on the LHS. 406 if (!isa<SelectInst>(LHS)) { 407 std::swap(LHS, RHS); 408 Pred = CmpInst::getSwappedPredicate(Pred); 409 } 410 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 411 SelectInst *SI = cast<SelectInst>(LHS); 412 Value *Cond = SI->getCondition(); 413 Value *TV = SI->getTrueValue(); 414 Value *FV = SI->getFalseValue(); 415 416 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 417 // Does "cmp TV, RHS" simplify? 418 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 419 if (TCmp == Cond) { 420 // It not only simplified, it simplified to the select condition. Replace 421 // it with 'true'. 422 TCmp = getTrue(Cond->getType()); 423 } else if (!TCmp) { 424 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 425 // condition then we can replace it with 'true'. Otherwise give up. 426 if (!isSameCompare(Cond, Pred, TV, RHS)) 427 return nullptr; 428 TCmp = getTrue(Cond->getType()); 429 } 430 431 // Does "cmp FV, RHS" simplify? 432 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 433 if (FCmp == Cond) { 434 // It not only simplified, it simplified to the select condition. Replace 435 // it with 'false'. 436 FCmp = getFalse(Cond->getType()); 437 } else if (!FCmp) { 438 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 439 // condition then we can replace it with 'false'. Otherwise give up. 440 if (!isSameCompare(Cond, Pred, FV, RHS)) 441 return nullptr; 442 FCmp = getFalse(Cond->getType()); 443 } 444 445 // If both sides simplified to the same value, then use it as the result of 446 // the original comparison. 447 if (TCmp == FCmp) 448 return TCmp; 449 450 // The remaining cases only make sense if the select condition has the same 451 // type as the result of the comparison, so bail out if this is not so. 452 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 453 return nullptr; 454 // If the false value simplified to false, then the result of the compare 455 // is equal to "Cond && TCmp". This also catches the case when the false 456 // value simplified to false and the true value to true, returning "Cond". 457 if (match(FCmp, m_Zero())) 458 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 459 return V; 460 // If the true value simplified to true, then the result of the compare 461 // is equal to "Cond || FCmp". 462 if (match(TCmp, m_One())) 463 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 464 return V; 465 // Finally, if the false value simplified to true and the true value to 466 // false, then the result of the compare is equal to "!Cond". 467 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 468 if (Value *V = 469 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 470 Q, MaxRecurse)) 471 return V; 472 473 return nullptr; 474 } 475 476 /// In the case of a binary operation with an operand that is a PHI instruction, 477 /// try to simplify the binop by seeing whether evaluating it on the incoming 478 /// phi values yields the same result for every value. If so returns the common 479 /// value, otherwise returns null. 480 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 481 Value *RHS, const SimplifyQuery &Q, 482 unsigned MaxRecurse) { 483 // Recursion is always used, so bail out at once if we already hit the limit. 484 if (!MaxRecurse--) 485 return nullptr; 486 487 PHINode *PI; 488 if (isa<PHINode>(LHS)) { 489 PI = cast<PHINode>(LHS); 490 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 491 if (!valueDominatesPHI(RHS, PI, Q.DT)) 492 return nullptr; 493 } else { 494 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 495 PI = cast<PHINode>(RHS); 496 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 497 if (!valueDominatesPHI(LHS, PI, Q.DT)) 498 return nullptr; 499 } 500 501 // Evaluate the BinOp on the incoming phi values. 502 Value *CommonValue = nullptr; 503 for (Value *Incoming : PI->incoming_values()) { 504 // If the incoming value is the phi node itself, it can safely be skipped. 505 if (Incoming == PI) continue; 506 Value *V = PI == LHS ? 507 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 508 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 509 // If the operation failed to simplify, or simplified to a different value 510 // to previously, then give up. 511 if (!V || (CommonValue && V != CommonValue)) 512 return nullptr; 513 CommonValue = V; 514 } 515 516 return CommonValue; 517 } 518 519 /// In the case of a comparison with a PHI instruction, try to simplify the 520 /// comparison by seeing whether comparing with all of the incoming phi values 521 /// yields the same result every time. If so returns the common result, 522 /// otherwise returns null. 523 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 524 const SimplifyQuery &Q, unsigned MaxRecurse) { 525 // Recursion is always used, so bail out at once if we already hit the limit. 526 if (!MaxRecurse--) 527 return nullptr; 528 529 // Make sure the phi is on the LHS. 530 if (!isa<PHINode>(LHS)) { 531 std::swap(LHS, RHS); 532 Pred = CmpInst::getSwappedPredicate(Pred); 533 } 534 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 535 PHINode *PI = cast<PHINode>(LHS); 536 537 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 538 if (!valueDominatesPHI(RHS, PI, Q.DT)) 539 return nullptr; 540 541 // Evaluate the BinOp on the incoming phi values. 542 Value *CommonValue = nullptr; 543 for (Value *Incoming : PI->incoming_values()) { 544 // If the incoming value is the phi node itself, it can safely be skipped. 545 if (Incoming == PI) continue; 546 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 547 // If the operation failed to simplify, or simplified to a different value 548 // to previously, then give up. 549 if (!V || (CommonValue && V != CommonValue)) 550 return nullptr; 551 CommonValue = V; 552 } 553 554 return CommonValue; 555 } 556 557 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 558 Value *&Op0, Value *&Op1, 559 const SimplifyQuery &Q) { 560 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 561 if (auto *CRHS = dyn_cast<Constant>(Op1)) 562 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 563 564 // Canonicalize the constant to the RHS if this is a commutative operation. 565 if (Instruction::isCommutative(Opcode)) 566 std::swap(Op0, Op1); 567 } 568 return nullptr; 569 } 570 571 /// Given operands for an Add, see if we can fold the result. 572 /// If not, this returns null. 573 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 574 const SimplifyQuery &Q, unsigned MaxRecurse) { 575 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 576 return C; 577 578 // X + undef -> undef 579 if (match(Op1, m_Undef())) 580 return Op1; 581 582 // X + 0 -> X 583 if (match(Op1, m_Zero())) 584 return Op0; 585 586 // If two operands are negative, return 0. 587 if (isKnownNegation(Op0, Op1)) 588 return Constant::getNullValue(Op0->getType()); 589 590 // X + (Y - X) -> Y 591 // (Y - X) + X -> Y 592 // Eg: X + -X -> 0 593 Value *Y = nullptr; 594 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 595 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 596 return Y; 597 598 // X + ~X -> -1 since ~X = -X-1 599 Type *Ty = Op0->getType(); 600 if (match(Op0, m_Not(m_Specific(Op1))) || 601 match(Op1, m_Not(m_Specific(Op0)))) 602 return Constant::getAllOnesValue(Ty); 603 604 // add nsw/nuw (xor Y, signmask), signmask --> Y 605 // The no-wrapping add guarantees that the top bit will be set by the add. 606 // Therefore, the xor must be clearing the already set sign bit of Y. 607 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 608 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 609 return Y; 610 611 // add nuw %x, -1 -> -1, because %x can only be 0. 612 if (IsNUW && match(Op1, m_AllOnes())) 613 return Op1; // Which is -1. 614 615 /// i1 add -> xor. 616 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 617 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 618 return V; 619 620 // Try some generic simplifications for associative operations. 621 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 622 MaxRecurse)) 623 return V; 624 625 // Threading Add over selects and phi nodes is pointless, so don't bother. 626 // Threading over the select in "A + select(cond, B, C)" means evaluating 627 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 628 // only if B and C are equal. If B and C are equal then (since we assume 629 // that operands have already been simplified) "select(cond, B, C)" should 630 // have been simplified to the common value of B and C already. Analysing 631 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 632 // for threading over phi nodes. 633 634 return nullptr; 635 } 636 637 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 638 const SimplifyQuery &Query) { 639 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 640 } 641 642 /// Compute the base pointer and cumulative constant offsets for V. 643 /// 644 /// This strips all constant offsets off of V, leaving it the base pointer, and 645 /// accumulates the total constant offset applied in the returned constant. It 646 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 647 /// no constant offsets applied. 648 /// 649 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 650 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 651 /// folding. 652 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 653 bool AllowNonInbounds = false) { 654 assert(V->getType()->isPtrOrPtrVectorTy()); 655 656 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 657 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 658 659 // Even though we don't look through PHI nodes, we could be called on an 660 // instruction in an unreachable block, which may be on a cycle. 661 SmallPtrSet<Value *, 4> Visited; 662 Visited.insert(V); 663 do { 664 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 665 if ((!AllowNonInbounds && !GEP->isInBounds()) || 666 !GEP->accumulateConstantOffset(DL, Offset)) 667 break; 668 V = GEP->getPointerOperand(); 669 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 670 V = cast<Operator>(V)->getOperand(0); 671 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 672 if (GA->isInterposable()) 673 break; 674 V = GA->getAliasee(); 675 } else { 676 if (auto *Call = dyn_cast<CallBase>(V)) 677 if (Value *RV = Call->getReturnedArgOperand()) { 678 V = RV; 679 continue; 680 } 681 break; 682 } 683 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 684 } while (Visited.insert(V).second); 685 686 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 687 if (V->getType()->isVectorTy()) 688 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 689 OffsetIntPtr); 690 return OffsetIntPtr; 691 } 692 693 /// Compute the constant difference between two pointer values. 694 /// If the difference is not a constant, returns zero. 695 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 696 Value *RHS) { 697 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 698 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 699 700 // If LHS and RHS are not related via constant offsets to the same base 701 // value, there is nothing we can do here. 702 if (LHS != RHS) 703 return nullptr; 704 705 // Otherwise, the difference of LHS - RHS can be computed as: 706 // LHS - RHS 707 // = (LHSOffset + Base) - (RHSOffset + Base) 708 // = LHSOffset - RHSOffset 709 return ConstantExpr::getSub(LHSOffset, RHSOffset); 710 } 711 712 /// Given operands for a Sub, see if we can fold the result. 713 /// If not, this returns null. 714 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 715 const SimplifyQuery &Q, unsigned MaxRecurse) { 716 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 717 return C; 718 719 // X - undef -> undef 720 // undef - X -> undef 721 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 722 return UndefValue::get(Op0->getType()); 723 724 // X - 0 -> X 725 if (match(Op1, m_Zero())) 726 return Op0; 727 728 // X - X -> 0 729 if (Op0 == Op1) 730 return Constant::getNullValue(Op0->getType()); 731 732 // Is this a negation? 733 if (match(Op0, m_Zero())) { 734 // 0 - X -> 0 if the sub is NUW. 735 if (isNUW) 736 return Constant::getNullValue(Op0->getType()); 737 738 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 739 if (Known.Zero.isMaxSignedValue()) { 740 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 741 // Op1 must be 0 because negating the minimum signed value is undefined. 742 if (isNSW) 743 return Constant::getNullValue(Op0->getType()); 744 745 // 0 - X -> X if X is 0 or the minimum signed value. 746 return Op1; 747 } 748 } 749 750 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 751 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 752 Value *X = nullptr, *Y = nullptr, *Z = Op1; 753 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 754 // See if "V === Y - Z" simplifies. 755 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 756 // It does! Now see if "X + V" simplifies. 757 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 758 // It does, we successfully reassociated! 759 ++NumReassoc; 760 return W; 761 } 762 // See if "V === X - Z" simplifies. 763 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 764 // It does! Now see if "Y + V" simplifies. 765 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 766 // It does, we successfully reassociated! 767 ++NumReassoc; 768 return W; 769 } 770 } 771 772 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 773 // For example, X - (X + 1) -> -1 774 X = Op0; 775 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 776 // See if "V === X - Y" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 778 // It does! Now see if "V - Z" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 // See if "V === X - Z" simplifies. 785 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 786 // It does! Now see if "V - Y" simplifies. 787 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 788 // It does, we successfully reassociated! 789 ++NumReassoc; 790 return W; 791 } 792 } 793 794 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 795 // For example, X - (X - Y) -> Y. 796 Z = Op0; 797 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 798 // See if "V === Z - X" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 800 // It does! Now see if "V + Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 807 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 808 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 809 match(Op1, m_Trunc(m_Value(Y)))) 810 if (X->getType() == Y->getType()) 811 // See if "V === X - Y" simplifies. 812 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 813 // It does! Now see if "trunc V" simplifies. 814 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 815 Q, MaxRecurse - 1)) 816 // It does, return the simplified "trunc V". 817 return W; 818 819 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 820 if (match(Op0, m_PtrToInt(m_Value(X))) && 821 match(Op1, m_PtrToInt(m_Value(Y)))) 822 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 823 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 824 825 // i1 sub -> xor. 826 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 827 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 828 return V; 829 830 // Threading Sub over selects and phi nodes is pointless, so don't bother. 831 // Threading over the select in "A - select(cond, B, C)" means evaluating 832 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 833 // only if B and C are equal. If B and C are equal then (since we assume 834 // that operands have already been simplified) "select(cond, B, C)" should 835 // have been simplified to the common value of B and C already. Analysing 836 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 837 // for threading over phi nodes. 838 839 return nullptr; 840 } 841 842 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 843 const SimplifyQuery &Q) { 844 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 845 } 846 847 /// Given operands for a Mul, see if we can fold the result. 848 /// If not, this returns null. 849 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 850 unsigned MaxRecurse) { 851 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 852 return C; 853 854 // X * undef -> 0 855 // X * 0 -> 0 856 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 857 return Constant::getNullValue(Op0->getType()); 858 859 // X * 1 -> X 860 if (match(Op1, m_One())) 861 return Op0; 862 863 // (X / Y) * Y -> X if the division is exact. 864 Value *X = nullptr; 865 if (Q.IIQ.UseInstrInfo && 866 (match(Op0, 867 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 868 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 869 return X; 870 871 // i1 mul -> and. 872 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 873 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 874 return V; 875 876 // Try some generic simplifications for associative operations. 877 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 878 MaxRecurse)) 879 return V; 880 881 // Mul distributes over Add. Try some generic simplifications based on this. 882 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 883 Q, MaxRecurse)) 884 return V; 885 886 // If the operation is with the result of a select instruction, check whether 887 // operating on either branch of the select always yields the same value. 888 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 889 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 890 MaxRecurse)) 891 return V; 892 893 // If the operation is with the result of a phi instruction, check whether 894 // operating on all incoming values of the phi always yields the same value. 895 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 896 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 897 MaxRecurse)) 898 return V; 899 900 return nullptr; 901 } 902 903 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 904 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 905 } 906 907 /// Check for common or similar folds of integer division or integer remainder. 908 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 909 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 910 Type *Ty = Op0->getType(); 911 912 // X / undef -> undef 913 // X % undef -> undef 914 if (match(Op1, m_Undef())) 915 return Op1; 916 917 // X / 0 -> undef 918 // X % 0 -> undef 919 // We don't need to preserve faults! 920 if (match(Op1, m_Zero())) 921 return UndefValue::get(Ty); 922 923 // If any element of a constant divisor vector is zero or undef, the whole op 924 // is undef. 925 auto *Op1C = dyn_cast<Constant>(Op1); 926 if (Op1C && Ty->isVectorTy()) { 927 unsigned NumElts = Ty->getVectorNumElements(); 928 for (unsigned i = 0; i != NumElts; ++i) { 929 Constant *Elt = Op1C->getAggregateElement(i); 930 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 931 return UndefValue::get(Ty); 932 } 933 } 934 935 // undef / X -> 0 936 // undef % X -> 0 937 if (match(Op0, m_Undef())) 938 return Constant::getNullValue(Ty); 939 940 // 0 / X -> 0 941 // 0 % X -> 0 942 if (match(Op0, m_Zero())) 943 return Constant::getNullValue(Op0->getType()); 944 945 // X / X -> 1 946 // X % X -> 0 947 if (Op0 == Op1) 948 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 949 950 // X / 1 -> X 951 // X % 1 -> 0 952 // If this is a boolean op (single-bit element type), we can't have 953 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 954 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 955 Value *X; 956 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 957 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 958 return IsDiv ? Op0 : Constant::getNullValue(Ty); 959 960 return nullptr; 961 } 962 963 /// Given a predicate and two operands, return true if the comparison is true. 964 /// This is a helper for div/rem simplification where we return some other value 965 /// when we can prove a relationship between the operands. 966 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 967 const SimplifyQuery &Q, unsigned MaxRecurse) { 968 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 969 Constant *C = dyn_cast_or_null<Constant>(V); 970 return (C && C->isAllOnesValue()); 971 } 972 973 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 974 /// to simplify X % Y to X. 975 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 976 unsigned MaxRecurse, bool IsSigned) { 977 // Recursion is always used, so bail out at once if we already hit the limit. 978 if (!MaxRecurse--) 979 return false; 980 981 if (IsSigned) { 982 // |X| / |Y| --> 0 983 // 984 // We require that 1 operand is a simple constant. That could be extended to 985 // 2 variables if we computed the sign bit for each. 986 // 987 // Make sure that a constant is not the minimum signed value because taking 988 // the abs() of that is undefined. 989 Type *Ty = X->getType(); 990 const APInt *C; 991 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 992 // Is the variable divisor magnitude always greater than the constant 993 // dividend magnitude? 994 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 995 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 996 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 997 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 998 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 999 return true; 1000 } 1001 if (match(Y, m_APInt(C))) { 1002 // Special-case: we can't take the abs() of a minimum signed value. If 1003 // that's the divisor, then all we have to do is prove that the dividend 1004 // is also not the minimum signed value. 1005 if (C->isMinSignedValue()) 1006 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1007 1008 // Is the variable dividend magnitude always less than the constant 1009 // divisor magnitude? 1010 // |X| < |C| --> X > -abs(C) and X < abs(C) 1011 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1014 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 return false; 1018 } 1019 1020 // IsSigned == false. 1021 // Is the dividend unsigned less than the divisor? 1022 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1023 } 1024 1025 /// These are simplifications common to SDiv and UDiv. 1026 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1027 const SimplifyQuery &Q, unsigned MaxRecurse) { 1028 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1029 return C; 1030 1031 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1032 return V; 1033 1034 bool IsSigned = Opcode == Instruction::SDiv; 1035 1036 // (X * Y) / Y -> X if the multiplication does not overflow. 