1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements routines for folding instructions into simpler forms
11 // that do not require creating new instructions.  This does constant folding
12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
14 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
15 // simplified: This is usually true and assuming it simplifies the logic (if
16 // they have not been simplified then results are correct but maybe suboptimal).
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/CaptureTracking.h"
26 #include "llvm/Analysis/CmpInstAnalysis.h"
27 #include "llvm/Analysis/ConstantFolding.h"
28 #include "llvm/Analysis/LoopAnalysisManager.h"
29 #include "llvm/Analysis/MemoryBuiltins.h"
30 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
31 #include "llvm/Analysis/ValueTracking.h"
32 #include "llvm/Analysis/VectorUtils.h"
33 #include "llvm/IR/ConstantRange.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/GetElementPtrTypeIterator.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PatternMatch.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/Support/KnownBits.h"
42 #include <algorithm>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 #define DEBUG_TYPE "instsimplify"
47 
48 enum { RecursionLimit = 3 };
49 
50 STATISTIC(NumExpand,  "Number of expansions");
51 STATISTIC(NumReassoc, "Number of reassociations");
52 
53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned);
54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
55                             unsigned);
56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &,
57                               const SimplifyQuery &, unsigned);
58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
59                               unsigned);
60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
61                                const SimplifyQuery &Q, unsigned MaxRecurse);
62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned);
64 static Value *SimplifyCastInst(unsigned, Value *, Type *,
65                                const SimplifyQuery &, unsigned);
66 
67 /// For a boolean type or a vector of boolean type, return false or a vector
68 /// with every element false.
69 static Constant *getFalse(Type *Ty) {
70   return ConstantInt::getFalse(Ty);
71 }
72 
73 /// For a boolean type or a vector of boolean type, return true or a vector
74 /// with every element true.
75 static Constant *getTrue(Type *Ty) {
76   return ConstantInt::getTrue(Ty);
77 }
78 
79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
81                           Value *RHS) {
82   CmpInst *Cmp = dyn_cast<CmpInst>(V);
83   if (!Cmp)
84     return false;
85   CmpInst::Predicate CPred = Cmp->getPredicate();
86   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
87   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
88     return true;
89   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
90     CRHS == LHS;
91 }
92 
93 /// Does the given value dominate the specified phi node?
94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
95   Instruction *I = dyn_cast<Instruction>(V);
96   if (!I)
97     // Arguments and constants dominate all instructions.
98     return true;
99 
100   // If we are processing instructions (and/or basic blocks) that have not been
101   // fully added to a function, the parent nodes may still be null. Simply
102   // return the conservative answer in these cases.
103   if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
104     return false;
105 
106   // If we have a DominatorTree then do a precise test.
107   if (DT)
108     return DT->dominates(I, P);
109 
110   // Otherwise, if the instruction is in the entry block and is not an invoke,
111   // then it obviously dominates all phi nodes.
112   if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
113       !isa<InvokeInst>(I))
114     return true;
115 
116   return false;
117 }
118 
119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into
120 /// "(A op B) op' (A op C)".  Here "op" is given by Opcode and "op'" is
121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
123 /// Returns the simplified value, or null if no simplification was performed.
124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS,
125                           Instruction::BinaryOps OpcodeToExpand,
126                           const SimplifyQuery &Q, unsigned MaxRecurse) {
127   // Recursion is always used, so bail out at once if we already hit the limit.
128   if (!MaxRecurse--)
129     return nullptr;
130 
131   // Check whether the expression has the form "(A op' B) op C".
132   if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
133     if (Op0->getOpcode() == OpcodeToExpand) {
134       // It does!  Try turning it into "(A op C) op' (B op C)".
135       Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
136       // Do "A op C" and "B op C" both simplify?
137       if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
138         if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
139           // They do! Return "L op' R" if it simplifies or is already available.
140           // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
141           if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
142                                      && L == B && R == A)) {
143             ++NumExpand;
144             return LHS;
145           }
146           // Otherwise return "L op' R" if it simplifies.
147           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
148             ++NumExpand;
149             return V;
150           }
151         }
152     }
153 
154   // Check whether the expression has the form "A op (B op' C)".
155   if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
156     if (Op1->getOpcode() == OpcodeToExpand) {
157       // It does!  Try turning it into "(A op B) op' (A op C)".
158       Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
159       // Do "A op B" and "A op C" both simplify?
160       if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
161         if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
162           // They do! Return "L op' R" if it simplifies or is already available.
163           // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
164           if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
165                                      && L == C && R == B)) {
166             ++NumExpand;
167             return RHS;
168           }
169           // Otherwise return "L op' R" if it simplifies.
170           if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
171             ++NumExpand;
172             return V;
173           }
174         }
175     }
176 
177   return nullptr;
178 }
179 
180 /// Generic simplifications for associative binary operations.
181 /// Returns the simpler value, or null if none was found.
182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
183                                        Value *LHS, Value *RHS,
184                                        const SimplifyQuery &Q,
185                                        unsigned MaxRecurse) {
186   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
187 
188   // Recursion is always used, so bail out at once if we already hit the limit.
189   if (!MaxRecurse--)
190     return nullptr;
191 
192   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
193   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
194 
195   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
196   if (Op0 && Op0->getOpcode() == Opcode) {
197     Value *A = Op0->getOperand(0);
198     Value *B = Op0->getOperand(1);
199     Value *C = RHS;
200 
201     // Does "B op C" simplify?
202     if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
203       // It does!  Return "A op V" if it simplifies or is already available.
204       // If V equals B then "A op V" is just the LHS.
205       if (V == B) return LHS;
206       // Otherwise return "A op V" if it simplifies.
207       if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
208         ++NumReassoc;
209         return W;
210       }
211     }
212   }
213 
214   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
215   if (Op1 && Op1->getOpcode() == Opcode) {
216     Value *A = LHS;
217     Value *B = Op1->getOperand(0);
218     Value *C = Op1->getOperand(1);
219 
220     // Does "A op B" simplify?
221     if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
222       // It does!  Return "V op C" if it simplifies or is already available.
223       // If V equals B then "V op C" is just the RHS.
224       if (V == B) return RHS;
225       // Otherwise return "V op C" if it simplifies.
226       if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
227         ++NumReassoc;
228         return W;
229       }
230     }
231   }
232 
233   // The remaining transforms require commutativity as well as associativity.
234   if (!Instruction::isCommutative(Opcode))
235     return nullptr;
236 
237   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
238   if (Op0 && Op0->getOpcode() == Opcode) {
239     Value *A = Op0->getOperand(0);
240     Value *B = Op0->getOperand(1);
241     Value *C = RHS;
242 
243     // Does "C op A" simplify?
244     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
245       // It does!  Return "V op B" if it simplifies or is already available.
246       // If V equals A then "V op B" is just the LHS.
247       if (V == A) return LHS;
248       // Otherwise return "V op B" if it simplifies.
249       if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
250         ++NumReassoc;
251         return W;
252       }
253     }
254   }
255 
256   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
257   if (Op1 && Op1->getOpcode() == Opcode) {
258     Value *A = LHS;
259     Value *B = Op1->getOperand(0);
260     Value *C = Op1->getOperand(1);
261 
262     // Does "C op A" simplify?
263     if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
264       // It does!  Return "B op V" if it simplifies or is already available.
265       // If V equals C then "B op V" is just the RHS.
266       if (V == C) return RHS;
267       // Otherwise return "B op V" if it simplifies.
268       if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
269         ++NumReassoc;
270         return W;
271       }
272     }
273   }
274 
275   return nullptr;
276 }
277 
278 /// In the case of a binary operation with a select instruction as an operand,
279 /// try to simplify the binop by seeing whether evaluating it on both branches
280 /// of the select results in the same value. Returns the common value if so,
281 /// otherwise returns null.
282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
283                                     Value *RHS, const SimplifyQuery &Q,
284                                     unsigned MaxRecurse) {
285   // Recursion is always used, so bail out at once if we already hit the limit.
286   if (!MaxRecurse--)
287     return nullptr;
288 
289   SelectInst *SI;
290   if (isa<SelectInst>(LHS)) {
291     SI = cast<SelectInst>(LHS);
292   } else {
293     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
294     SI = cast<SelectInst>(RHS);
295   }
296 
297   // Evaluate the BinOp on the true and false branches of the select.
298   Value *TV;
299   Value *FV;
300   if (SI == LHS) {
301     TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
302     FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
303   } else {
304     TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
305     FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
306   }
307 
308   // If they simplified to the same value, then return the common value.
309   // If they both failed to simplify then return null.
310   if (TV == FV)
311     return TV;
312 
313   // If one branch simplified to undef, return the other one.
314   if (TV && isa<UndefValue>(TV))
315     return FV;
316   if (FV && isa<UndefValue>(FV))
317     return TV;
318 
319   // If applying the operation did not change the true and false select values,
320   // then the result of the binop is the select itself.
321   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
322     return SI;
323 
324   // If one branch simplified and the other did not, and the simplified
325   // value is equal to the unsimplified one, return the simplified value.
326   // For example, select (cond, X, X & Z) & Z -> X & Z.
327   if ((FV && !TV) || (TV && !FV)) {
328     // Check that the simplified value has the form "X op Y" where "op" is the
329     // same as the original operation.
330     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
331     if (Simplified && Simplified->getOpcode() == Opcode) {
332       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
333       // We already know that "op" is the same as for the simplified value.  See
334       // if the operands match too.  If so, return the simplified value.
335       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
336       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
337       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
338       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
339           Simplified->getOperand(1) == UnsimplifiedRHS)
340         return Simplified;
341       if (Simplified->isCommutative() &&
342           Simplified->getOperand(1) == UnsimplifiedLHS &&
343           Simplified->getOperand(0) == UnsimplifiedRHS)
344         return Simplified;
345     }
346   }
347 
348   return nullptr;
349 }
350 
351 /// In the case of a comparison with a select instruction, try to simplify the
352 /// comparison by seeing whether both branches of the select result in the same
353 /// value. Returns the common value if so, otherwise returns null.
354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
355                                   Value *RHS, const SimplifyQuery &Q,
356                                   unsigned MaxRecurse) {
357   // Recursion is always used, so bail out at once if we already hit the limit.
358   if (!MaxRecurse--)
359     return nullptr;
360 
361   // Make sure the select is on the LHS.
362   if (!isa<SelectInst>(LHS)) {
363     std::swap(LHS, RHS);
364     Pred = CmpInst::getSwappedPredicate(Pred);
365   }
366   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
367   SelectInst *SI = cast<SelectInst>(LHS);
368   Value *Cond = SI->getCondition();
369   Value *TV = SI->getTrueValue();
370   Value *FV = SI->getFalseValue();
371 
372   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
373   // Does "cmp TV, RHS" simplify?
374   Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
375   if (TCmp == Cond) {
376     // It not only simplified, it simplified to the select condition.  Replace
377     // it with 'true'.
378     TCmp = getTrue(Cond->getType());
379   } else if (!TCmp) {
380     // It didn't simplify.  However if "cmp TV, RHS" is equal to the select
381     // condition then we can replace it with 'true'.  Otherwise give up.
382     if (!isSameCompare(Cond, Pred, TV, RHS))
383       return nullptr;
384     TCmp = getTrue(Cond->getType());
385   }
386 
387   // Does "cmp FV, RHS" simplify?
388   Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
389   if (FCmp == Cond) {
390     // It not only simplified, it simplified to the select condition.  Replace
391     // it with 'false'.
392     FCmp = getFalse(Cond->getType());
393   } else if (!FCmp) {
394     // It didn't simplify.  However if "cmp FV, RHS" is equal to the select
395     // condition then we can replace it with 'false'.  Otherwise give up.
396     if (!isSameCompare(Cond, Pred, FV, RHS))
397       return nullptr;
398     FCmp = getFalse(Cond->getType());
399   }
400 
401   // If both sides simplified to the same value, then use it as the result of
402   // the original comparison.
403   if (TCmp == FCmp)
404     return TCmp;
405 
406   // The remaining cases only make sense if the select condition has the same
407   // type as the result of the comparison, so bail out if this is not so.
408   if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
409     return nullptr;
410   // If the false value simplified to false, then the result of the compare
411   // is equal to "Cond && TCmp".  This also catches the case when the false
412   // value simplified to false and the true value to true, returning "Cond".
413   if (match(FCmp, m_Zero()))
414     if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
415       return V;
416   // If the true value simplified to true, then the result of the compare
417   // is equal to "Cond || FCmp".
418   if (match(TCmp, m_One()))
419     if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
420       return V;
421   // Finally, if the false value simplified to true and the true value to
422   // false, then the result of the compare is equal to "!Cond".
423   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
424     if (Value *V =
425         SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
426                         Q, MaxRecurse))
427       return V;
428 
429   return nullptr;
430 }
431 
432 /// In the case of a binary operation with an operand that is a PHI instruction,
433 /// try to simplify the binop by seeing whether evaluating it on the incoming
434 /// phi values yields the same result for every value. If so returns the common
435 /// value, otherwise returns null.
436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
437                                  Value *RHS, const SimplifyQuery &Q,
438                                  unsigned MaxRecurse) {
439   // Recursion is always used, so bail out at once if we already hit the limit.
440   if (!MaxRecurse--)
441     return nullptr;
442 
443   PHINode *PI;
444   if (isa<PHINode>(LHS)) {
445     PI = cast<PHINode>(LHS);
446     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
447     if (!ValueDominatesPHI(RHS, PI, Q.DT))
448       return nullptr;
449   } else {
450     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
451     PI = cast<PHINode>(RHS);
452     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
453     if (!ValueDominatesPHI(LHS, PI, Q.DT))
454       return nullptr;
455   }
456 
457   // Evaluate the BinOp on the incoming phi values.
458   Value *CommonValue = nullptr;
459   for (Value *Incoming : PI->incoming_values()) {
460     // If the incoming value is the phi node itself, it can safely be skipped.
461     if (Incoming == PI) continue;
462     Value *V = PI == LHS ?
463       SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
464       SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
465     // If the operation failed to simplify, or simplified to a different value
466     // to previously, then give up.
467     if (!V || (CommonValue && V != CommonValue))
468       return nullptr;
469     CommonValue = V;
470   }
471 
472   return CommonValue;
473 }
474 
475 /// In the case of a comparison with a PHI instruction, try to simplify the
476 /// comparison by seeing whether comparing with all of the incoming phi values
477 /// yields the same result every time. If so returns the common result,
478 /// otherwise returns null.
