1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), 242 MaxRecurse); 243 if (!L) 244 return nullptr; 245 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), 246 MaxRecurse); 247 if (!R) 248 return nullptr; 249 250 // Does the expanded pair of binops simplify to the existing binop? 251 if ((L == B0 && R == B1) || 252 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 253 ++NumExpand; 254 return B; 255 } 256 257 // Otherwise, return "L op' R" if it simplifies. 258 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 259 if (!S) 260 return nullptr; 261 262 ++NumExpand; 263 return S; 264 } 265 266 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 267 /// distributing op over op'. 268 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 269 Value *L, Value *R, 270 Instruction::BinaryOps OpcodeToExpand, 271 const SimplifyQuery &Q, 272 unsigned MaxRecurse) { 273 // Recursion is always used, so bail out at once if we already hit the limit. 274 if (!MaxRecurse--) 275 return nullptr; 276 277 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 280 return V; 281 return nullptr; 282 } 283 284 /// Generic simplifications for associative binary operations. 285 /// Returns the simpler value, or null if none was found. 286 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 287 Value *LHS, Value *RHS, 288 const SimplifyQuery &Q, 289 unsigned MaxRecurse) { 290 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 291 292 // Recursion is always used, so bail out at once if we already hit the limit. 293 if (!MaxRecurse--) 294 return nullptr; 295 296 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 297 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 298 299 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 300 if (Op0 && Op0->getOpcode() == Opcode) { 301 Value *A = Op0->getOperand(0); 302 Value *B = Op0->getOperand(1); 303 Value *C = RHS; 304 305 // Does "B op C" simplify? 306 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 307 // It does! Return "A op V" if it simplifies or is already available. 308 // If V equals B then "A op V" is just the LHS. 309 if (V == B) return LHS; 310 // Otherwise return "A op V" if it simplifies. 311 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 312 ++NumReassoc; 313 return W; 314 } 315 } 316 } 317 318 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 319 if (Op1 && Op1->getOpcode() == Opcode) { 320 Value *A = LHS; 321 Value *B = Op1->getOperand(0); 322 Value *C = Op1->getOperand(1); 323 324 // Does "A op B" simplify? 325 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 326 // It does! Return "V op C" if it simplifies or is already available. 327 // If V equals B then "V op C" is just the RHS. 328 if (V == B) return RHS; 329 // Otherwise return "V op C" if it simplifies. 330 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 331 ++NumReassoc; 332 return W; 333 } 334 } 335 } 336 337 // The remaining transforms require commutativity as well as associativity. 338 if (!Instruction::isCommutative(Opcode)) 339 return nullptr; 340 341 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 342 if (Op0 && Op0->getOpcode() == Opcode) { 343 Value *A = Op0->getOperand(0); 344 Value *B = Op0->getOperand(1); 345 Value *C = RHS; 346 347 // Does "C op A" simplify? 348 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 349 // It does! Return "V op B" if it simplifies or is already available. 350 // If V equals A then "V op B" is just the LHS. 351 if (V == A) return LHS; 352 // Otherwise return "V op B" if it simplifies. 353 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 354 ++NumReassoc; 355 return W; 356 } 357 } 358 } 359 360 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 361 if (Op1 && Op1->getOpcode() == Opcode) { 362 Value *A = LHS; 363 Value *B = Op1->getOperand(0); 364 Value *C = Op1->getOperand(1); 365 366 // Does "C op A" simplify? 367 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 368 // It does! Return "B op V" if it simplifies or is already available. 369 // If V equals C then "B op V" is just the RHS. 370 if (V == C) return RHS; 371 // Otherwise return "B op V" if it simplifies. 372 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 373 ++NumReassoc; 374 return W; 375 } 376 } 377 } 378 379 return nullptr; 380 } 381 382 /// In the case of a binary operation with a select instruction as an operand, 383 /// try to simplify the binop by seeing whether evaluating it on both branches 384 /// of the select results in the same value. Returns the common value if so, 385 /// otherwise returns null. 386 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 387 Value *RHS, const SimplifyQuery &Q, 388 unsigned MaxRecurse) { 389 // Recursion is always used, so bail out at once if we already hit the limit. 390 if (!MaxRecurse--) 391 return nullptr; 392 393 SelectInst *SI; 394 if (isa<SelectInst>(LHS)) { 395 SI = cast<SelectInst>(LHS); 396 } else { 397 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 398 SI = cast<SelectInst>(RHS); 399 } 400 401 // Evaluate the BinOp on the true and false branches of the select. 402 Value *TV; 403 Value *FV; 404 if (SI == LHS) { 405 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 406 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 407 } else { 408 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 409 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 410 } 411 412 // If they simplified to the same value, then return the common value. 413 // If they both failed to simplify then return null. 414 if (TV == FV) 415 return TV; 416 417 // If one branch simplified to undef, return the other one. 418 if (TV && Q.isUndefValue(TV)) 419 return FV; 420 if (FV && Q.isUndefValue(FV)) 421 return TV; 422 423 // If applying the operation did not change the true and false select values, 424 // then the result of the binop is the select itself. 425 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 426 return SI; 427 428 // If one branch simplified and the other did not, and the simplified 429 // value is equal to the unsimplified one, return the simplified value. 430 // For example, select (cond, X, X & Z) & Z -> X & Z. 431 if ((FV && !TV) || (TV && !FV)) { 432 // Check that the simplified value has the form "X op Y" where "op" is the 433 // same as the original operation. 434 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 435 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 436 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 437 // We already know that "op" is the same as for the simplified value. See 438 // if the operands match too. If so, return the simplified value. 439 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 440 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 441 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 442 if (Simplified->getOperand(0) == UnsimplifiedLHS && 443 Simplified->getOperand(1) == UnsimplifiedRHS) 444 return Simplified; 445 if (Simplified->isCommutative() && 446 Simplified->getOperand(1) == UnsimplifiedLHS && 447 Simplified->getOperand(0) == UnsimplifiedRHS) 448 return Simplified; 449 } 450 } 451 452 return nullptr; 453 } 454 455 /// In the case of a comparison with a select instruction, try to simplify the 456 /// comparison by seeing whether both branches of the select result in the same 457 /// value. Returns the common value if so, otherwise returns null. 458 /// For example, if we have: 459 /// %tmp = select i1 %cmp, i32 1, i32 2 460 /// %cmp1 = icmp sle i32 %tmp, 3 461 /// We can simplify %cmp1 to true, because both branches of select are 462 /// less than 3. We compose new comparison by substituting %tmp with both 463 /// branches of select and see if it can be simplified. 464 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 465 Value *RHS, const SimplifyQuery &Q, 466 unsigned MaxRecurse) { 467 // Recursion is always used, so bail out at once if we already hit the limit. 468 if (!MaxRecurse--) 469 return nullptr; 470 471 // Make sure the select is on the LHS. 472 if (!isa<SelectInst>(LHS)) { 473 std::swap(LHS, RHS); 474 Pred = CmpInst::getSwappedPredicate(Pred); 475 } 476 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 477 SelectInst *SI = cast<SelectInst>(LHS); 478 Value *Cond = SI->getCondition(); 479 Value *TV = SI->getTrueValue(); 480 Value *FV = SI->getFalseValue(); 481 482 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 483 // Does "cmp TV, RHS" simplify? 484 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 485 if (!TCmp) 486 return nullptr; 487 488 // Does "cmp FV, RHS" simplify? 489 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 490 if (!FCmp) 491 return nullptr; 492 493 // If both sides simplified to the same value, then use it as the result of 494 // the original comparison. 495 if (TCmp == FCmp) 496 return TCmp; 497 498 // The remaining cases only make sense if the select condition has the same 499 // type as the result of the comparison, so bail out if this is not so. 500 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 501 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 502 503 return nullptr; 504 } 505 506 /// In the case of a binary operation with an operand that is a PHI instruction, 507 /// try to simplify the binop by seeing whether evaluating it on the incoming 508 /// phi values yields the same result for every value. If so returns the common 509 /// value, otherwise returns null. 510 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 511 Value *RHS, const SimplifyQuery &Q, 512 unsigned MaxRecurse) { 513 // Recursion is always used, so bail out at once if we already hit the limit. 514 if (!MaxRecurse--) 515 return nullptr; 516 517 PHINode *PI; 518 if (isa<PHINode>(LHS)) { 519 PI = cast<PHINode>(LHS); 520 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 521 if (!valueDominatesPHI(RHS, PI, Q.DT)) 522 return nullptr; 523 } else { 524 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 525 PI = cast<PHINode>(RHS); 526 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 527 if (!valueDominatesPHI(LHS, PI, Q.DT)) 528 return nullptr; 529 } 530 531 // Evaluate the BinOp on the incoming phi values. 532 Value *CommonValue = nullptr; 533 for (Value *Incoming : PI->incoming_values()) { 534 // If the incoming value is the phi node itself, it can safely be skipped. 535 if (Incoming == PI) continue; 536 Value *V = PI == LHS ? 537 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 538 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 539 // If the operation failed to simplify, or simplified to a different value 540 // to previously, then give up. 541 if (!V || (CommonValue && V != CommonValue)) 542 return nullptr; 543 CommonValue = V; 544 } 545 546 return CommonValue; 547 } 548 549 /// In the case of a comparison with a PHI instruction, try to simplify the 550 /// comparison by seeing whether comparing with all of the incoming phi values 551 /// yields the same result every time. If so returns the common result, 552 /// otherwise returns null. 553 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 554 const SimplifyQuery &Q, unsigned MaxRecurse) { 555 // Recursion is always used, so bail out at once if we already hit the limit. 556 if (!MaxRecurse--) 557 return nullptr; 558 559 // Make sure the phi is on the LHS. 560 if (!isa<PHINode>(LHS)) { 561 std::swap(LHS, RHS); 562 Pred = CmpInst::getSwappedPredicate(Pred); 563 } 564 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 565 PHINode *PI = cast<PHINode>(LHS); 566 567 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 568 if (!valueDominatesPHI(RHS, PI, Q.DT)) 569 return nullptr; 570 571 // Evaluate the BinOp on the incoming phi values. 572 Value *CommonValue = nullptr; 573 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 574 Value *Incoming = PI->getIncomingValue(u); 575 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 576 // If the incoming value is the phi node itself, it can safely be skipped. 577 if (Incoming == PI) continue; 578 // Change the context instruction to the "edge" that flows into the phi. 579 // This is important because that is where incoming is actually "evaluated" 580 // even though it is used later somewhere else. 581 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 582 MaxRecurse); 583 // If the operation failed to simplify, or simplified to a different value 584 // to previously, then give up. 585 if (!V || (CommonValue && V != CommonValue)) 586 return nullptr; 587 CommonValue = V; 588 } 589 590 return CommonValue; 591 } 592 593 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 594 Value *&Op0, Value *&Op1, 595 const SimplifyQuery &Q) { 596 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 597 if (auto *CRHS = dyn_cast<Constant>(Op1)) 598 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 599 600 // Canonicalize the constant to the RHS if this is a commutative operation. 601 if (Instruction::isCommutative(Opcode)) 602 std::swap(Op0, Op1); 603 } 604 return nullptr; 605 } 606 607 /// Given operands for an Add, see if we can fold the result. 608 /// If not, this returns null. 609 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 610 const SimplifyQuery &Q, unsigned MaxRecurse) { 611 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 612 return C; 613 614 // X + undef -> undef 615 if (Q.isUndefValue(Op1)) 616 return Op1; 617 618 // X + 0 -> X 619 if (match(Op1, m_Zero())) 620 return Op0; 621 622 // If two operands are negative, return 0. 623 if (isKnownNegation(Op0, Op1)) 624 return Constant::getNullValue(Op0->getType()); 625 626 // X + (Y - X) -> Y 627 // (Y - X) + X -> Y 628 // Eg: X + -X -> 0 629 Value *Y = nullptr; 630 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 631 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 632 return Y; 633 634 // X + ~X -> -1 since ~X = -X-1 635 Type *Ty = Op0->getType(); 636 if (match(Op0, m_Not(m_Specific(Op1))) || 637 match(Op1, m_Not(m_Specific(Op0)))) 638 return Constant::getAllOnesValue(Ty); 639 640 // add nsw/nuw (xor Y, signmask), signmask --> Y 641 // The no-wrapping add guarantees that the top bit will be set by the add. 642 // Therefore, the xor must be clearing the already set sign bit of Y. 643 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 644 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 645 return Y; 646 647 // add nuw %x, -1 -> -1, because %x can only be 0. 648 if (IsNUW && match(Op1, m_AllOnes())) 649 return Op1; // Which is -1. 650 651 /// i1 add -> xor. 652 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 653 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 654 return V; 655 656 // Try some generic simplifications for associative operations. 657 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 658 MaxRecurse)) 659 return V; 660 661 // Threading Add over selects and phi nodes is pointless, so don't bother. 662 // Threading over the select in "A + select(cond, B, C)" means evaluating 663 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 664 // only if B and C are equal. If B and C are equal then (since we assume 665 // that operands have already been simplified) "select(cond, B, C)" should 666 // have been simplified to the common value of B and C already. Analysing 667 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 668 // for threading over phi nodes. 669 670 return nullptr; 671 } 672 673 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 674 const SimplifyQuery &Query) { 675 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 676 } 677 678 /// Compute the base pointer and cumulative constant offsets for V. 679 /// 680 /// This strips all constant offsets off of V, leaving it the base pointer, and 681 /// accumulates the total constant offset applied in the returned constant. It 682 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 683 /// no constant offsets applied. 684 /// 685 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 686 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 687 /// folding. 688 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 689 bool AllowNonInbounds = false) { 690 assert(V->getType()->isPtrOrPtrVectorTy()); 691 692 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 693 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 694 695 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 696 // As that strip may trace through `addrspacecast`, need to sext or trunc 697 // the offset calculated. 698 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 699 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 700 701 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 702 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 703 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 704 return OffsetIntPtr; 705 } 706 707 /// Compute the constant difference between two pointer values. 708 /// If the difference is not a constant, returns zero. 709 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 710 Value *RHS) { 711 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 712 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 713 714 // If LHS and RHS are not related via constant offsets to the same base 715 // value, there is nothing we can do here. 716 if (LHS != RHS) 717 return nullptr; 718 719 // Otherwise, the difference of LHS - RHS can be computed as: 720 // LHS - RHS 721 // = (LHSOffset + Base) - (RHSOffset + Base) 722 // = LHSOffset - RHSOffset 723 return ConstantExpr::getSub(LHSOffset, RHSOffset); 724 } 725 726 /// Given operands for a Sub, see if we can fold the result. 727 /// If not, this returns null. 728 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 729 const SimplifyQuery &Q, unsigned MaxRecurse) { 730 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 731 return C; 732 733 // X - undef -> undef 734 // undef - X -> undef 735 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 736 return UndefValue::get(Op0->getType()); 737 738 // X - 0 -> X 739 if (match(Op1, m_Zero())) 740 return Op0; 741 742 // X - X -> 0 743 if (Op0 == Op1) 744 return Constant::getNullValue(Op0->getType()); 745 746 // Is this a negation? 747 if (match(Op0, m_Zero())) { 748 // 0 - X -> 0 if the sub is NUW. 749 if (isNUW) 750 return Constant::getNullValue(Op0->getType()); 751 752 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 753 if (Known.Zero.isMaxSignedValue()) { 754 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 755 // Op1 must be 0 because negating the minimum signed value is undefined. 756 if (isNSW) 757 return Constant::getNullValue(Op0->getType()); 758 759 // 0 - X -> X if X is 0 or the minimum signed value. 760 return Op1; 761 } 762 } 763 764 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 765 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 766 Value *X = nullptr, *Y = nullptr, *Z = Op1; 767 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 768 // See if "V === Y - Z" simplifies. 769 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 770 // It does! Now see if "X + V" simplifies. 771 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 772 // It does, we successfully reassociated! 773 ++NumReassoc; 774 return W; 775 } 776 // See if "V === X - Z" simplifies. 777 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 778 // It does! Now see if "Y + V" simplifies. 779 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 780 // It does, we successfully reassociated! 781 ++NumReassoc; 782 return W; 783 } 784 } 785 786 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 787 // For example, X - (X + 1) -> -1 788 X = Op0; 789 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 790 // See if "V === X - Y" simplifies. 791 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 792 // It does! Now see if "V - Z" simplifies. 793 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 794 // It does, we successfully reassociated! 795 ++NumReassoc; 796 return W; 797 } 798 // See if "V === X - Z" simplifies. 799 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 800 // It does! Now see if "V - Y" simplifies. 801 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 802 // It does, we successfully reassociated! 803 ++NumReassoc; 804 return W; 805 } 806 } 807 808 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 809 // For example, X - (X - Y) -> Y. 810 Z = Op0; 811 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 812 // See if "V === Z - X" simplifies. 813 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 814 // It does! Now see if "V + Y" simplifies. 815 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 816 // It does, we successfully reassociated! 817 ++NumReassoc; 818 return W; 819 } 820 821 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 822 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 823 match(Op1, m_Trunc(m_Value(Y)))) 824 if (X->getType() == Y->getType()) 825 // See if "V === X - Y" simplifies. 826 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 827 // It does! Now see if "trunc V" simplifies. 828 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 829 Q, MaxRecurse - 1)) 830 // It does, return the simplified "trunc V". 831 return W; 832 833 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 834 if (match(Op0, m_PtrToInt(m_Value(X))) && 835 match(Op1, m_PtrToInt(m_Value(Y)))) 836 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 837 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 838 839 // i1 sub -> xor. 840 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 841 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 842 return V; 843 844 // Threading Sub over selects and phi nodes is pointless, so don't bother. 845 // Threading over the select in "A - select(cond, B, C)" means evaluating 846 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 847 // only if B and C are equal. If B and C are equal then (since we assume 848 // that operands have already been simplified) "select(cond, B, C)" should 849 // have been simplified to the common value of B and C already. Analysing 850 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 851 // for threading over phi nodes. 852 853 return nullptr; 854 } 855 856 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 857 const SimplifyQuery &Q) { 858 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 859 } 860 861 /// Given operands for a Mul, see if we can fold the result. 862 /// If not, this returns null. 863 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 864 unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 866 return C; 867 868 // X * undef -> 0 869 // X * 0 -> 0 870 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 871 return Constant::getNullValue(Op0->getType()); 872 873 // X * 1 -> X 874 if (match(Op1, m_One())) 875 return Op0; 876 877 // (X / Y) * Y -> X if the division is exact. 878 Value *X = nullptr; 879 if (Q.IIQ.UseInstrInfo && 880 (match(Op0, 881 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 882 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 883 return X; 884 885 // i1 mul -> and. 886 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 887 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 888 return V; 889 890 // Try some generic simplifications for associative operations. 891 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 892 MaxRecurse)) 893 return V; 894 895 // Mul distributes over Add. Try some generic simplifications based on this. 896 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 897 Instruction::Add, Q, MaxRecurse)) 898 return V; 899 900 // If the operation is with the result of a select instruction, check whether 901 // operating on either branch of the select always yields the same value. 902 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 903 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 904 MaxRecurse)) 905 return V; 906 907 // If the operation is with the result of a phi instruction, check whether 908 // operating on all incoming values of the phi always yields the same value. 909 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 910 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 return nullptr; 915 } 916 917 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 918 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 919 } 920 921 /// Check for common or similar folds of integer division or integer remainder. 922 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 923 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv, 924 const SimplifyQuery &Q) { 925 Type *Ty = Op0->getType(); 926 927 // X / undef -> poison 928 // X % undef -> poison 929 if (Q.isUndefValue(Op1)) 930 return PoisonValue::get(Ty); 931 932 // X / 0 -> poison 933 // X % 0 -> poison 934 // We don't need to preserve faults! 935 if (match(Op1, m_Zero())) 936 return PoisonValue::get(Ty); 937 938 // If any element of a constant divisor fixed width vector is zero or undef 939 // the behavior is undefined and we can fold the whole op to poison. 940 auto *Op1C = dyn_cast<Constant>(Op1); 941 auto *VTy = dyn_cast<FixedVectorType>(Ty); 942 if (Op1C && VTy) { 943 unsigned NumElts = VTy->getNumElements(); 944 for (unsigned i = 0; i != NumElts; ++i) { 945 Constant *Elt = Op1C->getAggregateElement(i); 946 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 947 return PoisonValue::get(Ty); 948 } 949 } 950 951 // undef / X -> 0 952 // undef % X -> 0 953 if (Q.isUndefValue(Op0)) 954 return Constant::getNullValue(Ty); 955 956 // 0 / X -> 0 957 // 0 % X -> 0 958 if (match(Op0, m_Zero())) 959 return Constant::getNullValue(Op0->getType()); 960 961 // X / X -> 1 962 // X % X -> 0 963 if (Op0 == Op1) 964 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 965 966 // X / 1 -> X 967 // X % 1 -> 0 968 // If this is a boolean op (single-bit element type), we can't have 969 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 970 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 971 Value *X; 972 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 973 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 974 return IsDiv ? Op0 : Constant::getNullValue(Ty); 975 976 return nullptr; 977 } 978 979 /// Given a predicate and two operands, return true if the comparison is true. 980 /// This is a helper for div/rem simplification where we return some other value 981 /// when we can prove a relationship between the operands. 