1037 Value *X; 1038 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1039 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1040 // If the Mul does not overflow, then we are good to go. 1041 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1042 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1043 return X; 1044 // If X has the form X = A / Y, then X * Y cannot overflow. 1045 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1046 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1047 return X; 1048 } 1049 1050 // (X rem Y) / Y -> 0 1051 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1052 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1053 return Constant::getNullValue(Op0->getType()); 1054 1055 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1056 ConstantInt *C1, *C2; 1057 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1058 match(Op1, m_ConstantInt(C2))) { 1059 bool Overflow; 1060 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1061 if (Overflow) 1062 return Constant::getNullValue(Op0->getType()); 1063 } 1064 1065 // If the operation is with the result of a select instruction, check whether 1066 // operating on either branch of the select always yields the same value. 1067 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1068 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1069 return V; 1070 1071 // If the operation is with the result of a phi instruction, check whether 1072 // operating on all incoming values of the phi always yields the same value. 1073 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1074 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1075 return V; 1076 1077 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1078 return Constant::getNullValue(Op0->getType()); 1079 1080 return nullptr; 1081 } 1082 1083 /// These are simplifications common to SRem and URem. 1084 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1085 const SimplifyQuery &Q, unsigned MaxRecurse) { 1086 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1087 return C; 1088 1089 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1090 return V; 1091 1092 // (X % Y) % Y -> X % Y 1093 if ((Opcode == Instruction::SRem && 1094 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1095 (Opcode == Instruction::URem && 1096 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1097 return Op0; 1098 1099 // (X << Y) % X -> 0 1100 if (Q.IIQ.UseInstrInfo && 1101 ((Opcode == Instruction::SRem && 1102 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1103 (Opcode == Instruction::URem && 1104 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1105 return Constant::getNullValue(Op0->getType()); 1106 1107 // If the operation is with the result of a select instruction, check whether 1108 // operating on either branch of the select always yields the same value. 1109 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1110 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1111 return V; 1112 1113 // If the operation is with the result of a phi instruction, check whether 1114 // operating on all incoming values of the phi always yields the same value. 1115 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1116 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1117 return V; 1118 1119 // If X / Y == 0, then X % Y == X. 1120 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1121 return Op0; 1122 1123 return nullptr; 1124 } 1125 1126 /// Given operands for an SDiv, see if we can fold the result. 1127 /// If not, this returns null. 1128 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1129 unsigned MaxRecurse) { 1130 // If two operands are negated and no signed overflow, return -1. 1131 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1132 return Constant::getAllOnesValue(Op0->getType()); 1133 1134 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1135 } 1136 1137 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1138 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1139 } 1140 1141 /// Given operands for a UDiv, see if we can fold the result. 1142 /// If not, this returns null. 1143 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1144 unsigned MaxRecurse) { 1145 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1146 } 1147 1148 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1149 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1150 } 1151 1152 /// Given operands for an SRem, see if we can fold the result. 1153 /// If not, this returns null. 1154 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1155 unsigned MaxRecurse) { 1156 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1157 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1158 Value *X; 1159 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1160 return ConstantInt::getNullValue(Op0->getType()); 1161 1162 // If the two operands are negated, return 0. 1163 if (isKnownNegation(Op0, Op1)) 1164 return ConstantInt::getNullValue(Op0->getType()); 1165 1166 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1167 } 1168 1169 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1170 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1171 } 1172 1173 /// Given operands for a URem, see if we can fold the result. 1174 /// If not, this returns null. 1175 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1176 unsigned MaxRecurse) { 1177 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1178 } 1179 1180 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1181 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1182 } 1183 1184 /// Returns true if a shift by \c Amount always yields undef. 1185 static bool isUndefShift(Value *Amount) { 1186 Constant *C = dyn_cast<Constant>(Amount); 1187 if (!C) 1188 return false; 1189 1190 // X shift by undef -> undef because it may shift by the bitwidth. 1191 if (isa<UndefValue>(C)) 1192 return true; 1193 1194 // Shifting by the bitwidth or more is undefined. 1195 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1196 if (CI->getValue().getLimitedValue() >= 1197 CI->getType()->getScalarSizeInBits()) 1198 return true; 1199 1200 // If all lanes of a vector shift are undefined the whole shift is. 1201 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1202 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1203 if (!isUndefShift(C->getAggregateElement(I))) 1204 return false; 1205 return true; 1206 } 1207 1208 return false; 1209 } 1210 1211 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1212 /// If not, this returns null. 1213 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1214 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1215 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1216 return C; 1217 1218 // 0 shift by X -> 0 1219 if (match(Op0, m_Zero())) 1220 return Constant::getNullValue(Op0->getType()); 1221 1222 // X shift by 0 -> X 1223 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1224 // would be poison. 1225 Value *X; 1226 if (match(Op1, m_Zero()) || 1227 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1228 return Op0; 1229 1230 // Fold undefined shifts. 1231 if (isUndefShift(Op1)) 1232 return UndefValue::get(Op0->getType()); 1233 1234 // If the operation is with the result of a select instruction, check whether 1235 // operating on either branch of the select always yields the same value. 1236 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1237 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1238 return V; 1239 1240 // If the operation is with the result of a phi instruction, check whether 1241 // operating on all incoming values of the phi always yields the same value. 1242 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1243 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1244 return V; 1245 1246 // If any bits in the shift amount make that value greater than or equal to 1247 // the number of bits in the type, the shift is undefined. 1248 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1249 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1250 return UndefValue::get(Op0->getType()); 1251 1252 // If all valid bits in the shift amount are known zero, the first operand is 1253 // unchanged. 1254 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1255 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1256 return Op0; 1257 1258 return nullptr; 1259 } 1260 1261 /// Given operands for an Shl, LShr or AShr, see if we can 1262 /// fold the result. If not, this returns null. 1263 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1264 Value *Op1, bool isExact, const SimplifyQuery &Q, 1265 unsigned MaxRecurse) { 1266 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1267 return V; 1268 1269 // X >> X -> 0 1270 if (Op0 == Op1) 1271 return Constant::getNullValue(Op0->getType()); 1272 1273 // undef >> X -> 0 1274 // undef >> X -> undef (if it's exact) 1275 if (match(Op0, m_Undef())) 1276 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1277 1278 // The low bit cannot be shifted out of an exact shift if it is set. 1279 if (isExact) { 1280 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1281 if (Op0Known.One[0]) 1282 return Op0; 1283 } 1284 1285 return nullptr; 1286 } 1287 1288 /// Given operands for an Shl, see if we can fold the result. 1289 /// If not, this returns null. 1290 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1291 const SimplifyQuery &Q, unsigned MaxRecurse) { 1292 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1293 return V; 1294 1295 // undef << X -> 0 1296 // undef << X -> undef if (if it's NSW/NUW) 1297 if (match(Op0, m_Undef())) 1298 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1299 1300 // (X >> A) << A -> X 1301 Value *X; 1302 if (Q.IIQ.UseInstrInfo && 1303 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1304 return X; 1305 1306 // shl nuw i8 C, %x -> C iff C has sign bit set. 1307 if (isNUW && match(Op0, m_Negative())) 1308 return Op0; 1309 // NOTE: could use computeKnownBits() / LazyValueInfo, 1310 // but the cost-benefit analysis suggests it isn't worth it. 1311 1312 return nullptr; 1313 } 1314 1315 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1316 const SimplifyQuery &Q) { 1317 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1318 } 1319 1320 /// Given operands for an LShr, see if we can fold the result. 1321 /// If not, this returns null. 1322 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1323 const SimplifyQuery &Q, unsigned MaxRecurse) { 1324 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1325 MaxRecurse)) 1326 return V; 1327 1328 // (X << A) >> A -> X 1329 Value *X; 1330 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1331 return X; 1332 1333 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1334 // We can return X as we do in the above case since OR alters no bits in X. 1335 // SimplifyDemandedBits in InstCombine can do more general optimization for 1336 // bit manipulation. This pattern aims to provide opportunities for other 1337 // optimizers by supporting a simple but common case in InstSimplify. 1338 Value *Y; 1339 const APInt *ShRAmt, *ShLAmt; 1340 if (match(Op1, m_APInt(ShRAmt)) && 1341 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1342 *ShRAmt == *ShLAmt) { 1343 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1344 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1345 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1346 if (ShRAmt->uge(EffWidthY)) 1347 return X; 1348 } 1349 1350 return nullptr; 1351 } 1352 1353 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1354 const SimplifyQuery &Q) { 1355 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1356 } 1357 1358 /// Given operands for an AShr, see if we can fold the result. 1359 /// If not, this returns null. 1360 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1361 const SimplifyQuery &Q, unsigned MaxRecurse) { 1362 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1363 MaxRecurse)) 1364 return V; 1365 1366 // all ones >>a X -> -1 1367 // Do not return Op0 because it may contain undef elements if it's a vector. 1368 if (match(Op0, m_AllOnes())) 1369 return Constant::getAllOnesValue(Op0->getType()); 1370 1371 // (X << A) >> A -> X 1372 Value *X; 1373 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1374 return X; 1375 1376 // Arithmetic shifting an all-sign-bit value is a no-op. 1377 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1378 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1379 return Op0; 1380 1381 return nullptr; 1382 } 1383 1384 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1385 const SimplifyQuery &Q) { 1386 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1387 } 1388 1389 /// Commuted variants are assumed to be handled by calling this function again 1390 /// with the parameters swapped. 1391 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1392 ICmpInst *UnsignedICmp, bool IsAnd) { 1393 Value *X, *Y; 1394 1395 ICmpInst::Predicate EqPred; 1396 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1397 !ICmpInst::isEquality(EqPred)) 1398 return nullptr; 1399 1400 ICmpInst::Predicate UnsignedPred; 1401 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1402 ICmpInst::isUnsigned(UnsignedPred)) 1403 ; 1404 else if (match(UnsignedICmp, 1405 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1406 ICmpInst::isUnsigned(UnsignedPred)) 1407 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1408 else 1409 return nullptr; 1410 1411 // X < Y && Y != 0 --> X < Y 1412 // X < Y || Y != 0 --> Y != 0 1413 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1414 return IsAnd ? UnsignedICmp : ZeroICmp; 1415 1416 // X >= Y || Y != 0 --> true 1417 // X >= Y || Y == 0 --> X >= Y 1418 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1419 if (EqPred == ICmpInst::ICMP_NE) 1420 return getTrue(UnsignedICmp->getType()); 1421 return UnsignedICmp; 1422 } 1423 1424 // X < Y && Y == 0 --> false 1425 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1426 IsAnd) 1427 return getFalse(UnsignedICmp->getType()); 1428 1429 return nullptr; 1430 } 1431 1432 /// Commuted variants are assumed to be handled by calling this function again 1433 /// with the parameters swapped. 1434 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1435 ICmpInst::Predicate Pred0, Pred1; 1436 Value *A ,*B; 1437 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1438 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1439 return nullptr; 1440 1441 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1442 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1443 // can eliminate Op1 from this 'and'. 1444 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1445 return Op0; 1446 1447 // Check for any combination of predicates that are guaranteed to be disjoint. 1448 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1449 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1450 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1451 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1452 return getFalse(Op0->getType()); 1453 1454 return nullptr; 1455 } 1456 1457 /// Commuted variants are assumed to be handled by calling this function again 1458 /// with the parameters swapped. 1459 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1460 ICmpInst::Predicate Pred0, Pred1; 1461 Value *A ,*B; 1462 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1463 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1464 return nullptr; 1465 1466 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1467 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1468 // can eliminate Op0 from this 'or'. 1469 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1470 return Op1; 1471 1472 // Check for any combination of predicates that cover the entire range of 1473 // possibilities. 1474 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1475 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1476 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1477 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1478 return getTrue(Op0->getType()); 1479 1480 return nullptr; 1481 } 1482 1483 /// Test if a pair of compares with a shared operand and 2 constants has an 1484 /// empty set intersection, full set union, or if one compare is a superset of 1485 /// the other. 1486 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1487 bool IsAnd) { 1488 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1489 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1490 return nullptr; 1491 1492 const APInt *C0, *C1; 1493 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1494 !match(Cmp1->getOperand(1), m_APInt(C1))) 1495 return nullptr; 1496 1497 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1498 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1499 1500 // For and-of-compares, check if the intersection is empty: 1501 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1502 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1503 return getFalse(Cmp0->getType()); 1504 1505 // For or-of-compares, check if the union is full: 1506 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1507 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1508 return getTrue(Cmp0->getType()); 1509 1510 // Is one range a superset of the other? 1511 // If this is and-of-compares, take the smaller set: 1512 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1513 // If this is or-of-compares, take the larger set: 1514 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1515 if (Range0.contains(Range1)) 1516 return IsAnd ? Cmp1 : Cmp0; 1517 if (Range1.contains(Range0)) 1518 return IsAnd ? Cmp0 : Cmp1; 1519 1520 return nullptr; 1521 } 1522 1523 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1524 bool IsAnd) { 1525 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1526 if (!match(Cmp0->getOperand(1), m_Zero()) || 1527 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1528 return nullptr; 1529 1530 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1531 return nullptr; 1532 1533 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1534 Value *X = Cmp0->getOperand(0); 1535 Value *Y = Cmp1->getOperand(0); 1536 1537 // If one of the compares is a masked version of a (not) null check, then 1538 // that compare implies the other, so we eliminate the other. Optionally, look 1539 // through a pointer-to-int cast to match a null check of a pointer type. 1540 1541 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1542 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1543 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1544 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1545 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1546 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1547 return Cmp1; 1548 1549 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1550 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1551 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1552 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1553 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1554 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1555 return Cmp0; 1556 1557 return nullptr; 1558 } 1559 1560 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1561 const InstrInfoQuery &IIQ) { 1562 // (icmp (add V, C0), C1) & (icmp V, C0) 1563 ICmpInst::Predicate Pred0, Pred1; 1564 const APInt *C0, *C1; 1565 Value *V; 1566 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1567 return nullptr; 1568 1569 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1570 return nullptr; 1571 1572 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1573 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1574 return nullptr; 1575 1576 Type *ITy = Op0->getType(); 1577 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1578 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1579 1580 const APInt Delta = *C1 - *C0; 1581 if (C0->isStrictlyPositive()) { 1582 if (Delta == 2) { 1583 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1584 return getFalse(ITy); 1585 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1586 return getFalse(ITy); 1587 } 1588 if (Delta == 1) { 1589 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1590 return getFalse(ITy); 1591 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1592 return getFalse(ITy); 1593 } 1594 } 1595 if (C0->getBoolValue() && isNUW) { 1596 if (Delta == 2) 1597 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1598 return getFalse(ITy); 1599 if (Delta == 1) 1600 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1601 return getFalse(ITy); 1602 } 1603 1604 return nullptr; 1605 } 1606 1607 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1608 const InstrInfoQuery &IIQ) { 1609 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1610 return X; 1611 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1612 return X; 1613 1614 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1615 return X; 1616 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1617 return X; 1618 1619 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1620 return X; 1621 1622 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1623 return X; 1624 1625 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, IIQ)) 1626 return X; 1627 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, IIQ)) 1628 return X; 1629 1630 return nullptr; 1631 } 1632 1633 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1634 const InstrInfoQuery &IIQ) { 1635 // (icmp (add V, C0), C1) | (icmp V, C0) 1636 ICmpInst::Predicate Pred0, Pred1; 1637 const APInt *C0, *C1; 1638 Value *V; 1639 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1640 return nullptr; 1641 1642 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1643 return nullptr; 1644 1645 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1646 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1647 return nullptr; 1648 1649 Type *ITy = Op0->getType(); 1650 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1651 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1652 1653 const APInt Delta = *C1 - *C0; 1654 if (C0->isStrictlyPositive()) { 1655 if (Delta == 2) { 1656 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1657 return getTrue(ITy); 1658 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1659 return getTrue(ITy); 1660 } 1661 if (Delta == 1) { 1662 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1663 return getTrue(ITy); 1664 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1665 return getTrue(ITy); 1666 } 1667 } 1668 if (C0->getBoolValue() && isNUW) { 1669 if (Delta == 2) 1670 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1671 return getTrue(ITy); 1672 if (Delta == 1) 1673 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1674 return getTrue(ITy); 1675 } 1676 1677 return nullptr; 1678 } 1679 1680 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1681 const InstrInfoQuery &IIQ) { 1682 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1683 return X; 1684 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1685 return X; 1686 1687 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1688 return X; 1689 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1690 return X; 1691 1692 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1693 return X; 1694 1695 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1696 return X; 1697 1698 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, IIQ)) 1699 return X; 1700 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, IIQ)) 1701 return X; 1702 1703 return nullptr; 1704 } 1705 1706 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1707 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1708 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1709 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1710 if (LHS0->getType() != RHS0->getType()) 1711 return nullptr; 1712 1713 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1714 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1715 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1716 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1717 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1718 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1719 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1720 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1721 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1722 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1723 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1724 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1725 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1726 return RHS; 1727 1728 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1729 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1730 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1731 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1732 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1733 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1734 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1735 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1736 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1737 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1738 return LHS; 1739 } 1740 1741 return nullptr; 1742 } 1743 1744 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1745 Value *Op0, Value *Op1, bool IsAnd) { 1746 // Look through casts of the 'and' operands to find compares. 