479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
480                                const SimplifyQuery &Q, unsigned MaxRecurse) {
481   // Recursion is always used, so bail out at once if we already hit the limit.
482   if (!MaxRecurse--)
483     return nullptr;
484 
485   // Make sure the phi is on the LHS.
486   if (!isa<PHINode>(LHS)) {
487     std::swap(LHS, RHS);
488     Pred = CmpInst::getSwappedPredicate(Pred);
489   }
490   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
491   PHINode *PI = cast<PHINode>(LHS);
492 
493   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
494   if (!ValueDominatesPHI(RHS, PI, Q.DT))
495     return nullptr;
496 
497   // Evaluate the BinOp on the incoming phi values.
498   Value *CommonValue = nullptr;
499   for (Value *Incoming : PI->incoming_values()) {
500     // If the incoming value is the phi node itself, it can safely be skipped.
501     if (Incoming == PI) continue;
502     Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
503     // If the operation failed to simplify, or simplified to a different value
504     // to previously, then give up.
505     if (!V || (CommonValue && V != CommonValue))
506       return nullptr;
507     CommonValue = V;
508   }
509 
510   return CommonValue;
511 }
512 
513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
514                                        Value *&Op0, Value *&Op1,
515                                        const SimplifyQuery &Q) {
516   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
517     if (auto *CRHS = dyn_cast<Constant>(Op1))
518       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
519 
520     // Canonicalize the constant to the RHS if this is a commutative operation.
521     if (Instruction::isCommutative(Opcode))
522       std::swap(Op0, Op1);
523   }
524   return nullptr;
525 }
526 
527 /// Given operands for an Add, see if we can fold the result.
528 /// If not, this returns null.
529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
530                               const SimplifyQuery &Q, unsigned MaxRecurse) {
531   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
532     return C;
533 
534   // X + undef -> undef
535   if (match(Op1, m_Undef()))
536     return Op1;
537 
538   // X + 0 -> X
539   if (match(Op1, m_Zero()))
540     return Op0;
541 
542   // X + (Y - X) -> Y
543   // (Y - X) + X -> Y
544   // Eg: X + -X -> 0
545   Value *Y = nullptr;
546   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
547       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
548     return Y;
549 
550   // X + ~X -> -1   since   ~X = -X-1
551   Type *Ty = Op0->getType();
552   if (match(Op0, m_Not(m_Specific(Op1))) ||
553       match(Op1, m_Not(m_Specific(Op0))))
554     return Constant::getAllOnesValue(Ty);
555 
556   // add nsw/nuw (xor Y, signmask), signmask --> Y
557   // The no-wrapping add guarantees that the top bit will be set by the add.
558   // Therefore, the xor must be clearing the already set sign bit of Y.
559   if ((isNSW || isNUW) && match(Op1, m_SignMask()) &&
560       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
561     return Y;
562 
563   /// i1 add -> xor.
564   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
565     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
566       return V;
567 
568   // Try some generic simplifications for associative operations.
569   if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
570                                           MaxRecurse))
571     return V;
572 
573   // Threading Add over selects and phi nodes is pointless, so don't bother.
574   // Threading over the select in "A + select(cond, B, C)" means evaluating
575   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
576   // only if B and C are equal.  If B and C are equal then (since we assume
577   // that operands have already been simplified) "select(cond, B, C)" should
578   // have been simplified to the common value of B and C already.  Analysing
579   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
580   // for threading over phi nodes.
581 
582   return nullptr;
583 }
584 
585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
586                              const SimplifyQuery &Query) {
587   return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit);
588 }
589 
590 /// \brief Compute the base pointer and cumulative constant offsets for V.
591 ///
592 /// This strips all constant offsets off of V, leaving it the base pointer, and
593 /// accumulates the total constant offset applied in the returned constant. It
594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are
595 /// no constant offsets applied.
596 ///
597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
599 /// folding.
600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
601                                                 bool AllowNonInbounds = false) {
602   assert(V->getType()->isPtrOrPtrVectorTy());
603 
604   Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType();
605   APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
606 
607   // Even though we don't look through PHI nodes, we could be called on an
608   // instruction in an unreachable block, which may be on a cycle.
609   SmallPtrSet<Value *, 4> Visited;
610   Visited.insert(V);
611   do {
612     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
613       if ((!AllowNonInbounds && !GEP->isInBounds()) ||
614           !GEP->accumulateConstantOffset(DL, Offset))
615         break;
616       V = GEP->getPointerOperand();
617     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
618       V = cast<Operator>(V)->getOperand(0);
619     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
620       if (GA->isInterposable())
621         break;
622       V = GA->getAliasee();
623     } else {
624       if (auto CS = CallSite(V))
625         if (Value *RV = CS.getReturnedArgOperand()) {
626           V = RV;
627           continue;
628         }
629       break;
630     }
631     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
632   } while (Visited.insert(V).second);
633 
634   Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
635   if (V->getType()->isVectorTy())
636     return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
637                                     OffsetIntPtr);
638   return OffsetIntPtr;
639 }
640 
641 /// \brief Compute the constant difference between two pointer values.
642 /// If the difference is not a constant, returns zero.
643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
644                                           Value *RHS) {
645   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
646   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
647 
648   // If LHS and RHS are not related via constant offsets to the same base
649   // value, there is nothing we can do here.
650   if (LHS != RHS)
651     return nullptr;
652 
653   // Otherwise, the difference of LHS - RHS can be computed as:
654   //    LHS - RHS
655   //  = (LHSOffset + Base) - (RHSOffset + Base)
656   //  = LHSOffset - RHSOffset
657   return ConstantExpr::getSub(LHSOffset, RHSOffset);
658 }
659 
660 /// Given operands for a Sub, see if we can fold the result.
661 /// If not, this returns null.
662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
663                               const SimplifyQuery &Q, unsigned MaxRecurse) {
664   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
665     return C;
666 
667   // X - undef -> undef
668   // undef - X -> undef
669   if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
670     return UndefValue::get(Op0->getType());
671 
672   // X - 0 -> X
673   if (match(Op1, m_Zero()))
674     return Op0;
675 
676   // X - X -> 0
677   if (Op0 == Op1)
678     return Constant::getNullValue(Op0->getType());
679 
680   // Is this a negation?
681   if (match(Op0, m_Zero())) {
682     // 0 - X -> 0 if the sub is NUW.
683     if (isNUW)
684       return Op0;
685 
686     KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
687     if (Known.Zero.isMaxSignedValue()) {
688       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
689       // Op1 must be 0 because negating the minimum signed value is undefined.
690       if (isNSW)
691         return Op0;
692 
693       // 0 - X -> X if X is 0 or the minimum signed value.
694       return Op1;
695     }
696   }
697 
698   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
699   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
700   Value *X = nullptr, *Y = nullptr, *Z = Op1;
701   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
702     // See if "V === Y - Z" simplifies.
703     if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
704       // It does!  Now see if "X + V" simplifies.
705       if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
706         // It does, we successfully reassociated!
707         ++NumReassoc;
708         return W;
709       }
710     // See if "V === X - Z" simplifies.
711     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
712       // It does!  Now see if "Y + V" simplifies.
713       if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
714         // It does, we successfully reassociated!
715         ++NumReassoc;
716         return W;
717       }
718   }
719 
720   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
721   // For example, X - (X + 1) -> -1
722   X = Op0;
723   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
724     // See if "V === X - Y" simplifies.
725     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
726       // It does!  Now see if "V - Z" simplifies.
727       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
728         // It does, we successfully reassociated!
729         ++NumReassoc;
730         return W;
731       }
732     // See if "V === X - Z" simplifies.
733     if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
734       // It does!  Now see if "V - Y" simplifies.
735       if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
736         // It does, we successfully reassociated!
737         ++NumReassoc;
738         return W;
739       }
740   }
741 
742   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
743   // For example, X - (X - Y) -> Y.
744   Z = Op0;
745   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
746     // See if "V === Z - X" simplifies.
747     if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
748       // It does!  Now see if "V + Y" simplifies.
749       if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
750         // It does, we successfully reassociated!
751         ++NumReassoc;
752         return W;
753       }
754 
755   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
756   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
757       match(Op1, m_Trunc(m_Value(Y))))
758     if (X->getType() == Y->getType())
759       // See if "V === X - Y" simplifies.
760       if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
761         // It does!  Now see if "trunc V" simplifies.
762         if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(),
763                                         Q, MaxRecurse - 1))
764           // It does, return the simplified "trunc V".
765           return W;
766 
767   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
768   if (match(Op0, m_PtrToInt(m_Value(X))) &&
769       match(Op1, m_PtrToInt(m_Value(Y))))
770     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
771       return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
772 
773   // i1 sub -> xor.
774   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
775     if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
776       return V;
777 
778   // Threading Sub over selects and phi nodes is pointless, so don't bother.
779   // Threading over the select in "A - select(cond, B, C)" means evaluating
780   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
781   // only if B and C are equal.  If B and C are equal then (since we assume
782   // that operands have already been simplified) "select(cond, B, C)" should
783   // have been simplified to the common value of B and C already.  Analysing
784   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
785   // for threading over phi nodes.
786 
787   return nullptr;
788 }
789 
790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
791                              const SimplifyQuery &Q) {
792   return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
793 }
794 
795 /// Given operands for an FAdd, see if we can fold the result.  If not, this
796 /// returns null.
797 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
798                               const SimplifyQuery &Q, unsigned MaxRecurse) {
799   if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
800     return C;
801 
802   // fadd X, -0 ==> X
803   if (match(Op1, m_NegZero()))
804     return Op0;
805 
806   // fadd X, 0 ==> X, when we know X is not -0
807   if (match(Op1, m_Zero()) &&
808       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
809     return Op0;
810 
811   // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
812   //   where nnan and ninf have to occur at least once somewhere in this
813   //   expression
814   Value *SubOp = nullptr;
815   if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
816     SubOp = Op1;
817   else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
818     SubOp = Op0;
819   if (SubOp) {
820     Instruction *FSub = cast<Instruction>(SubOp);
821     if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
822         (FMF.noInfs() || FSub->hasNoInfs()))
823       return Constant::getNullValue(Op0->getType());
824   }
825 
826   return nullptr;
827 }
828 
829 /// Given operands for an FSub, see if we can fold the result.  If not, this
830 /// returns null.
831 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
832                               const SimplifyQuery &Q, unsigned MaxRecurse) {
833   if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
834     return C;
835 
836   // fsub X, 0 ==> X
837   if (match(Op1, m_Zero()))
838     return Op0;
839 
840   // fsub X, -0 ==> X, when we know X is not -0
841   if (match(Op1, m_NegZero()) &&
842       (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI)))
843     return Op0;
844 
845   // fsub -0.0, (fsub -0.0, X) ==> X
846   Value *X;
847   if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X))))
848     return X;
849 
850   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
851   if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) &&
852       match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
853     return X;
854 
855   // fsub nnan x, x ==> 0.0
856   if (FMF.noNaNs() && Op0 == Op1)
857     return Constant::getNullValue(Op0->getType());
858 
859   return nullptr;
860 }
861 
862 /// Given the operands for an FMul, see if we can fold the result
863 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
864                                const SimplifyQuery &Q, unsigned MaxRecurse) {
865   if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
866     return C;
867 
868   // fmul X, 1.0 ==> X
869   if (match(Op1, m_FPOne()))
870     return Op0;
871 
872   // fmul nnan nsz X, 0 ==> 0
873   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
874     return Op1;
875 
876   return nullptr;
877 }
878 
879 /// Given operands for a Mul, see if we can fold the result.
880 /// If not, this returns null.
881 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
882                               unsigned MaxRecurse) {
883   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
884     return C;
885 
886   // X * undef -> 0
887   if (match(Op1, m_Undef()))
888     return Constant::getNullValue(Op0->getType());
889 
890   // X * 0 -> 0
891   if (match(Op1, m_Zero()))
892     return Op1;
893 
894   // X * 1 -> X
895   if (match(Op1, m_One()))
896     return Op0;
897 
898   // (X / Y) * Y -> X if the division is exact.
899   Value *X = nullptr;
900   if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
901       match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))   // Y * (X / Y)
902     return X;
903 
904   // i1 mul -> and.
905   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
906     if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
907       return V;
908 
909   // Try some generic simplifications for associative operations.
910   if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
911                                           MaxRecurse))
912     return V;
913 
914   // Mul distributes over Add.  Try some generic simplifications based on this.
915   if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
916                              Q, MaxRecurse))
917     return V;
918 
919   // If the operation is with the result of a select instruction, check whether
920   // operating on either branch of the select always yields the same value.
921   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
922     if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
923                                          MaxRecurse))
924       return V;
925 
926   // If the operation is with the result of a phi instruction, check whether
927   // operating on all incoming values of the phi always yields the same value.
928   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
929     if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
930                                       MaxRecurse))
931       return V;
932 
933   return nullptr;
934 }
935 
936 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
937                               const SimplifyQuery &Q) {
938   return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit);
939 }
940 
941 
942 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
943                               const SimplifyQuery &Q) {
944   return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit);
945 }
946 
947 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
948                               const SimplifyQuery &Q) {
949   return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit);
950 }
951 
952 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
953   return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit);
954 }
955 
956 /// Check for common or similar folds of integer division or integer remainder.
957 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) {
958   Type *Ty = Op0->getType();
959 
960   // X / undef -> undef
961   // X % undef -> undef
962   if (match(Op1, m_Undef()))
963     return Op1;
964 
965   // X / 0 -> undef
966   // X % 0 -> undef
967   // We don't need to preserve faults!
968   if (match(Op1, m_Zero()))
969     return UndefValue::get(Ty);
970 
971   // If any element of a constant divisor vector is zero, the whole op is undef.
972   auto *Op1C = dyn_cast<Constant>(Op1);
973   if (Op1C && Ty->isVectorTy()) {
974     unsigned NumElts = Ty->getVectorNumElements();
975     for (unsigned i = 0; i != NumElts; ++i) {
976       Constant *Elt = Op1C->getAggregateElement(i);
977       if (Elt && Elt->isNullValue())
978         return UndefValue::get(Ty);
979     }
980   }
981 
982   // undef / X -> 0
983   // undef % X -> 0
984   if (match(Op0, m_Undef()))
985     return Constant::getNullValue(Ty);
986 
987   // 0 / X -> 0
988   // 0 % X -> 0
989   if (match(Op0, m_Zero()))
990     return Op0;
991 
992   // X / X -> 1
993   // X % X -> 0
994   if (Op0 == Op1)
995     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
996 
997   // X / 1 -> X
998   // X % 1 -> 0
999   // If this is a boolean op (single-bit element type), we can't have
1000   // division-by-zero or remainder-by-zero, so assume the divisor is 1.