982 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 983 const SimplifyQuery &Q, unsigned MaxRecurse) { 984 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 985 Constant *C = dyn_cast_or_null<Constant>(V); 986 return (C && C->isAllOnesValue()); 987 } 988 989 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 990 /// to simplify X % Y to X. 991 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 992 unsigned MaxRecurse, bool IsSigned) { 993 // Recursion is always used, so bail out at once if we already hit the limit. 994 if (!MaxRecurse--) 995 return false; 996 997 if (IsSigned) { 998 // |X| / |Y| --> 0 999 // 1000 // We require that 1 operand is a simple constant. That could be extended to 1001 // 2 variables if we computed the sign bit for each. 1002 // 1003 // Make sure that a constant is not the minimum signed value because taking 1004 // the abs() of that is undefined. 1005 Type *Ty = X->getType(); 1006 const APInt *C; 1007 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1008 // Is the variable divisor magnitude always greater than the constant 1009 // dividend magnitude? 1010 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1011 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1012 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1013 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1014 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1015 return true; 1016 } 1017 if (match(Y, m_APInt(C))) { 1018 // Special-case: we can't take the abs() of a minimum signed value. If 1019 // that's the divisor, then all we have to do is prove that the dividend 1020 // is also not the minimum signed value. 1021 if (C->isMinSignedValue()) 1022 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1023 1024 // Is the variable dividend magnitude always less than the constant 1025 // divisor magnitude? 1026 // |X| < |C| --> X > -abs(C) and X < abs(C) 1027 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1028 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1029 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1030 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1031 return true; 1032 } 1033 return false; 1034 } 1035 1036 // IsSigned == false. 1037 // Is the dividend unsigned less than the divisor? 1038 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1039 } 1040 1041 /// These are simplifications common to SDiv and UDiv. 1042 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1043 const SimplifyQuery &Q, unsigned MaxRecurse) { 1044 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1045 return C; 1046 1047 if (Value *V = simplifyDivRem(Op0, Op1, true, Q)) 1048 return V; 1049 1050 bool IsSigned = Opcode == Instruction::SDiv; 1051 1052 // (X * Y) / Y -> X if the multiplication does not overflow. 1053 Value *X; 1054 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1055 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1056 // If the Mul does not overflow, then we are good to go. 1057 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1058 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1059 return X; 1060 // If X has the form X = A / Y, then X * Y cannot overflow. 1061 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1062 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1063 return X; 1064 } 1065 1066 // (X rem Y) / Y -> 0 1067 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1068 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1069 return Constant::getNullValue(Op0->getType()); 1070 1071 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1072 ConstantInt *C1, *C2; 1073 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1074 match(Op1, m_ConstantInt(C2))) { 1075 bool Overflow; 1076 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1077 if (Overflow) 1078 return Constant::getNullValue(Op0->getType()); 1079 } 1080 1081 // If the operation is with the result of a select instruction, check whether 1082 // operating on either branch of the select always yields the same value. 1083 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1084 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1085 return V; 1086 1087 // If the operation is with the result of a phi instruction, check whether 1088 // operating on all incoming values of the phi always yields the same value. 1089 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1090 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1091 return V; 1092 1093 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1094 return Constant::getNullValue(Op0->getType()); 1095 1096 return nullptr; 1097 } 1098 1099 /// These are simplifications common to SRem and URem. 1100 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1101 const SimplifyQuery &Q, unsigned MaxRecurse) { 1102 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1103 return C; 1104 1105 if (Value *V = simplifyDivRem(Op0, Op1, false, Q)) 1106 return V; 1107 1108 // (X % Y) % Y -> X % Y 1109 if ((Opcode == Instruction::SRem && 1110 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1111 (Opcode == Instruction::URem && 1112 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1113 return Op0; 1114 1115 // (X << Y) % X -> 0 1116 if (Q.IIQ.UseInstrInfo && 1117 ((Opcode == Instruction::SRem && 1118 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1119 (Opcode == Instruction::URem && 1120 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1121 return Constant::getNullValue(Op0->getType()); 1122 1123 // If the operation is with the result of a select instruction, check whether 1124 // operating on either branch of the select always yields the same value. 1125 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1126 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1127 return V; 1128 1129 // If the operation is with the result of a phi instruction, check whether 1130 // operating on all incoming values of the phi always yields the same value. 1131 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1132 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1133 return V; 1134 1135 // If X / Y == 0, then X % Y == X. 1136 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1137 return Op0; 1138 1139 return nullptr; 1140 } 1141 1142 /// Given operands for an SDiv, see if we can fold the result. 1143 /// If not, this returns null. 1144 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1145 unsigned MaxRecurse) { 1146 // If two operands are negated and no signed overflow, return -1. 1147 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1148 return Constant::getAllOnesValue(Op0->getType()); 1149 1150 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1151 } 1152 1153 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1154 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1155 } 1156 1157 /// Given operands for a UDiv, see if we can fold the result. 1158 /// If not, this returns null. 1159 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1160 unsigned MaxRecurse) { 1161 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1162 } 1163 1164 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1165 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1166 } 1167 1168 /// Given operands for an SRem, see if we can fold the result. 1169 /// If not, this returns null. 1170 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1171 unsigned MaxRecurse) { 1172 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1173 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1174 Value *X; 1175 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1176 return ConstantInt::getNullValue(Op0->getType()); 1177 1178 // If the two operands are negated, return 0. 1179 if (isKnownNegation(Op0, Op1)) 1180 return ConstantInt::getNullValue(Op0->getType()); 1181 1182 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1183 } 1184 1185 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1186 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1187 } 1188 1189 /// Given operands for a URem, see if we can fold the result. 1190 /// If not, this returns null. 1191 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1192 unsigned MaxRecurse) { 1193 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1194 } 1195 1196 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1197 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1198 } 1199 1200 /// Returns true if a shift by \c Amount always yields poison. 1201 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1202 Constant *C = dyn_cast<Constant>(Amount); 1203 if (!C) 1204 return false; 1205 1206 // X shift by undef -> poison because it may shift by the bitwidth. 1207 if (Q.isUndefValue(C)) 1208 return true; 1209 1210 // Shifting by the bitwidth or more is undefined. 1211 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1212 if (CI->getValue().uge(CI->getType()->getScalarSizeInBits())) 1213 return true; 1214 1215 // If all lanes of a vector shift are undefined the whole shift is. 1216 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1217 for (unsigned I = 0, 1218 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1219 I != E; ++I) 1220 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1221 return false; 1222 return true; 1223 } 1224 1225 return false; 1226 } 1227 1228 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1229 /// If not, this returns null. 1230 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1231 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1232 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1233 return C; 1234 1235 // 0 shift by X -> 0 1236 if (match(Op0, m_Zero())) 1237 return Constant::getNullValue(Op0->getType()); 1238 1239 // X shift by 0 -> X 1240 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1241 // would be poison. 1242 Value *X; 1243 if (match(Op1, m_Zero()) || 1244 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1245 return Op0; 1246 1247 // Fold undefined shifts. 1248 if (isPoisonShift(Op1, Q)) 1249 return PoisonValue::get(Op0->getType()); 1250 1251 // If the operation is with the result of a select instruction, check whether 1252 // operating on either branch of the select always yields the same value. 1253 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1254 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1255 return V; 1256 1257 // If the operation is with the result of a phi instruction, check whether 1258 // operating on all incoming values of the phi always yields the same value. 1259 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1260 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1261 return V; 1262 1263 // If any bits in the shift amount make that value greater than or equal to 1264 // the number of bits in the type, the shift is undefined. 1265 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1266 if (Known.getMinValue().uge(Known.getBitWidth())) 1267 return PoisonValue::get(Op0->getType()); 1268 1269 // If all valid bits in the shift amount are known zero, the first operand is 1270 // unchanged. 1271 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1272 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1273 return Op0; 1274 1275 return nullptr; 1276 } 1277 1278 /// Given operands for an Shl, LShr or AShr, see if we can 1279 /// fold the result. If not, this returns null. 1280 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1281 Value *Op1, bool isExact, const SimplifyQuery &Q, 1282 unsigned MaxRecurse) { 1283 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1284 return V; 1285 1286 // X >> X -> 0 1287 if (Op0 == Op1) 1288 return Constant::getNullValue(Op0->getType()); 1289 1290 // undef >> X -> 0 1291 // undef >> X -> undef (if it's exact) 1292 if (Q.isUndefValue(Op0)) 1293 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1294 1295 // The low bit cannot be shifted out of an exact shift if it is set. 1296 if (isExact) { 1297 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1298 if (Op0Known.One[0]) 1299 return Op0; 1300 } 1301 1302 return nullptr; 1303 } 1304 1305 /// Given operands for an Shl, see if we can fold the result. 1306 /// If not, this returns null. 1307 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1308 const SimplifyQuery &Q, unsigned MaxRecurse) { 1309 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1310 return V; 1311 1312 // undef << X -> 0 1313 // undef << X -> undef if (if it's NSW/NUW) 1314 if (Q.isUndefValue(Op0)) 1315 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1316 1317 // (X >> A) << A -> X 1318 Value *X; 1319 if (Q.IIQ.UseInstrInfo && 1320 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1321 return X; 1322 1323 // shl nuw i8 C, %x -> C iff C has sign bit set. 1324 if (isNUW && match(Op0, m_Negative())) 1325 return Op0; 1326 // NOTE: could use computeKnownBits() / LazyValueInfo, 1327 // but the cost-benefit analysis suggests it isn't worth it. 1328 1329 return nullptr; 1330 } 1331 1332 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1333 const SimplifyQuery &Q) { 1334 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1335 } 1336 1337 /// Given operands for an LShr, see if we can fold the result. 1338 /// If not, this returns null. 1339 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1340 const SimplifyQuery &Q, unsigned MaxRecurse) { 1341 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1342 MaxRecurse)) 1343 return V; 1344 1345 // (X << A) >> A -> X 1346 Value *X; 1347 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1348 return X; 1349 1350 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1351 // We can return X as we do in the above case since OR alters no bits in X. 1352 // SimplifyDemandedBits in InstCombine can do more general optimization for 1353 // bit manipulation. This pattern aims to provide opportunities for other 1354 // optimizers by supporting a simple but common case in InstSimplify. 1355 Value *Y; 1356 const APInt *ShRAmt, *ShLAmt; 1357 if (match(Op1, m_APInt(ShRAmt)) && 1358 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1359 *ShRAmt == *ShLAmt) { 1360 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1361 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1362 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1363 if (ShRAmt->uge(EffWidthY)) 1364 return X; 1365 } 1366 1367 return nullptr; 1368 } 1369 1370 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1371 const SimplifyQuery &Q) { 1372 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1373 } 1374 1375 /// Given operands for an AShr, see if we can fold the result. 1376 /// If not, this returns null. 1377 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1378 const SimplifyQuery &Q, unsigned MaxRecurse) { 1379 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1380 MaxRecurse)) 1381 return V; 1382 1383 // all ones >>a X -> -1 1384 // Do not return Op0 because it may contain undef elements if it's a vector. 1385 if (match(Op0, m_AllOnes())) 1386 return Constant::getAllOnesValue(Op0->getType()); 1387 1388 // (X << A) >> A -> X 1389 Value *X; 1390 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1391 return X; 1392 1393 // Arithmetic shifting an all-sign-bit value is a no-op. 1394 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1395 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1396 return Op0; 1397 1398 return nullptr; 1399 } 1400 1401 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1402 const SimplifyQuery &Q) { 1403 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1404 } 1405 1406 /// Commuted variants are assumed to be handled by calling this function again 1407 /// with the parameters swapped. 1408 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1409 ICmpInst *UnsignedICmp, bool IsAnd, 1410 const SimplifyQuery &Q) { 1411 Value *X, *Y; 1412 1413 ICmpInst::Predicate EqPred; 1414 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1415 !ICmpInst::isEquality(EqPred)) 1416 return nullptr; 1417 1418 ICmpInst::Predicate UnsignedPred; 1419 1420 Value *A, *B; 1421 // Y = (A - B); 1422 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1423 if (match(UnsignedICmp, 1424 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1425 ICmpInst::isUnsigned(UnsignedPred)) { 1426 // A >=/<= B || (A - B) != 0 <--> true 1427 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1428 UnsignedPred == ICmpInst::ICMP_ULE) && 1429 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1430 return ConstantInt::getTrue(UnsignedICmp->getType()); 1431 // A </> B && (A - B) == 0 <--> false 1432 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1433 UnsignedPred == ICmpInst::ICMP_UGT) && 1434 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1435 return ConstantInt::getFalse(UnsignedICmp->getType()); 1436 1437 // A </> B && (A - B) != 0 <--> A </> B 1438 // A </> B || (A - B) != 0 <--> (A - B) != 0 1439 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1440 UnsignedPred == ICmpInst::ICMP_UGT)) 1441 return IsAnd ? UnsignedICmp : ZeroICmp; 1442 1443 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1444 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1445 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1446 UnsignedPred == ICmpInst::ICMP_UGE)) 1447 return IsAnd ? ZeroICmp : UnsignedICmp; 1448 } 1449 1450 // Given Y = (A - B) 1451 // Y >= A && Y != 0 --> Y >= A iff B != 0 1452 // Y < A || Y == 0 --> Y < A iff B != 0 1453 if (match(UnsignedICmp, 1454 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1455 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1456 EqPred == ICmpInst::ICMP_NE && 1457 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1458 return UnsignedICmp; 1459 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1460 EqPred == ICmpInst::ICMP_EQ && 1461 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1462 return UnsignedICmp; 1463 } 1464 } 1465 1466 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1467 ICmpInst::isUnsigned(UnsignedPred)) 1468 ; 1469 else if (match(UnsignedICmp, 1470 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1471 ICmpInst::isUnsigned(UnsignedPred)) 1472 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1473 else 1474 return nullptr; 1475 1476 // X > Y && Y == 0 --> Y == 0 iff X != 0 1477 // X > Y || Y == 0 --> X > Y iff X != 0 1478 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1479 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1480 return IsAnd ? ZeroICmp : UnsignedICmp; 1481 1482 // X <= Y && Y != 0 --> X <= Y iff X != 0 1483 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1484 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1485 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1486 return IsAnd ? UnsignedICmp : ZeroICmp; 1487 1488 // The transforms below here are expected to be handled more generally with 1489 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1490 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1491 // these are candidates for removal. 1492 1493 // X < Y && Y != 0 --> X < Y 1494 // X < Y || Y != 0 --> Y != 0 1495 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1496 return IsAnd ? UnsignedICmp : ZeroICmp; 1497 1498 // X >= Y && Y == 0 --> Y == 0 1499 // X >= Y || Y == 0 --> X >= Y 1500 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1501 return IsAnd ? ZeroICmp : UnsignedICmp; 1502 1503 // X < Y && Y == 0 --> false 1504 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1505 IsAnd) 1506 return getFalse(UnsignedICmp->getType()); 1507 1508 // X >= Y || Y != 0 --> true 1509 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1510 !IsAnd) 1511 return getTrue(UnsignedICmp->getType()); 1512 1513 return nullptr; 1514 } 1515 1516 /// Commuted variants are assumed to be handled by calling this function again 1517 /// with the parameters swapped. 1518 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1519 ICmpInst::Predicate Pred0, Pred1; 1520 Value *A ,*B; 1521 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1522 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1523 return nullptr; 1524 1525 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1526 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1527 // can eliminate Op1 from this 'and'. 1528 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1529 return Op0; 1530 1531 // Check for any combination of predicates that are guaranteed to be disjoint. 1532 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1533 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1534 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1535 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1536 return getFalse(Op0->getType()); 1537 1538 return nullptr; 1539 } 1540 1541 /// Commuted variants are assumed to be handled by calling this function again 1542 /// with the parameters swapped. 1543 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1544 ICmpInst::Predicate Pred0, Pred1; 1545 Value *A ,*B; 1546 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1547 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1548 return nullptr; 1549 1550 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1551 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1552 // can eliminate Op0 from this 'or'. 1553 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1554 return Op1; 1555 1556 // Check for any combination of predicates that cover the entire range of 1557 // possibilities. 1558 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1559 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1560 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1561 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1562 return getTrue(Op0->getType()); 1563 1564 return nullptr; 1565 } 1566 1567 /// Test if a pair of compares with a shared operand and 2 constants has an 1568 /// empty set intersection, full set union, or if one compare is a superset of 1569 /// the other. 1570 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1571 bool IsAnd) { 1572 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1573 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1574 return nullptr; 1575 1576 const APInt *C0, *C1; 1577 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1578 !match(Cmp1->getOperand(1), m_APInt(C1))) 1579 return nullptr; 1580 1581 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1582 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1583 1584 // For and-of-compares, check if the intersection is empty: 1585 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1586 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1587 return getFalse(Cmp0->getType()); 1588 1589 // For or-of-compares, check if the union is full: 1590 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1591 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1592 return getTrue(Cmp0->getType()); 1593 1594 // Is one range a superset of the other? 1595 // If this is and-of-compares, take the smaller set: 1596 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1597 // If this is or-of-compares, take the larger set: 1598 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1599 if (Range0.contains(Range1)) 1600 return IsAnd ? Cmp1 : Cmp0; 1601 if (Range1.contains(Range0)) 1602 return IsAnd ? Cmp0 : Cmp1; 1603 1604 return nullptr; 1605 } 1606 1607 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1608 bool IsAnd) { 1609 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1610 if (!match(Cmp0->getOperand(1), m_Zero()) || 1611 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1612 return nullptr; 1613 1614 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1615 return nullptr; 1616 1617 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1618 Value *X = Cmp0->getOperand(0); 1619 Value *Y = Cmp1->getOperand(0); 1620 1621 // If one of the compares is a masked version of a (not) null check, then 1622 // that compare implies the other, so we eliminate the other. Optionally, look 1623 // through a pointer-to-int cast to match a null check of a pointer type. 1624 1625 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1626 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1627 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1628 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1629 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1630 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1631 return Cmp1; 1632 1633 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1634 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1635 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1636 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1637 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1638 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1639 return Cmp0; 1640 1641 return nullptr; 1642 } 1643 1644 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1645 const InstrInfoQuery &IIQ) { 1646 // (icmp (add V, C0), C1) & (icmp V, C0) 1647 ICmpInst::Predicate Pred0, Pred1; 1648 const APInt *C0, *C1; 1649 Value *V; 1650 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1651 return nullptr; 1652 1653 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1654 return nullptr; 1655 1656 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1657 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1658 return nullptr; 1659 1660 Type *ITy = Op0->getType(); 1661 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1662 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1663 1664 const APInt Delta = *C1 - *C0; 1665 if (C0->isStrictlyPositive()) { 1666 if (Delta == 2) { 1667 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1668 return getFalse(ITy); 1669 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1670 return getFalse(ITy); 1671 } 1672 if (Delta == 1) { 1673 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1674 return getFalse(ITy); 1675 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1676 return getFalse(ITy); 1677 } 1678 } 1679 if (C0->getBoolValue() && isNUW) { 1680 if (Delta == 2) 1681 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1682 return getFalse(ITy); 1683 if (Delta == 1) 1684 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1685 return getFalse(ITy); 1686 } 1687 1688 return nullptr; 1689 } 1690 1691 /// Try to eliminate compares with signed or unsigned min/max constants. 