1747 auto *Cast0 = dyn_cast<CastInst>(Op0); 1748 auto *Cast1 = dyn_cast<CastInst>(Op1); 1749 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1750 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1751 Op0 = Cast0->getOperand(0); 1752 Op1 = Cast1->getOperand(0); 1753 } 1754 1755 Value *V = nullptr; 1756 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1757 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1758 if (ICmp0 && ICmp1) 1759 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q.IIQ) 1760 : simplifyOrOfICmps(ICmp0, ICmp1, Q.IIQ); 1761 1762 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1763 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1764 if (FCmp0 && FCmp1) 1765 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1766 1767 if (!V) 1768 return nullptr; 1769 if (!Cast0) 1770 return V; 1771 1772 // If we looked through casts, we can only handle a constant simplification 1773 // because we are not allowed to create a cast instruction here. 1774 if (auto *C = dyn_cast<Constant>(V)) 1775 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1776 1777 return nullptr; 1778 } 1779 1780 /// Given operands for an And, see if we can fold the result. 1781 /// If not, this returns null. 1782 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1783 unsigned MaxRecurse) { 1784 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1785 return C; 1786 1787 // X & undef -> 0 1788 if (match(Op1, m_Undef())) 1789 return Constant::getNullValue(Op0->getType()); 1790 1791 // X & X = X 1792 if (Op0 == Op1) 1793 return Op0; 1794 1795 // X & 0 = 0 1796 if (match(Op1, m_Zero())) 1797 return Constant::getNullValue(Op0->getType()); 1798 1799 // X & -1 = X 1800 if (match(Op1, m_AllOnes())) 1801 return Op0; 1802 1803 // A & ~A = ~A & A = 0 1804 if (match(Op0, m_Not(m_Specific(Op1))) || 1805 match(Op1, m_Not(m_Specific(Op0)))) 1806 return Constant::getNullValue(Op0->getType()); 1807 1808 // (A | ?) & A = A 1809 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1810 return Op1; 1811 1812 // A & (A | ?) = A 1813 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1814 return Op0; 1815 1816 // A mask that only clears known zeros of a shifted value is a no-op. 1817 Value *X; 1818 const APInt *Mask; 1819 const APInt *ShAmt; 1820 if (match(Op1, m_APInt(Mask))) { 1821 // If all bits in the inverted and shifted mask are clear: 1822 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1823 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1824 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1825 return Op0; 1826 1827 // If all bits in the inverted and shifted mask are clear: 1828 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1829 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1830 (~(*Mask)).shl(*ShAmt).isNullValue()) 1831 return Op0; 1832 } 1833 1834 // A & (-A) = A if A is a power of two or zero. 1835 if (match(Op0, m_Neg(m_Specific(Op1))) || 1836 match(Op1, m_Neg(m_Specific(Op0)))) { 1837 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1838 Q.DT)) 1839 return Op0; 1840 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1841 Q.DT)) 1842 return Op1; 1843 } 1844 1845 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 1846 return V; 1847 1848 // Try some generic simplifications for associative operations. 1849 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1850 MaxRecurse)) 1851 return V; 1852 1853 // And distributes over Or. Try some generic simplifications based on this. 1854 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1855 Q, MaxRecurse)) 1856 return V; 1857 1858 // And distributes over Xor. Try some generic simplifications based on this. 1859 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1860 Q, MaxRecurse)) 1861 return V; 1862 1863 // If the operation is with the result of a select instruction, check whether 1864 // operating on either branch of the select always yields the same value. 1865 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1866 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1867 MaxRecurse)) 1868 return V; 1869 1870 // If the operation is with the result of a phi instruction, check whether 1871 // operating on all incoming values of the phi always yields the same value. 1872 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1873 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1874 MaxRecurse)) 1875 return V; 1876 1877 // Assuming the effective width of Y is not larger than A, i.e. all bits 1878 // from X and Y are disjoint in (X << A) | Y, 1879 // if the mask of this AND op covers all bits of X or Y, while it covers 1880 // no bits from the other, we can bypass this AND op. E.g., 1881 // ((X << A) | Y) & Mask -> Y, 1882 // if Mask = ((1 << effective_width_of(Y)) - 1) 1883 // ((X << A) | Y) & Mask -> X << A, 1884 // if Mask = ((1 << effective_width_of(X)) - 1) << A 1885 // SimplifyDemandedBits in InstCombine can optimize the general case. 1886 // This pattern aims to help other passes for a common case. 1887 Value *Y, *XShifted; 1888 if (match(Op1, m_APInt(Mask)) && 1889 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 1890 m_Value(XShifted)), 1891 m_Value(Y)))) { 1892 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1893 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 1894 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1895 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1896 if (EffWidthY <= ShftCnt) { 1897 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 1898 Q.DT); 1899 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 1900 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 1901 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 1902 // If the mask is extracting all bits from X or Y as is, we can skip 1903 // this AND op. 1904 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 1905 return Y; 1906 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 1907 return XShifted; 1908 } 1909 } 1910 1911 return nullptr; 1912 } 1913 1914 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1915 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1916 } 1917 1918 /// Given operands for an Or, see if we can fold the result. 1919 /// If not, this returns null. 1920 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1921 unsigned MaxRecurse) { 1922 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1923 return C; 1924 1925 // X | undef -> -1 1926 // X | -1 = -1 1927 // Do not return Op1 because it may contain undef elements if it's a vector. 1928 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 1929 return Constant::getAllOnesValue(Op0->getType()); 1930 1931 // X | X = X 1932 // X | 0 = X 1933 if (Op0 == Op1 || match(Op1, m_Zero())) 1934 return Op0; 1935 1936 // A | ~A = ~A | A = -1 1937 if (match(Op0, m_Not(m_Specific(Op1))) || 1938 match(Op1, m_Not(m_Specific(Op0)))) 1939 return Constant::getAllOnesValue(Op0->getType()); 1940 1941 // (A & ?) | A = A 1942 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1943 return Op1; 1944 1945 // A | (A & ?) = A 1946 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1947 return Op0; 1948 1949 // ~(A & ?) | A = -1 1950 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1951 return Constant::getAllOnesValue(Op1->getType()); 1952 1953 // A | ~(A & ?) = -1 1954 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1955 return Constant::getAllOnesValue(Op0->getType()); 1956 1957 Value *A, *B; 1958 // (A & ~B) | (A ^ B) -> (A ^ B) 1959 // (~B & A) | (A ^ B) -> (A ^ B) 1960 // (A & ~B) | (B ^ A) -> (B ^ A) 1961 // (~B & A) | (B ^ A) -> (B ^ A) 1962 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1963 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1964 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1965 return Op1; 1966 1967 // Commute the 'or' operands. 1968 // (A ^ B) | (A & ~B) -> (A ^ B) 1969 // (A ^ B) | (~B & A) -> (A ^ B) 1970 // (B ^ A) | (A & ~B) -> (B ^ A) 1971 // (B ^ A) | (~B & A) -> (B ^ A) 1972 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1973 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1974 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1975 return Op0; 1976 1977 // (A & B) | (~A ^ B) -> (~A ^ B) 1978 // (B & A) | (~A ^ B) -> (~A ^ B) 1979 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1980 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1981 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1982 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1983 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1984 return Op1; 1985 1986 // (~A ^ B) | (A & B) -> (~A ^ B) 1987 // (~A ^ B) | (B & A) -> (~A ^ B) 1988 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1989 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1990 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1991 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1992 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1993 return Op0; 1994 1995 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 1996 return V; 1997 1998 // Try some generic simplifications for associative operations. 1999 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2000 MaxRecurse)) 2001 return V; 2002 2003 // Or distributes over And. Try some generic simplifications based on this. 2004 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 2005 MaxRecurse)) 2006 return V; 2007 2008 // If the operation is with the result of a select instruction, check whether 2009 // operating on either branch of the select always yields the same value. 2010 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2011 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2012 MaxRecurse)) 2013 return V; 2014 2015 // (A & C1)|(B & C2) 2016 const APInt *C1, *C2; 2017 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2018 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2019 if (*C1 == ~*C2) { 2020 // (A & C1)|(B & C2) 2021 // If we have: ((V + N) & C1) | (V & C2) 2022 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2023 // replace with V+N. 2024 Value *N; 2025 if (C2->isMask() && // C2 == 0+1+ 2026 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2027 // Add commutes, try both ways. 2028 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2029 return A; 2030 } 2031 // Or commutes, try both ways. 2032 if (C1->isMask() && 2033 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2034 // Add commutes, try both ways. 2035 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2036 return B; 2037 } 2038 } 2039 } 2040 2041 // If the operation is with the result of a phi instruction, check whether 2042 // operating on all incoming values of the phi always yields the same value. 2043 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2044 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2045 return V; 2046 2047 return nullptr; 2048 } 2049 2050 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2051 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2052 } 2053 2054 /// Given operands for a Xor, see if we can fold the result. 2055 /// If not, this returns null. 2056 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2057 unsigned MaxRecurse) { 2058 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2059 return C; 2060 2061 // A ^ undef -> undef 2062 if (match(Op1, m_Undef())) 2063 return Op1; 2064 2065 // A ^ 0 = A 2066 if (match(Op1, m_Zero())) 2067 return Op0; 2068 2069 // A ^ A = 0 2070 if (Op0 == Op1) 2071 return Constant::getNullValue(Op0->getType()); 2072 2073 // A ^ ~A = ~A ^ A = -1 2074 if (match(Op0, m_Not(m_Specific(Op1))) || 2075 match(Op1, m_Not(m_Specific(Op0)))) 2076 return Constant::getAllOnesValue(Op0->getType()); 2077 2078 // Try some generic simplifications for associative operations. 2079 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2080 MaxRecurse)) 2081 return V; 2082 2083 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2084 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2085 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2086 // only if B and C are equal. If B and C are equal then (since we assume 2087 // that operands have already been simplified) "select(cond, B, C)" should 2088 // have been simplified to the common value of B and C already. Analysing 2089 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2090 // for threading over phi nodes. 2091 2092 return nullptr; 2093 } 2094 2095 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2096 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2097 } 2098 2099 2100 static Type *GetCompareTy(Value *Op) { 2101 return CmpInst::makeCmpResultType(Op->getType()); 2102 } 2103 2104 /// Rummage around inside V looking for something equivalent to the comparison 2105 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2106 /// Helper function for analyzing max/min idioms. 2107 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2108 Value *LHS, Value *RHS) { 2109 SelectInst *SI = dyn_cast<SelectInst>(V); 2110 if (!SI) 2111 return nullptr; 2112 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2113 if (!Cmp) 2114 return nullptr; 2115 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2116 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2117 return Cmp; 2118 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2119 LHS == CmpRHS && RHS == CmpLHS) 2120 return Cmp; 2121 return nullptr; 2122 } 2123 2124 // A significant optimization not implemented here is assuming that alloca 2125 // addresses are not equal to incoming argument values. They don't *alias*, 2126 // as we say, but that doesn't mean they aren't equal, so we take a 2127 // conservative approach. 2128 // 2129 // This is inspired in part by C++11 5.10p1: 2130 // "Two pointers of the same type compare equal if and only if they are both 2131 // null, both point to the same function, or both represent the same 2132 // address." 2133 // 2134 // This is pretty permissive. 2135 // 2136 // It's also partly due to C11 6.5.9p6: 2137 // "Two pointers compare equal if and only if both are null pointers, both are 2138 // pointers to the same object (including a pointer to an object and a 2139 // subobject at its beginning) or function, both are pointers to one past the 2140 // last element of the same array object, or one is a pointer to one past the 2141 // end of one array object and the other is a pointer to the start of a 2142 // different array object that happens to immediately follow the first array 2143 // object in the address space.) 2144 // 2145 // C11's version is more restrictive, however there's no reason why an argument 2146 // couldn't be a one-past-the-end value for a stack object in the caller and be 2147 // equal to the beginning of a stack object in the callee. 2148 // 2149 // If the C and C++ standards are ever made sufficiently restrictive in this 2150 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2151 // this optimization. 2152 static Constant * 2153 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2154 const DominatorTree *DT, CmpInst::Predicate Pred, 2155 AssumptionCache *AC, const Instruction *CxtI, 2156 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2157 // First, skip past any trivial no-ops. 2158 LHS = LHS->stripPointerCasts(); 2159 RHS = RHS->stripPointerCasts(); 2160 2161 // A non-null pointer is not equal to a null pointer. 2162 if (llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2163 IIQ.UseInstrInfo) && 2164 isa<ConstantPointerNull>(RHS) && 2165 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2166 return ConstantInt::get(GetCompareTy(LHS), 2167 !CmpInst::isTrueWhenEqual(Pred)); 2168 2169 // We can only fold certain predicates on pointer comparisons. 2170 switch (Pred) { 2171 default: 2172 return nullptr; 2173 2174 // Equality comaprisons are easy to fold. 2175 case CmpInst::ICMP_EQ: 2176 case CmpInst::ICMP_NE: 2177 break; 2178 2179 // We can only handle unsigned relational comparisons because 'inbounds' on 2180 // a GEP only protects against unsigned wrapping. 2181 case CmpInst::ICMP_UGT: 2182 case CmpInst::ICMP_UGE: 2183 case CmpInst::ICMP_ULT: 2184 case CmpInst::ICMP_ULE: 2185 // However, we have to switch them to their signed variants to handle 2186 // negative indices from the base pointer. 2187 Pred = ICmpInst::getSignedPredicate(Pred); 2188 break; 2189 } 2190 2191 // Strip off any constant offsets so that we can reason about them. 2192 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2193 // here and compare base addresses like AliasAnalysis does, however there are 2194 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2195 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2196 // doesn't need to guarantee pointer inequality when it says NoAlias. 2197 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2198 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2199 2200 // If LHS and RHS are related via constant offsets to the same base 2201 // value, we can replace it with an icmp which just compares the offsets. 2202 if (LHS == RHS) 2203 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2204 2205 // Various optimizations for (in)equality comparisons. 2206 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2207 // Different non-empty allocations that exist at the same time have 2208 // different addresses (if the program can tell). Global variables always 2209 // exist, so they always exist during the lifetime of each other and all 2210 // allocas. Two different allocas usually have different addresses... 2211 // 2212 // However, if there's an @llvm.stackrestore dynamically in between two 2213 // allocas, they may have the same address. It's tempting to reduce the 2214 // scope of the problem by only looking at *static* allocas here. That would 2215 // cover the majority of allocas while significantly reducing the likelihood 2216 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2217 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2218 // an entry block. Also, if we have a block that's not attached to a 2219 // function, we can't tell if it's "static" under the current definition. 2220 // Theoretically, this problem could be fixed by creating a new kind of 2221 // instruction kind specifically for static allocas. Such a new instruction 2222 // could be required to be at the top of the entry block, thus preventing it 2223 // from being subject to a @llvm.stackrestore. Instcombine could even 2224 // convert regular allocas into these special allocas. It'd be nifty. 2225 // However, until then, this problem remains open. 2226 // 2227 // So, we'll assume that two non-empty allocas have different addresses 2228 // for now. 2229 // 2230 // With all that, if the offsets are within the bounds of their allocations 2231 // (and not one-past-the-end! so we can't use inbounds!), and their 2232 // allocations aren't the same, the pointers are not equal. 2233 // 2234 // Note that it's not necessary to check for LHS being a global variable 2235 // address, due to canonicalization and constant folding. 