1001   if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1))
1002     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1003 
1004   return nullptr;
1005 }
1006 
1007 /// Given operands for an SDiv or UDiv, see if we can fold the result.
1008 /// If not, this returns null.
1009 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1010                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1011   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1012     return C;
1013 
1014   if (Value *V = simplifyDivRem(Op0, Op1, true))
1015     return V;
1016 
1017   bool isSigned = Opcode == Instruction::SDiv;
1018 
1019   // (X * Y) / Y -> X if the multiplication does not overflow.
1020   Value *X = nullptr, *Y = nullptr;
1021   if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1022     if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
1023     OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
1024     // If the Mul knows it does not overflow, then we are good to go.
1025     if ((isSigned && Mul->hasNoSignedWrap()) ||
1026         (!isSigned && Mul->hasNoUnsignedWrap()))
1027       return X;
1028     // If X has the form X = A / Y then X * Y cannot overflow.
1029     if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1030       if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1031         return X;
1032   }
1033 
1034   // (X rem Y) / Y -> 0
1035   if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1036       (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1037     return Constant::getNullValue(Op0->getType());
1038 
1039   // (X /u C1) /u C2 -> 0 if C1 * C2 overflow
1040   ConstantInt *C1, *C2;
1041   if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) &&
1042       match(Op1, m_ConstantInt(C2))) {
1043     bool Overflow;
1044     (void)C1->getValue().umul_ov(C2->getValue(), Overflow);
1045     if (Overflow)
1046       return Constant::getNullValue(Op0->getType());
1047   }
1048 
1049   // If the operation is with the result of a select instruction, check whether
1050   // operating on either branch of the select always yields the same value.
1051   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1052     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1053       return V;
1054 
1055   // If the operation is with the result of a phi instruction, check whether
1056   // operating on all incoming values of the phi always yields the same value.
1057   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1058     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1059       return V;
1060 
1061   return nullptr;
1062 }
1063 
1064 /// Given operands for an SDiv, see if we can fold the result.
1065 /// If not, this returns null.
1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1067                                unsigned MaxRecurse) {
1068   if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
1069     return V;
1070 
1071   return nullptr;
1072 }
1073 
1074 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1075   return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit);
1076 }
1077 
1078 /// Given operands for a UDiv, see if we can fold the result.
1079 /// If not, this returns null.
1080 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1081                                unsigned MaxRecurse) {
1082   if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
1083     return V;
1084 
1085   // udiv %V, C -> 0 if %V < C
1086   if (MaxRecurse) {
1087     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1088             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1089       if (C->isAllOnesValue()) {
1090         return Constant::getNullValue(Op0->getType());
1091       }
1092     }
1093   }
1094 
1095   return nullptr;
1096 }
1097 
1098 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1099   return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit);
1100 }
1101 
1102 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1103                                const SimplifyQuery &Q, unsigned) {
1104   if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
1105     return C;
1106 
1107   // undef / X -> undef    (the undef could be a snan).
1108   if (match(Op0, m_Undef()))
1109     return Op0;
1110 
1111   // X / undef -> undef
1112   if (match(Op1, m_Undef()))
1113     return Op1;
1114 
1115   // X / 1.0 -> X
1116   if (match(Op1, m_FPOne()))
1117     return Op0;
1118 
1119   // 0 / X -> 0
1120   // Requires that NaNs are off (X could be zero) and signed zeroes are
1121   // ignored (X could be positive or negative, so the output sign is unknown).
1122   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1123     return Op0;
1124 
1125   if (FMF.noNaNs()) {
1126     // X / X -> 1.0 is legal when NaNs are ignored.
1127     if (Op0 == Op1)
1128       return ConstantFP::get(Op0->getType(), 1.0);
1129 
1130     // -X /  X -> -1.0 and
1131     //  X / -X -> -1.0 are legal when NaNs are ignored.
1132     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
1133     if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) &&
1134          BinaryOperator::getFNegArgument(Op0) == Op1) ||
1135         (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) &&
1136          BinaryOperator::getFNegArgument(Op1) == Op0))
1137       return ConstantFP::get(Op0->getType(), -1.0);
1138   }
1139 
1140   return nullptr;
1141 }
1142 
1143 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1144                               const SimplifyQuery &Q) {
1145   return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit);
1146 }
1147 
1148 /// Given operands for an SRem or URem, see if we can fold the result.
1149 /// If not, this returns null.
1150 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1151                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1152   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1153     return C;
1154 
1155   if (Value *V = simplifyDivRem(Op0, Op1, false))
1156     return V;
1157 
1158   // (X % Y) % Y -> X % Y
1159   if ((Opcode == Instruction::SRem &&
1160        match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1161       (Opcode == Instruction::URem &&
1162        match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1163     return Op0;
1164 
1165   // If the operation is with the result of a select instruction, check whether
1166   // operating on either branch of the select always yields the same value.
1167   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1168     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1169       return V;
1170 
1171   // If the operation is with the result of a phi instruction, check whether
1172   // operating on all incoming values of the phi always yields the same value.
1173   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1174     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1175       return V;
1176 
1177   return nullptr;
1178 }
1179 
1180 /// Given operands for an SRem, see if we can fold the result.
1181 /// If not, this returns null.
1182 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1183                                unsigned MaxRecurse) {
1184   if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
1185     return V;
1186 
1187   return nullptr;
1188 }
1189 
1190 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1191   return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit);
1192 }
1193 
1194 /// Given operands for a URem, see if we can fold the result.
1195 /// If not, this returns null.
1196 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1197                                unsigned MaxRecurse) {
1198   if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
1199     return V;
1200 
1201   // urem %V, C -> %V if %V < C
1202   if (MaxRecurse) {
1203     if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst(
1204             ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) {
1205       if (C->isAllOnesValue()) {
1206         return Op0;
1207       }
1208     }
1209   }
1210 
1211   return nullptr;
1212 }
1213 
1214 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1215   return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit);
1216 }
1217 
1218 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1219                                const SimplifyQuery &Q, unsigned) {
1220   if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
1221     return C;
1222 
1223   // undef % X -> undef    (the undef could be a snan).
1224   if (match(Op0, m_Undef()))
1225     return Op0;
1226 
1227   // X % undef -> undef
1228   if (match(Op1, m_Undef()))
1229     return Op1;
1230 
1231   // 0 % X -> 0
1232   // Requires that NaNs are off (X could be zero) and signed zeroes are
1233   // ignored (X could be positive or negative, so the output sign is unknown).
1234   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero()))
1235     return Op0;
1236 
1237   return nullptr;
1238 }
1239 
1240 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1241                               const SimplifyQuery &Q) {
1242   return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit);
1243 }
1244 
1245 /// Returns true if a shift by \c Amount always yields undef.
1246 static bool isUndefShift(Value *Amount) {
1247   Constant *C = dyn_cast<Constant>(Amount);
1248   if (!C)
1249     return false;
1250 
1251   // X shift by undef -> undef because it may shift by the bitwidth.
1252   if (isa<UndefValue>(C))
1253     return true;
1254 
1255   // Shifting by the bitwidth or more is undefined.
1256   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1257     if (CI->getValue().getLimitedValue() >=
1258         CI->getType()->getScalarSizeInBits())
1259       return true;
1260 
1261   // If all lanes of a vector shift are undefined the whole shift is.
1262   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1263     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I)
1264       if (!isUndefShift(C->getAggregateElement(I)))
1265         return false;
1266     return true;
1267   }
1268 
1269   return false;
1270 }
1271 
1272 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1273 /// If not, this returns null.
1274 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1275                             Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) {
1276   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1277     return C;
1278 
1279   // 0 shift by X -> 0
1280   if (match(Op0, m_Zero()))
1281     return Op0;
1282 
1283   // X shift by 0 -> X
1284   if (match(Op1, m_Zero()))
1285     return Op0;
1286 
1287   // Fold undefined shifts.
1288   if (isUndefShift(Op1))
1289     return UndefValue::get(Op0->getType());
1290 
1291   // If the operation is with the result of a select instruction, check whether
1292   // operating on either branch of the select always yields the same value.
1293   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1294     if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1295       return V;
1296 
1297   // If the operation is with the result of a phi instruction, check whether
1298   // operating on all incoming values of the phi always yields the same value.
1299   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1300     if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1301       return V;
1302 
1303   // If any bits in the shift amount make that value greater than or equal to
1304   // the number of bits in the type, the shift is undefined.
1305   KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1306   if (Known.One.getLimitedValue() >= Known.getBitWidth())
1307     return UndefValue::get(Op0->getType());
1308 
1309   // If all valid bits in the shift amount are known zero, the first operand is
1310   // unchanged.
1311   unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth());
1312   if (Known.countMinTrailingZeros() >= NumValidShiftBits)
1313     return Op0;
1314 
1315   return nullptr;
1316 }
1317 
1318 /// \brief Given operands for an Shl, LShr or AShr, see if we can
1319 /// fold the result.  If not, this returns null.
1320 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1321                                  Value *Op1, bool isExact, const SimplifyQuery &Q,
1322                                  unsigned MaxRecurse) {
1323   if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse))
1324     return V;
1325 
1326   // X >> X -> 0
1327   if (Op0 == Op1)
1328     return Constant::getNullValue(Op0->getType());
1329 
1330   // undef >> X -> 0
1331   // undef >> X -> undef (if it's exact)
1332   if (match(Op0, m_Undef()))
1333     return isExact ? Op0 : Constant::getNullValue(Op0->getType());
1334 
1335   // The low bit cannot be shifted out of an exact shift if it is set.
1336   if (isExact) {
1337     KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT);
1338     if (Op0Known.One[0])
1339       return Op0;
1340   }
1341 
1342   return nullptr;
1343 }
1344 
1345 /// Given operands for an Shl, see if we can fold the result.
1346 /// If not, this returns null.
1347 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1348                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1349   if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
1350     return V;
1351 
1352   // undef << X -> 0
1353   // undef << X -> undef if (if it's NSW/NUW)
1354   if (match(Op0, m_Undef()))
1355     return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType());
1356 
1357   // (X >> A) << A -> X
1358   Value *X;
1359   if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1360     return X;
1361   return nullptr;
1362 }
1363 
1364 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
1365                              const SimplifyQuery &Q) {
1366   return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit);
1367 }
1368 
1369 /// Given operands for an LShr, see if we can fold the result.
1370 /// If not, this returns null.
1371 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1372                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1373   if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q,
1374                                     MaxRecurse))
1375       return V;
1376 
1377   // (X << A) >> A -> X
1378   Value *X;
1379   if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1380     return X;
1381 
1382   return nullptr;
1383 }
1384 
1385 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
1386                               const SimplifyQuery &Q) {
1387   return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1388 }
1389 
1390 /// Given operands for an AShr, see if we can fold the result.
1391 /// If not, this returns null.
1392 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1393                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1394   if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q,
1395                                     MaxRecurse))
1396     return V;
1397 
1398   // all ones >>a X -> all ones
1399   if (match(Op0, m_AllOnes()))
1400     return Op0;
1401 
1402   // (X << A) >> A -> X
1403   Value *X;
1404   if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1405     return X;
1406 
1407   // Arithmetic shifting an all-sign-bit value is a no-op.
1408   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1409   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1410     return Op0;
1411 
1412   return nullptr;
1413 }
1414 
1415 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
1416                               const SimplifyQuery &Q) {
1417   return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit);
1418 }
1419 
1420 /// Commuted variants are assumed to be handled by calling this function again
1421 /// with the parameters swapped.
1422 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1423                                          ICmpInst *UnsignedICmp, bool IsAnd) {
1424   Value *X, *Y;
1425 
1426   ICmpInst::Predicate EqPred;
1427   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1428       !ICmpInst::isEquality(EqPred))
1429     return nullptr;
1430 
1431   ICmpInst::Predicate UnsignedPred;
1432   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1433       ICmpInst::isUnsigned(UnsignedPred))
1434     ;
1435   else if (match(UnsignedICmp,
1436                  m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) &&
1437            ICmpInst::isUnsigned(UnsignedPred))
1438     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1439   else
1440     return nullptr;
1441 
1442   // X < Y && Y != 0  -->  X < Y
1443   // X < Y || Y != 0  -->  Y != 0
1444   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1445     return IsAnd ? UnsignedICmp : ZeroICmp;
1446 
1447   // X >= Y || Y != 0  -->  true
1448   // X >= Y || Y == 0  -->  X >= Y
1449   if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) {
1450     if (EqPred == ICmpInst::ICMP_NE)
1451       return getTrue(UnsignedICmp->getType());
1452     return UnsignedICmp;
1453   }
1454 
1455   // X < Y && Y == 0  -->  false
1456   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1457       IsAnd)
1458     return getFalse(UnsignedICmp->getType());
1459 
1460   return nullptr;
1461 }
1462 
1463 /// Commuted variants are assumed to be handled by calling this function again
1464 /// with the parameters swapped.
1465 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1466   ICmpInst::Predicate Pred0, Pred1;
1467   Value *A ,*B;
1468   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1469       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1470     return nullptr;
1471 
1472   // We have (icmp Pred0, A, B) & (icmp Pred1, A, B).
1473   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1474   // can eliminate Op1 from this 'and'.
1475   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1476     return Op0;
1477 
1478   // Check for any combination of predicates that are guaranteed to be disjoint.
1479   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1480       (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) ||
1481       (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) ||
1482       (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT))
1483     return getFalse(Op0->getType());
1484 
1485   return nullptr;
1486 }
1487 
1488 /// Commuted variants are assumed to be handled by calling this function again
1489 /// with the parameters swapped.
1490 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) {
1491   ICmpInst::Predicate Pred0, Pred1;
1492   Value *A ,*B;
1493   if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) ||
1494       !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B))))
1495     return nullptr;
1496 
1497   // We have (icmp Pred0, A, B) | (icmp Pred1, A, B).
1498   // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we
1499   // can eliminate Op0 from this 'or'.