1692 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1693 bool IsAnd) { 1694 // Canonicalize an equality compare as Cmp0. 1695 if (Cmp1->isEquality()) 1696 std::swap(Cmp0, Cmp1); 1697 if (!Cmp0->isEquality()) 1698 return nullptr; 1699 1700 // The non-equality compare must include a common operand (X). Canonicalize 1701 // the common operand as operand 0 (the predicate is swapped if the common 1702 // operand was operand 1). 1703 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1704 Value *X = Cmp0->getOperand(0); 1705 ICmpInst::Predicate Pred1; 1706 bool HasNotOp = match(Cmp1, m_c_ICmp(Pred1, m_Not(m_Specific(X)), m_Value())); 1707 if (!HasNotOp && !match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value()))) 1708 return nullptr; 1709 if (ICmpInst::isEquality(Pred1)) 1710 return nullptr; 1711 1712 // The equality compare must be against a constant. Flip bits if we matched 1713 // a bitwise not. Convert a null pointer constant to an integer zero value. 1714 APInt MinMaxC; 1715 const APInt *C; 1716 if (match(Cmp0->getOperand(1), m_APInt(C))) 1717 MinMaxC = HasNotOp ? ~*C : *C; 1718 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1719 MinMaxC = APInt::getNullValue(8); 1720 else 1721 return nullptr; 1722 1723 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1724 if (!IsAnd) { 1725 Pred0 = ICmpInst::getInversePredicate(Pred0); 1726 Pred1 = ICmpInst::getInversePredicate(Pred1); 1727 } 1728 1729 // Normalize to unsigned compare and unsigned min/max value. 1730 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1731 if (ICmpInst::isSigned(Pred1)) { 1732 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1733 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1734 } 1735 1736 // (X != MAX) && (X < Y) --> X < Y 1737 // (X == MAX) || (X >= Y) --> X >= Y 1738 if (MinMaxC.isMaxValue()) 1739 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1740 return Cmp1; 1741 1742 // (X != MIN) && (X > Y) --> X > Y 1743 // (X == MIN) || (X <= Y) --> X <= Y 1744 if (MinMaxC.isMinValue()) 1745 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1746 return Cmp1; 1747 1748 return nullptr; 1749 } 1750 1751 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1752 const SimplifyQuery &Q) { 1753 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1754 return X; 1755 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1756 return X; 1757 1758 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1759 return X; 1760 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1761 return X; 1762 1763 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1764 return X; 1765 1766 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1767 return X; 1768 1769 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1770 return X; 1771 1772 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1773 return X; 1774 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1775 return X; 1776 1777 return nullptr; 1778 } 1779 1780 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1781 const InstrInfoQuery &IIQ) { 1782 // (icmp (add V, C0), C1) | (icmp V, C0) 1783 ICmpInst::Predicate Pred0, Pred1; 1784 const APInt *C0, *C1; 1785 Value *V; 1786 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1787 return nullptr; 1788 1789 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1790 return nullptr; 1791 1792 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1793 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1794 return nullptr; 1795 1796 Type *ITy = Op0->getType(); 1797 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1798 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1799 1800 const APInt Delta = *C1 - *C0; 1801 if (C0->isStrictlyPositive()) { 1802 if (Delta == 2) { 1803 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1804 return getTrue(ITy); 1805 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1806 return getTrue(ITy); 1807 } 1808 if (Delta == 1) { 1809 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1810 return getTrue(ITy); 1811 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1812 return getTrue(ITy); 1813 } 1814 } 1815 if (C0->getBoolValue() && isNUW) { 1816 if (Delta == 2) 1817 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1818 return getTrue(ITy); 1819 if (Delta == 1) 1820 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1821 return getTrue(ITy); 1822 } 1823 1824 return nullptr; 1825 } 1826 1827 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1828 const SimplifyQuery &Q) { 1829 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1830 return X; 1831 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1832 return X; 1833 1834 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1835 return X; 1836 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1837 return X; 1838 1839 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1840 return X; 1841 1842 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1843 return X; 1844 1845 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1846 return X; 1847 1848 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1849 return X; 1850 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1851 return X; 1852 1853 return nullptr; 1854 } 1855 1856 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1857 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1858 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1859 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1860 if (LHS0->getType() != RHS0->getType()) 1861 return nullptr; 1862 1863 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1864 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1865 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1866 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1867 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1868 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1869 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1870 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1871 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1872 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1873 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1874 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1875 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1876 return RHS; 1877 1878 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1879 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1880 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1881 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1882 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1883 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1884 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1885 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1886 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1887 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1888 return LHS; 1889 } 1890 1891 return nullptr; 1892 } 1893 1894 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1895 Value *Op0, Value *Op1, bool IsAnd) { 1896 // Look through casts of the 'and' operands to find compares. 1897 auto *Cast0 = dyn_cast<CastInst>(Op0); 1898 auto *Cast1 = dyn_cast<CastInst>(Op1); 1899 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1900 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1901 Op0 = Cast0->getOperand(0); 1902 Op1 = Cast1->getOperand(0); 1903 } 1904 1905 Value *V = nullptr; 1906 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1907 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1908 if (ICmp0 && ICmp1) 1909 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1910 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1911 1912 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1913 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1914 if (FCmp0 && FCmp1) 1915 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1916 1917 if (!V) 1918 return nullptr; 1919 if (!Cast0) 1920 return V; 1921 1922 // If we looked through casts, we can only handle a constant simplification 1923 // because we are not allowed to create a cast instruction here. 1924 if (auto *C = dyn_cast<Constant>(V)) 1925 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1926 1927 return nullptr; 1928 } 1929 1930 /// Check that the Op1 is in expected form, i.e.: 1931 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1932 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1933 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1934 Value *X) { 1935 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1936 // We should only be extracting the overflow bit. 1937 if (!Extract || !Extract->getIndices().equals(1)) 1938 return false; 1939 Value *Agg = Extract->getAggregateOperand(); 1940 // This should be a multiplication-with-overflow intrinsic. 1941 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1942 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1943 return false; 1944 // One of its multipliers should be the value we checked for zero before. 1945 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1946 m_Argument<1>(m_Specific(X))))) 1947 return false; 1948 return true; 1949 } 1950 1951 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1952 /// other form of check, e.g. one that was using division; it may have been 1953 /// guarded against division-by-zero. We can drop that check now. 1954 /// Look for: 1955 /// %Op0 = icmp ne i4 %X, 0 1956 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1957 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1958 /// %??? = and i1 %Op0, %Op1 1959 /// We can just return %Op1 1960 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1961 ICmpInst::Predicate Pred; 1962 Value *X; 1963 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1964 Pred != ICmpInst::Predicate::ICMP_NE) 1965 return nullptr; 1966 // Is Op1 in expected form? 1967 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1968 return nullptr; 1969 // Can omit 'and', and just return the overflow bit. 1970 return Op1; 1971 } 1972 1973 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1974 /// other form of check, e.g. one that was using division; it may have been 1975 /// guarded against division-by-zero. We can drop that check now. 1976 /// Look for: 1977 /// %Op0 = icmp eq i4 %X, 0 1978 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1979 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1980 /// %NotOp1 = xor i1 %Op1, true 1981 /// %or = or i1 %Op0, %NotOp1 1982 /// We can just return %NotOp1 1983 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1984 Value *NotOp1) { 1985 ICmpInst::Predicate Pred; 1986 Value *X; 1987 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1988 Pred != ICmpInst::Predicate::ICMP_EQ) 1989 return nullptr; 1990 // We expect the other hand of an 'or' to be a 'not'. 1991 Value *Op1; 1992 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1993 return nullptr; 1994 // Is Op1 in expected form? 1995 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1996 return nullptr; 1997 // Can omit 'and', and just return the inverted overflow bit. 1998 return NotOp1; 1999 } 2000 2001 /// Given a bitwise logic op, check if the operands are add/sub with a common 2002 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 2003 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 2004 Instruction::BinaryOps Opcode) { 2005 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 2006 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 2007 Value *X; 2008 Constant *C1, *C2; 2009 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 2010 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2011 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2012 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2013 if (ConstantExpr::getNot(C1) == C2) { 2014 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2015 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2016 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2017 Type *Ty = Op0->getType(); 2018 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2019 : ConstantInt::getAllOnesValue(Ty); 2020 } 2021 } 2022 return nullptr; 2023 } 2024 2025 /// Given operands for an And, see if we can fold the result. 2026 /// If not, this returns null. 2027 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2028 unsigned MaxRecurse) { 2029 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2030 return C; 2031 2032 // X & undef -> 0 2033 if (Q.isUndefValue(Op1)) 2034 return Constant::getNullValue(Op0->getType()); 2035 2036 // X & X = X 2037 if (Op0 == Op1) 2038 return Op0; 2039 2040 // X & 0 = 0 2041 if (match(Op1, m_Zero())) 2042 return Constant::getNullValue(Op0->getType()); 2043 2044 // X & -1 = X 2045 if (match(Op1, m_AllOnes())) 2046 return Op0; 2047 2048 // A & ~A = ~A & A = 0 2049 if (match(Op0, m_Not(m_Specific(Op1))) || 2050 match(Op1, m_Not(m_Specific(Op0)))) 2051 return Constant::getNullValue(Op0->getType()); 2052 2053 // (A | ?) & A = A 2054 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2055 return Op1; 2056 2057 // A & (A | ?) = A 2058 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2059 return Op0; 2060 2061 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2062 return V; 2063 2064 // A mask that only clears known zeros of a shifted value is a no-op. 2065 Value *X; 2066 const APInt *Mask; 2067 const APInt *ShAmt; 2068 if (match(Op1, m_APInt(Mask))) { 2069 // If all bits in the inverted and shifted mask are clear: 2070 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2071 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2072 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2073 return Op0; 2074 2075 // If all bits in the inverted and shifted mask are clear: 2076 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2077 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2078 (~(*Mask)).shl(*ShAmt).isNullValue()) 2079 return Op0; 2080 } 2081 2082 // If we have a multiplication overflow check that is being 'and'ed with a 2083 // check that one of the multipliers is not zero, we can omit the 'and', and 2084 // only keep the overflow check. 2085 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2086 return V; 2087 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2088 return V; 2089 2090 // A & (-A) = A if A is a power of two or zero. 2091 if (match(Op0, m_Neg(m_Specific(Op1))) || 2092 match(Op1, m_Neg(m_Specific(Op0)))) { 2093 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2094 Q.DT)) 2095 return Op0; 2096 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2097 Q.DT)) 2098 return Op1; 2099 } 2100 2101 // This is a similar pattern used for checking if a value is a power-of-2: 2102 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2103 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2104 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2105 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2106 return Constant::getNullValue(Op1->getType()); 2107 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2108 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2109 return Constant::getNullValue(Op0->getType()); 2110 2111 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2112 return V; 2113 2114 // Try some generic simplifications for associative operations. 2115 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2116 MaxRecurse)) 2117 return V; 2118 2119 // And distributes over Or. Try some generic simplifications based on this. 2120 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2121 Instruction::Or, Q, MaxRecurse)) 2122 return V; 2123 2124 // And distributes over Xor. Try some generic simplifications based on this. 2125 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2126 Instruction::Xor, Q, MaxRecurse)) 2127 return V; 2128 2129 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2130 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2131 // A & (A && B) -> A && B 2132 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2133 return Op1; 2134 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2135 return Op0; 2136 } 2137 // If the operation is with the result of a select instruction, check 2138 // whether operating on either branch of the select always yields the same 2139 // value. 2140 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2141 MaxRecurse)) 2142 return V; 2143 } 2144 2145 // If the operation is with the result of a phi instruction, check whether 2146 // operating on all incoming values of the phi always yields the same value. 2147 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2148 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2149 MaxRecurse)) 2150 return V; 2151 2152 // Assuming the effective width of Y is not larger than A, i.e. all bits 2153 // from X and Y are disjoint in (X << A) | Y, 2154 // if the mask of this AND op covers all bits of X or Y, while it covers 2155 // no bits from the other, we can bypass this AND op. E.g., 2156 // ((X << A) | Y) & Mask -> Y, 2157 // if Mask = ((1 << effective_width_of(Y)) - 1) 2158 // ((X << A) | Y) & Mask -> X << A, 2159 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2160 // SimplifyDemandedBits in InstCombine can optimize the general case. 2161 // This pattern aims to help other passes for a common case. 2162 Value *Y, *XShifted; 2163 if (match(Op1, m_APInt(Mask)) && 2164 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2165 m_Value(XShifted)), 2166 m_Value(Y)))) { 2167 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2168 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2169 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2170 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2171 if (EffWidthY <= ShftCnt) { 2172 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2173 Q.DT); 2174 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2175 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2176 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2177 // If the mask is extracting all bits from X or Y as is, we can skip 2178 // this AND op. 2179 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2180 return Y; 2181 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2182 return XShifted; 2183 } 2184 } 2185 2186 return nullptr; 2187 } 2188 2189 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2190 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2191 } 2192 2193 /// Given operands for an Or, see if we can fold the result. 2194 /// If not, this returns null. 2195 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2196 unsigned MaxRecurse) { 2197 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2198 return C; 2199 2200 // X | undef -> -1 2201 // X | -1 = -1 2202 // Do not return Op1 because it may contain undef elements if it's a vector. 2203 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2204 return Constant::getAllOnesValue(Op0->getType()); 2205 2206 // X | X = X 2207 // X | 0 = X 2208 if (Op0 == Op1 || match(Op1, m_Zero())) 2209 return Op0; 2210 2211 // A | ~A = ~A | A = -1 2212 if (match(Op0, m_Not(m_Specific(Op1))) || 2213 match(Op1, m_Not(m_Specific(Op0)))) 2214 return Constant::getAllOnesValue(Op0->getType()); 2215 2216 // (A & ?) | A = A 2217 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2218 return Op1; 2219 2220 // A | (A & ?) = A 2221 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2222 return Op0; 2223 2224 // ~(A & ?) | A = -1 2225 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2226 return Constant::getAllOnesValue(Op1->getType()); 2227 2228 // A | ~(A & ?) = -1 2229 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2230 return Constant::getAllOnesValue(Op0->getType()); 2231 2232 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2233 return V; 2234 2235 Value *A, *B, *NotA; 2236 // (A & ~B) | (A ^ B) -> (A ^ B) 2237 // (~B & A) | (A ^ B) -> (A ^ B) 2238 // (A & ~B) | (B ^ A) -> (B ^ A) 2239 // (~B & A) | (B ^ A) -> (B ^ A) 2240 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2241 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2242 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2243 return Op1; 2244 2245 // Commute the 'or' operands. 2246 // (A ^ B) | (A & ~B) -> (A ^ B) 2247 // (A ^ B) | (~B & A) -> (A ^ B) 2248 // (B ^ A) | (A & ~B) -> (B ^ A) 2249 // (B ^ A) | (~B & A) -> (B ^ A) 2250 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2251 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2252 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2253 return Op0; 2254 2255 // (A & B) | (~A ^ B) -> (~A ^ B) 2256 // (B & A) | (~A ^ B) -> (~A ^ B) 2257 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2258 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2259 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2260 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2261 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2262 return Op1; 2263 2264 // Commute the 'or' operands. 2265 // (~A ^ B) | (A & B) -> (~A ^ B) 2266 // (~A ^ B) | (B & A) -> (~A ^ B) 2267 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2268 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2269 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2270 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2271 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2272 return Op0; 2273 2274 // (~A & B) | ~(A | B) --> ~A 2275 // (~A & B) | ~(B | A) --> ~A 2276 // (B & ~A) | ~(A | B) --> ~A 2277 // (B & ~A) | ~(B | A) --> ~A 2278 if (match(Op0, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2279 m_Value(B))) && 2280 match(Op1, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2281 return NotA; 2282 2283 // Commute the 'or' operands. 2284 // ~(A | B) | (~A & B) --> ~A 2285 // ~(B | A) | (~A & B) --> ~A 2286 // ~(A | B) | (B & ~A) --> ~A 2287 // ~(B | A) | (B & ~A) --> ~A 2288 if (match(Op1, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2289 m_Value(B))) && 2290 match(Op0, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2291 return NotA; 2292 2293 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2294 return V; 2295 2296 // If we have a multiplication overflow check that is being 'and'ed with a 2297 // check that one of the multipliers is not zero, we can omit the 'and', and 2298 // only keep the overflow check. 2299 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2300 return V; 2301 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2302 return V; 2303 2304 // Try some generic simplifications for associative operations. 2305 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2306 MaxRecurse)) 2307 return V; 2308 2309 // Or distributes over And. Try some generic simplifications based on this. 2310 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2311 Instruction::And, Q, MaxRecurse)) 2312 return V; 2313 2314 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2315 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2316 // A | (A || B) -> A || B 2317 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2318 return Op1; 2319 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2320 return Op0; 2321 } 2322 // If the operation is with the result of a select instruction, check 2323 // whether operating on either branch of the select always yields the same 2324 // value. 2325 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2326 MaxRecurse)) 2327 return V; 2328 } 2329 2330 // (A & C1)|(B & C2) 2331 const APInt *C1, *C2; 2332 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2333 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2334 if (*C1 == ~*C2) { 2335 // (A & C1)|(B & C2) 2336 // If we have: ((V + N) & C1) | (V & C2) 2337 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2338 // replace with V+N. 2339 Value *N; 2340 if (C2->isMask() && // C2 == 0+1+ 2341 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2342 // Add commutes, try both ways. 2343 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2344 return A; 2345 } 2346 // Or commutes, try both ways. 2347 if (C1->isMask() && 2348 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2349 // Add commutes, try both ways. 2350 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2351 return B; 2352 } 2353 } 2354 } 2355 2356 // If the operation is with the result of a phi instruction, check whether 2357 // operating on all incoming values of the phi always yields the same value. 2358 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2359 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2360 return V; 2361 2362 return nullptr; 2363 } 2364 2365 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2366 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2367 } 2368 2369 /// Given operands for a Xor, see if we can fold the result. 2370 /// If not, this returns null. 2371 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2372 unsigned MaxRecurse) { 2373 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2374 return C; 2375 2376 // A ^ undef -> undef 2377 if (Q.isUndefValue(Op1)) 2378 return Op1; 2379 2380 // A ^ 0 = A 2381 if (match(Op1, m_Zero())) 2382 return Op0; 2383 2384 // A ^ A = 0 2385 if (Op0 == Op1) 2386 return Constant::getNullValue(Op0->getType()); 2387 2388 // A ^ ~A = ~A ^ A = -1 2389 if (match(Op0, m_Not(m_Specific(Op1))) || 2390 match(Op1, m_Not(m_Specific(Op0)))) 2391 return Constant::getAllOnesValue(Op0->getType()); 2392 2393 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2394 return V; 2395 2396 // Try some generic simplifications for associative operations. 2397 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2398 MaxRecurse)) 2399 return V; 2400 2401 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2402 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2403 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2404 // only if B and C are equal. If B and C are equal then (since we assume 2405 // that operands have already been simplified) "select(cond, B, C)" should 2406 // have been simplified to the common value of B and C already. Analysing 2407 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2408 // for threading over phi nodes. 