2236 if (isa<AllocaInst>(LHS) && 2237 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2238 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2239 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2240 uint64_t LHSSize, RHSSize; 2241 ObjectSizeOpts Opts; 2242 Opts.NullIsUnknownSize = 2243 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2244 if (LHSOffsetCI && RHSOffsetCI && 2245 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2246 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2247 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2248 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2249 if (!LHSOffsetValue.isNegative() && 2250 !RHSOffsetValue.isNegative() && 2251 LHSOffsetValue.ult(LHSSize) && 2252 RHSOffsetValue.ult(RHSSize)) { 2253 return ConstantInt::get(GetCompareTy(LHS), 2254 !CmpInst::isTrueWhenEqual(Pred)); 2255 } 2256 } 2257 2258 // Repeat the above check but this time without depending on DataLayout 2259 // or being able to compute a precise size. 2260 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2261 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2262 LHSOffset->isNullValue() && 2263 RHSOffset->isNullValue()) 2264 return ConstantInt::get(GetCompareTy(LHS), 2265 !CmpInst::isTrueWhenEqual(Pred)); 2266 } 2267 2268 // Even if an non-inbounds GEP occurs along the path we can still optimize 2269 // equality comparisons concerning the result. We avoid walking the whole 2270 // chain again by starting where the last calls to 2271 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2272 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2273 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2274 if (LHS == RHS) 2275 return ConstantExpr::getICmp(Pred, 2276 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2277 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2278 2279 // If one side of the equality comparison must come from a noalias call 2280 // (meaning a system memory allocation function), and the other side must 2281 // come from a pointer that cannot overlap with dynamically-allocated 2282 // memory within the lifetime of the current function (allocas, byval 2283 // arguments, globals), then determine the comparison result here. 2284 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2285 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2286 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2287 2288 // Is the set of underlying objects all noalias calls? 2289 auto IsNAC = [](ArrayRef<Value *> Objects) { 2290 return all_of(Objects, isNoAliasCall); 2291 }; 2292 2293 // Is the set of underlying objects all things which must be disjoint from 2294 // noalias calls. For allocas, we consider only static ones (dynamic 2295 // allocas might be transformed into calls to malloc not simultaneously 2296 // live with the compared-to allocation). For globals, we exclude symbols 2297 // that might be resolve lazily to symbols in another dynamically-loaded 2298 // library (and, thus, could be malloc'ed by the implementation). 2299 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2300 return all_of(Objects, [](Value *V) { 2301 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2302 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2303 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2304 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2305 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2306 !GV->isThreadLocal(); 2307 if (const Argument *A = dyn_cast<Argument>(V)) 2308 return A->hasByValAttr(); 2309 return false; 2310 }); 2311 }; 2312 2313 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2314 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2315 return ConstantInt::get(GetCompareTy(LHS), 2316 !CmpInst::isTrueWhenEqual(Pred)); 2317 2318 // Fold comparisons for non-escaping pointer even if the allocation call 2319 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2320 // dynamic allocation call could be either of the operands. 2321 Value *MI = nullptr; 2322 if (isAllocLikeFn(LHS, TLI) && 2323 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2324 MI = LHS; 2325 else if (isAllocLikeFn(RHS, TLI) && 2326 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2327 MI = RHS; 2328 // FIXME: We should also fold the compare when the pointer escapes, but the 2329 // compare dominates the pointer escape 2330 if (MI && !PointerMayBeCaptured(MI, true, true)) 2331 return ConstantInt::get(GetCompareTy(LHS), 2332 CmpInst::isFalseWhenEqual(Pred)); 2333 } 2334 2335 // Otherwise, fail. 2336 return nullptr; 2337 } 2338 2339 /// Fold an icmp when its operands have i1 scalar type. 2340 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2341 Value *RHS, const SimplifyQuery &Q) { 2342 Type *ITy = GetCompareTy(LHS); // The return type. 2343 Type *OpTy = LHS->getType(); // The operand type. 2344 if (!OpTy->isIntOrIntVectorTy(1)) 2345 return nullptr; 2346 2347 // A boolean compared to true/false can be simplified in 14 out of the 20 2348 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2349 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2350 if (match(RHS, m_Zero())) { 2351 switch (Pred) { 2352 case CmpInst::ICMP_NE: // X != 0 -> X 2353 case CmpInst::ICMP_UGT: // X >u 0 -> X 2354 case CmpInst::ICMP_SLT: // X <s 0 -> X 2355 return LHS; 2356 2357 case CmpInst::ICMP_ULT: // X <u 0 -> false 2358 case CmpInst::ICMP_SGT: // X >s 0 -> false 2359 return getFalse(ITy); 2360 2361 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2362 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2363 return getTrue(ITy); 2364 2365 default: break; 2366 } 2367 } else if (match(RHS, m_One())) { 2368 switch (Pred) { 2369 case CmpInst::ICMP_EQ: // X == 1 -> X 2370 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2371 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2372 return LHS; 2373 2374 case CmpInst::ICMP_UGT: // X >u 1 -> false 2375 case CmpInst::ICMP_SLT: // X <s -1 -> false 2376 return getFalse(ITy); 2377 2378 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2379 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2380 return getTrue(ITy); 2381 2382 default: break; 2383 } 2384 } 2385 2386 switch (Pred) { 2387 default: 2388 break; 2389 case ICmpInst::ICMP_UGE: 2390 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2391 return getTrue(ITy); 2392 break; 2393 case ICmpInst::ICMP_SGE: 2394 /// For signed comparison, the values for an i1 are 0 and -1 2395 /// respectively. This maps into a truth table of: 2396 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2397 /// 0 | 0 | 1 (0 >= 0) | 1 2398 /// 0 | 1 | 1 (0 >= -1) | 1 2399 /// 1 | 0 | 0 (-1 >= 0) | 0 2400 /// 1 | 1 | 1 (-1 >= -1) | 1 2401 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2402 return getTrue(ITy); 2403 break; 2404 case ICmpInst::ICMP_ULE: 2405 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2406 return getTrue(ITy); 2407 break; 2408 } 2409 2410 return nullptr; 2411 } 2412 2413 /// Try hard to fold icmp with zero RHS because this is a common case. 2414 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2415 Value *RHS, const SimplifyQuery &Q) { 2416 if (!match(RHS, m_Zero())) 2417 return nullptr; 2418 2419 Type *ITy = GetCompareTy(LHS); // The return type. 2420 switch (Pred) { 2421 default: 2422 llvm_unreachable("Unknown ICmp predicate!"); 2423 case ICmpInst::ICMP_ULT: 2424 return getFalse(ITy); 2425 case ICmpInst::ICMP_UGE: 2426 return getTrue(ITy); 2427 case ICmpInst::ICMP_EQ: 2428 case ICmpInst::ICMP_ULE: 2429 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2430 return getFalse(ITy); 2431 break; 2432 case ICmpInst::ICMP_NE: 2433 case ICmpInst::ICMP_UGT: 2434 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2435 return getTrue(ITy); 2436 break; 2437 case ICmpInst::ICMP_SLT: { 2438 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2439 if (LHSKnown.isNegative()) 2440 return getTrue(ITy); 2441 if (LHSKnown.isNonNegative()) 2442 return getFalse(ITy); 2443 break; 2444 } 2445 case ICmpInst::ICMP_SLE: { 2446 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2447 if (LHSKnown.isNegative()) 2448 return getTrue(ITy); 2449 if (LHSKnown.isNonNegative() && 2450 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2451 return getFalse(ITy); 2452 break; 2453 } 2454 case ICmpInst::ICMP_SGE: { 2455 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2456 if (LHSKnown.isNegative()) 2457 return getFalse(ITy); 2458 if (LHSKnown.isNonNegative()) 2459 return getTrue(ITy); 2460 break; 2461 } 2462 case ICmpInst::ICMP_SGT: { 2463 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2464 if (LHSKnown.isNegative()) 2465 return getFalse(ITy); 2466 if (LHSKnown.isNonNegative() && 2467 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2468 return getTrue(ITy); 2469 break; 2470 } 2471 } 2472 2473 return nullptr; 2474 } 2475 2476 /// Many binary operators with a constant operand have an easy-to-compute 2477 /// range of outputs. This can be used to fold a comparison to always true or 2478 /// always false. 2479 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper, 2480 const InstrInfoQuery &IIQ) { 2481 unsigned Width = Lower.getBitWidth(); 2482 const APInt *C; 2483 switch (BO.getOpcode()) { 2484 case Instruction::Add: 2485 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2486 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2487 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 2488 // 'add nuw x, C' produces [C, UINT_MAX]. 2489 Lower = *C; 2490 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 2491 if (C->isNegative()) { 2492 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2493 Lower = APInt::getSignedMinValue(Width); 2494 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2495 } else { 2496 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2497 Lower = APInt::getSignedMinValue(Width) + *C; 2498 Upper = APInt::getSignedMaxValue(Width) + 1; 2499 } 2500 } 2501 } 2502 break; 2503 2504 case Instruction::And: 2505 if (match(BO.getOperand(1), m_APInt(C))) 2506 // 'and x, C' produces [0, C]. 2507 Upper = *C + 1; 2508 break; 2509 2510 case Instruction::Or: 2511 if (match(BO.getOperand(1), m_APInt(C))) 2512 // 'or x, C' produces [C, UINT_MAX]. 2513 Lower = *C; 2514 break; 2515 2516 case Instruction::AShr: 2517 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2518 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2519 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2520 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2521 } else if (match(BO.getOperand(0), m_APInt(C))) { 2522 unsigned ShiftAmount = Width - 1; 2523 if (!C->isNullValue() && IIQ.isExact(&BO)) 2524 ShiftAmount = C->countTrailingZeros(); 2525 if (C->isNegative()) { 2526 // 'ashr C, x' produces [C, C >> (Width-1)] 2527 Lower = *C; 2528 Upper = C->ashr(ShiftAmount) + 1; 2529 } else { 2530 // 'ashr C, x' produces [C >> (Width-1), C] 2531 Lower = C->ashr(ShiftAmount); 2532 Upper = *C + 1; 2533 } 2534 } 2535 break; 2536 2537 case Instruction::LShr: 2538 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2539 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2540 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2541 } else if (match(BO.getOperand(0), m_APInt(C))) { 2542 // 'lshr C, x' produces [C >> (Width-1), C]. 2543 unsigned ShiftAmount = Width - 1; 2544 if (!C->isNullValue() && IIQ.isExact(&BO)) 2545 ShiftAmount = C->countTrailingZeros(); 2546 Lower = C->lshr(ShiftAmount); 2547 Upper = *C + 1; 2548 } 2549 break; 2550 2551 case Instruction::Shl: 2552 if (match(BO.getOperand(0), m_APInt(C))) { 2553 if (IIQ.hasNoUnsignedWrap(&BO)) { 2554 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2555 Lower = *C; 2556 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2557 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2558 if (C->isNegative()) { 2559 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2560 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2561 Lower = C->shl(ShiftAmount); 2562 Upper = *C + 1; 2563 } else { 2564 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2565 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2566 Lower = *C; 2567 Upper = C->shl(ShiftAmount) + 1; 2568 } 2569 } 2570 } 2571 break; 2572 2573 case Instruction::SDiv: 2574 if (match(BO.getOperand(1), m_APInt(C))) { 2575 APInt IntMin = APInt::getSignedMinValue(Width); 2576 APInt IntMax = APInt::getSignedMaxValue(Width); 2577 if (C->isAllOnesValue()) { 2578 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2579 // where C != -1 and C != 0 and C != 1 2580 Lower = IntMin + 1; 2581 Upper = IntMax + 1; 2582 } else if (C->countLeadingZeros() < Width - 1) { 2583 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2584 // where C != -1 and C != 0 and C != 1 2585 Lower = IntMin.sdiv(*C); 2586 Upper = IntMax.sdiv(*C); 2587 if (Lower.sgt(Upper)) 2588 std::swap(Lower, Upper); 2589 Upper = Upper + 1; 2590 assert(Upper != Lower && "Upper part of range has wrapped!"); 2591 } 2592 } else if (match(BO.getOperand(0), m_APInt(C))) { 2593 if (C->isMinSignedValue()) { 2594 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2595 Lower = *C; 2596 Upper = Lower.lshr(1) + 1; 2597 } else { 2598 // 'sdiv C, x' produces [-|C|, |C|]. 2599 Upper = C->abs() + 1; 2600 Lower = (-Upper) + 1; 2601 } 2602 } 2603 break; 2604 2605 case Instruction::UDiv: 2606 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2607 // 'udiv x, C' produces [0, UINT_MAX / C]. 2608 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2609 } else if (match(BO.getOperand(0), m_APInt(C))) { 2610 // 'udiv C, x' produces [0, C]. 2611 Upper = *C + 1; 2612 } 2613 break; 2614 2615 case Instruction::SRem: 2616 if (match(BO.getOperand(1), m_APInt(C))) { 2617 // 'srem x, C' produces (-|C|, |C|). 2618 Upper = C->abs(); 2619 Lower = (-Upper) + 1; 2620 } 2621 break; 2622 2623 case Instruction::URem: 2624 if (match(BO.getOperand(1), m_APInt(C))) 2625 // 'urem x, C' produces [0, C). 2626 Upper = *C; 2627 break; 2628 2629 default: 2630 break; 2631 } 2632 } 2633 2634 /// Some intrinsics with a constant operand have an easy-to-compute range of 2635 /// outputs. This can be used to fold a comparison to always true or always 2636 /// false. 2637 static void setLimitsForIntrinsic(IntrinsicInst &II, APInt &Lower, 2638 APInt &Upper) { 2639 unsigned Width = Lower.getBitWidth(); 2640 const APInt *C; 2641 switch (II.getIntrinsicID()) { 2642 case Intrinsic::uadd_sat: 2643 // uadd.sat(x, C) produces [C, UINT_MAX]. 2644 if (match(II.getOperand(0), m_APInt(C)) || 2645 match(II.getOperand(1), m_APInt(C))) 2646 Lower = *C; 2647 break; 2648 case Intrinsic::sadd_sat: 2649 if (match(II.getOperand(0), m_APInt(C)) || 2650 match(II.getOperand(1), m_APInt(C))) { 2651 if (C->isNegative()) { 2652 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 2653 Lower = APInt::getSignedMinValue(Width); 2654 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2655 } else { 2656 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 2657 Lower = APInt::getSignedMinValue(Width) + *C; 2658 Upper = APInt::getSignedMaxValue(Width) + 1; 2659 } 2660 } 2661 break; 2662 case Intrinsic::usub_sat: 2663 // usub.sat(C, x) produces [0, C]. 2664 if (match(II.getOperand(0), m_APInt(C))) 2665 Upper = *C + 1; 2666 // usub.sat(x, C) produces [0, UINT_MAX - C]. 2667 else if (match(II.getOperand(1), m_APInt(C))) 2668 Upper = APInt::getMaxValue(Width) - *C + 1; 2669 break; 2670 case Intrinsic::ssub_sat: 2671 if (match(II.getOperand(0), m_APInt(C))) { 2672 if (C->isNegative()) { 2673 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 2674 Lower = APInt::getSignedMinValue(Width); 2675 Upper = *C - APInt::getSignedMinValue(Width) + 1; 2676 } else { 2677 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 2678 Lower = *C - APInt::getSignedMaxValue(Width); 2679 Upper = APInt::getSignedMaxValue(Width) + 1; 2680 } 2681 } else if (match(II.getOperand(1), m_APInt(C))) { 2682 if (C->isNegative()) { 2683 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 2684 Lower = APInt::getSignedMinValue(Width) - *C; 2685 Upper = APInt::getSignedMaxValue(Width) + 1; 2686 } else { 2687 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 2688 Lower = APInt::getSignedMinValue(Width); 2689 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 2690 } 2691 } 2692 break; 2693 default: 2694 break; 2695 } 2696 } 2697 2698 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2699 Value *RHS, const InstrInfoQuery &IIQ) { 2700 Type *ITy = GetCompareTy(RHS); // The return type. 2701 2702 Value *X; 2703 // Sign-bit checks can be optimized to true/false after unsigned 2704 // floating-point casts: 2705 // icmp slt (bitcast (uitofp X)), 0 --> false 2706 // icmp sgt (bitcast (uitofp X)), -1 --> true 2707 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2708 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2709 return ConstantInt::getFalse(ITy); 2710 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2711 return ConstantInt::getTrue(ITy); 2712 } 2713 2714 const APInt *C; 2715 if (!match(RHS, m_APInt(C))) 2716 return nullptr; 2717 2718 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2719 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2720 if (RHS_CR.isEmptySet()) 2721 return ConstantInt::getFalse(ITy); 2722 if (RHS_CR.isFullSet()) 2723 return ConstantInt::getTrue(ITy); 2724 2725 // Find the range of possible values for binary operators. 2726 unsigned Width = C->getBitWidth(); 2727 APInt Lower = APInt(Width, 0); 2728 APInt Upper = APInt(Width, 0); 2729 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2730 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 2731 else if (auto *II = dyn_cast<IntrinsicInst>(LHS)) 2732 setLimitsForIntrinsic(*II, Lower, Upper); 2733 2734 ConstantRange LHS_CR = 2735 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2736 2737 if (auto *I = dyn_cast<Instruction>(LHS)) 2738 if (auto *Ranges = IIQ.getMetadata(I, LLVMContext::MD_range)) 2739 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2740 2741 if (!LHS_CR.isFullSet()) { 2742 if (RHS_CR.contains(LHS_CR)) 2743 return ConstantInt::getTrue(ITy); 2744 if (RHS_CR.inverse().contains(LHS_CR)) 2745 return ConstantInt::getFalse(ITy); 2746 } 2747 2748 return nullptr; 2749 } 2750 2751 /// TODO: A large part of this logic is duplicated in InstCombine's 2752 /// foldICmpBinOp(). We should be able to share that and avoid the code 2753 /// duplication. 2754 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2755 Value *RHS, const SimplifyQuery &Q, 2756 unsigned MaxRecurse) { 2757 Type *ITy = GetCompareTy(LHS); // The return type. 2758 2759 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2760 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2761 if (MaxRecurse && (LBO || RBO)) { 2762 // Analyze the case when either LHS or RHS is an add instruction. 2763 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2764 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2765 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2766 if (LBO && LBO->getOpcode() == Instruction::Add) { 2767 A = LBO->getOperand(0); 2768 B = LBO->getOperand(1); 2769 NoLHSWrapProblem = 2770 ICmpInst::isEquality(Pred) || 2771 (CmpInst::isUnsigned(Pred) && 2772 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2773 (CmpInst::isSigned(Pred) && 2774 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2775 } 2776 if (RBO && RBO->getOpcode() == Instruction::Add) { 2777 C = RBO->getOperand(0); 2778 D = RBO->getOperand(1); 2779 NoRHSWrapProblem = 2780 ICmpInst::isEquality(Pred) || 2781 (CmpInst::isUnsigned(Pred) && 2782 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2783 (CmpInst::isSigned(Pred) && 2784 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2785 } 2786 2787 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2788 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2789 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2790 Constant::getNullValue(RHS->getType()), Q, 2791 MaxRecurse - 1)) 2792 return V; 2793 2794 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2795 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2796 if (Value *V = 2797 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2798 C == LHS ? D : C, Q, MaxRecurse - 1)) 2799 return V; 2800 2801 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2802 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2803 NoRHSWrapProblem) { 2804 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2805 Value *Y, *Z; 2806 if (A == C) { 2807 // C + B == C + D -> B == D 2808 Y = B; 2809 Z = D; 2810 } else if (A == D) { 2811 // D + B == C + D -> B == C 2812 Y = B; 2813 Z = C; 2814 } else if (B == C) { 2815 // A + C == C + D -> A == D 2816 Y = A; 2817 Z = D; 2818 } else { 2819 assert(B == D); 2820 // A + D == C + D -> A == C 2821 Y = A; 2822 Z = C; 2823 } 2824 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2825 return V; 2826 } 2827 } 2828 2829 { 2830 Value *Y = nullptr; 2831 // icmp pred (or X, Y), X 2832 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2833 if (Pred == ICmpInst::ICMP_ULT) 2834 return getFalse(ITy); 2835 if (Pred == ICmpInst::ICMP_UGE) 2836 return getTrue(ITy); 2837 2838 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2839 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2840 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2841 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2842 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2843 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2844 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2845 } 2846 } 2847 // icmp pred X, (or X, Y) 2848 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2849 if (Pred == ICmpInst::ICMP_ULE) 2850 return getTrue(ITy); 2851 if (Pred == ICmpInst::ICMP_UGT) 2852 return getFalse(ITy); 2853 2854 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2855 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2856 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2857 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2858 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2859 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2860 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2861 } 2862 } 2863 } 2864 2865 // icmp pred (and X, Y), X 2866 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2867 if (Pred == ICmpInst::ICMP_UGT) 2868 return getFalse(ITy); 2869 if (Pred == ICmpInst::ICMP_ULE) 2870 return getTrue(ITy); 2871 } 2872 // icmp pred X, (and X, Y) 2873 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2874 if (Pred == ICmpInst::ICMP_UGE) 2875 return getTrue(ITy); 2876 if (Pred == ICmpInst::ICMP_ULT) 2877 return getFalse(ITy); 2878 } 2879 2880 // 0 - (zext X) pred C 2881 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2882 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2883 if (RHSC->getValue().isStrictlyPositive()) { 2884 if (Pred == ICmpInst::ICMP_SLT) 2885 return ConstantInt::getTrue(RHSC->getContext()); 2886 if (Pred == ICmpInst::ICMP_SGE) 2887 return ConstantInt::getFalse(RHSC->getContext()); 2888 if (Pred == ICmpInst::ICMP_EQ) 2889 return ConstantInt::getFalse(RHSC->getContext()); 2890 if (Pred == ICmpInst::ICMP_NE) 2891 return ConstantInt::getTrue(RHSC->getContext()); 2892 } 2893 if (RHSC->getValue().isNonNegative()) { 2894 if (Pred == ICmpInst::ICMP_SLE) 2895 return