1500   if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1))
1501     return Op1;
1502 
1503   // Check for any combination of predicates that cover the entire range of
1504   // possibilities.
1505   if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) ||
1506       (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) ||
1507       (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) ||
1508       (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE))
1509     return getTrue(Op0->getType());
1510 
1511   return nullptr;
1512 }
1513 
1514 /// Test if a pair of compares with a shared operand and 2 constants has an
1515 /// empty set intersection, full set union, or if one compare is a superset of
1516 /// the other.
1517 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1518                                                 bool IsAnd) {
1519   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1520   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1521     return nullptr;
1522 
1523   const APInt *C0, *C1;
1524   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1525       !match(Cmp1->getOperand(1), m_APInt(C1)))
1526     return nullptr;
1527 
1528   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1529   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1530 
1531   // For and-of-compares, check if the intersection is empty:
1532   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1533   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1534     return getFalse(Cmp0->getType());
1535 
1536   // For or-of-compares, check if the union is full:
1537   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1538   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1539     return getTrue(Cmp0->getType());
1540 
1541   // Is one range a superset of the other?
1542   // If this is and-of-compares, take the smaller set:
1543   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1544   // If this is or-of-compares, take the larger set:
1545   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1546   if (Range0.contains(Range1))
1547     return IsAnd ? Cmp1 : Cmp0;
1548   if (Range1.contains(Range0))
1549     return IsAnd ? Cmp0 : Cmp1;
1550 
1551   return nullptr;
1552 }
1553 
1554 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1555   // (icmp (add V, C0), C1) & (icmp V, C0)
1556   ICmpInst::Predicate Pred0, Pred1;
1557   const APInt *C0, *C1;
1558   Value *V;
1559   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1560     return nullptr;
1561 
1562   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1563     return nullptr;
1564 
1565   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1566   if (AddInst->getOperand(1) != Op1->getOperand(1))
1567     return nullptr;
1568 
1569   Type *ITy = Op0->getType();
1570   bool isNSW = AddInst->hasNoSignedWrap();
1571   bool isNUW = AddInst->hasNoUnsignedWrap();
1572 
1573   const APInt Delta = *C1 - *C0;
1574   if (C0->isStrictlyPositive()) {
1575     if (Delta == 2) {
1576       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1577         return getFalse(ITy);
1578       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1579         return getFalse(ITy);
1580     }
1581     if (Delta == 1) {
1582       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1583         return getFalse(ITy);
1584       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW)
1585         return getFalse(ITy);
1586     }
1587   }
1588   if (C0->getBoolValue() && isNUW) {
1589     if (Delta == 2)
1590       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1591         return getFalse(ITy);
1592     if (Delta == 1)
1593       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1594         return getFalse(ITy);
1595   }
1596 
1597   return nullptr;
1598 }
1599 
1600 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1601   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true))
1602     return X;
1603   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true))
1604     return X;
1605 
1606   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1))
1607     return X;
1608   if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0))
1609     return X;
1610 
1611   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1612     return X;
1613 
1614   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1))
1615     return X;
1616   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0))
1617     return X;
1618 
1619   return nullptr;
1620 }
1621 
1622 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) {
1623   // (icmp (add V, C0), C1) | (icmp V, C0)
1624   ICmpInst::Predicate Pred0, Pred1;
1625   const APInt *C0, *C1;
1626   Value *V;
1627   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1628     return nullptr;
1629 
1630   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1631     return nullptr;
1632 
1633   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1634   if (AddInst->getOperand(1) != Op1->getOperand(1))
1635     return nullptr;
1636 
1637   Type *ITy = Op0->getType();
1638   bool isNSW = AddInst->hasNoSignedWrap();
1639   bool isNUW = AddInst->hasNoUnsignedWrap();
1640 
1641   const APInt Delta = *C1 - *C0;
1642   if (C0->isStrictlyPositive()) {
1643     if (Delta == 2) {
1644       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1645         return getTrue(ITy);
1646       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1647         return getTrue(ITy);
1648     }
1649     if (Delta == 1) {
1650       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1651         return getTrue(ITy);
1652       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW)
1653         return getTrue(ITy);
1654     }
1655   }
1656   if (C0->getBoolValue() && isNUW) {
1657     if (Delta == 2)
1658       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1659         return getTrue(ITy);
1660     if (Delta == 1)
1661       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1662         return getTrue(ITy);
1663   }
1664 
1665   return nullptr;
1666 }
1667 
1668 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) {
1669   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false))
1670     return X;
1671   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false))
1672     return X;
1673 
1674   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1))
1675     return X;
1676   if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0))
1677     return X;
1678 
1679   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1680     return X;
1681 
1682   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1))
1683     return X;
1684   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0))
1685     return X;
1686 
1687   return nullptr;
1688 }
1689 
1690 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) {
1691   // Look through casts of the 'and' operands to find compares.
1692   auto *Cast0 = dyn_cast<CastInst>(Op0);
1693   auto *Cast1 = dyn_cast<CastInst>(Op1);
1694   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1695       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1696     Op0 = Cast0->getOperand(0);
1697     Op1 = Cast1->getOperand(0);
1698   }
1699 
1700   auto *Cmp0 = dyn_cast<ICmpInst>(Op0);
1701   auto *Cmp1 = dyn_cast<ICmpInst>(Op1);
1702   if (!Cmp0 || !Cmp1)
1703     return nullptr;
1704 
1705   Value *V =
1706       IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1);
1707   if (!V)
1708     return nullptr;
1709   if (!Cast0)
1710     return V;
1711 
1712   // If we looked through casts, we can only handle a constant simplification
1713   // because we are not allowed to create a cast instruction here.
1714   if (auto *C = dyn_cast<Constant>(V))
1715     return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType());
1716 
1717   return nullptr;
1718 }
1719 
1720 /// Given operands for an And, see if we can fold the result.
1721 /// If not, this returns null.
1722 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1723                               unsigned MaxRecurse) {
1724   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
1725     return C;
1726 
1727   // X & undef -> 0
1728   if (match(Op1, m_Undef()))
1729     return Constant::getNullValue(Op0->getType());
1730 
1731   // X & X = X
1732   if (Op0 == Op1)
1733     return Op0;
1734 
1735   // X & 0 = 0
1736   if (match(Op1, m_Zero()))
1737     return Op1;
1738 
1739   // X & -1 = X
1740   if (match(Op1, m_AllOnes()))
1741     return Op0;
1742 
1743   // A & ~A  =  ~A & A  =  0
1744   if (match(Op0, m_Not(m_Specific(Op1))) ||
1745       match(Op1, m_Not(m_Specific(Op0))))
1746     return Constant::getNullValue(Op0->getType());
1747 
1748   // (A | ?) & A = A
1749   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1750     return Op1;
1751 
1752   // A & (A | ?) = A
1753   if (match(Op1, m_c_Or(m_Specific(Op0), m_Value())))
1754     return Op0;
1755 
1756   // A mask that only clears known zeros of a shifted value is a no-op.
1757   Value *X;
1758   const APInt *Mask;
1759   const APInt *ShAmt;
1760   if (match(Op1, m_APInt(Mask))) {
1761     // If all bits in the inverted and shifted mask are clear:
1762     // and (shl X, ShAmt), Mask --> shl X, ShAmt
1763     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
1764         (~(*Mask)).lshr(*ShAmt).isNullValue())
1765       return Op0;
1766 
1767     // If all bits in the inverted and shifted mask are clear:
1768     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
1769     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1770         (~(*Mask)).shl(*ShAmt).isNullValue())
1771       return Op0;
1772   }
1773 
1774   // A & (-A) = A if A is a power of two or zero.
1775   if (match(Op0, m_Neg(m_Specific(Op1))) ||
1776       match(Op1, m_Neg(m_Specific(Op0)))) {
1777     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1778                                Q.DT))
1779       return Op0;
1780     if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI,
1781                                Q.DT))
1782       return Op1;
1783   }
1784 
1785   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true))
1786     return V;
1787 
1788   // Try some generic simplifications for associative operations.
1789   if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1790                                           MaxRecurse))
1791     return V;
1792 
1793   // And distributes over Or.  Try some generic simplifications based on this.
1794   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
1795                              Q, MaxRecurse))
1796     return V;
1797 
1798   // And distributes over Xor.  Try some generic simplifications based on this.
1799   if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
1800                              Q, MaxRecurse))
1801     return V;
1802 
1803   // If the operation is with the result of a select instruction, check whether
1804   // operating on either branch of the select always yields the same value.
1805   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1806     if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1807                                          MaxRecurse))
1808       return V;
1809 
1810   // If the operation is with the result of a phi instruction, check whether
1811   // operating on all incoming values of the phi always yields the same value.
1812   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1813     if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
1814                                       MaxRecurse))
1815       return V;
1816 
1817   return nullptr;
1818 }
1819 
1820 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1821   return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit);
1822 }
1823 
1824 /// Given operands for an Or, see if we can fold the result.
1825 /// If not, this returns null.
1826 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1827                              unsigned MaxRecurse) {
1828   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
1829     return C;
1830 
1831   // X | undef -> -1
1832   if (match(Op1, m_Undef()))
1833     return Constant::getAllOnesValue(Op0->getType());
1834 
1835   // X | X = X
1836   if (Op0 == Op1)
1837     return Op0;
1838 
1839   // X | 0 = X
1840   if (match(Op1, m_Zero()))
1841     return Op0;
1842 
1843   // X | -1 = -1
1844   if (match(Op1, m_AllOnes()))
1845     return Op1;
1846 
1847   // A | ~A  =  ~A | A  =  -1
1848   if (match(Op0, m_Not(m_Specific(Op1))) ||
1849       match(Op1, m_Not(m_Specific(Op0))))
1850     return Constant::getAllOnesValue(Op0->getType());
1851 
1852   // (A & ?) | A = A
1853   if (match(Op0, m_c_And(m_Specific(Op1), m_Value())))
1854     return Op1;
1855 
1856   // A | (A & ?) = A
1857   if (match(Op1, m_c_And(m_Specific(Op0), m_Value())))
1858     return Op0;
1859 
1860   // ~(A & ?) | A = -1
1861   if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1862     return Constant::getAllOnesValue(Op1->getType());
1863 
1864   // A | ~(A & ?) = -1
1865   if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value()))))
1866     return Constant::getAllOnesValue(Op0->getType());
1867 
1868   Value *A, *B;
1869   // (A & ~B) | (A ^ B) -> (A ^ B)
1870   // (~B & A) | (A ^ B) -> (A ^ B)
1871   // (A & ~B) | (B ^ A) -> (B ^ A)
1872   // (~B & A) | (B ^ A) -> (B ^ A)
1873   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1874       (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1875        match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1876     return Op1;
1877 
1878   // Commute the 'or' operands.
1879   // (A ^ B) | (A & ~B) -> (A ^ B)
1880   // (A ^ B) | (~B & A) -> (A ^ B)
1881   // (B ^ A) | (A & ~B) -> (B ^ A)
1882   // (B ^ A) | (~B & A) -> (B ^ A)
1883   if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1884       (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) ||
1885        match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B)))))
1886     return Op0;
1887 
1888   // (A & B) | (~A ^ B) -> (~A ^ B)
1889   // (B & A) | (~A ^ B) -> (~A ^ B)
1890   // (A & B) | (B ^ ~A) -> (B ^ ~A)
1891   // (B & A) | (B ^ ~A) -> (B ^ ~A)
1892   if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1893       (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1894        match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1895     return Op1;
1896 
1897   // (~A ^ B) | (A & B) -> (~A ^ B)
1898   // (~A ^ B) | (B & A) -> (~A ^ B)
1899   // (B ^ ~A) | (A & B) -> (B ^ ~A)
1900   // (B ^ ~A) | (B & A) -> (B ^ ~A)
1901   if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1902       (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) ||
1903        match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B)))))
1904     return Op0;
1905 
1906   if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false))
1907     return V;
1908 
1909   // Try some generic simplifications for associative operations.
1910   if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1911                                           MaxRecurse))
1912     return V;
1913 
1914   // Or distributes over And.  Try some generic simplifications based on this.
1915   if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1916                              MaxRecurse))
1917     return V;
1918 
1919   // If the operation is with the result of a select instruction, check whether
1920   // operating on either branch of the select always yields the same value.
1921   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1922     if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
1923                                          MaxRecurse))
1924       return V;
1925 
1926   // (A & C1)|(B & C2)
1927   const APInt *C1, *C2;
1928   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
1929       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
1930     if (*C1 == ~*C2) {
1931       // (A & C1)|(B & C2)
1932       // If we have: ((V + N) & C1) | (V & C2)
1933       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
1934       // replace with V+N.
1935       Value *N;
1936       if (C2->isMask() && // C2 == 0+1+
1937           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
1938         // Add commutes, try both ways.
1939         if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1940           return A;
1941       }
1942       // Or commutes, try both ways.
1943       if (C1->isMask() &&
1944           match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
1945         // Add commutes, try both ways.
1946         if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
1947           return B;
1948       }
1949     }
1950   }
1951 
1952   // If the operation is with the result of a phi instruction, check whether
1953   // operating on all incoming values of the phi always yields the same value.
1954   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1955     if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
1956       return V;
1957 
1958   return nullptr;
1959 }
1960 
1961 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1962   return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit);
1963 }
1964 
1965 /// Given operands for a Xor, see if we can fold the result.
1966 /// If not, this returns null.
1967 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1968                               unsigned MaxRecurse) {
1969   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
1970     return C;
1971 
1972   // A ^ undef -> undef
1973   if (match(Op1, m_Undef()))
1974     return Op1;
1975 
1976   // A ^ 0 = A
1977   if (match(Op1, m_Zero()))
1978     return Op0;
1979 
1980   // A ^ A = 0
1981   if (Op0 == Op1)
1982     return Constant::getNullValue(Op0->getType());
1983 
1984   // A ^ ~A  =  ~A ^ A  =  -1
1985   if (match(Op0, m_Not(m_Specific(Op1))) ||
1986       match(Op1, m_Not(m_Specific(Op0))))
1987     return Constant::getAllOnesValue(Op0->getType());
1988 
1989   // Try some generic simplifications for associative operations.
1990   if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1991                                           MaxRecurse))
1992     return V;
1993 
1994   // Threading Xor over selects and phi nodes is pointless, so don't bother.