2409 2410 return nullptr; 2411 } 2412 2413 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2414 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2415 } 2416 2417 2418 static Type *GetCompareTy(Value *Op) { 2419 return CmpInst::makeCmpResultType(Op->getType()); 2420 } 2421 2422 /// Rummage around inside V looking for something equivalent to the comparison 2423 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2424 /// Helper function for analyzing max/min idioms. 2425 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2426 Value *LHS, Value *RHS) { 2427 SelectInst *SI = dyn_cast<SelectInst>(V); 2428 if (!SI) 2429 return nullptr; 2430 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2431 if (!Cmp) 2432 return nullptr; 2433 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2434 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2435 return Cmp; 2436 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2437 LHS == CmpRHS && RHS == CmpLHS) 2438 return Cmp; 2439 return nullptr; 2440 } 2441 2442 // A significant optimization not implemented here is assuming that alloca 2443 // addresses are not equal to incoming argument values. They don't *alias*, 2444 // as we say, but that doesn't mean they aren't equal, so we take a 2445 // conservative approach. 2446 // 2447 // This is inspired in part by C++11 5.10p1: 2448 // "Two pointers of the same type compare equal if and only if they are both 2449 // null, both point to the same function, or both represent the same 2450 // address." 2451 // 2452 // This is pretty permissive. 2453 // 2454 // It's also partly due to C11 6.5.9p6: 2455 // "Two pointers compare equal if and only if both are null pointers, both are 2456 // pointers to the same object (including a pointer to an object and a 2457 // subobject at its beginning) or function, both are pointers to one past the 2458 // last element of the same array object, or one is a pointer to one past the 2459 // end of one array object and the other is a pointer to the start of a 2460 // different array object that happens to immediately follow the first array 2461 // object in the address space.) 2462 // 2463 // C11's version is more restrictive, however there's no reason why an argument 2464 // couldn't be a one-past-the-end value for a stack object in the caller and be 2465 // equal to the beginning of a stack object in the callee. 2466 // 2467 // If the C and C++ standards are ever made sufficiently restrictive in this 2468 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2469 // this optimization. 2470 static Constant * 2471 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2472 const DominatorTree *DT, CmpInst::Predicate Pred, 2473 AssumptionCache *AC, const Instruction *CxtI, 2474 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2475 // First, skip past any trivial no-ops. 2476 LHS = LHS->stripPointerCasts(); 2477 RHS = RHS->stripPointerCasts(); 2478 2479 // A non-null pointer is not equal to a null pointer. 2480 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2481 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2482 IIQ.UseInstrInfo)) 2483 return ConstantInt::get(GetCompareTy(LHS), 2484 !CmpInst::isTrueWhenEqual(Pred)); 2485 2486 // We can only fold certain predicates on pointer comparisons. 2487 switch (Pred) { 2488 default: 2489 return nullptr; 2490 2491 // Equality comaprisons are easy to fold. 2492 case CmpInst::ICMP_EQ: 2493 case CmpInst::ICMP_NE: 2494 break; 2495 2496 // We can only handle unsigned relational comparisons because 'inbounds' on 2497 // a GEP only protects against unsigned wrapping. 2498 case CmpInst::ICMP_UGT: 2499 case CmpInst::ICMP_UGE: 2500 case CmpInst::ICMP_ULT: 2501 case CmpInst::ICMP_ULE: 2502 // However, we have to switch them to their signed variants to handle 2503 // negative indices from the base pointer. 2504 Pred = ICmpInst::getSignedPredicate(Pred); 2505 break; 2506 } 2507 2508 // Strip off any constant offsets so that we can reason about them. 2509 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2510 // here and compare base addresses like AliasAnalysis does, however there are 2511 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2512 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2513 // doesn't need to guarantee pointer inequality when it says NoAlias. 2514 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2515 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2516 2517 // If LHS and RHS are related via constant offsets to the same base 2518 // value, we can replace it with an icmp which just compares the offsets. 2519 if (LHS == RHS) 2520 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2521 2522 // Various optimizations for (in)equality comparisons. 2523 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2524 // Different non-empty allocations that exist at the same time have 2525 // different addresses (if the program can tell). Global variables always 2526 // exist, so they always exist during the lifetime of each other and all 2527 // allocas. Two different allocas usually have different addresses... 2528 // 2529 // However, if there's an @llvm.stackrestore dynamically in between two 2530 // allocas, they may have the same address. It's tempting to reduce the 2531 // scope of the problem by only looking at *static* allocas here. That would 2532 // cover the majority of allocas while significantly reducing the likelihood 2533 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2534 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2535 // an entry block. Also, if we have a block that's not attached to a 2536 // function, we can't tell if it's "static" under the current definition. 2537 // Theoretically, this problem could be fixed by creating a new kind of 2538 // instruction kind specifically for static allocas. Such a new instruction 2539 // could be required to be at the top of the entry block, thus preventing it 2540 // from being subject to a @llvm.stackrestore. Instcombine could even 2541 // convert regular allocas into these special allocas. It'd be nifty. 2542 // However, until then, this problem remains open. 2543 // 2544 // So, we'll assume that two non-empty allocas have different addresses 2545 // for now. 2546 // 2547 // With all that, if the offsets are within the bounds of their allocations 2548 // (and not one-past-the-end! so we can't use inbounds!), and their 2549 // allocations aren't the same, the pointers are not equal. 2550 // 2551 // Note that it's not necessary to check for LHS being a global variable 2552 // address, due to canonicalization and constant folding. 2553 if (isa<AllocaInst>(LHS) && 2554 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2555 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2556 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2557 uint64_t LHSSize, RHSSize; 2558 ObjectSizeOpts Opts; 2559 Opts.NullIsUnknownSize = 2560 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2561 if (LHSOffsetCI && RHSOffsetCI && 2562 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2563 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2564 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2565 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2566 if (!LHSOffsetValue.isNegative() && 2567 !RHSOffsetValue.isNegative() && 2568 LHSOffsetValue.ult(LHSSize) && 2569 RHSOffsetValue.ult(RHSSize)) { 2570 return ConstantInt::get(GetCompareTy(LHS), 2571 !CmpInst::isTrueWhenEqual(Pred)); 2572 } 2573 } 2574 2575 // Repeat the above check but this time without depending on DataLayout 2576 // or being able to compute a precise size. 2577 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2578 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2579 LHSOffset->isNullValue() && 2580 RHSOffset->isNullValue()) 2581 return ConstantInt::get(GetCompareTy(LHS), 2582 !CmpInst::isTrueWhenEqual(Pred)); 2583 } 2584 2585 // Even if an non-inbounds GEP occurs along the path we can still optimize 2586 // equality comparisons concerning the result. We avoid walking the whole 2587 // chain again by starting where the last calls to 2588 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2589 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2590 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2591 if (LHS == RHS) 2592 return ConstantExpr::getICmp(Pred, 2593 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2594 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2595 2596 // If one side of the equality comparison must come from a noalias call 2597 // (meaning a system memory allocation function), and the other side must 2598 // come from a pointer that cannot overlap with dynamically-allocated 2599 // memory within the lifetime of the current function (allocas, byval 2600 // arguments, globals), then determine the comparison result here. 2601 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2602 getUnderlyingObjects(LHS, LHSUObjs); 2603 getUnderlyingObjects(RHS, RHSUObjs); 2604 2605 // Is the set of underlying objects all noalias calls? 2606 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2607 return all_of(Objects, isNoAliasCall); 2608 }; 2609 2610 // Is the set of underlying objects all things which must be disjoint from 2611 // noalias calls. For allocas, we consider only static ones (dynamic 2612 // allocas might be transformed into calls to malloc not simultaneously 2613 // live with the compared-to allocation). For globals, we exclude symbols 2614 // that might be resolve lazily to symbols in another dynamically-loaded 2615 // library (and, thus, could be malloc'ed by the implementation). 2616 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2617 return all_of(Objects, [](const Value *V) { 2618 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2619 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2620 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2621 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2622 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2623 !GV->isThreadLocal(); 2624 if (const Argument *A = dyn_cast<Argument>(V)) 2625 return A->hasByValAttr(); 2626 return false; 2627 }); 2628 }; 2629 2630 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2631 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2632 return ConstantInt::get(GetCompareTy(LHS), 2633 !CmpInst::isTrueWhenEqual(Pred)); 2634 2635 // Fold comparisons for non-escaping pointer even if the allocation call 2636 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2637 // dynamic allocation call could be either of the operands. 2638 Value *MI = nullptr; 2639 if (isAllocLikeFn(LHS, TLI) && 2640 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2641 MI = LHS; 2642 else if (isAllocLikeFn(RHS, TLI) && 2643 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2644 MI = RHS; 2645 // FIXME: We should also fold the compare when the pointer escapes, but the 2646 // compare dominates the pointer escape 2647 if (MI && !PointerMayBeCaptured(MI, true, true)) 2648 return ConstantInt::get(GetCompareTy(LHS), 2649 CmpInst::isFalseWhenEqual(Pred)); 2650 } 2651 2652 // Otherwise, fail. 2653 return nullptr; 2654 } 2655 2656 /// Fold an icmp when its operands have i1 scalar type. 2657 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2658 Value *RHS, const SimplifyQuery &Q) { 2659 Type *ITy = GetCompareTy(LHS); // The return type. 2660 Type *OpTy = LHS->getType(); // The operand type. 2661 if (!OpTy->isIntOrIntVectorTy(1)) 2662 return nullptr; 2663 2664 // A boolean compared to true/false can be simplified in 14 out of the 20 2665 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2666 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2667 if (match(RHS, m_Zero())) { 2668 switch (Pred) { 2669 case CmpInst::ICMP_NE: // X != 0 -> X 2670 case CmpInst::ICMP_UGT: // X >u 0 -> X 2671 case CmpInst::ICMP_SLT: // X <s 0 -> X 2672 return LHS; 2673 2674 case CmpInst::ICMP_ULT: // X <u 0 -> false 2675 case CmpInst::ICMP_SGT: // X >s 0 -> false 2676 return getFalse(ITy); 2677 2678 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2679 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2680 return getTrue(ITy); 2681 2682 default: break; 2683 } 2684 } else if (match(RHS, m_One())) { 2685 switch (Pred) { 2686 case CmpInst::ICMP_EQ: // X == 1 -> X 2687 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2688 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2689 return LHS; 2690 2691 case CmpInst::ICMP_UGT: // X >u 1 -> false 2692 case CmpInst::ICMP_SLT: // X <s -1 -> false 2693 return getFalse(ITy); 2694 2695 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2696 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2697 return getTrue(ITy); 2698 2699 default: break; 2700 } 2701 } 2702 2703 switch (Pred) { 2704 default: 2705 break; 2706 case ICmpInst::ICMP_UGE: 2707 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2708 return getTrue(ITy); 2709 break; 2710 case ICmpInst::ICMP_SGE: 2711 /// For signed comparison, the values for an i1 are 0 and -1 2712 /// respectively. This maps into a truth table of: 2713 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2714 /// 0 | 0 | 1 (0 >= 0) | 1 2715 /// 0 | 1 | 1 (0 >= -1) | 1 2716 /// 1 | 0 | 0 (-1 >= 0) | 0 2717 /// 1 | 1 | 1 (-1 >= -1) | 1 2718 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2719 return getTrue(ITy); 2720 break; 2721 case ICmpInst::ICMP_ULE: 2722 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2723 return getTrue(ITy); 2724 break; 2725 } 2726 2727 return nullptr; 2728 } 2729 2730 /// Try hard to fold icmp with zero RHS because this is a common case. 2731 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2732 Value *RHS, const SimplifyQuery &Q) { 2733 if (!match(RHS, m_Zero())) 2734 return nullptr; 2735 2736 Type *ITy = GetCompareTy(LHS); // The return type. 2737 switch (Pred) { 2738 default: 2739 llvm_unreachable("Unknown ICmp predicate!"); 2740 case ICmpInst::ICMP_ULT: 2741 return getFalse(ITy); 2742 case ICmpInst::ICMP_UGE: 2743 return getTrue(ITy); 2744 case ICmpInst::ICMP_EQ: 2745 case ICmpInst::ICMP_ULE: 2746 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2747 return getFalse(ITy); 2748 break; 2749 case ICmpInst::ICMP_NE: 2750 case ICmpInst::ICMP_UGT: 2751 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2752 return getTrue(ITy); 2753 break; 2754 case ICmpInst::ICMP_SLT: { 2755 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2756 if (LHSKnown.isNegative()) 2757 return getTrue(ITy); 2758 if (LHSKnown.isNonNegative()) 2759 return getFalse(ITy); 2760 break; 2761 } 2762 case ICmpInst::ICMP_SLE: { 2763 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2764 if (LHSKnown.isNegative()) 2765 return getTrue(ITy); 2766 if (LHSKnown.isNonNegative() && 2767 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2768 return getFalse(ITy); 2769 break; 2770 } 2771 case ICmpInst::ICMP_SGE: { 2772 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2773 if (LHSKnown.isNegative()) 2774 return getFalse(ITy); 2775 if (LHSKnown.isNonNegative()) 2776 return getTrue(ITy); 2777 break; 2778 } 2779 case ICmpInst::ICMP_SGT: { 2780 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2781 if (LHSKnown.isNegative()) 2782 return getFalse(ITy); 2783 if (LHSKnown.isNonNegative() && 2784 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2785 return getTrue(ITy); 2786 break; 2787 } 2788 } 2789 2790 return nullptr; 2791 } 2792 2793 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2794 Value *RHS, const InstrInfoQuery &IIQ) { 2795 Type *ITy = GetCompareTy(RHS); // The return type. 2796 2797 Value *X; 2798 // Sign-bit checks can be optimized to true/false after unsigned 2799 // floating-point casts: 2800 // icmp slt (bitcast (uitofp X)), 0 --> false 2801 // icmp sgt (bitcast (uitofp X)), -1 --> true 2802 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2803 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2804 return ConstantInt::getFalse(ITy); 2805 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2806 return ConstantInt::getTrue(ITy); 2807 } 2808 2809 const APInt *C; 2810 if (!match(RHS, m_APIntAllowUndef(C))) 2811 return nullptr; 2812 2813 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2814 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2815 if (RHS_CR.isEmptySet()) 2816 return ConstantInt::getFalse(ITy); 2817 if (RHS_CR.isFullSet()) 2818 return ConstantInt::getTrue(ITy); 2819 2820 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2821 if (!LHS_CR.isFullSet()) { 2822 if (RHS_CR.contains(LHS_CR)) 2823 return ConstantInt::getTrue(ITy); 2824 if (RHS_CR.inverse().contains(LHS_CR)) 2825 return ConstantInt::getFalse(ITy); 2826 } 2827 2828 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2829 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2830 const APInt *MulC; 2831 if (ICmpInst::isEquality(Pred) && 2832 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2833 *MulC != 0 && C->urem(*MulC) != 0) || 2834 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2835 *MulC != 0 && C->srem(*MulC) != 0))) 2836 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2837 2838 return nullptr; 2839 } 2840 2841 static Value *simplifyICmpWithBinOpOnLHS( 2842 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2843 const SimplifyQuery &Q, unsigned MaxRecurse) { 2844 Type *ITy = GetCompareTy(RHS); // The return type. 2845 2846 Value *Y = nullptr; 2847 // icmp pred (or X, Y), X 2848 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2849 if (Pred == ICmpInst::ICMP_ULT) 2850 return getFalse(ITy); 2851 if (Pred == ICmpInst::ICMP_UGE) 2852 return getTrue(ITy); 2853 2854 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2855 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2856 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2857 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2858 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2859 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2860 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2861 } 2862 } 2863 2864 // icmp pred (and X, Y), X 2865 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2866 if (Pred == ICmpInst::ICMP_UGT) 2867 return getFalse(ITy); 2868 if (Pred == ICmpInst::ICMP_ULE) 2869 return getTrue(ITy); 2870 } 2871 2872 // icmp pred (urem X, Y), Y 2873 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2874 switch (Pred) { 2875 default: 2876 break; 2877 case ICmpInst::ICMP_SGT: 2878 case ICmpInst::ICMP_SGE: { 2879 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2880 if (!Known.isNonNegative()) 2881 break; 2882 LLVM_FALLTHROUGH; 2883 } 2884 case ICmpInst::ICMP_EQ: 2885 case ICmpInst::ICMP_UGT: 2886 case ICmpInst::ICMP_UGE: 2887 return getFalse(ITy); 2888 case ICmpInst::ICMP_SLT: 2889 case ICmpInst::ICMP_SLE: { 2890 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2891 if (!Known.isNonNegative()) 2892 break; 2893 LLVM_FALLTHROUGH; 2894 } 2895 case ICmpInst::ICMP_NE: 2896 case ICmpInst::ICMP_ULT: 2897 case ICmpInst::ICMP_ULE: 2898 return getTrue(ITy); 2899 } 2900 } 2901 2902 // icmp pred (urem X, Y), X 2903 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2904 if (Pred == ICmpInst::ICMP_ULE) 2905 return getTrue(ITy); 2906 if (Pred == ICmpInst::ICMP_UGT) 2907 return getFalse(ITy); 2908 } 2909 2910 // x >> y <=u x 2911 // x udiv y <=u x. 2912 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2913 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2914 // icmp pred (X op Y), X 2915 if (Pred == ICmpInst::ICMP_UGT) 2916 return getFalse(ITy); 2917 if (Pred == ICmpInst::ICMP_ULE) 2918 return getTrue(ITy); 2919 } 2920 2921 // (x*C1)/C2 <= x for C1 <= C2. 2922 // This holds even if the multiplication overflows: Assume that x != 0 and 2923 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 2924 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 2925 // 2926 // Additionally, either the multiplication and division might be represented 2927 // as shifts: 2928 // (x*C1)>>C2 <= x for C1 < 2**C2. 2929 // (x<<C1)/C2 <= x for 2**C1 < C2. 2930 const APInt *C1, *C2; 2931 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2932 C1->ule(*C2)) || 2933 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2934 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 2935 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 2936 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 2937 if (Pred == ICmpInst::ICMP_UGT) 2938 return getFalse(ITy); 2939 if (Pred == ICmpInst::ICMP_ULE) 2940 return getTrue(ITy); 2941 } 2942 2943 return nullptr; 2944 } 2945 2946 2947 // If only one of the icmp's operands has NSW flags, try to prove that: 2948 // 2949 // icmp slt (x + C1), (x +nsw C2) 2950 // 2951 // is equivalent to: 2952 // 2953 // icmp slt C1, C2 2954 // 2955 // which is true if x + C2 has the NSW flags set and: 2956 // *) C1 < C2 && C1 >= 0, or 2957 // *) C2 < C1 && C1 <= 0. 2958 // 2959 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 2960 Value *RHS) { 2961 // TODO: only support icmp slt for now. 2962 if (Pred != CmpInst::ICMP_SLT) 2963 return false; 2964 2965 // Canonicalize nsw add as RHS. 2966 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2967 std::swap(LHS, RHS); 2968 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 2969 return false; 2970 2971 Value *X; 2972 const APInt *C1, *C2; 2973 if (!match(LHS, m_c_Add(m_Value(X), m_APInt(C1))) || 2974 !match(RHS, m_c_Add(m_Specific(X), m_APInt(C2)))) 2975 return false; 2976 2977 return (C1->slt(*C2) && C1->isNonNegative()) || 2978 (C2->slt(*C1) && C1->isNonPositive()); 2979 } 2980 2981 2982 /// TODO: A large part of this logic is duplicated in InstCombine's 2983 /// foldICmpBinOp(). We should be able to share that and avoid the code 2984 /// duplication. 2985 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2986 Value *RHS, const SimplifyQuery &Q, 2987 unsigned MaxRecurse) { 2988 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2989 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2990 if (MaxRecurse && (LBO || RBO)) { 2991 // Analyze the case when either LHS or RHS is an add instruction. 2992 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2993 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2994 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2995 if (LBO && LBO->getOpcode() == Instruction::Add) { 2996 A = LBO->getOperand(0); 2997 B = LBO->getOperand(1); 2998 NoLHSWrapProblem = 2999 ICmpInst::isEquality(Pred) || 3000 (CmpInst::isUnsigned(Pred) && 3001 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3002 (CmpInst::isSigned(Pred) && 3003 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3004 } 3005 if (RBO && RBO->getOpcode() == Instruction::Add) { 3006 C = RBO->getOperand(0); 3007 D = RBO->getOperand(1); 3008 NoRHSWrapProblem = 3009 ICmpInst::isEquality(Pred) || 3010 (CmpInst::isUnsigned(Pred) && 3011 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3012 (CmpInst::isSigned(Pred) && 3013 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3014 } 3015 3016 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3017 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3018 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 3019 Constant::getNullValue(RHS->getType()), Q, 3020 MaxRecurse - 1)) 3021 return V; 3022 3023 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3024 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3025 if (Value *V = 3026 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3027 C == LHS ? D : C, Q, MaxRecurse - 1)) 3028 return V; 3029 3030 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3031 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3032 trySimplifyICmpWithAdds(Pred, LHS, RHS); 3033 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3034 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3035 Value *Y, *Z; 3036 if (A == C) { 3037 // C + B == C + D -> B == D 3038 Y = B; 3039 Z = D; 3040 } else if (A == D) { 3041 // D + B == C + D -> B == C 3042 Y = B; 3043 Z = C; 3044 } else if (B == C) { 3045 // A + C == C + D -> A == D 3046 Y = A; 3047 Z = D; 3048 } else { 3049 assert(B == D); 3050 // A + D == C + D -> A == C 3051 Y = A; 3052 Z = C; 3053 } 3054 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3055 return V; 3056 } 3057 } 3058 3059 if (LBO) 3060 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3061 return V; 3062 3063 if (RBO) 3064 if (Value *V = simplifyICmpWithBinOpOnLHS( 3065 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3066 return V; 3067 3068 // 0 - (zext X) pred C 3069 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3070 const APInt *C; 3071 if (match(RHS, m_APInt(C))) { 3072 if (C->isStrictlyPositive()) { 3073 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3074 return ConstantInt::getTrue(GetCompareTy(RHS)); 3075 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3076 return ConstantInt::getFalse(GetCompareTy(RHS)); 3077 } 3078 if (C->isNonNegative()) { 3079 if (Pred == ICmpInst::ICMP_SLE) 3080 return ConstantInt::getTrue(GetCompareTy(RHS)); 3081 if (Pred == ICmpInst::ICMP_SGT) 3082 return ConstantInt::getFalse(GetCompareTy(RHS)); 3083 } 3084 } 3085 } 3086 3087 // If C2 is a power-of-2 and C is not: 3088 // (C2 << X) == C --> false 3089 // (C2 << X) != C --> true 3090 const APInt *C; 3091 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3092 match(RHS, m_APIntAllowUndef(C)) && !C->isPowerOf2()) { 3093 // C2 << X can equal zero in some circumstances. 3094 // This simplification might be unsafe if C is zero. 3095 // 3096 // We know it is safe if: 3097 // - The shift is nsw. We can't shift out the one bit. 3098 // - The shift is nuw. We can't shift out the one bit. 3099 // - C2 is one. 3100 // - C isn't zero. 3101 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3102 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3103 match(LHS, m_Shl(m_One(), m_Value())) || !C->isNullValue()) { 3104 if (Pred == ICmpInst::ICMP_EQ) 3105 return ConstantInt::getFalse(GetCompareTy(RHS)); 3106 if (Pred == ICmpInst::ICMP_NE) 3107 return ConstantInt::getTrue(GetCompareTy(RHS)); 3108 } 3109 } 3110 3111 // TODO: This is overly constrained. LHS can be any power-of-2. 