ConstantInt::getTrue(RHSC->getContext()); 2896 if (Pred == ICmpInst::ICMP_SGT) 2897 return ConstantInt::getFalse(RHSC->getContext()); 2898 } 2899 } 2900 } 2901 2902 // icmp pred (urem X, Y), Y 2903 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2904 switch (Pred) { 2905 default: 2906 break; 2907 case ICmpInst::ICMP_SGT: 2908 case ICmpInst::ICMP_SGE: { 2909 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2910 if (!Known.isNonNegative()) 2911 break; 2912 LLVM_FALLTHROUGH; 2913 } 2914 case ICmpInst::ICMP_EQ: 2915 case ICmpInst::ICMP_UGT: 2916 case ICmpInst::ICMP_UGE: 2917 return getFalse(ITy); 2918 case ICmpInst::ICMP_SLT: 2919 case ICmpInst::ICMP_SLE: { 2920 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2921 if (!Known.isNonNegative()) 2922 break; 2923 LLVM_FALLTHROUGH; 2924 } 2925 case ICmpInst::ICMP_NE: 2926 case ICmpInst::ICMP_ULT: 2927 case ICmpInst::ICMP_ULE: 2928 return getTrue(ITy); 2929 } 2930 } 2931 2932 // icmp pred X, (urem Y, X) 2933 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2934 switch (Pred) { 2935 default: 2936 break; 2937 case ICmpInst::ICMP_SGT: 2938 case ICmpInst::ICMP_SGE: { 2939 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2940 if (!Known.isNonNegative()) 2941 break; 2942 LLVM_FALLTHROUGH; 2943 } 2944 case ICmpInst::ICMP_NE: 2945 case ICmpInst::ICMP_UGT: 2946 case ICmpInst::ICMP_UGE: 2947 return getTrue(ITy); 2948 case ICmpInst::ICMP_SLT: 2949 case ICmpInst::ICMP_SLE: { 2950 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2951 if (!Known.isNonNegative()) 2952 break; 2953 LLVM_FALLTHROUGH; 2954 } 2955 case ICmpInst::ICMP_EQ: 2956 case ICmpInst::ICMP_ULT: 2957 case ICmpInst::ICMP_ULE: 2958 return getFalse(ITy); 2959 } 2960 } 2961 2962 // x >> y <=u x 2963 // x udiv y <=u x. 2964 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2965 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2966 // icmp pred (X op Y), X 2967 if (Pred == ICmpInst::ICMP_UGT) 2968 return getFalse(ITy); 2969 if (Pred == ICmpInst::ICMP_ULE) 2970 return getTrue(ITy); 2971 } 2972 2973 // x >=u x >> y 2974 // x >=u x udiv y. 2975 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2976 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2977 // icmp pred X, (X op Y) 2978 if (Pred == ICmpInst::ICMP_ULT) 2979 return getFalse(ITy); 2980 if (Pred == ICmpInst::ICMP_UGE) 2981 return getTrue(ITy); 2982 } 2983 2984 // handle: 2985 // CI2 << X == CI 2986 // CI2 << X != CI 2987 // 2988 // where CI2 is a power of 2 and CI isn't 2989 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2990 const APInt *CI2Val, *CIVal = &CI->getValue(); 2991 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2992 CI2Val->isPowerOf2()) { 2993 if (!CIVal->isPowerOf2()) { 2994 // CI2 << X can equal zero in some circumstances, 2995 // this simplification is unsafe if CI is zero. 2996 // 2997 // We know it is safe if: 2998 // - The shift is nsw, we can't shift out the one bit. 2999 // - The shift is nuw, we can't shift out the one bit. 3000 // - CI2 is one 3001 // - CI isn't zero 3002 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3003 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3004 CI2Val->isOneValue() || !CI->isZero()) { 3005 if (Pred == ICmpInst::ICMP_EQ) 3006 return ConstantInt::getFalse(RHS->getContext()); 3007 if (Pred == ICmpInst::ICMP_NE) 3008 return ConstantInt::getTrue(RHS->getContext()); 3009 } 3010 } 3011 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 3012 if (Pred == ICmpInst::ICMP_UGT) 3013 return ConstantInt::getFalse(RHS->getContext()); 3014 if (Pred == ICmpInst::ICMP_ULE) 3015 return ConstantInt::getTrue(RHS->getContext()); 3016 } 3017 } 3018 } 3019 3020 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3021 LBO->getOperand(1) == RBO->getOperand(1)) { 3022 switch (LBO->getOpcode()) { 3023 default: 3024 break; 3025 case Instruction::UDiv: 3026 case Instruction::LShr: 3027 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3028 !Q.IIQ.isExact(RBO)) 3029 break; 3030 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3031 RBO->getOperand(0), Q, MaxRecurse - 1)) 3032 return V; 3033 break; 3034 case Instruction::SDiv: 3035 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3036 !Q.IIQ.isExact(RBO)) 3037 break; 3038 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3039 RBO->getOperand(0), Q, MaxRecurse - 1)) 3040 return V; 3041 break; 3042 case Instruction::AShr: 3043 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3044 break; 3045 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3046 RBO->getOperand(0), Q, MaxRecurse - 1)) 3047 return V; 3048 break; 3049 case Instruction::Shl: { 3050 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3051 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3052 if (!NUW && !NSW) 3053 break; 3054 if (!NSW && ICmpInst::isSigned(Pred)) 3055 break; 3056 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3057 RBO->getOperand(0), Q, MaxRecurse - 1)) 3058 return V; 3059 break; 3060 } 3061 } 3062 } 3063 return nullptr; 3064 } 3065 3066 static Value *simplifyICmpWithAbsNabs(CmpInst::Predicate Pred, Value *Op0, 3067 Value *Op1) { 3068 // We need a comparison with a constant. 3069 const APInt *C; 3070 if (!match(Op1, m_APInt(C))) 3071 return nullptr; 3072 3073 // matchSelectPattern returns the negation part of an abs pattern in SP1. 3074 // If the negate has an NSW flag, abs(INT_MIN) is undefined. Without that 3075 // constraint, we can't make a contiguous range for the result of abs. 3076 ICmpInst::Predicate AbsPred = ICmpInst::BAD_ICMP_PREDICATE; 3077 Value *SP0, *SP1; 3078 SelectPatternFlavor SPF = matchSelectPattern(Op0, SP0, SP1).Flavor; 3079 if (SPF == SelectPatternFlavor::SPF_ABS && 3080 cast<Instruction>(SP1)->hasNoSignedWrap()) 3081 // The result of abs(X) is >= 0 (with nsw). 3082 AbsPred = ICmpInst::ICMP_SGE; 3083 if (SPF == SelectPatternFlavor::SPF_NABS) 3084 // The result of -abs(X) is <= 0. 3085 AbsPred = ICmpInst::ICMP_SLE; 3086 3087 if (AbsPred == ICmpInst::BAD_ICMP_PREDICATE) 3088 return nullptr; 3089 3090 // If there is no intersection between abs/nabs and the range of this icmp, 3091 // the icmp must be false. If the abs/nabs range is a subset of the icmp 3092 // range, the icmp must be true. 3093 APInt Zero = APInt::getNullValue(C->getBitWidth()); 3094 ConstantRange AbsRange = ConstantRange::makeExactICmpRegion(AbsPred, Zero); 3095 ConstantRange CmpRange = ConstantRange::makeExactICmpRegion(Pred, *C); 3096 if (AbsRange.intersectWith(CmpRange).isEmptySet()) 3097 return getFalse(GetCompareTy(Op0)); 3098 if (CmpRange.contains(AbsRange)) 3099 return getTrue(GetCompareTy(Op0)); 3100 3101 return nullptr; 3102 } 3103 3104 /// Simplify integer comparisons where at least one operand of the compare 3105 /// matches an integer min/max idiom. 3106 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3107 Value *RHS, const SimplifyQuery &Q, 3108 unsigned MaxRecurse) { 3109 Type *ITy = GetCompareTy(LHS); // The return type. 3110 Value *A, *B; 3111 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3112 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3113 3114 // Signed variants on "max(a,b)>=a -> true". 3115 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3116 if (A != RHS) 3117 std::swap(A, B); // smax(A, B) pred A. 3118 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3119 // We analyze this as smax(A, B) pred A. 3120 P = Pred; 3121 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3122 (A == LHS || B == LHS)) { 3123 if (A != LHS) 3124 std::swap(A, B); // A pred smax(A, B). 3125 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3126 // We analyze this as smax(A, B) swapped-pred A. 3127 P = CmpInst::getSwappedPredicate(Pred); 3128 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3129 (A == RHS || B == RHS)) { 3130 if (A != RHS) 3131 std::swap(A, B); // smin(A, B) pred A. 3132 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3133 // We analyze this as smax(-A, -B) swapped-pred -A. 3134 // Note that we do not need to actually form -A or -B thanks to EqP. 3135 P = CmpInst::getSwappedPredicate(Pred); 3136 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3137 (A == LHS || B == LHS)) { 3138 if (A != LHS) 3139 std::swap(A, B); // A pred smin(A, B). 3140 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3141 // We analyze this as smax(-A, -B) pred -A. 3142 // Note that we do not need to actually form -A or -B thanks to EqP. 3143 P = Pred; 3144 } 3145 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3146 // Cases correspond to "max(A, B) p A". 3147 switch (P) { 3148 default: 3149 break; 3150 case CmpInst::ICMP_EQ: 3151 case CmpInst::ICMP_SLE: 3152 // Equivalent to "A EqP B". This may be the same as the condition tested 3153 // in the max/min; if so, we can just return that. 3154 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3155 return V; 3156 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3157 return V; 3158 // Otherwise, see if "A EqP B" simplifies. 3159 if (MaxRecurse) 3160 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3161 return V; 3162 break; 3163 case CmpInst::ICMP_NE: 3164 case CmpInst::ICMP_SGT: { 3165 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3166 // Equivalent to "A InvEqP B". This may be the same as the condition 3167 // tested in the max/min; if so, we can just return that. 3168 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3169 return V; 3170 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3171 return V; 3172 // Otherwise, see if "A InvEqP B" simplifies. 3173 if (MaxRecurse) 3174 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3175 return V; 3176 break; 3177 } 3178 case CmpInst::ICMP_SGE: 3179 // Always true. 3180 return getTrue(ITy); 3181 case CmpInst::ICMP_SLT: 3182 // Always false. 3183 return getFalse(ITy); 3184 } 3185 } 3186 3187 // Unsigned variants on "max(a,b)>=a -> true". 3188 P = CmpInst::BAD_ICMP_PREDICATE; 3189 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3190 if (A != RHS) 3191 std::swap(A, B); // umax(A, B) pred A. 3192 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3193 // We analyze this as umax(A, B) pred A. 3194 P = Pred; 3195 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3196 (A == LHS || B == LHS)) { 3197 if (A != LHS) 3198 std::swap(A, B); // A pred umax(A, B). 3199 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3200 // We analyze this as umax(A, B) swapped-pred A. 3201 P = CmpInst::getSwappedPredicate(Pred); 3202 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3203 (A == RHS || B == RHS)) { 3204 if (A != RHS) 3205 std::swap(A, B); // umin(A, B) pred A. 3206 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3207 // We analyze this as umax(-A, -B) swapped-pred -A. 3208 // Note that we do not need to actually form -A or -B thanks to EqP. 3209 P = CmpInst::getSwappedPredicate(Pred); 3210 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3211 (A == LHS || B == LHS)) { 3212 if (A != LHS) 3213 std::swap(A, B); // A pred umin(A, B). 3214 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3215 // We analyze this as umax(-A, -B) pred -A. 3216 // Note that we do not need to actually form -A or -B thanks to EqP. 3217 P = Pred; 3218 } 3219 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3220 // Cases correspond to "max(A, B) p A". 3221 switch (P) { 3222 default: 3223 break; 3224 case CmpInst::ICMP_EQ: 3225 case CmpInst::ICMP_ULE: 3226 // Equivalent to "A EqP B". This may be the same as the condition tested 3227 // in the max/min; if so, we can just return that. 3228 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3229 return V; 3230 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3231 return V; 3232 // Otherwise, see if "A EqP B" simplifies. 3233 if (MaxRecurse) 3234 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3235 return V; 3236 break; 3237 case CmpInst::ICMP_NE: 3238 case CmpInst::ICMP_UGT: { 3239 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3240 // Equivalent to "A InvEqP B". This may be the same as the condition 3241 // tested in the max/min; if so, we can just return that. 3242 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3243 return V; 3244 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3245 return V; 3246 // Otherwise, see if "A InvEqP B" simplifies. 3247 if (MaxRecurse) 3248 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3249 return V; 3250 break; 3251 } 3252 case CmpInst::ICMP_UGE: 3253 // Always true. 3254 return getTrue(ITy); 3255 case CmpInst::ICMP_ULT: 3256 // Always false. 3257 return getFalse(ITy); 3258 } 3259 } 3260 3261 // Variants on "max(x,y) >= min(x,z)". 3262 Value *C, *D; 3263 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3264 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3265 (A == C || A == D || B == C || B == D)) { 3266 // max(x, ?) pred min(x, ?). 3267 if (Pred == CmpInst::ICMP_SGE) 3268 // Always true. 3269 return getTrue(ITy); 3270 if (Pred == CmpInst::ICMP_SLT) 3271 // Always false. 3272 return getFalse(ITy); 3273 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3274 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3275 (A == C || A == D || B == C || B == D)) { 3276 // min(x, ?) pred max(x, ?). 3277 if (Pred == CmpInst::ICMP_SLE) 3278 // Always true. 3279 return getTrue(ITy); 3280 if (Pred == CmpInst::ICMP_SGT) 3281 // Always false. 3282 return getFalse(ITy); 3283 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3284 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3285 (A == C || A == D || B == C || B == D)) { 3286 // max(x, ?) pred min(x, ?). 3287 if (Pred == CmpInst::ICMP_UGE) 3288 // Always true. 3289 return getTrue(ITy); 3290 if (Pred == CmpInst::ICMP_ULT) 3291 // Always false. 3292 return getFalse(ITy); 3293 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3294 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3295 (A == C || A == D || B == C || B == D)) { 3296 // min(x, ?) pred max(x, ?). 3297 if (Pred == CmpInst::ICMP_ULE) 3298 // Always true. 3299 return getTrue(ITy); 3300 if (Pred == CmpInst::ICMP_UGT) 3301 // Always false. 3302 return getFalse(ITy); 3303 } 3304 3305 return nullptr; 3306 } 3307 3308 /// Given operands for an ICmpInst, see if we can fold the result. 3309 /// If not, this returns null. 3310 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3311 const SimplifyQuery &Q, unsigned MaxRecurse) { 3312 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3313 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3314 3315 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3316 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3317 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3318 3319 // If we have a constant, make sure it is on the RHS. 3320 std::swap(LHS, RHS); 3321 Pred = CmpInst::getSwappedPredicate(Pred); 3322 } 3323 3324 Type *ITy = GetCompareTy(LHS); // The return type. 3325 3326 // icmp X, X -> true/false 3327 // icmp X, undef -> true/false because undef could be X. 3328 if (LHS == RHS || isa<UndefValue>(RHS)) 3329 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3330 3331 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3332 return V; 3333 3334 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3335 return V; 3336 3337 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3338 return V; 3339 3340 // If both operands have range metadata, use the metadata 3341 // to simplify the comparison. 3342 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3343 auto RHS_Instr = cast<Instruction>(RHS); 3344 auto LHS_Instr = cast<Instruction>(LHS); 3345 3346 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3347 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3348 auto RHS_CR = getConstantRangeFromMetadata( 3349 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3350 auto LHS_CR = getConstantRangeFromMetadata( 3351 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3352 3353 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3354 if (Satisfied_CR.contains(LHS_CR)) 3355 return ConstantInt::getTrue(RHS->getContext()); 3356 3357 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3358 CmpInst::getInversePredicate(Pred), RHS_CR); 3359 if (InversedSatisfied_CR.contains(LHS_CR)) 3360 return ConstantInt::getFalse(RHS->getContext()); 3361 } 3362 } 3363 3364 // Compare of cast, for example (zext X) != 0 -> X != 0 3365 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3366 Instruction *LI = cast<CastInst>(LHS); 3367 Value *SrcOp = LI->getOperand(0); 3368 Type *SrcTy = SrcOp->getType(); 3369 Type *DstTy = LI->getType(); 3370 3371 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3372 // if the integer type is the same size as the pointer type. 3373 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3374 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3375 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3376 // Transfer the cast to the constant. 3377 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3378 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3379 Q, MaxRecurse-1)) 3380 return V; 3381 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3382 if (RI->getOperand(0)->getType() == SrcTy) 3383 // Compare without the cast. 3384 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3385 Q, MaxRecurse-1)) 3386 return V; 3387 } 3388 } 3389 3390 if (isa<ZExtInst>(LHS)) { 3391 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3392 // same type. 3393 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3394 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3395 // Compare X and Y. Note that signed predicates become unsigned. 3396 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3397 SrcOp, RI->getOperand(0), Q, 3398 MaxRecurse-1)) 3399 return V; 3400 } 3401 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3402 // too. If not, then try to deduce the result of the comparison. 3403 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3404 // Compute the constant that would happen if we truncated to SrcTy then 3405 // reextended to DstTy. 3406 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3407 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3408 3409 // If the re-extended constant didn't change then this is effectively 3410 // also a case of comparing two zero-extended values. 3411 if (RExt == CI && MaxRecurse) 3412 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3413 SrcOp, Trunc, Q, MaxRecurse-1)) 3414 return V; 3415 3416 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3417 // there. Use this to work out the result of the comparison. 3418 if (RExt != CI) { 3419 switch (Pred) { 3420 default: llvm_unreachable("Unknown ICmp predicate!"); 3421 // LHS <u RHS. 3422 case ICmpInst::ICMP_EQ: 3423 case ICmpInst::ICMP_UGT: 3424 case ICmpInst::ICMP_UGE: 3425 return ConstantInt::getFalse(CI->getContext()); 3426 3427 case ICmpInst::ICMP_NE: 3428 case ICmpInst::ICMP_ULT: 3429 case ICmpInst::ICMP_ULE: 3430 return ConstantInt::getTrue(CI->getContext()); 3431 3432 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3433 // is non-negative then LHS <s RHS. 3434 case ICmpInst::ICMP_SGT: 3435 case ICmpInst::ICMP_SGE: 3436 return CI->getValue().isNegative() ? 3437 ConstantInt::getTrue(CI->getContext()) : 3438 ConstantInt::getFalse(CI->getContext()); 3439 3440 case ICmpInst::ICMP_SLT: 3441 case ICmpInst::ICMP_SLE: 3442 return CI->getValue().isNegative() ? 3443 ConstantInt::getFalse(CI->getContext()) : 3444 ConstantInt::getTrue(CI->getContext()); 3445 } 3446 } 3447 } 3448 } 3449 3450 if (isa<SExtInst>(LHS)) { 3451 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3452 // same type. 3453 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3454 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3455 // Compare X and Y. Note that the predicate does not change. 3456 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3457 Q, MaxRecurse-1)) 3458 return V; 3459 } 3460 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3461 // too. If not, then try to deduce the result of the comparison. 3462 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3463 // Compute the constant that would happen if we truncated to SrcTy then 3464 // reextended to DstTy. 3465 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3466 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3467 3468 // If the re-extended constant didn't change then this is effectively 3469 // also a case of comparing two sign-extended values. 3470 if (RExt == CI && MaxRecurse) 3471 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3472 return V; 3473 3474 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3475 // bits there. Use this to work out the result of the comparison. 3476 if (RExt != CI) { 3477 switch (Pred) { 3478 default: llvm_unreachable("Unknown ICmp predicate!"); 3479 case ICmpInst::ICMP_EQ: 3480 return ConstantInt::getFalse(CI->getContext()); 3481 case ICmpInst::ICMP_NE: 3482 return ConstantInt::getTrue(CI->getContext()); 3483 3484 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3485 // LHS >s RHS. 3486 case ICmpInst::ICMP_SGT: 3487 case ICmpInst::ICMP_SGE: 3488 return CI->getValue().isNegative() ? 3489 ConstantInt::getTrue(CI->getContext()) : 3490 ConstantInt::getFalse(CI->getContext()); 3491 case ICmpInst::ICMP_SLT: 3492 case ICmpInst::ICMP_SLE: 3493 return CI->getValue().isNegative() ? 3494 ConstantInt::getFalse(CI->getContext()) : 3495 ConstantInt::getTrue(CI->getContext()); 3496 3497 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3498 // LHS >u RHS. 3499 case ICmpInst::ICMP_UGT: 3500 case ICmpInst::ICMP_UGE: 3501 // Comparison is true iff the LHS <s 0. 3502 if (MaxRecurse) 3503 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3504 Constant::getNullValue(SrcTy), 3505 Q, MaxRecurse-1)) 3506 return V; 3507 break; 3508 case ICmpInst::ICMP_ULT: 3509 case ICmpInst::ICMP_ULE: 3510 // Comparison is true iff the LHS >=s 0. 3511 if (MaxRecurse) 3512 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3513 Constant::getNullValue(SrcTy), 3514 Q, MaxRecurse-1)) 3515 return V; 3516 break; 3517 } 3518 } 3519 } 3520 } 3521 } 3522 3523 // icmp eq|ne X, Y -> false|true if X != Y 3524 if (ICmpInst::isEquality(Pred) && 3525 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3526 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3527 } 3528 3529 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3530 return V; 3531 3532 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3533 return V; 3534 3535 if (Value *V = simplifyICmpWithAbsNabs(Pred, LHS, RHS)) 3536 return V; 3537 3538 // Simplify comparisons of related pointers using a powerful, recursive 3539 // GEP-walk when we have target data available.. 