1995   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1996   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1997   // only if B and C are equal.  If B and C are equal then (since we assume
1998   // that operands have already been simplified) "select(cond, B, C)" should
1999   // have been simplified to the common value of B and C already.  Analysing
2000   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2001   // for threading over phi nodes.
2002 
2003   return nullptr;
2004 }
2005 
2006 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2007   return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit);
2008 }
2009 
2010 
2011 static Type *GetCompareTy(Value *Op) {
2012   return CmpInst::makeCmpResultType(Op->getType());
2013 }
2014 
2015 /// Rummage around inside V looking for something equivalent to the comparison
2016 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2017 /// Helper function for analyzing max/min idioms.
2018 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2019                                          Value *LHS, Value *RHS) {
2020   SelectInst *SI = dyn_cast<SelectInst>(V);
2021   if (!SI)
2022     return nullptr;
2023   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2024   if (!Cmp)
2025     return nullptr;
2026   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2027   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2028     return Cmp;
2029   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2030       LHS == CmpRHS && RHS == CmpLHS)
2031     return Cmp;
2032   return nullptr;
2033 }
2034 
2035 // A significant optimization not implemented here is assuming that alloca
2036 // addresses are not equal to incoming argument values. They don't *alias*,
2037 // as we say, but that doesn't mean they aren't equal, so we take a
2038 // conservative approach.
2039 //
2040 // This is inspired in part by C++11 5.10p1:
2041 //   "Two pointers of the same type compare equal if and only if they are both
2042 //    null, both point to the same function, or both represent the same
2043 //    address."
2044 //
2045 // This is pretty permissive.
2046 //
2047 // It's also partly due to C11 6.5.9p6:
2048 //   "Two pointers compare equal if and only if both are null pointers, both are
2049 //    pointers to the same object (including a pointer to an object and a
2050 //    subobject at its beginning) or function, both are pointers to one past the
2051 //    last element of the same array object, or one is a pointer to one past the
2052 //    end of one array object and the other is a pointer to the start of a
2053 //    different array object that happens to immediately follow the first array
2054 //    object in the address space.)
2055 //
2056 // C11's version is more restrictive, however there's no reason why an argument
2057 // couldn't be a one-past-the-end value for a stack object in the caller and be
2058 // equal to the beginning of a stack object in the callee.
2059 //
2060 // If the C and C++ standards are ever made sufficiently restrictive in this
2061 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2062 // this optimization.
2063 static Constant *
2064 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI,
2065                    const DominatorTree *DT, CmpInst::Predicate Pred,
2066                    const Instruction *CxtI, Value *LHS, Value *RHS) {
2067   // First, skip past any trivial no-ops.
2068   LHS = LHS->stripPointerCasts();
2069   RHS = RHS->stripPointerCasts();
2070 
2071   // A non-null pointer is not equal to a null pointer.
2072   if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
2073       (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
2074     return ConstantInt::get(GetCompareTy(LHS),
2075                             !CmpInst::isTrueWhenEqual(Pred));
2076 
2077   // We can only fold certain predicates on pointer comparisons.
2078   switch (Pred) {
2079   default:
2080     return nullptr;
2081 
2082     // Equality comaprisons are easy to fold.
2083   case CmpInst::ICMP_EQ:
2084   case CmpInst::ICMP_NE:
2085     break;
2086 
2087     // We can only handle unsigned relational comparisons because 'inbounds' on
2088     // a GEP only protects against unsigned wrapping.
2089   case CmpInst::ICMP_UGT:
2090   case CmpInst::ICMP_UGE:
2091   case CmpInst::ICMP_ULT:
2092   case CmpInst::ICMP_ULE:
2093     // However, we have to switch them to their signed variants to handle
2094     // negative indices from the base pointer.
2095     Pred = ICmpInst::getSignedPredicate(Pred);
2096     break;
2097   }
2098 
2099   // Strip off any constant offsets so that we can reason about them.
2100   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2101   // here and compare base addresses like AliasAnalysis does, however there are
2102   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2103   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2104   // doesn't need to guarantee pointer inequality when it says NoAlias.
2105   Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
2106   Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
2107 
2108   // If LHS and RHS are related via constant offsets to the same base
2109   // value, we can replace it with an icmp which just compares the offsets.
2110   if (LHS == RHS)
2111     return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
2112 
2113   // Various optimizations for (in)equality comparisons.
2114   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2115     // Different non-empty allocations that exist at the same time have
2116     // different addresses (if the program can tell). Global variables always
2117     // exist, so they always exist during the lifetime of each other and all
2118     // allocas. Two different allocas usually have different addresses...
2119     //
2120     // However, if there's an @llvm.stackrestore dynamically in between two
2121     // allocas, they may have the same address. It's tempting to reduce the
2122     // scope of the problem by only looking at *static* allocas here. That would
2123     // cover the majority of allocas while significantly reducing the likelihood
2124     // of having an @llvm.stackrestore pop up in the middle. However, it's not
2125     // actually impossible for an @llvm.stackrestore to pop up in the middle of
2126     // an entry block. Also, if we have a block that's not attached to a
2127     // function, we can't tell if it's "static" under the current definition.
2128     // Theoretically, this problem could be fixed by creating a new kind of
2129     // instruction kind specifically for static allocas. Such a new instruction
2130     // could be required to be at the top of the entry block, thus preventing it
2131     // from being subject to a @llvm.stackrestore. Instcombine could even
2132     // convert regular allocas into these special allocas. It'd be nifty.
2133     // However, until then, this problem remains open.
2134     //
2135     // So, we'll assume that two non-empty allocas have different addresses
2136     // for now.
2137     //
2138     // With all that, if the offsets are within the bounds of their allocations
2139     // (and not one-past-the-end! so we can't use inbounds!), and their
2140     // allocations aren't the same, the pointers are not equal.
2141     //
2142     // Note that it's not necessary to check for LHS being a global variable
2143     // address, due to canonicalization and constant folding.
2144     if (isa<AllocaInst>(LHS) &&
2145         (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
2146       ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
2147       ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
2148       uint64_t LHSSize, RHSSize;
2149       if (LHSOffsetCI && RHSOffsetCI &&
2150           getObjectSize(LHS, LHSSize, DL, TLI) &&
2151           getObjectSize(RHS, RHSSize, DL, TLI)) {
2152         const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
2153         const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
2154         if (!LHSOffsetValue.isNegative() &&
2155             !RHSOffsetValue.isNegative() &&
2156             LHSOffsetValue.ult(LHSSize) &&
2157             RHSOffsetValue.ult(RHSSize)) {
2158           return ConstantInt::get(GetCompareTy(LHS),
2159                                   !CmpInst::isTrueWhenEqual(Pred));
2160         }
2161       }
2162 
2163       // Repeat the above check but this time without depending on DataLayout
2164       // or being able to compute a precise size.
2165       if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
2166           !cast<PointerType>(RHS->getType())->isEmptyTy() &&
2167           LHSOffset->isNullValue() &&
2168           RHSOffset->isNullValue())
2169         return ConstantInt::get(GetCompareTy(LHS),
2170                                 !CmpInst::isTrueWhenEqual(Pred));
2171     }
2172 
2173     // Even if an non-inbounds GEP occurs along the path we can still optimize
2174     // equality comparisons concerning the result. We avoid walking the whole
2175     // chain again by starting where the last calls to
2176     // stripAndComputeConstantOffsets left off and accumulate the offsets.
2177     Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true);
2178     Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true);
2179     if (LHS == RHS)
2180       return ConstantExpr::getICmp(Pred,
2181                                    ConstantExpr::getAdd(LHSOffset, LHSNoBound),
2182                                    ConstantExpr::getAdd(RHSOffset, RHSNoBound));
2183 
2184     // If one side of the equality comparison must come from a noalias call
2185     // (meaning a system memory allocation function), and the other side must
2186     // come from a pointer that cannot overlap with dynamically-allocated
2187     // memory within the lifetime of the current function (allocas, byval
2188     // arguments, globals), then determine the comparison result here.
2189     SmallVector<Value *, 8> LHSUObjs, RHSUObjs;
2190     GetUnderlyingObjects(LHS, LHSUObjs, DL);
2191     GetUnderlyingObjects(RHS, RHSUObjs, DL);
2192 
2193     // Is the set of underlying objects all noalias calls?
2194     auto IsNAC = [](ArrayRef<Value *> Objects) {
2195       return all_of(Objects, isNoAliasCall);
2196     };
2197 
2198     // Is the set of underlying objects all things which must be disjoint from
2199     // noalias calls. For allocas, we consider only static ones (dynamic
2200     // allocas might be transformed into calls to malloc not simultaneously
2201     // live with the compared-to allocation). For globals, we exclude symbols
2202     // that might be resolve lazily to symbols in another dynamically-loaded
2203     // library (and, thus, could be malloc'ed by the implementation).
2204     auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) {
2205       return all_of(Objects, [](Value *V) {
2206         if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2207           return AI->getParent() && AI->getFunction() && AI->isStaticAlloca();
2208         if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2209           return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2210                   GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2211                  !GV->isThreadLocal();
2212         if (const Argument *A = dyn_cast<Argument>(V))
2213           return A->hasByValAttr();
2214         return false;
2215       });
2216     };
2217 
2218     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2219         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2220         return ConstantInt::get(GetCompareTy(LHS),
2221                                 !CmpInst::isTrueWhenEqual(Pred));
2222 
2223     // Fold comparisons for non-escaping pointer even if the allocation call
2224     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2225     // dynamic allocation call could be either of the operands.
2226     Value *MI = nullptr;
2227     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT))
2228       MI = LHS;
2229     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT))
2230       MI = RHS;
2231     // FIXME: We should also fold the compare when the pointer escapes, but the
2232     // compare dominates the pointer escape
2233     if (MI && !PointerMayBeCaptured(MI, true, true))
2234       return ConstantInt::get(GetCompareTy(LHS),
2235                               CmpInst::isFalseWhenEqual(Pred));
2236   }
2237 
2238   // Otherwise, fail.
2239   return nullptr;
2240 }
2241 
2242 /// Fold an icmp when its operands have i1 scalar type.
2243 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2244                                   Value *RHS, const SimplifyQuery &Q) {
2245   Type *ITy = GetCompareTy(LHS); // The return type.
2246   Type *OpTy = LHS->getType();   // The operand type.
2247   if (!OpTy->isIntOrIntVectorTy(1))
2248     return nullptr;
2249 
2250   // A boolean compared to true/false can be simplified in 14 out of the 20
2251   // (10 predicates * 2 constants) possible combinations. Cases not handled here
2252   // require a 'not' of the LHS, so those must be transformed in InstCombine.
2253   if (match(RHS, m_Zero())) {
2254     switch (Pred) {
2255     case CmpInst::ICMP_NE:  // X !=  0 -> X
2256     case CmpInst::ICMP_UGT: // X >u  0 -> X
2257     case CmpInst::ICMP_SLT: // X <s  0 -> X
2258       return LHS;
2259 
2260     case CmpInst::ICMP_ULT: // X <u  0 -> false
2261     case CmpInst::ICMP_SGT: // X >s  0 -> false
2262       return getFalse(ITy);
2263 
2264     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2265     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2266       return getTrue(ITy);
2267 
2268     default: break;
2269     }
2270   } else if (match(RHS, m_One())) {
2271     switch (Pred) {
2272     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2273     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2274     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2275       return LHS;
2276 
2277     case CmpInst::ICMP_UGT: // X >u   1 -> false
2278     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2279       return getFalse(ITy);
2280 
2281     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2282     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2283       return getTrue(ITy);
2284 
2285     default: break;
2286     }
2287   }
2288 
2289   switch (Pred) {
2290   default:
2291     break;
2292   case ICmpInst::ICMP_UGE:
2293     if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false))
2294       return getTrue(ITy);
2295     break;
2296   case ICmpInst::ICMP_SGE:
2297     /// For signed comparison, the values for an i1 are 0 and -1
2298     /// respectively. This maps into a truth table of:
2299     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2300     ///  0  |  0  |  1 (0 >= 0)   |  1
2301     ///  0  |  1  |  1 (0 >= -1)  |  1
2302     ///  1  |  0  |  0 (-1 >= 0)  |  0
2303     ///  1  |  1  |  1 (-1 >= -1) |  1
2304     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2305       return getTrue(ITy);
2306     break;
2307   case ICmpInst::ICMP_ULE:
2308     if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false))
2309       return getTrue(ITy);
2310     break;
2311   }
2312 
2313   return nullptr;
2314 }
2315 
2316 /// Try hard to fold icmp with zero RHS because this is a common case.
2317 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2318                                    Value *RHS, const SimplifyQuery &Q) {
2319   if (!match(RHS, m_Zero()))
2320     return nullptr;
2321 
2322   Type *ITy = GetCompareTy(LHS); // The return type.
2323   switch (Pred) {
2324   default:
2325     llvm_unreachable("Unknown ICmp predicate!");
2326   case ICmpInst::ICMP_ULT:
2327     return getFalse(ITy);
2328   case ICmpInst::ICMP_UGE:
2329     return getTrue(ITy);
2330   case ICmpInst::ICMP_EQ:
2331   case ICmpInst::ICMP_ULE:
2332     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2333       return getFalse(ITy);
2334     break;
2335   case ICmpInst::ICMP_NE:
2336   case ICmpInst::ICMP_UGT:
2337     if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2338       return getTrue(ITy);
2339     break;
2340   case ICmpInst::ICMP_SLT: {
2341     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2342     if (LHSKnown.isNegative())
2343       return getTrue(ITy);
2344     if (LHSKnown.isNonNegative())
2345       return getFalse(ITy);
2346     break;
2347   }
2348   case ICmpInst::ICMP_SLE: {
2349     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2350     if (LHSKnown.isNegative())
2351       return getTrue(ITy);
2352     if (LHSKnown.isNonNegative() &&
2353         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2354       return getFalse(ITy);
2355     break;
2356   }
2357   case ICmpInst::ICMP_SGE: {
2358     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2359     if (LHSKnown.isNegative())
2360       return getFalse(ITy);
2361     if (LHSKnown.isNonNegative())
2362       return getTrue(ITy);
2363     break;
2364   }
2365   case ICmpInst::ICMP_SGT: {
2366     KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2367     if (LHSKnown.isNegative())
2368       return getFalse(ITy);
2369     if (LHSKnown.isNonNegative() &&
2370         isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT))
2371       return getTrue(ITy);
2372     break;
2373   }
2374   }
2375 
2376   return nullptr;
2377 }
2378 
2379 /// Many binary operators with a constant operand have an easy-to-compute
2380 /// range of outputs. This can be used to fold a comparison to always true or
2381 /// always false.