3112 // (1 << X) >u 0x8000 --> false 3113 // (1 << X) <=u 0x8000 --> true 3114 if (match(LHS, m_Shl(m_One(), m_Value())) && match(RHS, m_SignMask())) { 3115 if (Pred == ICmpInst::ICMP_UGT) 3116 return ConstantInt::getFalse(GetCompareTy(RHS)); 3117 if (Pred == ICmpInst::ICMP_ULE) 3118 return ConstantInt::getTrue(GetCompareTy(RHS)); 3119 } 3120 3121 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 3122 LBO->getOperand(1) == RBO->getOperand(1)) { 3123 switch (LBO->getOpcode()) { 3124 default: 3125 break; 3126 case Instruction::UDiv: 3127 case Instruction::LShr: 3128 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3129 !Q.IIQ.isExact(RBO)) 3130 break; 3131 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3132 RBO->getOperand(0), Q, MaxRecurse - 1)) 3133 return V; 3134 break; 3135 case Instruction::SDiv: 3136 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3137 !Q.IIQ.isExact(RBO)) 3138 break; 3139 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3140 RBO->getOperand(0), Q, MaxRecurse - 1)) 3141 return V; 3142 break; 3143 case Instruction::AShr: 3144 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3145 break; 3146 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3147 RBO->getOperand(0), Q, MaxRecurse - 1)) 3148 return V; 3149 break; 3150 case Instruction::Shl: { 3151 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3152 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3153 if (!NUW && !NSW) 3154 break; 3155 if (!NSW && ICmpInst::isSigned(Pred)) 3156 break; 3157 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3158 RBO->getOperand(0), Q, MaxRecurse - 1)) 3159 return V; 3160 break; 3161 } 3162 } 3163 } 3164 return nullptr; 3165 } 3166 3167 /// Simplify integer comparisons where at least one operand of the compare 3168 /// matches an integer min/max idiom. 3169 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3170 Value *RHS, const SimplifyQuery &Q, 3171 unsigned MaxRecurse) { 3172 Type *ITy = GetCompareTy(LHS); // The return type. 3173 Value *A, *B; 3174 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3175 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3176 3177 // Signed variants on "max(a,b)>=a -> true". 3178 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3179 if (A != RHS) 3180 std::swap(A, B); // smax(A, B) pred A. 3181 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3182 // We analyze this as smax(A, B) pred A. 3183 P = Pred; 3184 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3185 (A == LHS || B == LHS)) { 3186 if (A != LHS) 3187 std::swap(A, B); // A pred smax(A, B). 3188 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3189 // We analyze this as smax(A, B) swapped-pred A. 3190 P = CmpInst::getSwappedPredicate(Pred); 3191 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3192 (A == RHS || B == RHS)) { 3193 if (A != RHS) 3194 std::swap(A, B); // smin(A, B) pred A. 3195 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3196 // We analyze this as smax(-A, -B) swapped-pred -A. 3197 // Note that we do not need to actually form -A or -B thanks to EqP. 3198 P = CmpInst::getSwappedPredicate(Pred); 3199 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3200 (A == LHS || B == LHS)) { 3201 if (A != LHS) 3202 std::swap(A, B); // A pred smin(A, B). 3203 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3204 // We analyze this as smax(-A, -B) pred -A. 3205 // Note that we do not need to actually form -A or -B thanks to EqP. 3206 P = Pred; 3207 } 3208 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3209 // Cases correspond to "max(A, B) p A". 3210 switch (P) { 3211 default: 3212 break; 3213 case CmpInst::ICMP_EQ: 3214 case CmpInst::ICMP_SLE: 3215 // Equivalent to "A EqP B". This may be the same as the condition tested 3216 // in the max/min; if so, we can just return that. 3217 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3218 return V; 3219 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3220 return V; 3221 // Otherwise, see if "A EqP B" simplifies. 3222 if (MaxRecurse) 3223 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3224 return V; 3225 break; 3226 case CmpInst::ICMP_NE: 3227 case CmpInst::ICMP_SGT: { 3228 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3229 // Equivalent to "A InvEqP B". This may be the same as the condition 3230 // tested in the max/min; if so, we can just return that. 3231 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3232 return V; 3233 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3234 return V; 3235 // Otherwise, see if "A InvEqP B" simplifies. 3236 if (MaxRecurse) 3237 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3238 return V; 3239 break; 3240 } 3241 case CmpInst::ICMP_SGE: 3242 // Always true. 3243 return getTrue(ITy); 3244 case CmpInst::ICMP_SLT: 3245 // Always false. 3246 return getFalse(ITy); 3247 } 3248 } 3249 3250 // Unsigned variants on "max(a,b)>=a -> true". 3251 P = CmpInst::BAD_ICMP_PREDICATE; 3252 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3253 if (A != RHS) 3254 std::swap(A, B); // umax(A, B) pred A. 3255 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3256 // We analyze this as umax(A, B) pred A. 3257 P = Pred; 3258 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3259 (A == LHS || B == LHS)) { 3260 if (A != LHS) 3261 std::swap(A, B); // A pred umax(A, B). 3262 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3263 // We analyze this as umax(A, B) swapped-pred A. 3264 P = CmpInst::getSwappedPredicate(Pred); 3265 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3266 (A == RHS || B == RHS)) { 3267 if (A != RHS) 3268 std::swap(A, B); // umin(A, B) pred A. 3269 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3270 // We analyze this as umax(-A, -B) swapped-pred -A. 3271 // Note that we do not need to actually form -A or -B thanks to EqP. 3272 P = CmpInst::getSwappedPredicate(Pred); 3273 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3274 (A == LHS || B == LHS)) { 3275 if (A != LHS) 3276 std::swap(A, B); // A pred umin(A, B). 3277 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3278 // We analyze this as umax(-A, -B) pred -A. 3279 // Note that we do not need to actually form -A or -B thanks to EqP. 3280 P = Pred; 3281 } 3282 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3283 // Cases correspond to "max(A, B) p A". 3284 switch (P) { 3285 default: 3286 break; 3287 case CmpInst::ICMP_EQ: 3288 case CmpInst::ICMP_ULE: 3289 // Equivalent to "A EqP B". This may be the same as the condition tested 3290 // in the max/min; if so, we can just return that. 3291 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3292 return V; 3293 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3294 return V; 3295 // Otherwise, see if "A EqP B" simplifies. 3296 if (MaxRecurse) 3297 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3298 return V; 3299 break; 3300 case CmpInst::ICMP_NE: 3301 case CmpInst::ICMP_UGT: { 3302 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3303 // Equivalent to "A InvEqP B". This may be the same as the condition 3304 // tested in the max/min; if so, we can just return that. 3305 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3306 return V; 3307 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3308 return V; 3309 // Otherwise, see if "A InvEqP B" simplifies. 3310 if (MaxRecurse) 3311 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3312 return V; 3313 break; 3314 } 3315 case CmpInst::ICMP_UGE: 3316 return getTrue(ITy); 3317 case CmpInst::ICMP_ULT: 3318 return getFalse(ITy); 3319 } 3320 } 3321 3322 // Comparing 1 each of min/max with a common operand? 3323 // Canonicalize min operand to RHS. 3324 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3325 match(LHS, m_SMin(m_Value(), m_Value()))) { 3326 std::swap(LHS, RHS); 3327 Pred = ICmpInst::getSwappedPredicate(Pred); 3328 } 3329 3330 Value *C, *D; 3331 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3332 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3333 (A == C || A == D || B == C || B == D)) { 3334 // smax(A, B) >=s smin(A, D) --> true 3335 if (Pred == CmpInst::ICMP_SGE) 3336 return getTrue(ITy); 3337 // smax(A, B) <s smin(A, D) --> false 3338 if (Pred == CmpInst::ICMP_SLT) 3339 return getFalse(ITy); 3340 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3341 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3342 (A == C || A == D || B == C || B == D)) { 3343 // umax(A, B) >=u umin(A, D) --> true 3344 if (Pred == CmpInst::ICMP_UGE) 3345 return getTrue(ITy); 3346 // umax(A, B) <u umin(A, D) --> false 3347 if (Pred == CmpInst::ICMP_ULT) 3348 return getFalse(ITy); 3349 } 3350 3351 return nullptr; 3352 } 3353 3354 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3355 Value *LHS, Value *RHS, 3356 const SimplifyQuery &Q) { 3357 // Gracefully handle instructions that have not been inserted yet. 3358 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3359 return nullptr; 3360 3361 for (Value *AssumeBaseOp : {LHS, RHS}) { 3362 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3363 if (!AssumeVH) 3364 continue; 3365 3366 CallInst *Assume = cast<CallInst>(AssumeVH); 3367 if (Optional<bool> Imp = 3368 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3369 Q.DL)) 3370 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3371 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3372 } 3373 } 3374 3375 return nullptr; 3376 } 3377 3378 /// Given operands for an ICmpInst, see if we can fold the result. 3379 /// If not, this returns null. 3380 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3381 const SimplifyQuery &Q, unsigned MaxRecurse) { 3382 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3383 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3384 3385 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3386 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3387 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3388 3389 // If we have a constant, make sure it is on the RHS. 3390 std::swap(LHS, RHS); 3391 Pred = CmpInst::getSwappedPredicate(Pred); 3392 } 3393 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3394 3395 Type *ITy = GetCompareTy(LHS); // The return type. 3396 3397 // For EQ and NE, we can always pick a value for the undef to make the 3398 // predicate pass or fail, so we can return undef. 3399 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3400 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3401 return UndefValue::get(ITy); 3402 3403 // icmp X, X -> true/false 3404 // icmp X, undef -> true/false because undef could be X. 3405 if (LHS == RHS || Q.isUndefValue(RHS)) 3406 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3407 3408 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3409 return V; 3410 3411 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3412 return V; 3413 3414 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3415 return V; 3416 3417 // If both operands have range metadata, use the metadata 3418 // to simplify the comparison. 3419 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3420 auto RHS_Instr = cast<Instruction>(RHS); 3421 auto LHS_Instr = cast<Instruction>(LHS); 3422 3423 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3424 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3425 auto RHS_CR = getConstantRangeFromMetadata( 3426 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3427 auto LHS_CR = getConstantRangeFromMetadata( 3428 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3429 3430 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3431 if (Satisfied_CR.contains(LHS_CR)) 3432 return ConstantInt::getTrue(RHS->getContext()); 3433 3434 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3435 CmpInst::getInversePredicate(Pred), RHS_CR); 3436 if (InversedSatisfied_CR.contains(LHS_CR)) 3437 return ConstantInt::getFalse(RHS->getContext()); 3438 } 3439 } 3440 3441 // Compare of cast, for example (zext X) != 0 -> X != 0 3442 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3443 Instruction *LI = cast<CastInst>(LHS); 3444 Value *SrcOp = LI->getOperand(0); 3445 Type *SrcTy = SrcOp->getType(); 3446 Type *DstTy = LI->getType(); 3447 3448 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3449 // if the integer type is the same size as the pointer type. 3450 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3451 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3452 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3453 // Transfer the cast to the constant. 3454 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3455 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3456 Q, MaxRecurse-1)) 3457 return V; 3458 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3459 if (RI->getOperand(0)->getType() == SrcTy) 3460 // Compare without the cast. 3461 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3462 Q, MaxRecurse-1)) 3463 return V; 3464 } 3465 } 3466 3467 if (isa<ZExtInst>(LHS)) { 3468 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3469 // same type. 3470 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3471 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3472 // Compare X and Y. Note that signed predicates become unsigned. 3473 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3474 SrcOp, RI->getOperand(0), Q, 3475 MaxRecurse-1)) 3476 return V; 3477 } 3478 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3479 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3480 if (SrcOp == RI->getOperand(0)) { 3481 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3482 return ConstantInt::getTrue(ITy); 3483 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3484 return ConstantInt::getFalse(ITy); 3485 } 3486 } 3487 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3488 // too. If not, then try to deduce the result of the comparison. 3489 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3490 // Compute the constant that would happen if we truncated to SrcTy then 3491 // reextended to DstTy. 3492 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3493 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3494 3495 // If the re-extended constant didn't change then this is effectively 3496 // also a case of comparing two zero-extended values. 3497 if (RExt == CI && MaxRecurse) 3498 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3499 SrcOp, Trunc, Q, MaxRecurse-1)) 3500 return V; 3501 3502 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3503 // there. Use this to work out the result of the comparison. 3504 if (RExt != CI) { 3505 switch (Pred) { 3506 default: llvm_unreachable("Unknown ICmp predicate!"); 3507 // LHS <u RHS. 3508 case ICmpInst::ICMP_EQ: 3509 case ICmpInst::ICMP_UGT: 3510 case ICmpInst::ICMP_UGE: 3511 return ConstantInt::getFalse(CI->getContext()); 3512 3513 case ICmpInst::ICMP_NE: 3514 case ICmpInst::ICMP_ULT: 3515 case ICmpInst::ICMP_ULE: 3516 return ConstantInt::getTrue(CI->getContext()); 3517 3518 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3519 // is non-negative then LHS <s RHS. 3520 case ICmpInst::ICMP_SGT: 3521 case ICmpInst::ICMP_SGE: 3522 return CI->getValue().isNegative() ? 3523 ConstantInt::getTrue(CI->getContext()) : 3524 ConstantInt::getFalse(CI->getContext()); 3525 3526 case ICmpInst::ICMP_SLT: 3527 case ICmpInst::ICMP_SLE: 3528 return CI->getValue().isNegative() ? 3529 ConstantInt::getFalse(CI->getContext()) : 3530 ConstantInt::getTrue(CI->getContext()); 3531 } 3532 } 3533 } 3534 } 3535 3536 if (isa<SExtInst>(LHS)) { 3537 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3538 // same type. 3539 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3540 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3541 // Compare X and Y. Note that the predicate does not change. 3542 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3543 Q, MaxRecurse-1)) 3544 return V; 3545 } 3546 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3547 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3548 if (SrcOp == RI->getOperand(0)) { 3549 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3550 return ConstantInt::getTrue(ITy); 3551 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3552 return ConstantInt::getFalse(ITy); 3553 } 3554 } 3555 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3556 // too. If not, then try to deduce the result of the comparison. 3557 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3558 // Compute the constant that would happen if we truncated to SrcTy then 3559 // reextended to DstTy. 3560 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3561 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3562 3563 // If the re-extended constant didn't change then this is effectively 3564 // also a case of comparing two sign-extended values. 3565 if (RExt == CI && MaxRecurse) 3566 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3567 return V; 3568 3569 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3570 // bits there. Use this to work out the result of the comparison. 3571 if (RExt != CI) { 3572 switch (Pred) { 3573 default: llvm_unreachable("Unknown ICmp predicate!"); 3574 case ICmpInst::ICMP_EQ: 3575 return ConstantInt::getFalse(CI->getContext()); 3576 case ICmpInst::ICMP_NE: 3577 return ConstantInt::getTrue(CI->getContext()); 3578 3579 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3580 // LHS >s RHS. 3581 case ICmpInst::ICMP_SGT: 3582 case ICmpInst::ICMP_SGE: 3583 return CI->getValue().isNegative() ? 3584 ConstantInt::getTrue(CI->getContext()) : 3585 ConstantInt::getFalse(CI->getContext()); 3586 case ICmpInst::ICMP_SLT: 3587 case ICmpInst::ICMP_SLE: 3588 return CI->getValue().isNegative() ? 3589 ConstantInt::getFalse(CI->getContext()) : 3590 ConstantInt::getTrue(CI->getContext()); 3591 3592 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3593 // LHS >u RHS. 3594 case ICmpInst::ICMP_UGT: 3595 case ICmpInst::ICMP_UGE: 3596 // Comparison is true iff the LHS <s 0. 3597 if (MaxRecurse) 3598 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3599 Constant::getNullValue(SrcTy), 3600 Q, MaxRecurse-1)) 3601 return V; 3602 break; 3603 case ICmpInst::ICMP_ULT: 3604 case ICmpInst::ICMP_ULE: 3605 // Comparison is true iff the LHS >=s 0. 3606 if (MaxRecurse) 3607 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3608 Constant::getNullValue(SrcTy), 3609 Q, MaxRecurse-1)) 3610 return V; 3611 break; 3612 } 3613 } 3614 } 3615 } 3616 } 3617 3618 // icmp eq|ne X, Y -> false|true if X != Y 3619 if (ICmpInst::isEquality(Pred) && 3620 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3621 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3622 } 3623 3624 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3625 return V; 3626 3627 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3628 return V; 3629 3630 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3631 return V; 3632 3633 // Simplify comparisons of related pointers using a powerful, recursive 3634 // GEP-walk when we have target data available.. 3635 if (LHS->getType()->isPointerTy()) 3636 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3637 Q.IIQ, LHS, RHS)) 3638 return C; 3639 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3640 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3641 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3642 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3643 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3644 Q.DL.getTypeSizeInBits(CRHS->getType())) 3645 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3646 Q.IIQ, CLHS->getPointerOperand(), 3647 CRHS->getPointerOperand())) 3648 return C; 3649 3650 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3651 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3652 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3653 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3654 (ICmpInst::isEquality(Pred) || 3655 (GLHS->isInBounds() && GRHS->isInBounds() && 3656 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3657 // The bases are equal and the indices are constant. Build a constant 3658 // expression GEP with the same indices and a null base pointer to see 3659 // what constant folding can make out of it. 3660 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3661 SmallVector<Value *, 4> IndicesLHS(GLHS->indices()); 3662 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3663 GLHS->getSourceElementType(), Null, IndicesLHS); 3664 3665 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3666 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3667 GLHS->getSourceElementType(), Null, IndicesRHS); 3668 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3669 return ConstantFoldConstant(NewICmp, Q.DL); 3670 } 3671 } 3672 } 3673 3674 // If the comparison is with the result of a select instruction, check whether 3675 // comparing with either branch of the select always yields the same value. 3676 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3677 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3678 return V; 3679 3680 // If the comparison is with the result of a phi instruction, check whether 3681 // doing the compare with each incoming phi value yields a common result. 3682 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3683 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3684 return V; 3685 3686 return nullptr; 3687 } 3688 3689 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3690 const SimplifyQuery &Q) { 3691 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3692 } 3693 3694 /// Given operands for an FCmpInst, see if we can fold the result. 3695 /// If not, this returns null. 3696 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3697 FastMathFlags FMF, const SimplifyQuery &Q, 3698 unsigned MaxRecurse) { 3699 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3700 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3701 3702 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3703 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3704 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3705 3706 // If we have a constant, make sure it is on the RHS. 3707 std::swap(LHS, RHS); 3708 Pred = CmpInst::getSwappedPredicate(Pred); 3709 } 3710 3711 // Fold trivial predicates. 3712 Type *RetTy = GetCompareTy(LHS); 3713 if (Pred == FCmpInst::FCMP_FALSE) 3714 return getFalse(RetTy); 3715 if (Pred == FCmpInst::FCMP_TRUE) 3716 return getTrue(RetTy); 3717 3718 // Fold (un)ordered comparison if we can determine there are no NaNs. 3719 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3720 if (FMF.noNaNs() || 3721 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3722 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3723 3724 // NaN is unordered; NaN is not ordered. 3725 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3726 "Comparison must be either ordered or unordered"); 3727 if (match(RHS, m_NaN())) 3728 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3729 3730 // fcmp pred x, undef and fcmp pred undef, x 3731 // fold to true if unordered, false if ordered 3732 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 3733 // Choosing NaN for the undef will always make unordered comparison succeed 3734 // and ordered comparison fail. 3735 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3736 } 3737 3738 // fcmp x,x -> true/false. Not all compares are foldable. 3739 if (LHS == RHS) { 3740 if (CmpInst::isTrueWhenEqual(Pred)) 3741 return getTrue(RetTy); 3742 if (CmpInst::isFalseWhenEqual(Pred)) 3743 return getFalse(RetTy); 3744 } 3745 3746 // Handle fcmp with constant RHS. 3747 // TODO: Use match with a specific FP value, so these work with vectors with 3748 // undef lanes. 3749 const APFloat *C; 3750 if (match(RHS, m_APFloat(C))) { 3751 // Check whether the constant is an infinity. 3752 if (C->isInfinity()) { 3753 if (C->isNegative()) { 3754 switch (Pred) { 3755 case FCmpInst::FCMP_OLT: 3756 // No value is ordered and less than negative infinity. 3757 return getFalse(RetTy); 3758 case FCmpInst::FCMP_UGE: 3759 // All values are unordered with or at least negative infinity. 3760 return getTrue(RetTy); 3761 default: 3762 break; 3763 } 3764 } else { 3765 switch (Pred) { 3766 case FCmpInst::FCMP_OGT: 3767 // No value is ordered and greater than infinity. 3768 return getFalse(RetTy); 3769 case FCmpInst::FCMP_ULE: 3770 // All values are unordered with and at most infinity. 3771 return getTrue(RetTy); 3772 default: 3773 break; 3774 } 3775 } 3776 3777 // LHS == Inf 3778 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3779 return getFalse(RetTy); 3780 // LHS != Inf 3781 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3782 return getTrue(RetTy); 3783 // LHS == Inf || LHS == NaN 3784 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3785 isKnownNeverNaN(LHS, Q.TLI)) 3786 return getFalse(RetTy); 3787 // LHS != Inf && LHS != NaN 3788 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3789 isKnownNeverNaN(LHS, Q.TLI)) 3790 return getTrue(RetTy); 3791 } 3792 if (C->isNegative() && !C->isNegZero()) { 3793 assert(!C->isNaN() && "Unexpected NaN constant!"); 3794 // TODO: We can catch more cases by using a range check rather than 3795 // relying on CannotBeOrderedLessThanZero. 3796 switch (Pred) { 3797 case FCmpInst::FCMP_UGE: 3798 case FCmpInst::FCMP_UGT: 3799 case FCmpInst::FCMP_UNE: 3800 // (X >= 0) implies (X > C) when (C < 0) 3801 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3802 return getTrue(RetTy); 3803 break; 3804 case FCmpInst::FCMP_OEQ: 3805 case FCmpInst::FCMP_OLE: 3806 case FCmpInst::FCMP_OLT: 3807 // (X >= 0) implies !(X < C) when (C < 0) 3808 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3809 return getFalse(RetTy); 3810 break; 3811 default: 3812 break; 3813 } 3814 } 3815 3816 // Check comparison of [minnum/maxnum with constant] with other constant. 