3540 if (LHS->getType()->isPointerTy()) 3541 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3542 Q.IIQ, LHS, RHS)) 3543 return C; 3544 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3545 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3546 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3547 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3548 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3549 Q.DL.getTypeSizeInBits(CRHS->getType())) 3550 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3551 Q.IIQ, CLHS->getPointerOperand(), 3552 CRHS->getPointerOperand())) 3553 return C; 3554 3555 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3556 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3557 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3558 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3559 (ICmpInst::isEquality(Pred) || 3560 (GLHS->isInBounds() && GRHS->isInBounds() && 3561 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3562 // The bases are equal and the indices are constant. Build a constant 3563 // expression GEP with the same indices and a null base pointer to see 3564 // what constant folding can make out of it. 3565 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3566 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3567 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3568 GLHS->getSourceElementType(), Null, IndicesLHS); 3569 3570 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3571 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3572 GLHS->getSourceElementType(), Null, IndicesRHS); 3573 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3574 } 3575 } 3576 } 3577 3578 // If the comparison is with the result of a select instruction, check whether 3579 // comparing with either branch of the select always yields the same value. 3580 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3581 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3582 return V; 3583 3584 // If the comparison is with the result of a phi instruction, check whether 3585 // doing the compare with each incoming phi value yields a common result. 3586 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3587 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3588 return V; 3589 3590 return nullptr; 3591 } 3592 3593 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3594 const SimplifyQuery &Q) { 3595 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3596 } 3597 3598 /// Given operands for an FCmpInst, see if we can fold the result. 3599 /// If not, this returns null. 3600 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3601 FastMathFlags FMF, const SimplifyQuery &Q, 3602 unsigned MaxRecurse) { 3603 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3604 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3605 3606 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3607 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3608 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3609 3610 // If we have a constant, make sure it is on the RHS. 3611 std::swap(LHS, RHS); 3612 Pred = CmpInst::getSwappedPredicate(Pred); 3613 } 3614 3615 // Fold trivial predicates. 3616 Type *RetTy = GetCompareTy(LHS); 3617 if (Pred == FCmpInst::FCMP_FALSE) 3618 return getFalse(RetTy); 3619 if (Pred == FCmpInst::FCMP_TRUE) 3620 return getTrue(RetTy); 3621 3622 // Fold (un)ordered comparison if we can determine there are no NaNs. 3623 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3624 if (FMF.noNaNs() || 3625 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3626 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3627 3628 // NaN is unordered; NaN is not ordered. 3629 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3630 "Comparison must be either ordered or unordered"); 3631 if (match(RHS, m_NaN())) 3632 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3633 3634 // fcmp pred x, undef and fcmp pred undef, x 3635 // fold to true if unordered, false if ordered 3636 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3637 // Choosing NaN for the undef will always make unordered comparison succeed 3638 // and ordered comparison fail. 3639 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3640 } 3641 3642 // fcmp x,x -> true/false. Not all compares are foldable. 3643 if (LHS == RHS) { 3644 if (CmpInst::isTrueWhenEqual(Pred)) 3645 return getTrue(RetTy); 3646 if (CmpInst::isFalseWhenEqual(Pred)) 3647 return getFalse(RetTy); 3648 } 3649 3650 // Handle fcmp with constant RHS. 3651 const APFloat *C; 3652 if (match(RHS, m_APFloat(C))) { 3653 // Check whether the constant is an infinity. 3654 if (C->isInfinity()) { 3655 if (C->isNegative()) { 3656 switch (Pred) { 3657 case FCmpInst::FCMP_OLT: 3658 // No value is ordered and less than negative infinity. 3659 return getFalse(RetTy); 3660 case FCmpInst::FCMP_UGE: 3661 // All values are unordered with or at least negative infinity. 3662 return getTrue(RetTy); 3663 default: 3664 break; 3665 } 3666 } else { 3667 switch (Pred) { 3668 case FCmpInst::FCMP_OGT: 3669 // No value is ordered and greater than infinity. 3670 return getFalse(RetTy); 3671 case FCmpInst::FCMP_ULE: 3672 // All values are unordered with and at most infinity. 3673 return getTrue(RetTy); 3674 default: 3675 break; 3676 } 3677 } 3678 } 3679 if (C->isZero()) { 3680 switch (Pred) { 3681 case FCmpInst::FCMP_OGE: 3682 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3683 return getTrue(RetTy); 3684 break; 3685 case FCmpInst::FCMP_UGE: 3686 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3687 return getTrue(RetTy); 3688 break; 3689 case FCmpInst::FCMP_ULT: 3690 if (FMF.noNaNs() && CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3691 return getFalse(RetTy); 3692 break; 3693 case FCmpInst::FCMP_OLT: 3694 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3695 return getFalse(RetTy); 3696 break; 3697 default: 3698 break; 3699 } 3700 } else if (C->isNegative()) { 3701 assert(!C->isNaN() && "Unexpected NaN constant!"); 3702 // TODO: We can catch more cases by using a range check rather than 3703 // relying on CannotBeOrderedLessThanZero. 3704 switch (Pred) { 3705 case FCmpInst::FCMP_UGE: 3706 case FCmpInst::FCMP_UGT: 3707 case FCmpInst::FCMP_UNE: 3708 // (X >= 0) implies (X > C) when (C < 0) 3709 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3710 return getTrue(RetTy); 3711 break; 3712 case FCmpInst::FCMP_OEQ: 3713 case FCmpInst::FCMP_OLE: 3714 case FCmpInst::FCMP_OLT: 3715 // (X >= 0) implies !(X < C) when (C < 0) 3716 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3717 return getFalse(RetTy); 3718 break; 3719 default: 3720 break; 3721 } 3722 } 3723 } 3724 3725 // If the comparison is with the result of a select instruction, check whether 3726 // comparing with either branch of the select always yields the same value. 3727 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3728 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3729 return V; 3730 3731 // If the comparison is with the result of a phi instruction, check whether 3732 // doing the compare with each incoming phi value yields a common result. 3733 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3734 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3735 return V; 3736 3737 return nullptr; 3738 } 3739 3740 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3741 FastMathFlags FMF, const SimplifyQuery &Q) { 3742 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3743 } 3744 3745 /// See if V simplifies when its operand Op is replaced with RepOp. 3746 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3747 const SimplifyQuery &Q, 3748 unsigned MaxRecurse) { 3749 // Trivial replacement. 3750 if (V == Op) 3751 return RepOp; 3752 3753 // We cannot replace a constant, and shouldn't even try. 3754 if (isa<Constant>(Op)) 3755 return nullptr; 3756 3757 auto *I = dyn_cast<Instruction>(V); 3758 if (!I) 3759 return nullptr; 3760 3761 // If this is a binary operator, try to simplify it with the replaced op. 3762 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3763 // Consider: 3764 // %cmp = icmp eq i32 %x, 2147483647 3765 // %add = add nsw i32 %x, 1 3766 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3767 // 3768 // We can't replace %sel with %add unless we strip away the flags. 3769 if (isa<OverflowingBinaryOperator>(B)) 3770 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3771 return nullptr; 3772 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3773 return nullptr; 3774 3775 if (MaxRecurse) { 3776 if (B->getOperand(0) == Op) 3777 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3778 MaxRecurse - 1); 3779 if (B->getOperand(1) == Op) 3780 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3781 MaxRecurse - 1); 3782 } 3783 } 3784 3785 // Same for CmpInsts. 3786 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3787 if (MaxRecurse) { 3788 if (C->getOperand(0) == Op) 3789 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3790 MaxRecurse - 1); 3791 if (C->getOperand(1) == Op) 3792 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3793 MaxRecurse - 1); 3794 } 3795 } 3796 3797 // Same for GEPs. 3798 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3799 if (MaxRecurse) { 3800 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3801 transform(GEP->operands(), NewOps.begin(), 3802 [&](Value *V) { return V == Op ? RepOp : V; }); 3803 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3804 MaxRecurse - 1); 3805 } 3806 } 3807 3808 // TODO: We could hand off more cases to instsimplify here. 3809 3810 // If all operands are constant after substituting Op for RepOp then we can 3811 // constant fold the instruction. 3812 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3813 // Build a list of all constant operands. 3814 SmallVector<Constant *, 8> ConstOps; 3815 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3816 if (I->getOperand(i) == Op) 3817 ConstOps.push_back(CRepOp); 3818 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3819 ConstOps.push_back(COp); 3820 else 3821 break; 3822 } 3823 3824 // All operands were constants, fold it. 3825 if (ConstOps.size() == I->getNumOperands()) { 3826 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3827 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3828 ConstOps[1], Q.DL, Q.TLI); 3829 3830 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3831 if (!LI->isVolatile()) 3832 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3833 3834 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3835 } 3836 } 3837 3838 return nullptr; 3839 } 3840 3841 /// Try to simplify a select instruction when its condition operand is an 3842 /// integer comparison where one operand of the compare is a constant. 3843 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3844 const APInt *Y, bool TrueWhenUnset) { 3845 const APInt *C; 3846 3847 // (X & Y) == 0 ? X & ~Y : X --> X 3848 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3849 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3850 *Y == ~*C) 3851 return TrueWhenUnset ? FalseVal : TrueVal; 3852 3853 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3854 // (X & Y) != 0 ? X : X & ~Y --> X 3855 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3856 *Y == ~*C) 3857 return TrueWhenUnset ? FalseVal : TrueVal; 3858 3859 if (Y->isPowerOf2()) { 3860 // (X & Y) == 0 ? X | Y : X --> X | Y 3861 // (X & Y) != 0 ? X | Y : X --> X 3862 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3863 *Y == *C) 3864 return TrueWhenUnset ? TrueVal : FalseVal; 3865 3866 // (X & Y) == 0 ? X : X | Y --> X 3867 // (X & Y) != 0 ? X : X | Y --> X | Y 3868 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3869 *Y == *C) 3870 return TrueWhenUnset ? TrueVal : FalseVal; 3871 } 3872 3873 return nullptr; 3874 } 3875 3876 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3877 /// eq/ne. 3878 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3879 ICmpInst::Predicate Pred, 3880 Value *TrueVal, Value *FalseVal) { 3881 Value *X; 3882 APInt Mask; 3883 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3884 return nullptr; 3885 3886 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3887 Pred == ICmpInst::ICMP_EQ); 3888 } 3889 3890 /// Try to simplify a select instruction when its condition operand is an 3891 /// integer comparison. 3892 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3893 Value *FalseVal, const SimplifyQuery &Q, 3894 unsigned MaxRecurse) { 3895 ICmpInst::Predicate Pred; 3896 Value *CmpLHS, *CmpRHS; 3897 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3898 return nullptr; 3899 3900 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3901 Value *X; 3902 const APInt *Y; 3903 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3904 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3905 Pred == ICmpInst::ICMP_EQ)) 3906 return V; 3907 3908 // Test for zero-shift-guard-ops around funnel shifts. These are used to 3909 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3910 // intrinsics do not have that problem. 3911 Value *ShAmt; 3912 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3913 m_Value(ShAmt)), 3914 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3915 m_Value(ShAmt))); 3916 // (ShAmt != 0) ? fshl(X, *, ShAmt) : X --> fshl(X, *, ShAmt) 3917 // (ShAmt != 0) ? fshr(*, X, ShAmt) : X --> fshr(*, X, ShAmt) 3918 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3919 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3920 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 3921 return Pred == ICmpInst::ICMP_NE ? TrueVal : X; 3922 3923 // (ShAmt == 0) ? X : fshl(X, *, ShAmt) --> fshl(X, *, ShAmt) 3924 // (ShAmt == 0) ? X : fshr(*, X, ShAmt) --> fshr(*, X, ShAmt) 3925 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3926 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3927 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt) 3928 return Pred == ICmpInst::ICMP_EQ ? FalseVal : X; 3929 } 3930 3931 // Check for other compares that behave like bit test. 3932 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3933 TrueVal, FalseVal)) 3934 return V; 3935 3936 // If we have an equality comparison, then we know the value in one of the 3937 // arms of the select. See if substituting this value into the arm and 3938 // simplifying the result yields the same value as the other arm. 3939 if (Pred == ICmpInst::ICMP_EQ) { 3940 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3941 TrueVal || 3942 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3943 TrueVal) 3944 return FalseVal; 3945 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3946 FalseVal || 3947 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3948 FalseVal) 3949 return FalseVal; 3950 } else if (Pred == ICmpInst::ICMP_NE) { 3951 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3952 FalseVal || 3953 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3954 FalseVal) 3955 return TrueVal; 3956 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3957 TrueVal || 3958 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3959 TrueVal) 3960 return TrueVal; 3961 } 3962 3963 return nullptr; 3964 } 3965 3966 /// Try to simplify a select instruction when its condition operand is a 3967 /// floating-point comparison. 3968 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F) { 3969 FCmpInst::Predicate Pred; 3970 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 3971 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 3972 return nullptr; 3973 3974 // TODO: The transform may not be valid with -0.0. An incomplete way of 3975 // testing for that possibility is to check if at least one operand is a 3976 // non-zero constant. 3977 const APFloat *C; 3978 if ((match(T, m_APFloat(C)) && C->isNonZero()) || 3979 (match(F, m_APFloat(C)) && C->isNonZero())) { 3980 // (T == F) ? T : F --> F 3981 // (F == T) ? T : F --> F 3982 if (Pred == FCmpInst::FCMP_OEQ) 3983 return F; 3984 3985 // (T != F) ? T : F --> T 3986 // (F != T) ? T : F --> T 3987 if (Pred == FCmpInst::FCMP_UNE) 3988 return T; 3989 } 3990 3991 return nullptr; 3992 } 3993 3994 /// Given operands for a SelectInst, see if we can fold the result. 3995 /// If not, this returns null. 3996 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3997 const SimplifyQuery &Q, unsigned MaxRecurse) { 3998 if (auto *CondC = dyn_cast<Constant>(Cond)) { 3999 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4000 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4001 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4002 4003 // select undef, X, Y -> X or Y 4004 if (isa<UndefValue>(CondC)) 4005 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4006 4007 // TODO: Vector constants with undef elements don't simplify. 4008 4009 // select true, X, Y -> X 4010 if (CondC->isAllOnesValue()) 4011 return TrueVal; 4012 // select false, X, Y -> Y 4013 if (CondC->isNullValue()) 4014 return FalseVal; 4015 } 4016 4017 // select ?, X, X -> X 4018 if (TrueVal == FalseVal) 4019 return TrueVal; 4020 4021 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 4022 return FalseVal; 4023 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 4024 return TrueVal; 4025 4026 if (Value *V = 4027 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4028 return V; 4029 4030 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal)) 4031 return V; 4032 4033 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4034 return V; 4035 4036 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4037 if (Imp) 4038 return *Imp ? TrueVal : FalseVal; 4039 4040 return nullptr; 4041 } 4042 4043 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4044 const SimplifyQuery &Q) { 4045 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4046 } 4047 4048 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4049 /// If not, this returns null. 4050 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4051 const SimplifyQuery &Q, unsigned) { 4052 // The type of the GEP pointer operand. 4053 unsigned AS = 4054 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4055 4056 // getelementptr P -> P. 4057 if (Ops.size() == 1) 4058 return Ops[0]; 4059 4060 // Compute the (pointer) type returned by the GEP instruction. 4061 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4062 Type *GEPTy = PointerType::get(LastType, AS); 4063 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4064 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4065 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4066 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 4067 4068 if (isa<UndefValue>(Ops[0])) 4069 return UndefValue::get(GEPTy); 4070 4071 if (Ops.size() == 2) { 4072 // getelementptr P, 0 -> P. 4073 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4074 return Ops[0]; 4075 4076 Type *Ty = SrcTy; 4077 if (Ty->isSized()) { 4078 Value *P; 4079 uint64_t C; 4080 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4081 // getelementptr P, N -> P if P points to a type of zero size. 4082 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4083 return Ops[0]; 4084 4085 // The following transforms are only safe if the ptrtoint cast 4086 // doesn't truncate the pointers. 4087 if (Ops[1]->getType()->getScalarSizeInBits() == 4088 Q.DL.getIndexSizeInBits(AS)) { 4089 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4090 if (match(P, m_Zero())) 4091 return Constant::getNullValue(GEPTy); 4092 Value *Temp; 4093 if (match(P, m_PtrToInt(m_Value(Temp)))) 4094 if (Temp->getType() == GEPTy) 4095 return Temp; 4096 return nullptr; 4097 }; 4098 4099 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4100 if (TyAllocSize == 1 && 4101 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4102 if (Value *R = PtrToIntOrZero(P)) 4103 return R; 4104 4105 // getelementptr V, (ashr (sub P, V), C) -> Q 4106 // if P points to a type of size 1 << C. 4107 if (match(Ops[1], 4108 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4109 m_ConstantInt(C))) && 4110 TyAllocSize == 1ULL << C) 4111 if (Value *R = PtrToIntOrZero(P)) 4112 return R; 4113 4114 // getelementptr V, (sdiv (sub P, V), C) -> Q 4115 // if P points to a type of size C. 4116 if (match(Ops[1], 4117 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4118 m_SpecificInt(TyAllocSize)))) 4119 if (Value *R = PtrToIntOrZero(P)) 4120 return R; 4121 } 4122 } 4123 } 4124 4125 if (Q.DL.getTypeAllocSize(LastType) == 1 && 4126 all_of(Ops.slice(1).drop_back(1), 4127 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4128 unsigned IdxWidth = 4129 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4130 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4131 APInt BasePtrOffset(IdxWidth, 0); 4132 Value *StrippedBasePtr = 4133 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4134 BasePtrOffset); 4135 4136 // gep (gep V, C), (sub 0, V) -> C 4137 if (match(Ops.back(), 4138 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4139 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4140 return ConstantExpr::getIntToPtr(CI, GEPTy); 4141 } 4142 // gep (gep V, C), (xor V, -1) -> C-1 4143 if (match(Ops.back(), 4144 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4145 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4146 return ConstantExpr::getIntToPtr(CI, GEPTy); 4147 } 4148 } 4149 } 4150 4151 // Check to see if this is constant foldable. 4152 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4153 return nullptr; 4154 4155 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4156 Ops.slice(1)); 4157 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 4158 return CEFolded; 4159 return CE; 4160 } 4161 4162 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4163 const SimplifyQuery &Q) { 4164 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4165 } 4166 4167 /// Given operands for an InsertValueInst, see if we can fold the result. 