2382 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) {
2383   unsigned Width = Lower.getBitWidth();
2384   const APInt *C;
2385   switch (BO.getOpcode()) {
2386   case Instruction::Add:
2387     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2388       // FIXME: If we have both nuw and nsw, we should reduce the range further.
2389       if (BO.hasNoUnsignedWrap()) {
2390         // 'add nuw x, C' produces [C, UINT_MAX].
2391         Lower = *C;
2392       } else if (BO.hasNoSignedWrap()) {
2393         if (C->isNegative()) {
2394           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
2395           Lower = APInt::getSignedMinValue(Width);
2396           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
2397         } else {
2398           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
2399           Lower = APInt::getSignedMinValue(Width) + *C;
2400           Upper = APInt::getSignedMaxValue(Width) + 1;
2401         }
2402       }
2403     }
2404     break;
2405 
2406   case Instruction::And:
2407     if (match(BO.getOperand(1), m_APInt(C)))
2408       // 'and x, C' produces [0, C].
2409       Upper = *C + 1;
2410     break;
2411 
2412   case Instruction::Or:
2413     if (match(BO.getOperand(1), m_APInt(C)))
2414       // 'or x, C' produces [C, UINT_MAX].
2415       Lower = *C;
2416     break;
2417 
2418   case Instruction::AShr:
2419     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2420       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
2421       Lower = APInt::getSignedMinValue(Width).ashr(*C);
2422       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
2423     } else if (match(BO.getOperand(0), m_APInt(C))) {
2424       unsigned ShiftAmount = Width - 1;
2425       if (!C->isNullValue() && BO.isExact())
2426         ShiftAmount = C->countTrailingZeros();
2427       if (C->isNegative()) {
2428         // 'ashr C, x' produces [C, C >> (Width-1)]
2429         Lower = *C;
2430         Upper = C->ashr(ShiftAmount) + 1;
2431       } else {
2432         // 'ashr C, x' produces [C >> (Width-1), C]
2433         Lower = C->ashr(ShiftAmount);
2434         Upper = *C + 1;
2435       }
2436     }
2437     break;
2438 
2439   case Instruction::LShr:
2440     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
2441       // 'lshr x, C' produces [0, UINT_MAX >> C].
2442       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
2443     } else if (match(BO.getOperand(0), m_APInt(C))) {
2444       // 'lshr C, x' produces [C >> (Width-1), C].
2445       unsigned ShiftAmount = Width - 1;
2446       if (!C->isNullValue() && BO.isExact())
2447         ShiftAmount = C->countTrailingZeros();
2448       Lower = C->lshr(ShiftAmount);
2449       Upper = *C + 1;
2450     }
2451     break;
2452 
2453   case Instruction::Shl:
2454     if (match(BO.getOperand(0), m_APInt(C))) {
2455       if (BO.hasNoUnsignedWrap()) {
2456         // 'shl nuw C, x' produces [C, C << CLZ(C)]
2457         Lower = *C;
2458         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
2459       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
2460         if (C->isNegative()) {
2461           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
2462           unsigned ShiftAmount = C->countLeadingOnes() - 1;
2463           Lower = C->shl(ShiftAmount);
2464           Upper = *C + 1;
2465         } else {
2466           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
2467           unsigned ShiftAmount = C->countLeadingZeros() - 1;
2468           Lower = *C;
2469           Upper = C->shl(ShiftAmount) + 1;
2470         }
2471       }
2472     }
2473     break;
2474 
2475   case Instruction::SDiv:
2476     if (match(BO.getOperand(1), m_APInt(C))) {
2477       APInt IntMin = APInt::getSignedMinValue(Width);
2478       APInt IntMax = APInt::getSignedMaxValue(Width);
2479       if (C->isAllOnesValue()) {
2480         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
2481         //    where C != -1 and C != 0 and C != 1
2482         Lower = IntMin + 1;
2483         Upper = IntMax + 1;
2484       } else if (C->countLeadingZeros() < Width - 1) {
2485         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
2486         //    where C != -1 and C != 0 and C != 1
2487         Lower = IntMin.sdiv(*C);
2488         Upper = IntMax.sdiv(*C);
2489         if (Lower.sgt(Upper))
2490           std::swap(Lower, Upper);
2491         Upper = Upper + 1;
2492         assert(Upper != Lower && "Upper part of range has wrapped!");
2493       }
2494     } else if (match(BO.getOperand(0), m_APInt(C))) {
2495       if (C->isMinSignedValue()) {
2496         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
2497         Lower = *C;
2498         Upper = Lower.lshr(1) + 1;
2499       } else {
2500         // 'sdiv C, x' produces [-|C|, |C|].
2501         Upper = C->abs() + 1;
2502         Lower = (-Upper) + 1;
2503       }
2504     }
2505     break;
2506 
2507   case Instruction::UDiv:
2508     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
2509       // 'udiv x, C' produces [0, UINT_MAX / C].
2510       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
2511     } else if (match(BO.getOperand(0), m_APInt(C))) {
2512       // 'udiv C, x' produces [0, C].
2513       Upper = *C + 1;
2514     }
2515     break;
2516 
2517   case Instruction::SRem:
2518     if (match(BO.getOperand(1), m_APInt(C))) {
2519       // 'srem x, C' produces (-|C|, |C|).
2520       Upper = C->abs();
2521       Lower = (-Upper) + 1;
2522     }
2523     break;
2524 
2525   case Instruction::URem:
2526     if (match(BO.getOperand(1), m_APInt(C)))
2527       // 'urem x, C' produces [0, C).
2528       Upper = *C;
2529     break;
2530 
2531   default:
2532     break;
2533   }
2534 }
2535 
2536 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
2537                                        Value *RHS) {
2538   const APInt *C;
2539   if (!match(RHS, m_APInt(C)))
2540     return nullptr;
2541 
2542   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2543   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2544   if (RHS_CR.isEmptySet())
2545     return ConstantInt::getFalse(GetCompareTy(RHS));
2546   if (RHS_CR.isFullSet())
2547     return ConstantInt::getTrue(GetCompareTy(RHS));
2548 
2549   // Find the range of possible values for binary operators.
2550   unsigned Width = C->getBitWidth();
2551   APInt Lower = APInt(Width, 0);
2552   APInt Upper = APInt(Width, 0);
2553   if (auto *BO = dyn_cast<BinaryOperator>(LHS))
2554     setLimitsForBinOp(*BO, Lower, Upper);
2555 
2556   ConstantRange LHS_CR =
2557       Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true);
2558 
2559   if (auto *I = dyn_cast<Instruction>(LHS))
2560     if (auto *Ranges = I->getMetadata(LLVMContext::MD_range))
2561       LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges));
2562 
2563   if (!LHS_CR.isFullSet()) {
2564     if (RHS_CR.contains(LHS_CR))
2565       return ConstantInt::getTrue(GetCompareTy(RHS));
2566     if (RHS_CR.inverse().contains(LHS_CR))
2567       return ConstantInt::getFalse(GetCompareTy(RHS));
2568   }
2569 
2570   return nullptr;
2571 }
2572 
2573 /// TODO: A large part of this logic is duplicated in InstCombine's
2574 /// foldICmpBinOp(). We should be able to share that and avoid the code
2575 /// duplication.
2576 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
2577                                     Value *RHS, const SimplifyQuery &Q,
2578                                     unsigned MaxRecurse) {
2579   Type *ITy = GetCompareTy(LHS); // The return type.
2580 
2581   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2582   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2583   if (MaxRecurse && (LBO || RBO)) {
2584     // Analyze the case when either LHS or RHS is an add instruction.
2585     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
2586     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2587     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2588     if (LBO && LBO->getOpcode() == Instruction::Add) {
2589       A = LBO->getOperand(0);
2590       B = LBO->getOperand(1);
2591       NoLHSWrapProblem =
2592           ICmpInst::isEquality(Pred) ||
2593           (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2594           (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2595     }
2596     if (RBO && RBO->getOpcode() == Instruction::Add) {
2597       C = RBO->getOperand(0);
2598       D = RBO->getOperand(1);
2599       NoRHSWrapProblem =
2600           ICmpInst::isEquality(Pred) ||
2601           (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2602           (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2603     }
2604 
2605     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2606     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2607       if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2608                                       Constant::getNullValue(RHS->getType()), Q,
2609                                       MaxRecurse - 1))
2610         return V;
2611 
2612     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2613     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2614       if (Value *V =
2615               SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
2616                                C == LHS ? D : C, Q, MaxRecurse - 1))
2617         return V;
2618 
2619     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2620     if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem &&
2621         NoRHSWrapProblem) {
2622       // Determine Y and Z in the form icmp (X+Y), (X+Z).
2623       Value *Y, *Z;
2624       if (A == C) {
2625         // C + B == C + D  ->  B == D
2626         Y = B;
2627         Z = D;
2628       } else if (A == D) {
2629         // D + B == C + D  ->  B == C
2630         Y = B;
2631         Z = C;
2632       } else if (B == C) {
2633         // A + C == C + D  ->  A == D
2634         Y = A;
2635         Z = D;
2636       } else {
2637         assert(B == D);
2638         // A + D == C + D  ->  A == C
2639         Y = A;
2640         Z = C;
2641       }
2642       if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
2643         return V;
2644     }
2645   }
2646 
2647   {
2648     Value *Y = nullptr;
2649     // icmp pred (or X, Y), X
2650     if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
2651       if (Pred == ICmpInst::ICMP_ULT)
2652         return getFalse(ITy);
2653       if (Pred == ICmpInst::ICMP_UGE)
2654         return getTrue(ITy);
2655 
2656       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
2657         KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2658         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2659         if (RHSKnown.isNonNegative() && YKnown.isNegative())
2660           return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
2661         if (RHSKnown.isNegative() || YKnown.isNonNegative())
2662           return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
2663       }
2664     }
2665     // icmp pred X, (or X, Y)
2666     if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) {
2667       if (Pred == ICmpInst::ICMP_ULE)
2668         return getTrue(ITy);
2669       if (Pred == ICmpInst::ICMP_UGT)
2670         return getFalse(ITy);
2671 
2672       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) {
2673         KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2674         KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2675         if (LHSKnown.isNonNegative() && YKnown.isNegative())
2676           return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy);
2677         if (LHSKnown.isNegative() || YKnown.isNonNegative())
2678           return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy);
2679       }
2680     }
2681   }
2682 
2683   // icmp pred (and X, Y), X
2684   if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
2685     if (Pred == ICmpInst::ICMP_UGT)
2686       return getFalse(ITy);
2687     if (Pred == ICmpInst::ICMP_ULE)
2688       return getTrue(ITy);
2689   }
2690   // icmp pred X, (and X, Y)
2691   if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) {
2692     if (Pred == ICmpInst::ICMP_UGE)
2693       return getTrue(ITy);
2694     if (Pred == ICmpInst::ICMP_ULT)
2695       return getFalse(ITy);
2696   }
2697 
2698   // 0 - (zext X) pred C
2699   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
2700     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
2701       if (RHSC->getValue().isStrictlyPositive()) {
2702         if (Pred == ICmpInst::ICMP_SLT)
2703           return ConstantInt::getTrue(RHSC->getContext());
2704         if (Pred == ICmpInst::ICMP_SGE)
2705           return ConstantInt::getFalse(RHSC->getContext());
2706         if (Pred == ICmpInst::ICMP_EQ)
2707           return ConstantInt::getFalse(RHSC->getContext());
2708         if (Pred == ICmpInst::ICMP_NE)
2709           return ConstantInt::getTrue(RHSC->getContext());
2710       }
2711       if (RHSC->getValue().isNonNegative()) {
2712         if (Pred == ICmpInst::ICMP_SLE)
2713           return ConstantInt::getTrue(RHSC->getContext());
2714         if (Pred == ICmpInst::ICMP_SGT)
2715           return ConstantInt::getFalse(RHSC->getContext());
2716       }
2717     }
2718   }
2719 
2720   // icmp pred (urem X, Y), Y
2721   if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
2722     switch (Pred) {
2723     default:
2724       break;
2725     case ICmpInst::ICMP_SGT:
2726     case ICmpInst::ICMP_SGE: {
2727       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2728       if (!Known.isNonNegative())
2729         break;
2730       LLVM_FALLTHROUGH;
2731     }
2732     case ICmpInst::ICMP_EQ:
2733     case ICmpInst::ICMP_UGT:
2734     case ICmpInst::ICMP_UGE:
2735       return getFalse(ITy);
2736     case ICmpInst::ICMP_SLT:
2737     case ICmpInst::ICMP_SLE: {
2738       KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2739       if (!Known.isNonNegative())
2740         break;
2741       LLVM_FALLTHROUGH;
2742     }
2743     case ICmpInst::ICMP_NE:
2744     case ICmpInst::ICMP_ULT:
2745     case ICmpInst::ICMP_ULE:
2746       return getTrue(ITy);
2747     }
2748   }
2749 
2750   // icmp pred X, (urem Y, X)
2751   if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2752     switch (Pred) {
2753     default:
2754       break;
2755     case ICmpInst::ICMP_SGT:
2756     case ICmpInst::ICMP_SGE: {
2757       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2758       if (!Known.isNonNegative())
2759         break;
2760       LLVM_FALLTHROUGH;
2761     }
2762     case ICmpInst::ICMP_NE:
2763     case ICmpInst::ICMP_UGT:
2764     case ICmpInst::ICMP_UGE:
2765       return getTrue(ITy);
2766     case ICmpInst::ICMP_SLT:
2767     case ICmpInst::ICMP_SLE: {
2768       KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
2769       if (!Known.isNonNegative())
2770         break;
2771       LLVM_FALLTHROUGH;
2772     }
2773     case ICmpInst::ICMP_EQ:
2774     case ICmpInst::ICMP_ULT:
2775     case ICmpInst::ICMP_ULE:
2776       return getFalse(ITy);
2777     }
2778   }
2779 
2780   // x >> y <=u x
2781   // x udiv y <=u x.
2782   if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
2783               match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) {
2784     // icmp pred (X op Y), X
2785     if (Pred == ICmpInst::ICMP_UGT)
2786       return getFalse(ITy);
2787     if (Pred == ICmpInst::ICMP_ULE)
2788       return getTrue(ITy);
2789   }
2790 
2791   // x >=u x >> y
2792   // x >=u x udiv y.