3817 const APFloat *C2; 3818 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3819 *C2 < *C) || 3820 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3821 *C2 > *C)) { 3822 bool IsMaxNum = 3823 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3824 // The ordered relationship and minnum/maxnum guarantee that we do not 3825 // have NaN constants, so ordered/unordered preds are handled the same. 3826 switch (Pred) { 3827 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3828 // minnum(X, LesserC) == C --> false 3829 // maxnum(X, GreaterC) == C --> false 3830 return getFalse(RetTy); 3831 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3832 // minnum(X, LesserC) != C --> true 3833 // maxnum(X, GreaterC) != C --> true 3834 return getTrue(RetTy); 3835 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3836 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3837 // minnum(X, LesserC) >= C --> false 3838 // minnum(X, LesserC) > C --> false 3839 // maxnum(X, GreaterC) >= C --> true 3840 // maxnum(X, GreaterC) > C --> true 3841 return ConstantInt::get(RetTy, IsMaxNum); 3842 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3843 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3844 // minnum(X, LesserC) <= C --> true 3845 // minnum(X, LesserC) < C --> true 3846 // maxnum(X, GreaterC) <= C --> false 3847 // maxnum(X, GreaterC) < C --> false 3848 return ConstantInt::get(RetTy, !IsMaxNum); 3849 default: 3850 // TRUE/FALSE/ORD/UNO should be handled before this. 3851 llvm_unreachable("Unexpected fcmp predicate"); 3852 } 3853 } 3854 } 3855 3856 if (match(RHS, m_AnyZeroFP())) { 3857 switch (Pred) { 3858 case FCmpInst::FCMP_OGE: 3859 case FCmpInst::FCMP_ULT: 3860 // Positive or zero X >= 0.0 --> true 3861 // Positive or zero X < 0.0 --> false 3862 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3863 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3864 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3865 break; 3866 case FCmpInst::FCMP_UGE: 3867 case FCmpInst::FCMP_OLT: 3868 // Positive or zero or nan X >= 0.0 --> true 3869 // Positive or zero or nan X < 0.0 --> false 3870 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3871 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3872 break; 3873 default: 3874 break; 3875 } 3876 } 3877 3878 // If the comparison is with the result of a select instruction, check whether 3879 // comparing with either branch of the select always yields the same value. 3880 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3881 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3882 return V; 3883 3884 // If the comparison is with the result of a phi instruction, check whether 3885 // doing the compare with each incoming phi value yields a common result. 3886 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3887 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3888 return V; 3889 3890 return nullptr; 3891 } 3892 3893 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3894 FastMathFlags FMF, const SimplifyQuery &Q) { 3895 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3896 } 3897 3898 static Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3899 const SimplifyQuery &Q, 3900 bool AllowRefinement, 3901 unsigned MaxRecurse) { 3902 // Trivial replacement. 3903 if (V == Op) 3904 return RepOp; 3905 3906 // We cannot replace a constant, and shouldn't even try. 3907 if (isa<Constant>(Op)) 3908 return nullptr; 3909 3910 auto *I = dyn_cast<Instruction>(V); 3911 if (!I) 3912 return nullptr; 3913 3914 // Consider: 3915 // %cmp = icmp eq i32 %x, 2147483647 3916 // %add = add nsw i32 %x, 1 3917 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3918 // 3919 // We can't replace %sel with %add unless we strip away the flags (which will 3920 // be done in InstCombine). 3921 // TODO: This is unsound, because it only catches some forms of refinement. 3922 if (!AllowRefinement && canCreatePoison(cast<Operator>(I))) 3923 return nullptr; 3924 3925 // The simplification queries below may return the original value. Consider: 3926 // %div = udiv i32 %arg, %arg2 3927 // %mul = mul nsw i32 %div, %arg2 3928 // %cmp = icmp eq i32 %mul, %arg 3929 // %sel = select i1 %cmp, i32 %div, i32 undef 3930 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 3931 // simplifies back to %arg. This can only happen because %mul does not 3932 // dominate %div. To ensure a consistent return value contract, we make sure 3933 // that this case returns nullptr as well. 3934 auto PreventSelfSimplify = [V](Value *Simplified) { 3935 return Simplified != V ? Simplified : nullptr; 3936 }; 3937 3938 // If this is a binary operator, try to simplify it with the replaced op. 3939 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3940 if (MaxRecurse) { 3941 if (B->getOperand(0) == Op) 3942 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), RepOp, 3943 B->getOperand(1), Q, 3944 MaxRecurse - 1)); 3945 if (B->getOperand(1) == Op) 3946 return PreventSelfSimplify(SimplifyBinOp(B->getOpcode(), 3947 B->getOperand(0), RepOp, Q, 3948 MaxRecurse - 1)); 3949 } 3950 } 3951 3952 // Same for CmpInsts. 3953 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3954 if (MaxRecurse) { 3955 if (C->getOperand(0) == Op) 3956 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), RepOp, 3957 C->getOperand(1), Q, 3958 MaxRecurse - 1)); 3959 if (C->getOperand(1) == Op) 3960 return PreventSelfSimplify(SimplifyCmpInst(C->getPredicate(), 3961 C->getOperand(0), RepOp, Q, 3962 MaxRecurse - 1)); 3963 } 3964 } 3965 3966 // Same for GEPs. 3967 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3968 if (MaxRecurse) { 3969 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3970 transform(GEP->operands(), NewOps.begin(), 3971 [&](Value *V) { return V == Op ? RepOp : V; }); 3972 return PreventSelfSimplify(SimplifyGEPInst(GEP->getSourceElementType(), 3973 NewOps, Q, MaxRecurse - 1)); 3974 } 3975 } 3976 3977 // TODO: We could hand off more cases to instsimplify here. 3978 3979 // If all operands are constant after substituting Op for RepOp then we can 3980 // constant fold the instruction. 3981 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3982 // Build a list of all constant operands. 3983 SmallVector<Constant *, 8> ConstOps; 3984 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3985 if (I->getOperand(i) == Op) 3986 ConstOps.push_back(CRepOp); 3987 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3988 ConstOps.push_back(COp); 3989 else 3990 break; 3991 } 3992 3993 // All operands were constants, fold it. 3994 if (ConstOps.size() == I->getNumOperands()) { 3995 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3996 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3997 ConstOps[1], Q.DL, Q.TLI); 3998 3999 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 4000 if (!LI->isVolatile()) 4001 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 4002 4003 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4004 } 4005 } 4006 4007 return nullptr; 4008 } 4009 4010 Value *llvm::SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4011 const SimplifyQuery &Q, 4012 bool AllowRefinement) { 4013 return ::SimplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, 4014 RecursionLimit); 4015 } 4016 4017 /// Try to simplify a select instruction when its condition operand is an 4018 /// integer comparison where one operand of the compare is a constant. 4019 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4020 const APInt *Y, bool TrueWhenUnset) { 4021 const APInt *C; 4022 4023 // (X & Y) == 0 ? X & ~Y : X --> X 4024 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4025 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4026 *Y == ~*C) 4027 return TrueWhenUnset ? FalseVal : TrueVal; 4028 4029 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4030 // (X & Y) != 0 ? X : X & ~Y --> X 4031 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4032 *Y == ~*C) 4033 return TrueWhenUnset ? FalseVal : TrueVal; 4034 4035 if (Y->isPowerOf2()) { 4036 // (X & Y) == 0 ? X | Y : X --> X | Y 4037 // (X & Y) != 0 ? X | Y : X --> X 4038 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4039 *Y == *C) 4040 return TrueWhenUnset ? TrueVal : FalseVal; 4041 4042 // (X & Y) == 0 ? X : X | Y --> X 4043 // (X & Y) != 0 ? X : X | Y --> X | Y 4044 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4045 *Y == *C) 4046 return TrueWhenUnset ? TrueVal : FalseVal; 4047 } 4048 4049 return nullptr; 4050 } 4051 4052 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4053 /// eq/ne. 4054 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4055 ICmpInst::Predicate Pred, 4056 Value *TrueVal, Value *FalseVal) { 4057 Value *X; 4058 APInt Mask; 4059 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4060 return nullptr; 4061 4062 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4063 Pred == ICmpInst::ICMP_EQ); 4064 } 4065 4066 /// Try to simplify a select instruction when its condition operand is an 4067 /// integer comparison. 4068 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4069 Value *FalseVal, const SimplifyQuery &Q, 4070 unsigned MaxRecurse) { 4071 ICmpInst::Predicate Pred; 4072 Value *CmpLHS, *CmpRHS; 4073 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4074 return nullptr; 4075 4076 // Canonicalize ne to eq predicate. 4077 if (Pred == ICmpInst::ICMP_NE) { 4078 Pred = ICmpInst::ICMP_EQ; 4079 std::swap(TrueVal, FalseVal); 4080 } 4081 4082 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4083 Value *X; 4084 const APInt *Y; 4085 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4086 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4087 /*TrueWhenUnset=*/true)) 4088 return V; 4089 4090 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4091 Value *ShAmt; 4092 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4093 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4094 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4095 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4096 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4097 return X; 4098 4099 // Test for a zero-shift-guard-op around rotates. These are used to 4100 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4101 // intrinsics do not have that problem. 4102 // We do not allow this transform for the general funnel shift case because 4103 // that would not preserve the poison safety of the original code. 4104 auto isRotate = 4105 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4106 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4107 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4108 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4109 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4110 Pred == ICmpInst::ICMP_EQ) 4111 return FalseVal; 4112 4113 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4114 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4115 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4116 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4117 return FalseVal; 4118 if (match(TrueVal, 4119 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4120 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4121 return FalseVal; 4122 } 4123 4124 // Check for other compares that behave like bit test. 4125 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 4126 TrueVal, FalseVal)) 4127 return V; 4128 4129 // If we have an equality comparison, then we know the value in one of the 4130 // arms of the select. See if substituting this value into the arm and 4131 // simplifying the result yields the same value as the other arm. 4132 if (Pred == ICmpInst::ICMP_EQ) { 4133 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4134 /* AllowRefinement */ false, MaxRecurse) == 4135 TrueVal || 4136 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, 4137 /* AllowRefinement */ false, MaxRecurse) == 4138 TrueVal) 4139 return FalseVal; 4140 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4141 /* AllowRefinement */ true, MaxRecurse) == 4142 FalseVal || 4143 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, 4144 /* AllowRefinement */ true, MaxRecurse) == 4145 FalseVal) 4146 return FalseVal; 4147 } 4148 4149 return nullptr; 4150 } 4151 4152 /// Try to simplify a select instruction when its condition operand is a 4153 /// floating-point comparison. 4154 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4155 const SimplifyQuery &Q) { 4156 FCmpInst::Predicate Pred; 4157 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4158 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4159 return nullptr; 4160 4161 // This transform is safe if we do not have (do not care about) -0.0 or if 4162 // at least one operand is known to not be -0.0. Otherwise, the select can 4163 // change the sign of a zero operand. 4164 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4165 Q.CxtI->hasNoSignedZeros(); 4166 const APFloat *C; 4167 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4168 (match(F, m_APFloat(C)) && C->isNonZero())) { 4169 // (T == F) ? T : F --> F 4170 // (F == T) ? T : F --> F 4171 if (Pred == FCmpInst::FCMP_OEQ) 4172 return F; 4173 4174 // (T != F) ? T : F --> T 4175 // (F != T) ? T : F --> T 4176 if (Pred == FCmpInst::FCMP_UNE) 4177 return T; 4178 } 4179 4180 return nullptr; 4181 } 4182 4183 /// Given operands for a SelectInst, see if we can fold the result. 4184 /// If not, this returns null. 4185 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4186 const SimplifyQuery &Q, unsigned MaxRecurse) { 4187 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4188 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4189 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4190 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4191 4192 // select undef, X, Y -> X or Y 4193 if (Q.isUndefValue(CondC)) 4194 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4195 4196 // TODO: Vector constants with undef elements don't simplify. 4197 4198 // select true, X, Y -> X 4199 if (CondC->isAllOnesValue()) 4200 return TrueVal; 4201 // select false, X, Y -> Y 4202 if (CondC->isNullValue()) 4203 return FalseVal; 4204 } 4205 4206 // select i1 Cond, i1 true, i1 false --> i1 Cond 4207 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4208 "Select must have bool or bool vector condition"); 4209 assert(TrueVal->getType() == FalseVal->getType() && 4210 "Select must have same types for true/false ops"); 4211 if (Cond->getType() == TrueVal->getType() && 4212 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4213 return Cond; 4214 4215 // select ?, X, X -> X 4216 if (TrueVal == FalseVal) 4217 return TrueVal; 4218 4219 // If the true or false value is undef, we can fold to the other value as 4220 // long as the other value isn't poison. 4221 // select ?, undef, X -> X 4222 if (Q.isUndefValue(TrueVal) && 4223 isGuaranteedNotToBeUndefOrPoison(FalseVal, Q.AC, Q.CxtI, Q.DT)) 4224 return FalseVal; 4225 // select ?, X, undef -> X 4226 if (Q.isUndefValue(FalseVal) && 4227 isGuaranteedNotToBeUndefOrPoison(TrueVal, Q.AC, Q.CxtI, Q.DT)) 4228 return TrueVal; 4229 4230 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4231 Constant *TrueC, *FalseC; 4232 if (isa<FixedVectorType>(TrueVal->getType()) && 4233 match(TrueVal, m_Constant(TrueC)) && 4234 match(FalseVal, m_Constant(FalseC))) { 4235 unsigned NumElts = 4236 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4237 SmallVector<Constant *, 16> NewC; 4238 for (unsigned i = 0; i != NumElts; ++i) { 4239 // Bail out on incomplete vector constants. 4240 Constant *TEltC = TrueC->getAggregateElement(i); 4241 Constant *FEltC = FalseC->getAggregateElement(i); 4242 if (!TEltC || !FEltC) 4243 break; 4244 4245 // If the elements match (undef or not), that value is the result. If only 4246 // one element is undef, choose the defined element as the safe result. 4247 if (TEltC == FEltC) 4248 NewC.push_back(TEltC); 4249 else if (Q.isUndefValue(TEltC) && 4250 isGuaranteedNotToBeUndefOrPoison(FEltC)) 4251 NewC.push_back(FEltC); 4252 else if (Q.isUndefValue(FEltC) && 4253 isGuaranteedNotToBeUndefOrPoison(TEltC)) 4254 NewC.push_back(TEltC); 4255 else 4256 break; 4257 } 4258 if (NewC.size() == NumElts) 4259 return ConstantVector::get(NewC); 4260 } 4261 4262 if (Value *V = 4263 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4264 return V; 4265 4266 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4267 return V; 4268 4269 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4270 return V; 4271 4272 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4273 if (Imp) 4274 return *Imp ? TrueVal : FalseVal; 4275 4276 return nullptr; 4277 } 4278 4279 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4280 const SimplifyQuery &Q) { 4281 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4282 } 4283 4284 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4285 /// If not, this returns null. 4286 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4287 const SimplifyQuery &Q, unsigned) { 4288 // The type of the GEP pointer operand. 4289 unsigned AS = 4290 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4291 4292 // getelementptr P -> P. 4293 if (Ops.size() == 1) 4294 return Ops[0]; 4295 4296 // Compute the (pointer) type returned by the GEP instruction. 4297 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4298 Type *GEPTy = PointerType::get(LastType, AS); 4299 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4300 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4301 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4302 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4303 4304 // getelementptr poison, idx -> poison 4305 // getelementptr baseptr, poison -> poison 4306 if (any_of(Ops, [](const auto *V) { return isa<PoisonValue>(V); })) 4307 return PoisonValue::get(GEPTy); 4308 4309 if (Q.isUndefValue(Ops[0])) 4310 return UndefValue::get(GEPTy); 4311 4312 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4313 4314 if (Ops.size() == 2) { 4315 // getelementptr P, 0 -> P. 4316 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4317 return Ops[0]; 4318 4319 Type *Ty = SrcTy; 4320 if (!IsScalableVec && Ty->isSized()) { 4321 Value *P; 4322 uint64_t C; 4323 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4324 // getelementptr P, N -> P if P points to a type of zero size. 4325 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4326 return Ops[0]; 4327 4328 // The following transforms are only safe if the ptrtoint cast 4329 // doesn't truncate the pointers. 4330 if (Ops[1]->getType()->getScalarSizeInBits() == 4331 Q.DL.getPointerSizeInBits(AS)) { 4332 auto PtrToInt = [GEPTy](Value *P) -> Value * { 4333 Value *Temp; 4334 if (match(P, m_PtrToInt(m_Value(Temp)))) 4335 if (Temp->getType() == GEPTy) 4336 return Temp; 4337 return nullptr; 4338 }; 4339 4340 // FIXME: The following transforms are only legal if P and V have the 4341 // same provenance (PR44403). Check whether getUnderlyingObject() is 4342 // the same? 4343 4344 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4345 if (TyAllocSize == 1 && 4346 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4347 if (Value *R = PtrToInt(P)) 4348 return R; 4349 4350 // getelementptr V, (ashr (sub P, V), C) -> Q 4351 // if P points to a type of size 1 << C. 4352 if (match(Ops[1], 4353 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4354 m_ConstantInt(C))) && 4355 TyAllocSize == 1ULL << C) 4356 if (Value *R = PtrToInt(P)) 4357 return R; 4358 4359 // getelementptr V, (sdiv (sub P, V), C) -> Q 4360 // if P points to a type of size C. 4361 if (match(Ops[1], 4362 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4363 m_SpecificInt(TyAllocSize)))) 4364 if (Value *R = PtrToInt(P)) 4365 return R; 4366 } 4367 } 4368 } 4369 4370 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4371 all_of(Ops.slice(1).drop_back(1), 4372 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4373 unsigned IdxWidth = 4374 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4375 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4376 APInt BasePtrOffset(IdxWidth, 0); 4377 Value *StrippedBasePtr = 4378 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4379 BasePtrOffset); 4380 4381 // Avoid creating inttoptr of zero here: While LLVMs treatment of 4382 // inttoptr is generally conservative, this particular case is folded to 4383 // a null pointer, which will have incorrect provenance. 4384 4385 // gep (gep V, C), (sub 0, V) -> C 4386 if (match(Ops.back(), 4387 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr)))) && 4388 !BasePtrOffset.isNullValue()) { 4389 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4390 return ConstantExpr::getIntToPtr(CI, GEPTy); 4391 } 4392 // gep (gep V, C), (xor V, -1) -> C-1 4393 if (match(Ops.back(), 4394 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 4395 !BasePtrOffset.isOneValue()) { 4396 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4397 return ConstantExpr::getIntToPtr(CI, GEPTy); 4398 } 4399 } 4400 } 4401 4402 // Check to see if this is constant foldable. 4403 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4404 return nullptr; 4405 4406 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4407 Ops.slice(1)); 4408 return ConstantFoldConstant(CE, Q.DL); 4409 } 4410 4411 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4412 const SimplifyQuery &Q) { 4413 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4414 } 4415 4416 /// Given operands for an InsertValueInst, see if we can fold the result. 4417 /// If not, this returns null. 4418 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4419 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4420 unsigned) { 4421 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4422 if (Constant *CVal = dyn_cast<Constant>(Val)) 4423 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4424 4425 // insertvalue x, undef, n -> x 4426 if (Q.isUndefValue(Val)) 4427 return Agg; 4428 4429 // insertvalue x, (extractvalue y, n), n 4430 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4431 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4432 EV->getIndices() == Idxs) { 4433 // insertvalue undef, (extractvalue y, n), n -> y 4434 if (Q.isUndefValue(Agg)) 4435 return EV->getAggregateOperand(); 4436 4437 // insertvalue y, (extractvalue y, n), n -> y 4438 if (Agg == EV->getAggregateOperand()) 4439 return Agg; 4440 } 4441 4442 return nullptr; 4443 } 4444 4445 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4446 ArrayRef<unsigned> Idxs, 4447 const SimplifyQuery &Q) { 4448 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4449 } 4450 4451 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4452 const SimplifyQuery &Q) { 4453 // Try to constant fold. 4454 auto *VecC = dyn_cast<Constant>(Vec); 4455 auto *ValC = dyn_cast<Constant>(Val); 4456 auto *IdxC = dyn_cast<Constant>(Idx); 4457 if (VecC && ValC && IdxC) 4458 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 4459 4460 // For fixed-length vector, fold into poison if index is out of bounds. 4461 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4462 if (isa<FixedVectorType>(Vec->getType()) && 4463 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4464 return PoisonValue::get(Vec->getType()); 4465 } 4466 4467 // If index is undef, it might be out of bounds (see above case) 4468 if (Q.isUndefValue(Idx)) 4469 return PoisonValue::get(Vec->getType()); 4470 4471 // If the scalar is poison, or it is undef and there is no risk of 4472 // propagating poison from the vector value, simplify to the vector value. 4473 if (isa<PoisonValue>(Val) || 4474 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 4475 return Vec; 4476 4477 // If we are extracting a value from a vector, then inserting it into the same 4478 // place, that's the input vector: 4479 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4480 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4481 return Vec; 4482 4483 return nullptr; 4484 } 4485 4486 /// Given operands for an ExtractValueInst, see if we can fold the result. 4487 /// If not, this returns null. 4488 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4489 const SimplifyQuery &, unsigned) { 4490 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4491 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4492 4493 // extractvalue x, (insertvalue y, elt, n), n -> elt 4494 unsigned NumIdxs = Idxs.size(); 4495 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4496 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4497 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4498 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4499 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4500 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4501 Idxs.slice(0, NumCommonIdxs)) { 4502 if (NumIdxs == NumInsertValueIdxs) 4503 return IVI->getInsertedValueOperand(); 4504 break; 4505 } 4506 } 4507 4508 return nullptr; 4509 } 4510 4511 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4512 const SimplifyQuery &Q) { 4513 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4514 } 4515 4516 /// Given operands for an ExtractElementInst, see if we can fold the result. 4517 /// If not, this returns null. 4518 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, 4519 const SimplifyQuery &Q, unsigned) { 4520 auto *VecVTy = cast<VectorType>(Vec->getType()); 4521 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4522 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4523 return ConstantExpr::getExtractElement(CVec, CIdx); 4524 4525 // The index is not relevant if our vector is a splat. 4526 if (auto *Splat = CVec->getSplatValue()) 4527 return Splat; 4528 4529 if (Q.isUndefValue(Vec)) 4530 return UndefValue::get(VecVTy->getElementType()); 4531 } 4532 4533 // If extracting a specified index from the vector, see if we can recursively 4534 // find a previously computed scalar that was inserted into the vector. 4535 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4536 // For fixed-length vector, fold into undef if index is out of bounds. 4537 if (isa<FixedVectorType>(VecVTy) && 4538 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4539 return PoisonValue::get(VecVTy->getElementType()); 4540 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4541 return Elt; 4542 } 4543 4544 // An undef extract index can be arbitrarily chosen to be an out-of-range 4545 // index value, which would result in the instruction being poison. 4546 if (Q.isUndefValue(Idx)) 4547 return PoisonValue::get(VecVTy->getElementType()); 4548 4549 return nullptr; 4550 } 4551 4552 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4553 const SimplifyQuery &Q) { 4554 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4555 } 4556 4557 /// See if we can fold the given phi. If not, returns null. 4558 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4559 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 4560 // here, because the PHI we may succeed simplifying to was not 4561 // def-reachable from the original PHI! 4562 4563 // If all of the PHI's incoming values are the same then replace the PHI node 4564 // with the common value. 