4168 /// If not, this returns null. 4169 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4170 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4171 unsigned) { 4172 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4173 if (Constant *CVal = dyn_cast<Constant>(Val)) 4174 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4175 4176 // insertvalue x, undef, n -> x 4177 if (match(Val, m_Undef())) 4178 return Agg; 4179 4180 // insertvalue x, (extractvalue y, n), n 4181 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4182 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4183 EV->getIndices() == Idxs) { 4184 // insertvalue undef, (extractvalue y, n), n -> y 4185 if (match(Agg, m_Undef())) 4186 return EV->getAggregateOperand(); 4187 4188 // insertvalue y, (extractvalue y, n), n -> y 4189 if (Agg == EV->getAggregateOperand()) 4190 return Agg; 4191 } 4192 4193 return nullptr; 4194 } 4195 4196 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4197 ArrayRef<unsigned> Idxs, 4198 const SimplifyQuery &Q) { 4199 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4200 } 4201 4202 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4203 const SimplifyQuery &Q) { 4204 // Try to constant fold. 4205 auto *VecC = dyn_cast<Constant>(Vec); 4206 auto *ValC = dyn_cast<Constant>(Val); 4207 auto *IdxC = dyn_cast<Constant>(Idx); 4208 if (VecC && ValC && IdxC) 4209 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4210 4211 // Fold into undef if index is out of bounds. 4212 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4213 uint64_t NumElements = cast<VectorType>(Vec->getType())->getNumElements(); 4214 if (CI->uge(NumElements)) 4215 return UndefValue::get(Vec->getType()); 4216 } 4217 4218 // If index is undef, it might be out of bounds (see above case) 4219 if (isa<UndefValue>(Idx)) 4220 return UndefValue::get(Vec->getType()); 4221 4222 return nullptr; 4223 } 4224 4225 /// Given operands for an ExtractValueInst, see if we can fold the result. 4226 /// If not, this returns null. 4227 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4228 const SimplifyQuery &, unsigned) { 4229 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4230 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4231 4232 // extractvalue x, (insertvalue y, elt, n), n -> elt 4233 unsigned NumIdxs = Idxs.size(); 4234 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4235 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4236 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4237 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4238 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4239 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4240 Idxs.slice(0, NumCommonIdxs)) { 4241 if (NumIdxs == NumInsertValueIdxs) 4242 return IVI->getInsertedValueOperand(); 4243 break; 4244 } 4245 } 4246 4247 return nullptr; 4248 } 4249 4250 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4251 const SimplifyQuery &Q) { 4252 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4253 } 4254 4255 /// Given operands for an ExtractElementInst, see if we can fold the result. 4256 /// If not, this returns null. 4257 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4258 unsigned) { 4259 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4260 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4261 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4262 4263 // The index is not relevant if our vector is a splat. 4264 if (auto *Splat = CVec->getSplatValue()) 4265 return Splat; 4266 4267 if (isa<UndefValue>(Vec)) 4268 return UndefValue::get(Vec->getType()->getVectorElementType()); 4269 } 4270 4271 // If extracting a specified index from the vector, see if we can recursively 4272 // find a previously computed scalar that was inserted into the vector. 4273 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4274 if (IdxC->getValue().uge(Vec->getType()->getVectorNumElements())) 4275 // definitely out of bounds, thus undefined result 4276 return UndefValue::get(Vec->getType()->getVectorElementType()); 4277 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4278 return Elt; 4279 } 4280 4281 // An undef extract index can be arbitrarily chosen to be an out-of-range 4282 // index value, which would result in the instruction being undef. 4283 if (isa<UndefValue>(Idx)) 4284 return UndefValue::get(Vec->getType()->getVectorElementType()); 4285 4286 return nullptr; 4287 } 4288 4289 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4290 const SimplifyQuery &Q) { 4291 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4292 } 4293 4294 /// See if we can fold the given phi. If not, returns null. 4295 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4296 // If all of the PHI's incoming values are the same then replace the PHI node 4297 // with the common value. 4298 Value *CommonValue = nullptr; 4299 bool HasUndefInput = false; 4300 for (Value *Incoming : PN->incoming_values()) { 4301 // If the incoming value is the phi node itself, it can safely be skipped. 4302 if (Incoming == PN) continue; 4303 if (isa<UndefValue>(Incoming)) { 4304 // Remember that we saw an undef value, but otherwise ignore them. 4305 HasUndefInput = true; 4306 continue; 4307 } 4308 if (CommonValue && Incoming != CommonValue) 4309 return nullptr; // Not the same, bail out. 4310 CommonValue = Incoming; 4311 } 4312 4313 // If CommonValue is null then all of the incoming values were either undef or 4314 // equal to the phi node itself. 4315 if (!CommonValue) 4316 return UndefValue::get(PN->getType()); 4317 4318 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4319 // instruction, we cannot return X as the result of the PHI node unless it 4320 // dominates the PHI block. 4321 if (HasUndefInput) 4322 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4323 4324 return CommonValue; 4325 } 4326 4327 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4328 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4329 if (auto *C = dyn_cast<Constant>(Op)) 4330 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4331 4332 if (auto *CI = dyn_cast<CastInst>(Op)) { 4333 auto *Src = CI->getOperand(0); 4334 Type *SrcTy = Src->getType(); 4335 Type *MidTy = CI->getType(); 4336 Type *DstTy = Ty; 4337 if (Src->getType() == Ty) { 4338 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4339 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4340 Type *SrcIntPtrTy = 4341 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4342 Type *MidIntPtrTy = 4343 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4344 Type *DstIntPtrTy = 4345 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4346 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4347 SrcIntPtrTy, MidIntPtrTy, 4348 DstIntPtrTy) == Instruction::BitCast) 4349 return Src; 4350 } 4351 } 4352 4353 // bitcast x -> x 4354 if (CastOpc == Instruction::BitCast) 4355 if (Op->getType() == Ty) 4356 return Op; 4357 4358 return nullptr; 4359 } 4360 4361 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4362 const SimplifyQuery &Q) { 4363 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4364 } 4365 4366 /// For the given destination element of a shuffle, peek through shuffles to 4367 /// match a root vector source operand that contains that element in the same 4368 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4369 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4370 int MaskVal, Value *RootVec, 4371 unsigned MaxRecurse) { 4372 if (!MaxRecurse--) 4373 return nullptr; 4374 4375 // Bail out if any mask value is undefined. That kind of shuffle may be 4376 // simplified further based on demanded bits or other folds. 4377 if (MaskVal == -1) 4378 return nullptr; 4379 4380 // The mask value chooses which source operand we need to look at next. 4381 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4382 int RootElt = MaskVal; 4383 Value *SourceOp = Op0; 4384 if (MaskVal >= InVecNumElts) { 4385 RootElt = MaskVal - InVecNumElts; 4386 SourceOp = Op1; 4387 } 4388 4389 // If the source operand is a shuffle itself, look through it to find the 4390 // matching root vector. 4391 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4392 return foldIdentityShuffles( 4393 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4394 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4395 } 4396 4397 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4398 // size? 4399 4400 // The source operand is not a shuffle. Initialize the root vector value for 4401 // this shuffle if that has not been done yet. 4402 if (!RootVec) 4403 RootVec = SourceOp; 4404 4405 // Give up as soon as a source operand does not match the existing root value. 4406 if (RootVec != SourceOp) 4407 return nullptr; 4408 4409 // The element must be coming from the same lane in the source vector 4410 // (although it may have crossed lanes in intermediate shuffles). 4411 if (RootElt != DestElt) 4412 return nullptr; 4413 4414 return RootVec; 4415 } 4416 4417 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4418 Type *RetTy, const SimplifyQuery &Q, 4419 unsigned MaxRecurse) { 4420 if (isa<UndefValue>(Mask)) 4421 return UndefValue::get(RetTy); 4422 4423 Type *InVecTy = Op0->getType(); 4424 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4425 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4426 4427 SmallVector<int, 32> Indices; 4428 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4429 assert(MaskNumElts == Indices.size() && 4430 "Size of Indices not same as number of mask elements?"); 4431 4432 // Canonicalization: If mask does not select elements from an input vector, 4433 // replace that input vector with undef. 4434 bool MaskSelects0 = false, MaskSelects1 = false; 4435 for (unsigned i = 0; i != MaskNumElts; ++i) { 4436 if (Indices[i] == -1) 4437 continue; 4438 if ((unsigned)Indices[i] < InVecNumElts) 4439 MaskSelects0 = true; 4440 else 4441 MaskSelects1 = true; 4442 } 4443 if (!MaskSelects0) 4444 Op0 = UndefValue::get(InVecTy); 4445 if (!MaskSelects1) 4446 Op1 = UndefValue::get(InVecTy); 4447 4448 auto *Op0Const = dyn_cast<Constant>(Op0); 4449 auto *Op1Const = dyn_cast<Constant>(Op1); 4450 4451 // If all operands are constant, constant fold the shuffle. 4452 if (Op0Const && Op1Const) 4453 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4454 4455 // Canonicalization: if only one input vector is constant, it shall be the 4456 // second one. 4457 if (Op0Const && !Op1Const) { 4458 std::swap(Op0, Op1); 4459 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4460 } 4461 4462 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4463 // value type is same as the input vectors' type. 4464 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4465 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4466 OpShuf->getMask()->getSplatValue()) 4467 return Op0; 4468 4469 // Don't fold a shuffle with undef mask elements. This may get folded in a 4470 // better way using demanded bits or other analysis. 4471 // TODO: Should we allow this? 4472 if (find(Indices, -1) != Indices.end()) 4473 return nullptr; 4474 4475 // Check if every element of this shuffle can be mapped back to the 4476 // corresponding element of a single root vector. If so, we don't need this 4477 // shuffle. This handles simple identity shuffles as well as chains of 4478 // shuffles that may widen/narrow and/or move elements across lanes and back. 4479 Value *RootVec = nullptr; 4480 for (unsigned i = 0; i != MaskNumElts; ++i) { 4481 // Note that recursion is limited for each vector element, so if any element 4482 // exceeds the limit, this will fail to simplify. 4483 RootVec = 4484 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4485 4486 // We can't replace a widening/narrowing shuffle with one of its operands. 4487 if (!RootVec || RootVec->getType() != RetTy) 4488 return nullptr; 4489 } 4490 return RootVec; 4491 } 4492 4493 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4494 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4495 Type *RetTy, const SimplifyQuery &Q) { 4496 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4497 } 4498 4499 static Constant *propagateNaN(Constant *In) { 4500 // If the input is a vector with undef elements, just return a default NaN. 4501 if (!In->isNaN()) 4502 return ConstantFP::getNaN(In->getType()); 4503 4504 // Propagate the existing NaN constant when possible. 4505 // TODO: Should we quiet a signaling NaN? 4506 return In; 4507 } 4508 4509 static Constant *simplifyFPBinop(Value *Op0, Value *Op1) { 4510 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4511 return ConstantFP::getNaN(Op0->getType()); 4512 4513 if (match(Op0, m_NaN())) 4514 return propagateNaN(cast<Constant>(Op0)); 4515 if (match(Op1, m_NaN())) 4516 return propagateNaN(cast<Constant>(Op1)); 4517 4518 return nullptr; 4519 } 4520 4521 /// Given operands for an FAdd, see if we can fold the result. If not, this 4522 /// returns null. 4523 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4524 const SimplifyQuery &Q, unsigned MaxRecurse) { 4525 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4526 return C; 4527 4528 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4529 return C; 4530 4531 // fadd X, -0 ==> X 4532 if (match(Op1, m_NegZeroFP())) 4533 return Op0; 4534 4535 // fadd X, 0 ==> X, when we know X is not -0 4536 if (match(Op1, m_PosZeroFP()) && 4537 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4538 return Op0; 4539 4540 // With nnan: (+/-0.0 - X) + X --> 0.0 (and commuted variant) 4541 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4542 // Negative zeros are allowed because we always end up with positive zero: 4543 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4544 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4545 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4546 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4547 if (FMF.noNaNs() && (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4548 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))) 4549 return ConstantFP::getNullValue(Op0->getType()); 4550 4551 // (X - Y) + Y --> X 4552 // Y + (X - Y) --> X 4553 Value *X; 4554 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4555 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4556 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4557 return X; 4558 4559 return nullptr; 4560 } 4561 4562 /// Given operands for an FSub, see if we can fold the result. If not, this 4563 /// returns null. 4564 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4565 const SimplifyQuery &Q, unsigned MaxRecurse) { 4566 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4567 return C; 4568 4569 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4570 return C; 4571 4572 // fsub X, +0 ==> X 4573 if (match(Op1, m_PosZeroFP())) 4574 return Op0; 4575 4576 // fsub X, -0 ==> X, when we know X is not -0 4577 if (match(Op1, m_NegZeroFP()) && 4578 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4579 return Op0; 4580 4581 // fsub -0.0, (fsub -0.0, X) ==> X 4582 Value *X; 4583 if (match(Op0, m_NegZeroFP()) && 4584 match(Op1, m_FSub(m_NegZeroFP(), m_Value(X)))) 4585 return X; 4586 4587 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4588 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4589 match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X)))) 4590 return X; 4591 4592 // fsub nnan x, x ==> 0.0 4593 if (FMF.noNaNs() && Op0 == Op1) 4594 return Constant::getNullValue(Op0->getType()); 4595 4596 // Y - (Y - X) --> X 4597 // (X + Y) - Y --> X 4598 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4599 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4600 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4601 return X; 4602 4603 return nullptr; 4604 } 4605 4606 /// Given the operands for an FMul, see if we can fold the result 4607 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4608 const SimplifyQuery &Q, unsigned MaxRecurse) { 4609 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4610 return C; 4611 4612 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4613 return C; 4614 4615 // fmul X, 1.0 ==> X 4616 if (match(Op1, m_FPOne())) 4617 return Op0; 4618 4619 // fmul nnan nsz X, 0 ==> 0 4620 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4621 return ConstantFP::getNullValue(Op0->getType()); 4622 4623 // sqrt(X) * sqrt(X) --> X, if we can: 4624 // 1. Remove the intermediate rounding (reassociate). 4625 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4626 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4627 Value *X; 4628 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4629 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4630 return X; 4631 4632 return nullptr; 4633 } 4634 4635 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4636 const SimplifyQuery &Q) { 4637 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4638 } 4639 4640 4641 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4642 const SimplifyQuery &Q) { 4643 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4644 } 4645 4646 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4647 const SimplifyQuery &Q) { 4648 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4649 } 4650 4651 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4652 const SimplifyQuery &Q, unsigned) { 4653 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4654 return C; 4655 4656 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4657 return C; 4658 4659 // X / 1.0 -> X 4660 if (match(Op1, m_FPOne())) 4661 return Op0; 4662 4663 // 0 / X -> 0 4664 // Requires that NaNs are off (X could be zero) and signed zeroes are 4665 // ignored (X could be positive or negative, so the output sign is unknown). 4666 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4667 return ConstantFP::getNullValue(Op0->getType()); 4668 4669 if (FMF.noNaNs()) { 4670 // X / X -> 1.0 is legal when NaNs are ignored. 4671 // We can ignore infinities because INF/INF is NaN. 4672 if (Op0 == Op1) 4673 return ConstantFP::get(Op0->getType(), 1.0); 4674 4675 // (X * Y) / Y --> X if we can reassociate to the above form. 4676 Value *X; 4677 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4678 return X; 4679 4680 // -X / X -> -1.0 and 4681 // X / -X -> -1.0 are legal when NaNs are ignored. 4682 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4683 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4684 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4685 return ConstantFP::get(Op0->getType(), -1.0); 4686 } 4687 4688 return nullptr; 4689 } 4690 4691 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4692 const SimplifyQuery &Q) { 4693 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4694 } 4695 4696 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4697 const SimplifyQuery &Q, unsigned) { 4698 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4699 return C; 4700 4701 if (Constant *C = simplifyFPBinop(Op0, Op1)) 4702 return C; 4703 4704 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4705 // The constant match may include undef elements in a vector, so return a full 4706 // zero constant as the result. 4707 if (FMF.noNaNs()) { 4708 // +0 % X -> 0 4709 if (match(Op0, m_PosZeroFP())) 4710 return ConstantFP::getNullValue(Op0->getType()); 4711 // -0 % X -> -0 4712 if (match(Op0, m_NegZeroFP())) 4713 return ConstantFP::getNegativeZero(Op0->getType()); 4714 } 4715 4716 return nullptr; 4717 } 4718 4719 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4720 const SimplifyQuery &Q) { 4721 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4722 } 4723 4724 //=== Helper functions for higher up the class hierarchy. 4725 4726 /// Given operands for a BinaryOperator, see if we can fold the result. 4727 /// If not, this returns null. 4728 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4729 const SimplifyQuery &Q, unsigned MaxRecurse) { 4730 switch (Opcode) { 4731 case Instruction::Add: 4732 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4733 case Instruction::Sub: 4734 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4735 case Instruction::Mul: 4736 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4737 case Instruction::SDiv: 4738 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4739 case Instruction::UDiv: 4740 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4741 case Instruction::SRem: 4742 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4743 case Instruction::URem: 4744 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4745 case Instruction::Shl: 4746 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4747 case Instruction::LShr: 4748 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4749 case Instruction::AShr: 4750 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4751 case Instruction::And: 4752 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4753 case Instruction::Or: 4754 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4755 case Instruction::Xor: 4756 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4757 case Instruction::FAdd: 4758 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4759 case Instruction::FSub: 4760 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4761 case Instruction::FMul: 4762 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4763 case Instruction::FDiv: 4764 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4765 case Instruction::FRem: 4766 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4767 default: 4768 llvm_unreachable("Unexpected opcode"); 4769 } 4770 } 4771 4772 /// Given operands for a BinaryOperator, see if we can fold the result. 4773 /// If not, this returns null. 4774 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4775 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4776 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4777 const FastMathFlags &FMF, const SimplifyQuery &Q, 4778 unsigned MaxRecurse) { 4779 switch (Opcode) { 4780 case Instruction::FAdd: 4781 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4782 case Instruction::FSub: 4783 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4784 case Instruction::FMul: 4785 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4786 case Instruction::FDiv: 4787 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4788 default: 4789 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4790 } 4791 } 4792 4793 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4794 const SimplifyQuery &Q) { 4795 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4796 } 4797 4798 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4799 FastMathFlags FMF, const SimplifyQuery &Q) { 4800 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4801 } 4802 4803 /// Given operands for a CmpInst, see if we can fold the result. 