2793   if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) ||
2794               match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) {
2795     // icmp pred X, (X op Y)
2796     if (Pred == ICmpInst::ICMP_ULT)
2797       return getFalse(ITy);
2798     if (Pred == ICmpInst::ICMP_UGE)
2799       return getTrue(ITy);
2800   }
2801 
2802   // handle:
2803   //   CI2 << X == CI
2804   //   CI2 << X != CI
2805   //
2806   //   where CI2 is a power of 2 and CI isn't
2807   if (auto *CI = dyn_cast<ConstantInt>(RHS)) {
2808     const APInt *CI2Val, *CIVal = &CI->getValue();
2809     if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) &&
2810         CI2Val->isPowerOf2()) {
2811       if (!CIVal->isPowerOf2()) {
2812         // CI2 << X can equal zero in some circumstances,
2813         // this simplification is unsafe if CI is zero.
2814         //
2815         // We know it is safe if:
2816         // - The shift is nsw, we can't shift out the one bit.
2817         // - The shift is nuw, we can't shift out the one bit.
2818         // - CI2 is one
2819         // - CI isn't zero
2820         if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() ||
2821             CI2Val->isOneValue() || !CI->isZero()) {
2822           if (Pred == ICmpInst::ICMP_EQ)
2823             return ConstantInt::getFalse(RHS->getContext());
2824           if (Pred == ICmpInst::ICMP_NE)
2825             return ConstantInt::getTrue(RHS->getContext());
2826         }
2827       }
2828       if (CIVal->isSignMask() && CI2Val->isOneValue()) {
2829         if (Pred == ICmpInst::ICMP_UGT)
2830           return ConstantInt::getFalse(RHS->getContext());
2831         if (Pred == ICmpInst::ICMP_ULE)
2832           return ConstantInt::getTrue(RHS->getContext());
2833       }
2834     }
2835   }
2836 
2837   if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2838       LBO->getOperand(1) == RBO->getOperand(1)) {
2839     switch (LBO->getOpcode()) {
2840     default:
2841       break;
2842     case Instruction::UDiv:
2843     case Instruction::LShr:
2844       if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact())
2845         break;
2846       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2847                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2848           return V;
2849       break;
2850     case Instruction::SDiv:
2851       if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact())
2852         break;
2853       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2854                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2855         return V;
2856       break;
2857     case Instruction::AShr:
2858       if (!LBO->isExact() || !RBO->isExact())
2859         break;
2860       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2861                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2862         return V;
2863       break;
2864     case Instruction::Shl: {
2865       bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
2866       bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2867       if (!NUW && !NSW)
2868         break;
2869       if (!NSW && ICmpInst::isSigned(Pred))
2870         break;
2871       if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
2872                                       RBO->getOperand(0), Q, MaxRecurse - 1))
2873         return V;
2874       break;
2875     }
2876     }
2877   }
2878   return nullptr;
2879 }
2880 
2881 /// Simplify integer comparisons where at least one operand of the compare
2882 /// matches an integer min/max idiom.
2883 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
2884                                      Value *RHS, const SimplifyQuery &Q,
2885                                      unsigned MaxRecurse) {
2886   Type *ITy = GetCompareTy(LHS); // The return type.
2887   Value *A, *B;
2888   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
2889   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
2890 
2891   // Signed variants on "max(a,b)>=a -> true".
2892   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2893     if (A != RHS)
2894       std::swap(A, B);       // smax(A, B) pred A.
2895     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2896     // We analyze this as smax(A, B) pred A.
2897     P = Pred;
2898   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2899              (A == LHS || B == LHS)) {
2900     if (A != LHS)
2901       std::swap(A, B);       // A pred smax(A, B).
2902     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
2903     // We analyze this as smax(A, B) swapped-pred A.
2904     P = CmpInst::getSwappedPredicate(Pred);
2905   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2906              (A == RHS || B == RHS)) {
2907     if (A != RHS)
2908       std::swap(A, B);       // smin(A, B) pred A.
2909     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2910     // We analyze this as smax(-A, -B) swapped-pred -A.
2911     // Note that we do not need to actually form -A or -B thanks to EqP.
2912     P = CmpInst::getSwappedPredicate(Pred);
2913   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2914              (A == LHS || B == LHS)) {
2915     if (A != LHS)
2916       std::swap(A, B);       // A pred smin(A, B).
2917     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
2918     // We analyze this as smax(-A, -B) pred -A.
2919     // Note that we do not need to actually form -A or -B thanks to EqP.
2920     P = Pred;
2921   }
2922   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2923     // Cases correspond to "max(A, B) p A".
2924     switch (P) {
2925     default:
2926       break;
2927     case CmpInst::ICMP_EQ:
2928     case CmpInst::ICMP_SLE:
2929       // Equivalent to "A EqP B".  This may be the same as the condition tested
2930       // in the max/min; if so, we can just return that.
2931       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2932         return V;
2933       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2934         return V;
2935       // Otherwise, see if "A EqP B" simplifies.
2936       if (MaxRecurse)
2937         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
2938           return V;
2939       break;
2940     case CmpInst::ICMP_NE:
2941     case CmpInst::ICMP_SGT: {
2942       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2943       // Equivalent to "A InvEqP B".  This may be the same as the condition
2944       // tested in the max/min; if so, we can just return that.
2945       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2946         return V;
2947       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2948         return V;
2949       // Otherwise, see if "A InvEqP B" simplifies.
2950       if (MaxRecurse)
2951         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
2952           return V;
2953       break;
2954     }
2955     case CmpInst::ICMP_SGE:
2956       // Always true.
2957       return getTrue(ITy);
2958     case CmpInst::ICMP_SLT:
2959       // Always false.
2960       return getFalse(ITy);
2961     }
2962   }
2963 
2964   // Unsigned variants on "max(a,b)>=a -> true".
2965   P = CmpInst::BAD_ICMP_PREDICATE;
2966   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2967     if (A != RHS)
2968       std::swap(A, B);       // umax(A, B) pred A.
2969     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2970     // We analyze this as umax(A, B) pred A.
2971     P = Pred;
2972   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2973              (A == LHS || B == LHS)) {
2974     if (A != LHS)
2975       std::swap(A, B);       // A pred umax(A, B).
2976     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
2977     // We analyze this as umax(A, B) swapped-pred A.
2978     P = CmpInst::getSwappedPredicate(Pred);
2979   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2980              (A == RHS || B == RHS)) {
2981     if (A != RHS)
2982       std::swap(A, B);       // umin(A, B) pred A.
2983     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2984     // We analyze this as umax(-A, -B) swapped-pred -A.
2985     // Note that we do not need to actually form -A or -B thanks to EqP.
2986     P = CmpInst::getSwappedPredicate(Pred);
2987   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2988              (A == LHS || B == LHS)) {
2989     if (A != LHS)
2990       std::swap(A, B);       // A pred umin(A, B).
2991     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
2992     // We analyze this as umax(-A, -B) pred -A.
2993     // Note that we do not need to actually form -A or -B thanks to EqP.
2994     P = Pred;
2995   }
2996   if (P != CmpInst::BAD_ICMP_PREDICATE) {
2997     // Cases correspond to "max(A, B) p A".
2998     switch (P) {
2999     default:
3000       break;
3001     case CmpInst::ICMP_EQ:
3002     case CmpInst::ICMP_ULE:
3003       // Equivalent to "A EqP B".  This may be the same as the condition tested
3004       // in the max/min; if so, we can just return that.
3005       if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
3006         return V;
3007       if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
3008         return V;
3009       // Otherwise, see if "A EqP B" simplifies.
3010       if (MaxRecurse)
3011         if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3012           return V;
3013       break;
3014     case CmpInst::ICMP_NE:
3015     case CmpInst::ICMP_UGT: {
3016       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3017       // Equivalent to "A InvEqP B".  This may be the same as the condition
3018       // tested in the max/min; if so, we can just return that.
3019       if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
3020         return V;
3021       if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
3022         return V;
3023       // Otherwise, see if "A InvEqP B" simplifies.
3024       if (MaxRecurse)
3025         if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3026           return V;
3027       break;
3028     }
3029     case CmpInst::ICMP_UGE:
3030       // Always true.
3031       return getTrue(ITy);
3032     case CmpInst::ICMP_ULT:
3033       // Always false.
3034       return getFalse(ITy);
3035     }
3036   }
3037 
3038   // Variants on "max(x,y) >= min(x,z)".
3039   Value *C, *D;
3040   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3041       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3042       (A == C || A == D || B == C || B == D)) {
3043     // max(x, ?) pred min(x, ?).
3044     if (Pred == CmpInst::ICMP_SGE)
3045       // Always true.
3046       return getTrue(ITy);
3047     if (Pred == CmpInst::ICMP_SLT)
3048       // Always false.
3049       return getFalse(ITy);
3050   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3051              match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
3052              (A == C || A == D || B == C || B == D)) {
3053     // min(x, ?) pred max(x, ?).
3054     if (Pred == CmpInst::ICMP_SLE)
3055       // Always true.
3056       return getTrue(ITy);
3057     if (Pred == CmpInst::ICMP_SGT)
3058       // Always false.
3059       return getFalse(ITy);
3060   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3061              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3062              (A == C || A == D || B == C || B == D)) {
3063     // max(x, ?) pred min(x, ?).
3064     if (Pred == CmpInst::ICMP_UGE)
3065       // Always true.
3066       return getTrue(ITy);
3067     if (Pred == CmpInst::ICMP_ULT)
3068       // Always false.
3069       return getFalse(ITy);
3070   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3071              match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
3072              (A == C || A == D || B == C || B == D)) {
3073     // min(x, ?) pred max(x, ?).
3074     if (Pred == CmpInst::ICMP_ULE)
3075       // Always true.
3076       return getTrue(ITy);
3077     if (Pred == CmpInst::ICMP_UGT)
3078       // Always false.
3079       return getFalse(ITy);
3080   }
3081 
3082   return nullptr;
3083 }
3084 
3085 /// Given operands for an ICmpInst, see if we can fold the result.
3086 /// If not, this returns null.
3087 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3088                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3089   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3090   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3091 
3092   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3093     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3094       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3095 
3096     // If we have a constant, make sure it is on the RHS.
3097     std::swap(LHS, RHS);
3098     Pred = CmpInst::getSwappedPredicate(Pred);
3099   }
3100 
3101   Type *ITy = GetCompareTy(LHS); // The return type.
3102 
3103   // icmp X, X -> true/false
3104   // X icmp undef -> true/false.  For example, icmp ugt %X, undef -> false
3105   // because X could be 0.
3106   if (LHS == RHS || isa<UndefValue>(RHS))
3107     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3108 
3109   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3110     return V;
3111 
3112   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3113     return V;
3114 
3115   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS))
3116     return V;
3117 
3118   // If both operands have range metadata, use the metadata
3119   // to simplify the comparison.
3120   if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) {
3121     auto RHS_Instr = cast<Instruction>(RHS);
3122     auto LHS_Instr = cast<Instruction>(LHS);
3123 
3124     if (RHS_Instr->getMetadata(LLVMContext::MD_range) &&
3125         LHS_Instr->getMetadata(LLVMContext::MD_range)) {
3126       auto RHS_CR = getConstantRangeFromMetadata(
3127           *RHS_Instr->getMetadata(LLVMContext::MD_range));
3128       auto LHS_CR = getConstantRangeFromMetadata(
3129           *LHS_Instr->getMetadata(LLVMContext::MD_range));
3130 
3131       auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR);
3132       if (Satisfied_CR.contains(LHS_CR))
3133         return ConstantInt::getTrue(RHS->getContext());
3134 
3135       auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion(
3136                 CmpInst::getInversePredicate(Pred), RHS_CR);
3137       if (InversedSatisfied_CR.contains(LHS_CR))
3138         return ConstantInt::getFalse(RHS->getContext());
3139     }
3140   }
3141 
3142   // Compare of cast, for example (zext X) != 0 -> X != 0
3143   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3144     Instruction *LI = cast<CastInst>(LHS);
3145     Value *SrcOp = LI->getOperand(0);
3146     Type *SrcTy = SrcOp->getType();
3147     Type *DstTy = LI->getType();
3148 
3149     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3150     // if the integer type is the same size as the pointer type.
3151     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3152         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3153       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3154         // Transfer the cast to the constant.
3155         if (Value *V = SimplifyICmpInst(Pred, SrcOp,
3156                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3157                                         Q, MaxRecurse-1))
3158           return V;
3159       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3160         if (RI->getOperand(0)->getType() == SrcTy)
3161           // Compare without the cast.
3162           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3163                                           Q, MaxRecurse-1))
3164             return V;
3165       }
3166     }
3167 
3168     if (isa<ZExtInst>(LHS)) {
3169       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3170       // same type.
3171       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3172         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3173           // Compare X and Y.  Note that signed predicates become unsigned.
3174           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3175                                           SrcOp, RI->getOperand(0), Q,
3176                                           MaxRecurse-1))
3177             return V;
3178       }
3179       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3180       // too.  If not, then try to deduce the result of the comparison.
3181       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3182         // Compute the constant that would happen if we truncated to SrcTy then
3183         // reextended to DstTy.
3184         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3185         Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
3186 
3187         // If the re-extended constant didn't change then this is effectively
3188         // also a case of comparing two zero-extended values.
3189         if (RExt == CI && MaxRecurse)
3190           if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3191                                         SrcOp, Trunc, Q, MaxRecurse-1))
3192             return V;
3193 
3194         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3195         // there.  Use this to work out the result of the comparison.
3196         if (RExt != CI) {
3197           switch (Pred) {
3198           default: llvm_unreachable("Unknown ICmp predicate!");
3199           // LHS <u RHS.
3200           case ICmpInst::ICMP_EQ:
3201           case ICmpInst::ICMP_UGT:
3202           case ICmpInst::ICMP_UGE:
3203             return ConstantInt::getFalse(CI->getContext());
3204 
3205           case ICmpInst::ICMP_NE:
3206           case ICmpInst::ICMP_ULT:
3207           case ICmpInst::ICMP_ULE:
3208             return ConstantInt::getTrue(CI->getContext());
3209 
3210           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3211           // is non-negative then LHS <s RHS.