4565 Value *CommonValue = nullptr; 4566 bool HasUndefInput = false; 4567 for (Value *Incoming : PN->incoming_values()) { 4568 // If the incoming value is the phi node itself, it can safely be skipped. 4569 if (Incoming == PN) continue; 4570 if (Q.isUndefValue(Incoming)) { 4571 // Remember that we saw an undef value, but otherwise ignore them. 4572 HasUndefInput = true; 4573 continue; 4574 } 4575 if (CommonValue && Incoming != CommonValue) 4576 return nullptr; // Not the same, bail out. 4577 CommonValue = Incoming; 4578 } 4579 4580 // If CommonValue is null then all of the incoming values were either undef or 4581 // equal to the phi node itself. 4582 if (!CommonValue) 4583 return UndefValue::get(PN->getType()); 4584 4585 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4586 // instruction, we cannot return X as the result of the PHI node unless it 4587 // dominates the PHI block. 4588 if (HasUndefInput) 4589 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4590 4591 return CommonValue; 4592 } 4593 4594 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4595 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4596 if (auto *C = dyn_cast<Constant>(Op)) 4597 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4598 4599 if (auto *CI = dyn_cast<CastInst>(Op)) { 4600 auto *Src = CI->getOperand(0); 4601 Type *SrcTy = Src->getType(); 4602 Type *MidTy = CI->getType(); 4603 Type *DstTy = Ty; 4604 if (Src->getType() == Ty) { 4605 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4606 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4607 Type *SrcIntPtrTy = 4608 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4609 Type *MidIntPtrTy = 4610 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4611 Type *DstIntPtrTy = 4612 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4613 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4614 SrcIntPtrTy, MidIntPtrTy, 4615 DstIntPtrTy) == Instruction::BitCast) 4616 return Src; 4617 } 4618 } 4619 4620 // bitcast x -> x 4621 if (CastOpc == Instruction::BitCast) 4622 if (Op->getType() == Ty) 4623 return Op; 4624 4625 return nullptr; 4626 } 4627 4628 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4629 const SimplifyQuery &Q) { 4630 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4631 } 4632 4633 /// For the given destination element of a shuffle, peek through shuffles to 4634 /// match a root vector source operand that contains that element in the same 4635 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4636 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4637 int MaskVal, Value *RootVec, 4638 unsigned MaxRecurse) { 4639 if (!MaxRecurse--) 4640 return nullptr; 4641 4642 // Bail out if any mask value is undefined. That kind of shuffle may be 4643 // simplified further based on demanded bits or other folds. 4644 if (MaskVal == -1) 4645 return nullptr; 4646 4647 // The mask value chooses which source operand we need to look at next. 4648 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4649 int RootElt = MaskVal; 4650 Value *SourceOp = Op0; 4651 if (MaskVal >= InVecNumElts) { 4652 RootElt = MaskVal - InVecNumElts; 4653 SourceOp = Op1; 4654 } 4655 4656 // If the source operand is a shuffle itself, look through it to find the 4657 // matching root vector. 4658 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4659 return foldIdentityShuffles( 4660 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4661 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4662 } 4663 4664 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4665 // size? 4666 4667 // The source operand is not a shuffle. Initialize the root vector value for 4668 // this shuffle if that has not been done yet. 4669 if (!RootVec) 4670 RootVec = SourceOp; 4671 4672 // Give up as soon as a source operand does not match the existing root value. 4673 if (RootVec != SourceOp) 4674 return nullptr; 4675 4676 // The element must be coming from the same lane in the source vector 4677 // (although it may have crossed lanes in intermediate shuffles). 4678 if (RootElt != DestElt) 4679 return nullptr; 4680 4681 return RootVec; 4682 } 4683 4684 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4685 ArrayRef<int> Mask, Type *RetTy, 4686 const SimplifyQuery &Q, 4687 unsigned MaxRecurse) { 4688 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4689 return UndefValue::get(RetTy); 4690 4691 auto *InVecTy = cast<VectorType>(Op0->getType()); 4692 unsigned MaskNumElts = Mask.size(); 4693 ElementCount InVecEltCount = InVecTy->getElementCount(); 4694 4695 bool Scalable = InVecEltCount.isScalable(); 4696 4697 SmallVector<int, 32> Indices; 4698 Indices.assign(Mask.begin(), Mask.end()); 4699 4700 // Canonicalization: If mask does not select elements from an input vector, 4701 // replace that input vector with poison. 4702 if (!Scalable) { 4703 bool MaskSelects0 = false, MaskSelects1 = false; 4704 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 4705 for (unsigned i = 0; i != MaskNumElts; ++i) { 4706 if (Indices[i] == -1) 4707 continue; 4708 if ((unsigned)Indices[i] < InVecNumElts) 4709 MaskSelects0 = true; 4710 else 4711 MaskSelects1 = true; 4712 } 4713 if (!MaskSelects0) 4714 Op0 = PoisonValue::get(InVecTy); 4715 if (!MaskSelects1) 4716 Op1 = PoisonValue::get(InVecTy); 4717 } 4718 4719 auto *Op0Const = dyn_cast<Constant>(Op0); 4720 auto *Op1Const = dyn_cast<Constant>(Op1); 4721 4722 // If all operands are constant, constant fold the shuffle. This 4723 // transformation depends on the value of the mask which is not known at 4724 // compile time for scalable vectors 4725 if (Op0Const && Op1Const) 4726 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 4727 4728 // Canonicalization: if only one input vector is constant, it shall be the 4729 // second one. This transformation depends on the value of the mask which 4730 // is not known at compile time for scalable vectors 4731 if (!Scalable && Op0Const && !Op1Const) { 4732 std::swap(Op0, Op1); 4733 ShuffleVectorInst::commuteShuffleMask(Indices, 4734 InVecEltCount.getKnownMinValue()); 4735 } 4736 4737 // A splat of an inserted scalar constant becomes a vector constant: 4738 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4739 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4740 // original mask constant. 4741 // NOTE: This transformation depends on the value of the mask which is not 4742 // known at compile time for scalable vectors 4743 Constant *C; 4744 ConstantInt *IndexC; 4745 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4746 m_ConstantInt(IndexC)))) { 4747 // Match a splat shuffle mask of the insert index allowing undef elements. 4748 int InsertIndex = IndexC->getZExtValue(); 4749 if (all_of(Indices, [InsertIndex](int MaskElt) { 4750 return MaskElt == InsertIndex || MaskElt == -1; 4751 })) { 4752 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4753 4754 // Shuffle mask undefs become undefined constant result elements. 4755 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4756 for (unsigned i = 0; i != MaskNumElts; ++i) 4757 if (Indices[i] == -1) 4758 VecC[i] = UndefValue::get(C->getType()); 4759 return ConstantVector::get(VecC); 4760 } 4761 } 4762 4763 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4764 // value type is same as the input vectors' type. 4765 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4766 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 4767 is_splat(OpShuf->getShuffleMask())) 4768 return Op0; 4769 4770 // All remaining transformation depend on the value of the mask, which is 4771 // not known at compile time for scalable vectors. 4772 if (Scalable) 4773 return nullptr; 4774 4775 // Don't fold a shuffle with undef mask elements. This may get folded in a 4776 // better way using demanded bits or other analysis. 4777 // TODO: Should we allow this? 4778 if (is_contained(Indices, -1)) 4779 return nullptr; 4780 4781 // Check if every element of this shuffle can be mapped back to the 4782 // corresponding element of a single root vector. If so, we don't need this 4783 // shuffle. This handles simple identity shuffles as well as chains of 4784 // shuffles that may widen/narrow and/or move elements across lanes and back. 4785 Value *RootVec = nullptr; 4786 for (unsigned i = 0; i != MaskNumElts; ++i) { 4787 // Note that recursion is limited for each vector element, so if any element 4788 // exceeds the limit, this will fail to simplify. 4789 RootVec = 4790 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4791 4792 // We can't replace a widening/narrowing shuffle with one of its operands. 4793 if (!RootVec || RootVec->getType() != RetTy) 4794 return nullptr; 4795 } 4796 return RootVec; 4797 } 4798 4799 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4800 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4801 ArrayRef<int> Mask, Type *RetTy, 4802 const SimplifyQuery &Q) { 4803 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4804 } 4805 4806 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4807 Value *&Op, const SimplifyQuery &Q) { 4808 if (auto *C = dyn_cast<Constant>(Op)) 4809 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4810 return nullptr; 4811 } 4812 4813 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4814 /// returns null. 4815 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4816 const SimplifyQuery &Q, unsigned MaxRecurse) { 4817 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4818 return C; 4819 4820 Value *X; 4821 // fneg (fneg X) ==> X 4822 if (match(Op, m_FNeg(m_Value(X)))) 4823 return X; 4824 4825 return nullptr; 4826 } 4827 4828 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4829 const SimplifyQuery &Q) { 4830 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4831 } 4832 4833 static Constant *propagateNaN(Constant *In) { 4834 // If the input is a vector with undef elements, just return a default NaN. 4835 if (!In->isNaN()) 4836 return ConstantFP::getNaN(In->getType()); 4837 4838 // Propagate the existing NaN constant when possible. 4839 // TODO: Should we quiet a signaling NaN? 4840 return In; 4841 } 4842 4843 /// Perform folds that are common to any floating-point operation. This implies 4844 /// transforms based on undef/NaN because the operation itself makes no 4845 /// difference to the result. 4846 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4847 FastMathFlags FMF, 4848 const SimplifyQuery &Q) { 4849 for (Value *V : Ops) { 4850 bool IsNan = match(V, m_NaN()); 4851 bool IsInf = match(V, m_Inf()); 4852 bool IsUndef = Q.isUndefValue(V); 4853 4854 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4855 // (an undef operand can be chosen to be Nan/Inf), then the result of 4856 // this operation is poison. 4857 if (FMF.noNaNs() && (IsNan || IsUndef)) 4858 return PoisonValue::get(V->getType()); 4859 if (FMF.noInfs() && (IsInf || IsUndef)) 4860 return PoisonValue::get(V->getType()); 4861 4862 if (IsUndef || IsNan) 4863 return propagateNaN(cast<Constant>(V)); 4864 } 4865 return nullptr; 4866 } 4867 4868 /// Given operands for an FAdd, see if we can fold the result. If not, this 4869 /// returns null. 4870 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4871 const SimplifyQuery &Q, unsigned MaxRecurse) { 4872 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4873 return C; 4874 4875 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4876 return C; 4877 4878 // fadd X, -0 ==> X 4879 if (match(Op1, m_NegZeroFP())) 4880 return Op0; 4881 4882 // fadd X, 0 ==> X, when we know X is not -0 4883 if (match(Op1, m_PosZeroFP()) && 4884 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4885 return Op0; 4886 4887 // With nnan: -X + X --> 0.0 (and commuted variant) 4888 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4889 // Negative zeros are allowed because we always end up with positive zero: 4890 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4891 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4892 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4893 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4894 if (FMF.noNaNs()) { 4895 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4896 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4897 return ConstantFP::getNullValue(Op0->getType()); 4898 4899 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4900 match(Op1, m_FNeg(m_Specific(Op0)))) 4901 return ConstantFP::getNullValue(Op0->getType()); 4902 } 4903 4904 // (X - Y) + Y --> X 4905 // Y + (X - Y) --> X 4906 Value *X; 4907 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4908 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4909 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4910 return X; 4911 4912 return nullptr; 4913 } 4914 4915 /// Given operands for an FSub, see if we can fold the result. If not, this 4916 /// returns null. 4917 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4918 const SimplifyQuery &Q, unsigned MaxRecurse) { 4919 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4920 return C; 4921 4922 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4923 return C; 4924 4925 // fsub X, +0 ==> X 4926 if (match(Op1, m_PosZeroFP())) 4927 return Op0; 4928 4929 // fsub X, -0 ==> X, when we know X is not -0 4930 if (match(Op1, m_NegZeroFP()) && 4931 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4932 return Op0; 4933 4934 // fsub -0.0, (fsub -0.0, X) ==> X 4935 // fsub -0.0, (fneg X) ==> X 4936 Value *X; 4937 if (match(Op0, m_NegZeroFP()) && 4938 match(Op1, m_FNeg(m_Value(X)))) 4939 return X; 4940 4941 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4942 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4943 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4944 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4945 match(Op1, m_FNeg(m_Value(X))))) 4946 return X; 4947 4948 // fsub nnan x, x ==> 0.0 4949 if (FMF.noNaNs() && Op0 == Op1) 4950 return Constant::getNullValue(Op0->getType()); 4951 4952 // Y - (Y - X) --> X 4953 // (X + Y) - Y --> X 4954 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4955 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4956 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4957 return X; 4958 4959 return nullptr; 4960 } 4961 4962 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4963 const SimplifyQuery &Q, unsigned MaxRecurse) { 4964 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 4965 return C; 4966 4967 // fmul X, 1.0 ==> X 4968 if (match(Op1, m_FPOne())) 4969 return Op0; 4970 4971 // fmul 1.0, X ==> X 4972 if (match(Op0, m_FPOne())) 4973 return Op1; 4974 4975 // fmul nnan nsz X, 0 ==> 0 4976 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4977 return ConstantFP::getNullValue(Op0->getType()); 4978 4979 // fmul nnan nsz 0, X ==> 0 4980 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4981 return ConstantFP::getNullValue(Op1->getType()); 4982 4983 // sqrt(X) * sqrt(X) --> X, if we can: 4984 // 1. Remove the intermediate rounding (reassociate). 4985 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4986 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4987 Value *X; 4988 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4989 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4990 return X; 4991 4992 return nullptr; 4993 } 4994 4995 /// Given the operands for an FMul, see if we can fold the result 4996 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4997 const SimplifyQuery &Q, unsigned MaxRecurse) { 4998 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4999 return C; 5000 5001 // Now apply simplifications that do not require rounding. 5002 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 5003 } 5004 5005 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5006 const SimplifyQuery &Q) { 5007 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 5008 } 5009 5010 5011 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5012 const SimplifyQuery &Q) { 5013 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 5014 } 5015 5016 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5017 const SimplifyQuery &Q) { 5018 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 5019 } 5020 5021 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5022 const SimplifyQuery &Q) { 5023 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 5024 } 5025 5026 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5027 const SimplifyQuery &Q, unsigned) { 5028 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5029 return C; 5030 5031 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5032 return C; 5033 5034 // X / 1.0 -> X 5035 if (match(Op1, m_FPOne())) 5036 return Op0; 5037 5038 // 0 / X -> 0 5039 // Requires that NaNs are off (X could be zero) and signed zeroes are 5040 // ignored (X could be positive or negative, so the output sign is unknown). 5041 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5042 return ConstantFP::getNullValue(Op0->getType()); 5043 5044 if (FMF.noNaNs()) { 5045 // X / X -> 1.0 is legal when NaNs are ignored. 5046 // We can ignore infinities because INF/INF is NaN. 5047 if (Op0 == Op1) 5048 return ConstantFP::get(Op0->getType(), 1.0); 5049 5050 // (X * Y) / Y --> X if we can reassociate to the above form. 5051 Value *X; 5052 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5053 return X; 5054 5055 // -X / X -> -1.0 and 5056 // X / -X -> -1.0 are legal when NaNs are ignored. 5057 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5058 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5059 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5060 return ConstantFP::get(Op0->getType(), -1.0); 5061 } 5062 5063 return nullptr; 5064 } 5065 5066 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5067 const SimplifyQuery &Q) { 5068 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 5069 } 5070 5071 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5072 const SimplifyQuery &Q, unsigned) { 5073 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5074 return C; 5075 5076 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q)) 5077 return C; 5078 5079 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5080 // The constant match may include undef elements in a vector, so return a full 5081 // zero constant as the result. 5082 if (FMF.noNaNs()) { 5083 // +0 % X -> 0 5084 if (match(Op0, m_PosZeroFP())) 5085 return ConstantFP::getNullValue(Op0->getType()); 5086 // -0 % X -> -0 5087 if (match(Op0, m_NegZeroFP())) 5088 return ConstantFP::getNegativeZero(Op0->getType()); 5089 } 5090 5091 return nullptr; 5092 } 5093 5094 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5095 const SimplifyQuery &Q) { 5096 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 5097 } 5098 5099 //=== Helper functions for higher up the class hierarchy. 5100 5101 /// Given the operand for a UnaryOperator, see if we can fold the result. 5102 /// If not, this returns null. 5103 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5104 unsigned MaxRecurse) { 5105 switch (Opcode) { 5106 case Instruction::FNeg: 5107 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5108 default: 5109 llvm_unreachable("Unexpected opcode"); 5110 } 5111 } 5112 5113 /// Given the operand for a UnaryOperator, see if we can fold the result. 5114 /// If not, this returns null. 5115 /// Try to use FastMathFlags when folding the result. 5116 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5117 const FastMathFlags &FMF, 5118 const SimplifyQuery &Q, unsigned MaxRecurse) { 5119 switch (Opcode) { 5120 case Instruction::FNeg: 5121 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5122 default: 5123 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5124 } 5125 } 5126 5127 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5128 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5129 } 5130 5131 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5132 const SimplifyQuery &Q) { 5133 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5134 } 5135 5136 /// Given operands for a BinaryOperator, see if we can fold the result. 5137 /// If not, this returns null. 5138 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5139 const SimplifyQuery &Q, unsigned MaxRecurse) { 5140 switch (Opcode) { 5141 case Instruction::Add: 5142 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 5143 case Instruction::Sub: 5144 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 5145 case Instruction::Mul: 5146 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 5147 case Instruction::SDiv: 5148 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 5149 case Instruction::UDiv: 5150 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 5151 case Instruction::SRem: 5152 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 5153 case Instruction::URem: 5154 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 5155 case Instruction::Shl: 5156 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 5157 case Instruction::LShr: 5158 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 5159 case Instruction::AShr: 5160 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 5161 case Instruction::And: 5162 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 5163 case Instruction::Or: 5164 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 5165 case Instruction::Xor: 5166 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 5167 case Instruction::FAdd: 5168 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5169 case Instruction::FSub: 5170 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5171 case Instruction::FMul: 5172 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5173 case Instruction::FDiv: 5174 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5175 case Instruction::FRem: 5176 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5177 default: 5178 llvm_unreachable("Unexpected opcode"); 5179 } 5180 } 5181 5182 /// Given operands for a BinaryOperator, see if we can fold the result. 5183 /// If not, this returns null. 5184 /// Try to use FastMathFlags when folding the result. 5185 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5186 const FastMathFlags &FMF, const SimplifyQuery &Q, 5187 unsigned MaxRecurse) { 5188 switch (Opcode) { 5189 case Instruction::FAdd: 5190 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5191 case Instruction::FSub: 5192 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5193 case Instruction::FMul: 5194 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5195 case Instruction::FDiv: 5196 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5197 default: 5198 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5199 } 5200 } 5201 5202 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5203 const SimplifyQuery &Q) { 5204 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5205 } 5206 5207 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5208 FastMathFlags FMF, const SimplifyQuery &Q) { 5209 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5210 } 5211 5212 /// Given operands for a CmpInst, see if we can fold the result. 5213 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5214 const SimplifyQuery &Q, unsigned MaxRecurse) { 5215 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5216 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5217 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5218 } 5219 5220 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5221 const SimplifyQuery &Q) { 5222 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5223 } 5224 5225 static bool IsIdempotent(Intrinsic::ID ID) { 5226 switch (ID) { 5227 default: return false; 5228 5229 // Unary idempotent: f(f(x)) = f(x) 5230 case Intrinsic::fabs: 5231 case Intrinsic::floor: 5232 case Intrinsic::ceil: 5233 case Intrinsic::trunc: 5234 case Intrinsic::rint: 5235 case Intrinsic::nearbyint: 5236 case Intrinsic::round: 5237 case Intrinsic::roundeven: 5238 case Intrinsic::canonicalize: 5239 return true; 5240 } 5241 } 5242 5243 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5244 const DataLayout &DL) { 5245 GlobalValue *PtrSym; 5246 APInt PtrOffset; 5247 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5248 return nullptr; 5249 5250 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5251 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5252 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5253 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5254 5255 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5256 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5257 return nullptr; 5258 5259 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5260 if (OffsetInt % 4 != 0) 5261 return nullptr; 5262 5263 Constant *C = ConstantExpr::getGetElementPtr( 5264 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5265 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5266 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5267 if (!Loaded) 5268 return nullptr; 5269 5270 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5271 if (!LoadedCE) 5272 return nullptr; 5273 5274 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5275 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5276 if (!LoadedCE) 5277 return nullptr; 5278 } 5279 5280 if (LoadedCE->getOpcode() != Instruction::Sub) 5281 return nullptr; 5282 5283 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5284 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5285 return nullptr; 5286 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5287 5288 Constant *LoadedRHS = LoadedCE->getOperand(1); 5289 GlobalValue *LoadedRHSSym; 5290 APInt LoadedRHSOffset; 5291 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5292 DL) || 5293 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5294 return nullptr; 5295 5296 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5297 } 5298 5299 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5300 const SimplifyQuery &Q) { 5301 // Idempotent functions return the same result when called repeatedly. 