4804 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4805 const SimplifyQuery &Q, unsigned MaxRecurse) { 4806 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4807 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4808 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4809 } 4810 4811 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4812 const SimplifyQuery &Q) { 4813 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4814 } 4815 4816 static bool IsIdempotent(Intrinsic::ID ID) { 4817 switch (ID) { 4818 default: return false; 4819 4820 // Unary idempotent: f(f(x)) = f(x) 4821 case Intrinsic::fabs: 4822 case Intrinsic::floor: 4823 case Intrinsic::ceil: 4824 case Intrinsic::trunc: 4825 case Intrinsic::rint: 4826 case Intrinsic::nearbyint: 4827 case Intrinsic::round: 4828 case Intrinsic::canonicalize: 4829 return true; 4830 } 4831 } 4832 4833 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4834 const DataLayout &DL) { 4835 GlobalValue *PtrSym; 4836 APInt PtrOffset; 4837 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4838 return nullptr; 4839 4840 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4841 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4842 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4843 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4844 4845 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4846 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4847 return nullptr; 4848 4849 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4850 if (OffsetInt % 4 != 0) 4851 return nullptr; 4852 4853 Constant *C = ConstantExpr::getGetElementPtr( 4854 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4855 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4856 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4857 if (!Loaded) 4858 return nullptr; 4859 4860 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4861 if (!LoadedCE) 4862 return nullptr; 4863 4864 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4865 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4866 if (!LoadedCE) 4867 return nullptr; 4868 } 4869 4870 if (LoadedCE->getOpcode() != Instruction::Sub) 4871 return nullptr; 4872 4873 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4874 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4875 return nullptr; 4876 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4877 4878 Constant *LoadedRHS = LoadedCE->getOperand(1); 4879 GlobalValue *LoadedRHSSym; 4880 APInt LoadedRHSOffset; 4881 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4882 DL) || 4883 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4884 return nullptr; 4885 4886 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4887 } 4888 4889 static bool maskIsAllZeroOrUndef(Value *Mask) { 4890 auto *ConstMask = dyn_cast<Constant>(Mask); 4891 if (!ConstMask) 4892 return false; 4893 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4894 return true; 4895 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4896 ++I) { 4897 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4898 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4899 continue; 4900 return false; 4901 } 4902 return true; 4903 } 4904 4905 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 4906 const SimplifyQuery &Q) { 4907 // Idempotent functions return the same result when called repeatedly. 4908 Intrinsic::ID IID = F->getIntrinsicID(); 4909 if (IsIdempotent(IID)) 4910 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 4911 if (II->getIntrinsicID() == IID) 4912 return II; 4913 4914 Value *X; 4915 switch (IID) { 4916 case Intrinsic::fabs: 4917 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 4918 break; 4919 case Intrinsic::bswap: 4920 // bswap(bswap(x)) -> x 4921 if (match(Op0, m_BSwap(m_Value(X)))) return X; 4922 break; 4923 case Intrinsic::bitreverse: 4924 // bitreverse(bitreverse(x)) -> x 4925 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 4926 break; 4927 case Intrinsic::exp: 4928 // exp(log(x)) -> x 4929 if (Q.CxtI->hasAllowReassoc() && 4930 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 4931 break; 4932 case Intrinsic::exp2: 4933 // exp2(log2(x)) -> x 4934 if (Q.CxtI->hasAllowReassoc() && 4935 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 4936 break; 4937 case Intrinsic::log: 4938 // log(exp(x)) -> x 4939 if (Q.CxtI->hasAllowReassoc() && 4940 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 4941 break; 4942 case Intrinsic::log2: 4943 // log2(exp2(x)) -> x 4944 if (Q.CxtI->hasAllowReassoc() && 4945 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 4946 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 4947 m_Value(X))))) return X; 4948 break; 4949 case Intrinsic::log10: 4950 // log10(pow(10.0, x)) -> x 4951 if (Q.CxtI->hasAllowReassoc() && 4952 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 4953 m_Value(X)))) return X; 4954 break; 4955 default: 4956 break; 4957 } 4958 4959 return nullptr; 4960 } 4961 4962 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 4963 const SimplifyQuery &Q) { 4964 Intrinsic::ID IID = F->getIntrinsicID(); 4965 Type *ReturnType = F->getReturnType(); 4966 switch (IID) { 4967 case Intrinsic::usub_with_overflow: 4968 case Intrinsic::ssub_with_overflow: 4969 // X - X -> { 0, false } 4970 if (Op0 == Op1) 4971 return Constant::getNullValue(ReturnType); 4972 // X - undef -> undef 4973 // undef - X -> undef 4974 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4975 return UndefValue::get(ReturnType); 4976 break; 4977 case Intrinsic::uadd_with_overflow: 4978 case Intrinsic::sadd_with_overflow: 4979 // X + undef -> undef 4980 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) 4981 return UndefValue::get(ReturnType); 4982 break; 4983 case Intrinsic::umul_with_overflow: 4984 case Intrinsic::smul_with_overflow: 4985 // 0 * X -> { 0, false } 4986 // X * 0 -> { 0, false } 4987 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 4988 return Constant::getNullValue(ReturnType); 4989 // undef * X -> { 0, false } 4990 // X * undef -> { 0, false } 4991 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 4992 return Constant::getNullValue(ReturnType); 4993 break; 4994 case Intrinsic::uadd_sat: 4995 // sat(MAX + X) -> MAX 4996 // sat(X + MAX) -> MAX 4997 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 4998 return Constant::getAllOnesValue(ReturnType); 4999 LLVM_FALLTHROUGH; 5000 case Intrinsic::sadd_sat: 5001 // sat(X + undef) -> -1 5002 // sat(undef + X) -> -1 5003 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5004 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5005 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5006 return Constant::getAllOnesValue(ReturnType); 5007 5008 // X + 0 -> X 5009 if (match(Op1, m_Zero())) 5010 return Op0; 5011 // 0 + X -> X 5012 if (match(Op0, m_Zero())) 5013 return Op1; 5014 break; 5015 case Intrinsic::usub_sat: 5016 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5017 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5018 return Constant::getNullValue(ReturnType); 5019 LLVM_FALLTHROUGH; 5020 case Intrinsic::ssub_sat: 5021 // X - X -> 0, X - undef -> 0, undef - X -> 0 5022 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5023 return Constant::getNullValue(ReturnType); 5024 // X - 0 -> X 5025 if (match(Op1, m_Zero())) 5026 return Op0; 5027 break; 5028 case Intrinsic::load_relative: 5029 if (auto *C0 = dyn_cast<Constant>(Op0)) 5030 if (auto *C1 = dyn_cast<Constant>(Op1)) 5031 return SimplifyRelativeLoad(C0, C1, Q.DL); 5032 break; 5033 case Intrinsic::powi: 5034 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5035 // powi(x, 0) -> 1.0 5036 if (Power->isZero()) 5037 return ConstantFP::get(Op0->getType(), 1.0); 5038 // powi(x, 1) -> x 5039 if (Power->isOne()) 5040 return Op0; 5041 } 5042 break; 5043 case Intrinsic::maxnum: 5044 case Intrinsic::minnum: 5045 case Intrinsic::maximum: 5046 case Intrinsic::minimum: { 5047 // If the arguments are the same, this is a no-op. 5048 if (Op0 == Op1) return Op0; 5049 5050 // If one argument is undef, return the other argument. 5051 if (match(Op0, m_Undef())) 5052 return Op1; 5053 if (match(Op1, m_Undef())) 5054 return Op0; 5055 5056 // If one argument is NaN, return other or NaN appropriately. 5057 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5058 if (match(Op0, m_NaN())) 5059 return PropagateNaN ? Op0 : Op1; 5060 if (match(Op1, m_NaN())) 5061 return PropagateNaN ? Op1 : Op0; 5062 5063 // Min/max of the same operation with common operand: 5064 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5065 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5066 if (M0->getIntrinsicID() == IID && 5067 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5068 return Op0; 5069 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5070 if (M1->getIntrinsicID() == IID && 5071 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5072 return Op1; 5073 5074 // min(X, -Inf) --> -Inf (and commuted variant) 5075 // max(X, +Inf) --> +Inf (and commuted variant) 5076 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5077 const APFloat *C; 5078 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5079 C->isNegative() == UseNegInf) || 5080 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5081 C->isNegative() == UseNegInf)) 5082 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5083 5084 // TODO: minnum(nnan x, inf) -> x 5085 // TODO: minnum(nnan ninf x, flt_max) -> x 5086 // TODO: maxnum(nnan x, -inf) -> x 5087 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5088 break; 5089 } 5090 default: 5091 break; 5092 } 5093 5094 return nullptr; 5095 } 5096 5097 template <typename IterTy> 5098 static Value *simplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 5099 const SimplifyQuery &Q) { 5100 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5101 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 5102 if (NumOperands == 0) 5103 return nullptr; 5104 5105 Intrinsic::ID IID = F->getIntrinsicID(); 5106 if (NumOperands == 1) 5107 return simplifyUnaryIntrinsic(F, ArgBegin[0], Q); 5108 5109 if (NumOperands == 2) 5110 return simplifyBinaryIntrinsic(F, ArgBegin[0], ArgBegin[1], Q); 5111 5112 // Handle intrinsics with 3 or more arguments. 5113 switch (IID) { 5114 case Intrinsic::masked_load: { 5115 Value *MaskArg = ArgBegin[2]; 5116 Value *PassthruArg = ArgBegin[3]; 5117 // If the mask is all zeros or undef, the "passthru" argument is the result. 5118 if (maskIsAllZeroOrUndef(MaskArg)) 5119 return PassthruArg; 5120 return nullptr; 5121 } 5122 case Intrinsic::fshl: 5123 case Intrinsic::fshr: { 5124 Value *Op0 = ArgBegin[0], *Op1 = ArgBegin[1], *ShAmtArg = ArgBegin[2]; 5125 5126 // If both operands are undef, the result is undef. 5127 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5128 return UndefValue::get(F->getReturnType()); 5129 5130 // If shift amount is undef, assume it is zero. 5131 if (match(ShAmtArg, m_Undef())) 5132 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5133 5134 const APInt *ShAmtC; 5135 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5136 // If there's effectively no shift, return the 1st arg or 2nd arg. 5137 // TODO: For vectors, we could check each element of a non-splat constant. 5138 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5139 if (ShAmtC->urem(BitWidth).isNullValue()) 5140 return ArgBegin[IID == Intrinsic::fshl ? 0 : 1]; 5141 } 5142 return nullptr; 5143 } 5144 default: 5145 return nullptr; 5146 } 5147 } 5148 5149 template <typename IterTy> 5150 static Value *SimplifyCall(CallBase *Call, Value *V, IterTy ArgBegin, 5151 IterTy ArgEnd, const SimplifyQuery &Q, 5152 unsigned MaxRecurse) { 5153 Type *Ty = V->getType(); 5154 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 5155 Ty = PTy->getElementType(); 5156 FunctionType *FTy = cast<FunctionType>(Ty); 5157 5158 // call undef -> undef 5159 // call null -> undef 5160 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 5161 return UndefValue::get(FTy->getReturnType()); 5162 5163 Function *F = dyn_cast<Function>(V); 5164 if (!F) 5165 return nullptr; 5166 5167 if (F->isIntrinsic()) 5168 if (Value *Ret = simplifyIntrinsic(F, ArgBegin, ArgEnd, Q)) 5169 return Ret; 5170 5171 if (!canConstantFoldCallTo(Call, F)) 5172 return nullptr; 5173 5174 SmallVector<Constant *, 4> ConstantArgs; 5175 ConstantArgs.reserve(ArgEnd - ArgBegin); 5176 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 5177 Constant *C = dyn_cast<Constant>(*I); 5178 if (!C) 5179 return nullptr; 5180 ConstantArgs.push_back(C); 5181 } 5182 5183 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5184 } 5185 5186 Value *llvm::SimplifyCall(CallBase *Call, Value *V, User::op_iterator ArgBegin, 5187 User::op_iterator ArgEnd, const SimplifyQuery &Q) { 5188 return ::SimplifyCall(Call, V, ArgBegin, ArgEnd, Q, RecursionLimit); 5189 } 5190 5191 Value *llvm::SimplifyCall(CallBase *Call, Value *V, ArrayRef<Value *> Args, 5192 const SimplifyQuery &Q) { 5193 return ::SimplifyCall(Call, V, Args.begin(), Args.end(), Q, RecursionLimit); 5194 } 5195 5196 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5197 return ::SimplifyCall(Call, Call->getCalledValue(), Call->arg_begin(), 5198 Call->arg_end(), Q, RecursionLimit); 5199 } 5200 5201 /// See if we can compute a simplified version of this instruction. 5202 /// If not, this returns null. 5203 5204 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5205 OptimizationRemarkEmitter *ORE) { 5206 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5207 Value *Result; 5208 5209 switch (I->getOpcode()) { 5210 default: 5211 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5212 break; 5213 case Instruction::FAdd: 5214 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5215 I->getFastMathFlags(), Q); 5216 break; 5217 case Instruction::Add: 5218 Result = 5219 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5220 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5221 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5222 break; 5223 case Instruction::FSub: 5224 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5225 I->getFastMathFlags(), Q); 5226 break; 5227 case Instruction::Sub: 5228 Result = 5229 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5230 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5231 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5232 break; 5233 case Instruction::FMul: 5234 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5235 I->getFastMathFlags(), Q); 5236 break; 5237 case Instruction::Mul: 5238 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5239 break; 5240 case Instruction::SDiv: 5241 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5242 break; 5243 case Instruction::UDiv: 5244 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5245 break; 5246 case Instruction::FDiv: 5247 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5248 I->getFastMathFlags(), Q); 5249 break; 5250 case Instruction::SRem: 5251 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5252 break; 5253 case Instruction::URem: 5254 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5255 break; 5256 case Instruction::FRem: 5257 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5258 I->getFastMathFlags(), Q); 5259 break; 5260 case Instruction::Shl: 5261 Result = 5262 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5263 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5264 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5265 break; 5266 case Instruction::LShr: 5267 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5268 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5269 break; 5270 case Instruction::AShr: 5271 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5272 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5273 break; 5274 case Instruction::And: 5275 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5276 break; 5277 case Instruction::Or: 5278 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5279 break; 5280 case Instruction::Xor: 5281 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5282 break; 5283 case Instruction::ICmp: 5284 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5285 I->getOperand(0), I->getOperand(1), Q); 5286 break; 5287 case Instruction::FCmp: 5288 Result = 5289 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5290 I->getOperand(1), I->getFastMathFlags(), Q); 5291 break; 5292 case Instruction::Select: 5293 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5294 I->getOperand(2), Q); 5295 break; 5296 case Instruction::GetElementPtr: { 5297 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5298 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5299 Ops, Q); 5300 break; 5301 } 5302 case Instruction::InsertValue: { 5303 InsertValueInst *IV = cast<InsertValueInst>(I); 5304 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5305 IV->getInsertedValueOperand(), 5306 IV->getIndices(), Q); 5307 break; 5308 } 5309 case Instruction::InsertElement: { 5310 auto *IE = cast<InsertElementInst>(I); 5311 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5312 IE->getOperand(2), Q); 5313 break; 5314 } 5315 case Instruction::ExtractValue: { 5316 auto *EVI = cast<ExtractValueInst>(I); 5317 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5318 EVI->getIndices(), Q); 5319 break; 5320 } 5321 case Instruction::ExtractElement: { 5322 auto *EEI = cast<ExtractElementInst>(I); 5323 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5324 EEI->getIndexOperand(), Q); 5325 break; 5326 } 5327 case Instruction::ShuffleVector: { 5328 auto *SVI = cast<ShuffleVectorInst>(I); 5329 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5330 SVI->getMask(), SVI->getType(), Q); 5331 break; 5332 } 5333 case Instruction::PHI: 5334 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5335 break; 5336 case Instruction::Call: { 5337 Result = SimplifyCall(cast<CallInst>(I), Q); 5338 break; 5339 } 5340 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5341 #include "llvm/IR/Instruction.def" 5342 #undef HANDLE_CAST_INST 5343 Result = 5344 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5345 break; 5346 case Instruction::Alloca: 5347 // No simplifications for Alloca and it can't be constant folded. 5348 Result = nullptr; 5349 break; 5350 } 5351 5352 // In general, it is possible for computeKnownBits to determine all bits in a 5353 // value even when the operands are not all constants. 5354 if (!Result && I->getType()->isIntOrIntVectorTy()) { 5355 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 5356 if (Known.isConstant()) 5357 Result = ConstantInt::get(I->getType(), Known.getConstant()); 5358 } 5359 5360 /// If called on unreachable code, the above logic may report that the 5361 /// instruction simplified to itself. Make life easier for users by 5362 /// detecting that case here, returning a safe value instead. 5363 return Result == I ? UndefValue::get(I->getType()) : Result; 5364 } 5365 5366 /// Implementation of recursive simplification through an instruction's 5367 /// uses. 5368 /// 5369 /// This is the common implementation of the recursive simplification routines. 5370 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5371 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5372 /// instructions to process and attempt to simplify it using 5373 /// InstructionSimplify. 5374 /// 5375 /// This routine returns 'true' only when *it* simplifies something. The passed 5376 /// in simplified value does not count toward this. 5377 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 5378 const TargetLibraryInfo *TLI, 5379 const DominatorTree *DT, 5380 AssumptionCache *AC) { 5381 bool Simplified = false; 5382 SmallSetVector<Instruction *, 8> Worklist; 5383 const DataLayout &DL = I->getModule()->getDataLayout(); 5384 5385 // If we have an explicit value to collapse to, do that round of the 5386 // simplification loop by hand initially. 5387 if (SimpleV) { 5388 for (User *U : I->users()) 5389 if (U != I) 5390 Worklist.insert(cast<Instruction>(U)); 5391 5392 // Replace the instruction with its simplified value. 5393 I->replaceAllUsesWith(SimpleV); 5394 5395 // Gracefully handle edge cases where the instruction is not wired into any 5396 // parent block. 5397 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5398 !I->mayHaveSideEffects()) 5399 I->eraseFromParent(); 5400 } else { 5401 Worklist.insert(I); 5402 } 5403 5404 // Note that we must test the size on each iteration, the worklist can grow. 5405 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5406 I = Worklist[Idx]; 5407 5408 // See if this instruction simplifies. 5409 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5410 if (!SimpleV) 5411 continue; 5412 5413 Simplified = true; 5414 5415 // Stash away all the uses of the old instruction so we can check them for 5416 // recursive simplifications after a RAUW. This is cheaper than checking all 5417 // uses of To on the recursive step in most cases. 5418 for (User *U : I->users()) 5419 Worklist.insert(cast<Instruction>(U)); 5420 5421 // Replace the instruction with its simplified value. 5422 I->replaceAllUsesWith(SimpleV); 5423 5424 // Gracefully handle edge cases where the instruction is not wired into any 5425 // parent block. 5426 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5427 !I->mayHaveSideEffects()) 5428 I->eraseFromParent(); 5429 } 5430 return Simplified; 5431 } 5432 5433 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5434 const TargetLibraryInfo *TLI, 5435 const DominatorTree *DT, 5436 AssumptionCache *AC) { 5437 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 5438 } 5439 5440 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 5441 const TargetLibraryInfo *TLI, 5442 const DominatorTree *DT, 5443 AssumptionCache *AC) { 5444 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5445 assert(SimpleV && "Must provide a simplified value."); 5446 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 5447 } 5448 5449 namespace llvm { 5450 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5451 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5452 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5453 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5454 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 5455 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5456 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5457 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5458 } 5459 5460 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5461 const DataLayout &DL) { 5462 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5463 } 5464 5465 template <class T, class... TArgs> 5466 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5467 Function &F) { 5468 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5469 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5470 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5471 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5472 } 5473 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5474 Function &); 5475 } 5476