5302 Intrinsic::ID IID = F->getIntrinsicID(); 5303 if (IsIdempotent(IID)) 5304 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5305 if (II->getIntrinsicID() == IID) 5306 return II; 5307 5308 Value *X; 5309 switch (IID) { 5310 case Intrinsic::fabs: 5311 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5312 break; 5313 case Intrinsic::bswap: 5314 // bswap(bswap(x)) -> x 5315 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5316 break; 5317 case Intrinsic::bitreverse: 5318 // bitreverse(bitreverse(x)) -> x 5319 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5320 break; 5321 case Intrinsic::ctpop: { 5322 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 5323 // ctpop(and X, 1) --> and X, 1 5324 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 5325 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 5326 Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5327 return Op0; 5328 break; 5329 } 5330 case Intrinsic::exp: 5331 // exp(log(x)) -> x 5332 if (Q.CxtI->hasAllowReassoc() && 5333 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5334 break; 5335 case Intrinsic::exp2: 5336 // exp2(log2(x)) -> x 5337 if (Q.CxtI->hasAllowReassoc() && 5338 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5339 break; 5340 case Intrinsic::log: 5341 // log(exp(x)) -> x 5342 if (Q.CxtI->hasAllowReassoc() && 5343 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5344 break; 5345 case Intrinsic::log2: 5346 // log2(exp2(x)) -> x 5347 if (Q.CxtI->hasAllowReassoc() && 5348 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5349 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5350 m_Value(X))))) return X; 5351 break; 5352 case Intrinsic::log10: 5353 // log10(pow(10.0, x)) -> x 5354 if (Q.CxtI->hasAllowReassoc() && 5355 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5356 m_Value(X)))) return X; 5357 break; 5358 case Intrinsic::floor: 5359 case Intrinsic::trunc: 5360 case Intrinsic::ceil: 5361 case Intrinsic::round: 5362 case Intrinsic::roundeven: 5363 case Intrinsic::nearbyint: 5364 case Intrinsic::rint: { 5365 // floor (sitofp x) -> sitofp x 5366 // floor (uitofp x) -> uitofp x 5367 // 5368 // Converting from int always results in a finite integral number or 5369 // infinity. For either of those inputs, these rounding functions always 5370 // return the same value, so the rounding can be eliminated. 5371 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5372 return Op0; 5373 break; 5374 } 5375 case Intrinsic::experimental_vector_reverse: 5376 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x 5377 if (match(Op0, 5378 m_Intrinsic<Intrinsic::experimental_vector_reverse>(m_Value(X)))) 5379 return X; 5380 break; 5381 default: 5382 break; 5383 } 5384 5385 return nullptr; 5386 } 5387 5388 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5389 switch (IID) { 5390 case Intrinsic::smax: return Intrinsic::smin; 5391 case Intrinsic::smin: return Intrinsic::smax; 5392 case Intrinsic::umax: return Intrinsic::umin; 5393 case Intrinsic::umin: return Intrinsic::umax; 5394 default: llvm_unreachable("Unexpected intrinsic"); 5395 } 5396 } 5397 5398 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5399 switch (IID) { 5400 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5401 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5402 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5403 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5404 default: llvm_unreachable("Unexpected intrinsic"); 5405 } 5406 } 5407 5408 static ICmpInst::Predicate getMaxMinPredicate(Intrinsic::ID IID) { 5409 switch (IID) { 5410 case Intrinsic::smax: return ICmpInst::ICMP_SGE; 5411 case Intrinsic::smin: return ICmpInst::ICMP_SLE; 5412 case Intrinsic::umax: return ICmpInst::ICMP_UGE; 5413 case Intrinsic::umin: return ICmpInst::ICMP_ULE; 5414 default: llvm_unreachable("Unexpected intrinsic"); 5415 } 5416 } 5417 5418 /// Given a min/max intrinsic, see if it can be removed based on having an 5419 /// operand that is another min/max intrinsic with shared operand(s). The caller 5420 /// is expected to swap the operand arguments to handle commutation. 5421 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5422 Value *X, *Y; 5423 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 5424 return nullptr; 5425 5426 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 5427 if (!MM0) 5428 return nullptr; 5429 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 5430 5431 if (Op1 == X || Op1 == Y || 5432 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 5433 // max (max X, Y), X --> max X, Y 5434 if (IID0 == IID) 5435 return MM0; 5436 // max (min X, Y), X --> X 5437 if (IID0 == getMaxMinOpposite(IID)) 5438 return Op1; 5439 } 5440 return nullptr; 5441 } 5442 5443 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5444 const SimplifyQuery &Q) { 5445 Intrinsic::ID IID = F->getIntrinsicID(); 5446 Type *ReturnType = F->getReturnType(); 5447 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5448 switch (IID) { 5449 case Intrinsic::abs: 5450 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5451 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5452 // on the outer abs. 5453 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5454 return Op0; 5455 break; 5456 5457 case Intrinsic::smax: 5458 case Intrinsic::smin: 5459 case Intrinsic::umax: 5460 case Intrinsic::umin: { 5461 // If the arguments are the same, this is a no-op. 5462 if (Op0 == Op1) 5463 return Op0; 5464 5465 // Canonicalize constant operand as Op1. 5466 if (isa<Constant>(Op0)) 5467 std::swap(Op0, Op1); 5468 5469 // Assume undef is the limit value. 5470 if (Q.isUndefValue(Op1)) 5471 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5472 5473 const APInt *C; 5474 if (match(Op1, m_APIntAllowUndef(C))) { 5475 // Clamp to limit value. For example: 5476 // umax(i8 %x, i8 255) --> 255 5477 if (*C == getMaxMinLimit(IID, BitWidth)) 5478 return ConstantInt::get(ReturnType, *C); 5479 5480 // If the constant op is the opposite of the limit value, the other must 5481 // be larger/smaller or equal. For example: 5482 // umin(i8 %x, i8 255) --> %x 5483 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5484 return Op0; 5485 5486 // Remove nested call if constant operands allow it. Example: 5487 // max (max X, 7), 5 -> max X, 7 5488 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5489 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5490 // TODO: loosen undef/splat restrictions for vector constants. 5491 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5492 const APInt *InnerC; 5493 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5494 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5495 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5496 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5497 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5498 return Op0; 5499 } 5500 } 5501 5502 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5503 return V; 5504 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5505 return V; 5506 5507 ICmpInst::Predicate Pred = getMaxMinPredicate(IID); 5508 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 5509 return Op0; 5510 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 5511 return Op1; 5512 5513 if (Optional<bool> Imp = 5514 isImpliedByDomCondition(Pred, Op0, Op1, Q.CxtI, Q.DL)) 5515 return *Imp ? Op0 : Op1; 5516 if (Optional<bool> Imp = 5517 isImpliedByDomCondition(Pred, Op1, Op0, Q.CxtI, Q.DL)) 5518 return *Imp ? Op1 : Op0; 5519 5520 break; 5521 } 5522 case Intrinsic::usub_with_overflow: 5523 case Intrinsic::ssub_with_overflow: 5524 // X - X -> { 0, false } 5525 // X - undef -> { 0, false } 5526 // undef - X -> { 0, false } 5527 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5528 return Constant::getNullValue(ReturnType); 5529 break; 5530 case Intrinsic::uadd_with_overflow: 5531 case Intrinsic::sadd_with_overflow: 5532 // X + undef -> { -1, false } 5533 // undef + x -> { -1, false } 5534 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 5535 return ConstantStruct::get( 5536 cast<StructType>(ReturnType), 5537 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 5538 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5539 } 5540 break; 5541 case Intrinsic::umul_with_overflow: 5542 case Intrinsic::smul_with_overflow: 5543 // 0 * X -> { 0, false } 5544 // X * 0 -> { 0, false } 5545 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5546 return Constant::getNullValue(ReturnType); 5547 // undef * X -> { 0, false } 5548 // X * undef -> { 0, false } 5549 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5550 return Constant::getNullValue(ReturnType); 5551 break; 5552 case Intrinsic::uadd_sat: 5553 // sat(MAX + X) -> MAX 5554 // sat(X + MAX) -> MAX 5555 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5556 return Constant::getAllOnesValue(ReturnType); 5557 LLVM_FALLTHROUGH; 5558 case Intrinsic::sadd_sat: 5559 // sat(X + undef) -> -1 5560 // sat(undef + X) -> -1 5561 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5562 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5563 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5564 return Constant::getAllOnesValue(ReturnType); 5565 5566 // X + 0 -> X 5567 if (match(Op1, m_Zero())) 5568 return Op0; 5569 // 0 + X -> X 5570 if (match(Op0, m_Zero())) 5571 return Op1; 5572 break; 5573 case Intrinsic::usub_sat: 5574 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5575 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5576 return Constant::getNullValue(ReturnType); 5577 LLVM_FALLTHROUGH; 5578 case Intrinsic::ssub_sat: 5579 // X - X -> 0, X - undef -> 0, undef - X -> 0 5580 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 5581 return Constant::getNullValue(ReturnType); 5582 // X - 0 -> X 5583 if (match(Op1, m_Zero())) 5584 return Op0; 5585 break; 5586 case Intrinsic::load_relative: 5587 if (auto *C0 = dyn_cast<Constant>(Op0)) 5588 if (auto *C1 = dyn_cast<Constant>(Op1)) 5589 return SimplifyRelativeLoad(C0, C1, Q.DL); 5590 break; 5591 case Intrinsic::powi: 5592 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5593 // powi(x, 0) -> 1.0 5594 if (Power->isZero()) 5595 return ConstantFP::get(Op0->getType(), 1.0); 5596 // powi(x, 1) -> x 5597 if (Power->isOne()) 5598 return Op0; 5599 } 5600 break; 5601 case Intrinsic::copysign: 5602 // copysign X, X --> X 5603 if (Op0 == Op1) 5604 return Op0; 5605 // copysign -X, X --> X 5606 // copysign X, -X --> -X 5607 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5608 match(Op1, m_FNeg(m_Specific(Op0)))) 5609 return Op1; 5610 break; 5611 case Intrinsic::maxnum: 5612 case Intrinsic::minnum: 5613 case Intrinsic::maximum: 5614 case Intrinsic::minimum: { 5615 // If the arguments are the same, this is a no-op. 5616 if (Op0 == Op1) return Op0; 5617 5618 // Canonicalize constant operand as Op1. 5619 if (isa<Constant>(Op0)) 5620 std::swap(Op0, Op1); 5621 5622 // If an argument is undef, return the other argument. 5623 if (Q.isUndefValue(Op1)) 5624 return Op0; 5625 5626 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5627 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 5628 5629 // minnum(X, nan) -> X 5630 // maxnum(X, nan) -> X 5631 // minimum(X, nan) -> nan 5632 // maximum(X, nan) -> nan 5633 if (match(Op1, m_NaN())) 5634 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 5635 5636 // In the following folds, inf can be replaced with the largest finite 5637 // float, if the ninf flag is set. 5638 const APFloat *C; 5639 if (match(Op1, m_APFloat(C)) && 5640 (C->isInfinity() || (Q.CxtI->hasNoInfs() && C->isLargest()))) { 5641 // minnum(X, -inf) -> -inf 5642 // maxnum(X, +inf) -> +inf 5643 // minimum(X, -inf) -> -inf if nnan 5644 // maximum(X, +inf) -> +inf if nnan 5645 if (C->isNegative() == IsMin && (!PropagateNaN || Q.CxtI->hasNoNaNs())) 5646 return ConstantFP::get(ReturnType, *C); 5647 5648 // minnum(X, +inf) -> X if nnan 5649 // maxnum(X, -inf) -> X if nnan 5650 // minimum(X, +inf) -> X 5651 // maximum(X, -inf) -> X 5652 if (C->isNegative() != IsMin && (PropagateNaN || Q.CxtI->hasNoNaNs())) 5653 return Op0; 5654 } 5655 5656 // Min/max of the same operation with common operand: 5657 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5658 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5659 if (M0->getIntrinsicID() == IID && 5660 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5661 return Op0; 5662 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5663 if (M1->getIntrinsicID() == IID && 5664 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5665 return Op1; 5666 5667 break; 5668 } 5669 default: 5670 break; 5671 } 5672 5673 return nullptr; 5674 } 5675 5676 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5677 5678 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5679 unsigned NumOperands = Call->getNumArgOperands(); 5680 if (!NumOperands) 5681 return nullptr; 5682 5683 Function *F = cast<Function>(Call->getCalledFunction()); 5684 Intrinsic::ID IID = F->getIntrinsicID(); 5685 if (NumOperands == 1) 5686 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5687 5688 if (NumOperands == 2) 5689 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5690 Call->getArgOperand(1), Q); 5691 5692 // Handle intrinsics with 3 or more arguments. 5693 switch (IID) { 5694 case Intrinsic::masked_load: 5695 case Intrinsic::masked_gather: { 5696 Value *MaskArg = Call->getArgOperand(2); 5697 Value *PassthruArg = Call->getArgOperand(3); 5698 // If the mask is all zeros or undef, the "passthru" argument is the result. 5699 if (maskIsAllZeroOrUndef(MaskArg)) 5700 return PassthruArg; 5701 return nullptr; 5702 } 5703 case Intrinsic::fshl: 5704 case Intrinsic::fshr: { 5705 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5706 *ShAmtArg = Call->getArgOperand(2); 5707 5708 // If both operands are undef, the result is undef. 5709 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 5710 return UndefValue::get(F->getReturnType()); 5711 5712 // If shift amount is undef, assume it is zero. 5713 if (Q.isUndefValue(ShAmtArg)) 5714 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5715 5716 const APInt *ShAmtC; 5717 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5718 // If there's effectively no shift, return the 1st arg or 2nd arg. 5719 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5720 if (ShAmtC->urem(BitWidth).isNullValue()) 5721 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5722 } 5723 return nullptr; 5724 } 5725 case Intrinsic::fma: 5726 case Intrinsic::fmuladd: { 5727 Value *Op0 = Call->getArgOperand(0); 5728 Value *Op1 = Call->getArgOperand(1); 5729 Value *Op2 = Call->getArgOperand(2); 5730 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 }, {}, Q)) 5731 return V; 5732 return nullptr; 5733 } 5734 default: 5735 return nullptr; 5736 } 5737 } 5738 5739 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5740 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5741 if (!F || !canConstantFoldCallTo(Call, F)) 5742 return nullptr; 5743 5744 SmallVector<Constant *, 4> ConstantArgs; 5745 unsigned NumArgs = Call->getNumArgOperands(); 5746 ConstantArgs.reserve(NumArgs); 5747 for (auto &Arg : Call->args()) { 5748 Constant *C = dyn_cast<Constant>(&Arg); 5749 if (!C) { 5750 if (isa<MetadataAsValue>(Arg.get())) 5751 continue; 5752 return nullptr; 5753 } 5754 ConstantArgs.push_back(C); 5755 } 5756 5757 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5758 } 5759 5760 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5761 // musttail calls can only be simplified if they are also DCEd. 5762 // As we can't guarantee this here, don't simplify them. 5763 if (Call->isMustTailCall()) 5764 return nullptr; 5765 5766 // call undef -> poison 5767 // call null -> poison 5768 Value *Callee = Call->getCalledOperand(); 5769 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5770 return PoisonValue::get(Call->getType()); 5771 5772 if (Value *V = tryConstantFoldCall(Call, Q)) 5773 return V; 5774 5775 auto *F = dyn_cast<Function>(Callee); 5776 if (F && F->isIntrinsic()) 5777 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5778 return Ret; 5779 5780 return nullptr; 5781 } 5782 5783 /// Given operands for a Freeze, see if we can fold the result. 5784 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5785 // Use a utility function defined in ValueTracking. 5786 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 5787 return Op0; 5788 // We have room for improvement. 5789 return nullptr; 5790 } 5791 5792 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5793 return ::SimplifyFreezeInst(Op0, Q); 5794 } 5795 5796 /// See if we can compute a simplified version of this instruction. 5797 /// If not, this returns null. 5798 5799 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5800 OptimizationRemarkEmitter *ORE) { 5801 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5802 Value *Result; 5803 5804 switch (I->getOpcode()) { 5805 default: 5806 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5807 break; 5808 case Instruction::FNeg: 5809 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5810 break; 5811 case Instruction::FAdd: 5812 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5813 I->getFastMathFlags(), Q); 5814 break; 5815 case Instruction::Add: 5816 Result = 5817 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5818 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5819 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5820 break; 5821 case Instruction::FSub: 5822 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5823 I->getFastMathFlags(), Q); 5824 break; 5825 case Instruction::Sub: 5826 Result = 5827 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5828 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5829 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5830 break; 5831 case Instruction::FMul: 5832 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5833 I->getFastMathFlags(), Q); 5834 break; 5835 case Instruction::Mul: 5836 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5837 break; 5838 case Instruction::SDiv: 5839 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5840 break; 5841 case Instruction::UDiv: 5842 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5843 break; 5844 case Instruction::FDiv: 5845 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5846 I->getFastMathFlags(), Q); 5847 break; 5848 case Instruction::SRem: 5849 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5850 break; 5851 case Instruction::URem: 5852 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5853 break; 5854 case Instruction::FRem: 5855 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5856 I->getFastMathFlags(), Q); 5857 break; 5858 case Instruction::Shl: 5859 Result = 5860 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5861 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5862 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5863 break; 5864 case Instruction::LShr: 5865 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5866 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5867 break; 5868 case Instruction::AShr: 5869 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5870 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5871 break; 5872 case Instruction::And: 5873 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5874 break; 5875 case Instruction::Or: 5876 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5877 break; 5878 case Instruction::Xor: 5879 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5880 break; 5881 case Instruction::ICmp: 5882 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5883 I->getOperand(0), I->getOperand(1), Q); 5884 break; 5885 case Instruction::FCmp: 5886 Result = 5887 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5888 I->getOperand(1), I->getFastMathFlags(), Q); 5889 break; 5890 case Instruction::Select: 5891 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5892 I->getOperand(2), Q); 5893 break; 5894 case Instruction::GetElementPtr: { 5895 SmallVector<Value *, 8> Ops(I->operands()); 5896 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5897 Ops, Q); 5898 break; 5899 } 5900 case Instruction::InsertValue: { 5901 InsertValueInst *IV = cast<InsertValueInst>(I); 5902 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5903 IV->getInsertedValueOperand(), 5904 IV->getIndices(), Q); 5905 break; 5906 } 5907 case Instruction::InsertElement: { 5908 auto *IE = cast<InsertElementInst>(I); 5909 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5910 IE->getOperand(2), Q); 5911 break; 5912 } 5913 case Instruction::ExtractValue: { 5914 auto *EVI = cast<ExtractValueInst>(I); 5915 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5916 EVI->getIndices(), Q); 5917 break; 5918 } 5919 case Instruction::ExtractElement: { 5920 auto *EEI = cast<ExtractElementInst>(I); 5921 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5922 EEI->getIndexOperand(), Q); 5923 break; 5924 } 5925 case Instruction::ShuffleVector: { 5926 auto *SVI = cast<ShuffleVectorInst>(I); 5927 Result = 5928 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5929 SVI->getShuffleMask(), SVI->getType(), Q); 5930 break; 5931 } 5932 case Instruction::PHI: 5933 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5934 break; 5935 case Instruction::Call: { 5936 Result = SimplifyCall(cast<CallInst>(I), Q); 5937 break; 5938 } 5939 case Instruction::Freeze: 5940 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5941 break; 5942 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5943 #include "llvm/IR/Instruction.def" 5944 #undef HANDLE_CAST_INST 5945 Result = 5946 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5947 break; 5948 case Instruction::Alloca: 5949 // No simplifications for Alloca and it can't be constant folded. 5950 Result = nullptr; 5951 break; 5952 } 5953 5954 /// If called on unreachable code, the above logic may report that the 5955 /// instruction simplified to itself. Make life easier for users by 5956 /// detecting that case here, returning a safe value instead. 5957 return Result == I ? UndefValue::get(I->getType()) : Result; 5958 } 5959 5960 /// Implementation of recursive simplification through an instruction's 5961 /// uses. 5962 /// 5963 /// This is the common implementation of the recursive simplification routines. 5964 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5965 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5966 /// instructions to process and attempt to simplify it using 5967 /// InstructionSimplify. Recursively visited users which could not be 5968 /// simplified themselves are to the optional UnsimplifiedUsers set for 5969 /// further processing by the caller. 5970 /// 5971 /// This routine returns 'true' only when *it* simplifies something. The passed 5972 /// in simplified value does not count toward this. 5973 static bool replaceAndRecursivelySimplifyImpl( 5974 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5975 const DominatorTree *DT, AssumptionCache *AC, 5976 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5977 bool Simplified = false; 5978 SmallSetVector<Instruction *, 8> Worklist; 5979 const DataLayout &DL = I->getModule()->getDataLayout(); 5980 5981 // If we have an explicit value to collapse to, do that round of the 5982 // simplification loop by hand initially. 5983 if (SimpleV) { 5984 for (User *U : I->users()) 5985 if (U != I) 5986 Worklist.insert(cast<Instruction>(U)); 5987 5988 // Replace the instruction with its simplified value. 5989 I->replaceAllUsesWith(SimpleV); 5990 5991 // Gracefully handle edge cases where the instruction is not wired into any 5992 // parent block. 5993 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5994 !I->mayHaveSideEffects()) 5995 I->eraseFromParent(); 5996 } else { 5997 Worklist.insert(I); 5998 } 5999 6000 // Note that we must test the size on each iteration, the worklist can grow. 6001 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 6002 I = Worklist[Idx]; 6003 6004 // See if this instruction simplifies. 6005 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 6006 if (!SimpleV) { 6007 if (UnsimplifiedUsers) 6008 UnsimplifiedUsers->insert(I); 6009 continue; 6010 } 6011 6012 Simplified = true; 6013 6014 // Stash away all the uses of the old instruction so we can check them for 6015 // recursive simplifications after a RAUW. This is cheaper than checking all 6016 // uses of To on the recursive step in most cases. 6017 for (User *U : I->users()) 6018 Worklist.insert(cast<Instruction>(U)); 6019 6020 // Replace the instruction with its simplified value. 6021 I->replaceAllUsesWith(SimpleV); 6022 6023 // Gracefully handle edge cases where the instruction is not wired into any 6024 // parent block. 6025 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 6026 !I->mayHaveSideEffects()) 6027 I->eraseFromParent(); 6028 } 6029 return Simplified; 6030 } 6031 6032 bool llvm::replaceAndRecursivelySimplify( 6033 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 6034 const DominatorTree *DT, AssumptionCache *AC, 6035 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 6036 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 6037 assert(SimpleV && "Must provide a simplified value."); 6038 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 6039 UnsimplifiedUsers); 6040 } 6041 6042 namespace llvm { 6043 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 6044 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 6045 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 6046 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 6047 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 6048 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 6049 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 6050 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6051 } 6052 6053 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 6054 const DataLayout &DL) { 6055 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 6056 } 6057 6058 template <class T, class... TArgs> 6059 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 6060 Function &F) { 6061 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 6062 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 6063 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 6064 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 6065 } 6066 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 6067 Function &); 6068 } 6069