3212           case ICmpInst::ICMP_SGT:
3213           case ICmpInst::ICMP_SGE:
3214             return CI->getValue().isNegative() ?
3215               ConstantInt::getTrue(CI->getContext()) :
3216               ConstantInt::getFalse(CI->getContext());
3217 
3218           case ICmpInst::ICMP_SLT:
3219           case ICmpInst::ICMP_SLE:
3220             return CI->getValue().isNegative() ?
3221               ConstantInt::getFalse(CI->getContext()) :
3222               ConstantInt::getTrue(CI->getContext());
3223           }
3224         }
3225       }
3226     }
3227 
3228     if (isa<SExtInst>(LHS)) {
3229       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3230       // same type.
3231       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3232         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3233           // Compare X and Y.  Note that the predicate does not change.
3234           if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
3235                                           Q, MaxRecurse-1))
3236             return V;
3237       }
3238       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3239       // too.  If not, then try to deduce the result of the comparison.
3240       else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
3241         // Compute the constant that would happen if we truncated to SrcTy then
3242         // reextended to DstTy.
3243         Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
3244         Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
3245 
3246         // If the re-extended constant didn't change then this is effectively
3247         // also a case of comparing two sign-extended values.
3248         if (RExt == CI && MaxRecurse)
3249           if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
3250             return V;
3251 
3252         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3253         // bits there.  Use this to work out the result of the comparison.
3254         if (RExt != CI) {
3255           switch (Pred) {
3256           default: llvm_unreachable("Unknown ICmp predicate!");
3257           case ICmpInst::ICMP_EQ:
3258             return ConstantInt::getFalse(CI->getContext());
3259           case ICmpInst::ICMP_NE:
3260             return ConstantInt::getTrue(CI->getContext());
3261 
3262           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3263           // LHS >s RHS.
3264           case ICmpInst::ICMP_SGT:
3265           case ICmpInst::ICMP_SGE:
3266             return CI->getValue().isNegative() ?
3267               ConstantInt::getTrue(CI->getContext()) :
3268               ConstantInt::getFalse(CI->getContext());
3269           case ICmpInst::ICMP_SLT:
3270           case ICmpInst::ICMP_SLE:
3271             return CI->getValue().isNegative() ?
3272               ConstantInt::getFalse(CI->getContext()) :
3273               ConstantInt::getTrue(CI->getContext());
3274 
3275           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3276           // LHS >u RHS.
3277           case ICmpInst::ICMP_UGT:
3278           case ICmpInst::ICMP_UGE:
3279             // Comparison is true iff the LHS <s 0.
3280             if (MaxRecurse)
3281               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3282                                               Constant::getNullValue(SrcTy),
3283                                               Q, MaxRecurse-1))
3284                 return V;
3285             break;
3286           case ICmpInst::ICMP_ULT:
3287           case ICmpInst::ICMP_ULE:
3288             // Comparison is true iff the LHS >=s 0.
3289             if (MaxRecurse)
3290               if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3291                                               Constant::getNullValue(SrcTy),
3292                                               Q, MaxRecurse-1))
3293                 return V;
3294             break;
3295           }
3296         }
3297       }
3298     }
3299   }
3300 
3301   // icmp eq|ne X, Y -> false|true if X != Y
3302   if (ICmpInst::isEquality(Pred) &&
3303       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) {
3304     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3305   }
3306 
3307   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3308     return V;
3309 
3310   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3311     return V;
3312 
3313   // Simplify comparisons of related pointers using a powerful, recursive
3314   // GEP-walk when we have target data available..
3315   if (LHS->getType()->isPointerTy())
3316     if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS))
3317       return C;
3318   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
3319     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
3320       if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
3321               Q.DL.getTypeSizeInBits(CLHS->getType()) &&
3322           Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) ==
3323               Q.DL.getTypeSizeInBits(CRHS->getType()))
3324         if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI,
3325                                          CLHS->getPointerOperand(),
3326                                          CRHS->getPointerOperand()))
3327           return C;
3328 
3329   if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
3330     if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
3331       if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
3332           GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
3333           (ICmpInst::isEquality(Pred) ||
3334            (GLHS->isInBounds() && GRHS->isInBounds() &&
3335             Pred == ICmpInst::getSignedPredicate(Pred)))) {
3336         // The bases are equal and the indices are constant.  Build a constant
3337         // expression GEP with the same indices and a null base pointer to see
3338         // what constant folding can make out of it.
3339         Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
3340         SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
3341         Constant *NewLHS = ConstantExpr::getGetElementPtr(
3342             GLHS->getSourceElementType(), Null, IndicesLHS);
3343 
3344         SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
3345         Constant *NewRHS = ConstantExpr::getGetElementPtr(
3346             GLHS->getSourceElementType(), Null, IndicesRHS);
3347         return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
3348       }
3349     }
3350   }
3351 
3352   // If the comparison is with the result of a select instruction, check whether
3353   // comparing with either branch of the select always yields the same value.
3354   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3355     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3356       return V;
3357 
3358   // If the comparison is with the result of a phi instruction, check whether
3359   // doing the compare with each incoming phi value yields a common result.
3360   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3361     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3362       return V;
3363 
3364   return nullptr;
3365 }
3366 
3367 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3368                               const SimplifyQuery &Q) {
3369   return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
3370 }
3371 
3372 /// Given operands for an FCmpInst, see if we can fold the result.
3373 /// If not, this returns null.
3374 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3375                                FastMathFlags FMF, const SimplifyQuery &Q,
3376                                unsigned MaxRecurse) {
3377   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3378   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
3379 
3380   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3381     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3382       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3383 
3384     // If we have a constant, make sure it is on the RHS.
3385     std::swap(LHS, RHS);
3386     Pred = CmpInst::getSwappedPredicate(Pred);
3387   }
3388 
3389   // Fold trivial predicates.
3390   Type *RetTy = GetCompareTy(LHS);
3391   if (Pred == FCmpInst::FCMP_FALSE)
3392     return getFalse(RetTy);
3393   if (Pred == FCmpInst::FCMP_TRUE)
3394     return getTrue(RetTy);
3395 
3396   // UNO/ORD predicates can be trivially folded if NaNs are ignored.
3397   if (FMF.noNaNs()) {
3398     if (Pred == FCmpInst::FCMP_UNO)
3399       return getFalse(RetTy);
3400     if (Pred == FCmpInst::FCMP_ORD)
3401       return getTrue(RetTy);
3402   }
3403 
3404   // fcmp pred x, undef  and  fcmp pred undef, x
3405   // fold to true if unordered, false if ordered
3406   if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) {
3407     // Choosing NaN for the undef will always make unordered comparison succeed
3408     // and ordered comparison fail.
3409     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
3410   }
3411 
3412   // fcmp x,x -> true/false.  Not all compares are foldable.
3413   if (LHS == RHS) {
3414     if (CmpInst::isTrueWhenEqual(Pred))
3415       return getTrue(RetTy);
3416     if (CmpInst::isFalseWhenEqual(Pred))
3417       return getFalse(RetTy);
3418   }
3419 
3420   // Handle fcmp with constant RHS
3421   const ConstantFP *CFP = nullptr;
3422   if (const auto *RHSC = dyn_cast<Constant>(RHS)) {
3423     if (RHS->getType()->isVectorTy())
3424       CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue());
3425     else
3426       CFP = dyn_cast<ConstantFP>(RHSC);
3427   }
3428   if (CFP) {
3429     // If the constant is a nan, see if we can fold the comparison based on it.
3430     if (CFP->getValueAPF().isNaN()) {
3431       if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
3432         return getFalse(RetTy);
3433       assert(FCmpInst::isUnordered(Pred) &&
3434              "Comparison must be either ordered or unordered!");
3435       // True if unordered.
3436       return getTrue(RetTy);
3437     }
3438     // Check whether the constant is an infinity.
3439     if (CFP->getValueAPF().isInfinity()) {
3440       if (CFP->getValueAPF().isNegative()) {
3441         switch (Pred) {
3442         case FCmpInst::FCMP_OLT:
3443           // No value is ordered and less than negative infinity.
3444           return getFalse(RetTy);
3445         case FCmpInst::FCMP_UGE:
3446           // All values are unordered with or at least negative infinity.
3447           return getTrue(RetTy);
3448         default:
3449           break;
3450         }
3451       } else {
3452         switch (Pred) {
3453         case FCmpInst::FCMP_OGT:
3454           // No value is ordered and greater than infinity.
3455           return getFalse(RetTy);
3456         case FCmpInst::FCMP_ULE:
3457           // All values are unordered with and at most infinity.
3458           return getTrue(RetTy);
3459         default:
3460           break;
3461         }
3462       }
3463     }
3464     if (CFP->getValueAPF().isZero()) {
3465       switch (Pred) {
3466       case FCmpInst::FCMP_UGE:
3467         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3468           return getTrue(RetTy);
3469         break;
3470       case FCmpInst::FCMP_OLT:
3471         // X < 0
3472         if (CannotBeOrderedLessThanZero(LHS, Q.TLI))
3473           return getFalse(RetTy);
3474         break;
3475       default:
3476         break;
3477       }
3478     }
3479   }
3480 
3481   // If the comparison is with the result of a select instruction, check whether
3482   // comparing with either branch of the select always yields the same value.
3483   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
3484     if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
3485       return V;
3486 
3487   // If the comparison is with the result of a phi instruction, check whether
3488   // doing the compare with each incoming phi value yields a common result.
3489   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
3490     if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
3491       return V;
3492 
3493   return nullptr;
3494 }
3495 
3496 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3497                               FastMathFlags FMF, const SimplifyQuery &Q) {
3498   return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
3499 }
3500 
3501 /// See if V simplifies when its operand Op is replaced with RepOp.
3502 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
3503                                            const SimplifyQuery &Q,
3504                                            unsigned MaxRecurse) {
3505   // Trivial replacement.
3506   if (V == Op)
3507     return RepOp;
3508 
3509   // We cannot replace a constant, and shouldn't even try.
3510   if (isa<Constant>(Op))
3511     return nullptr;
3512 
3513   auto *I = dyn_cast<Instruction>(V);
3514   if (!I)
3515     return nullptr;
3516 
3517   // If this is a binary operator, try to simplify it with the replaced op.
3518   if (auto *B = dyn_cast<BinaryOperator>(I)) {
3519     // Consider:
3520     //   %cmp = icmp eq i32 %x, 2147483647
3521     //   %add = add nsw i32 %x, 1
3522     //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
3523     //
3524     // We can't replace %sel with %add unless we strip away the flags.
3525     if (isa<OverflowingBinaryOperator>(B))
3526       if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap())
3527         return nullptr;
3528     if (isa<PossiblyExactOperator>(B))
3529       if (B->isExact())
3530         return nullptr;
3531 
3532     if (MaxRecurse) {
3533       if (B->getOperand(0) == Op)
3534         return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q,
3535                              MaxRecurse - 1);
3536       if (B->getOperand(1) == Op)
3537         return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q,
3538                              MaxRecurse - 1);
3539     }
3540   }
3541 
3542   // Same for CmpInsts.
3543   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
3544     if (MaxRecurse) {
3545       if (C->getOperand(0) == Op)
3546         return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q,
3547                                MaxRecurse - 1);
3548       if (C->getOperand(1) == Op)
3549         return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q,
3550                                MaxRecurse - 1);
3551     }
3552   }
3553 
3554   // TODO: We could hand off more cases to instsimplify here.
3555 
3556   // If all operands are constant after substituting Op for RepOp then we can
3557   // constant fold the instruction.
3558   if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) {
3559     // Build a list of all constant operands.
3560     SmallVector<Constant *, 8> ConstOps;
3561     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
3562       if (I->getOperand(i) == Op)
3563         ConstOps.push_back(CRepOp);
3564       else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i)))
3565         ConstOps.push_back(COp);
3566       else
3567         break;
3568     }
3569 
3570     // All operands were constants, fold it.
3571     if (ConstOps.size() == I->getNumOperands()) {
3572       if (CmpInst *C = dyn_cast<CmpInst>(I))
3573         return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0],
3574                                                ConstOps[1], Q.DL, Q.TLI);
3575 
3576       if (LoadInst *LI = dyn_cast<LoadInst>(I))
3577         if (!LI->isVolatile())
3578           return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL);
3579 
3580       return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
3581     }
3582   }
3583 
3584   return nullptr;
3585 }
3586 
3587 /// Try to simplify a select instruction when its condition operand is an
3588 /// integer comparison where one operand of the compare is a constant.
3589 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
3590                                     const APInt *Y, bool TrueWhenUnset) {
3591   const APInt *C;
3592 
3593   // (X & Y) == 0 ? X & ~Y : X  --> X
3594   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
3595   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
3596       *Y == ~*C)
3597     return TrueWhenUnset ? FalseVal : TrueVal;
3598 
3599   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
3600   // (X & Y) != 0 ? X : X & ~Y  --> X
3601   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
3602       *Y == ~*C)
3603     return TrueWhenUnset ? FalseVal : TrueVal;
3604 
3605   if (Y->isPowerOf2()) {
3606     // (X & Y) == 0 ? X | Y : X  --> X | Y
3607     // (X & Y) != 0 ? X | Y : X  --> X
3608     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
3609         *Y == *C)
3610       return TrueWhenUnset ? TrueVal : FalseVal;
3611 
3612     // (X & Y) == 0 ? X : X | Y  --> X
3613     // (X & Y) != 0 ? X : X | Y  --> X | Y
3614     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
3615         *Y == *C)
3616       return TrueWhenUnset ? TrueVal : FalseVal;
3617   }
3618 
3619   return nullptr;
3620 }
3621 
3622 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
3623 /// eq/ne.
3624 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
3625                                            ICmpInst::Predicate Pred,
3626                                            Value *TrueVal, Value *FalseVal) {
3627   Value *X;
3628   APInt Mask;
3629   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
3630     return nullptr;
3631 
3632   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
3633                                Pred == ICmpInst::ICMP_EQ);
3634 }
3635 
3636 /// Try to simplify a select instruction when its condition operand is an
3637 /// integer comparison.
3638 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
3639                                          Value *FalseVal, const SimplifyQuery &Q,
3640                                          unsigned MaxRecurse) {
3641   ICmpInst::Predicate Pred;
3642   Value *CmpLHS, *CmpRHS;
3643   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
3644     return nullptr;
3645 
3646   if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) {
3647     Value *X;
3648     const APInt *Y;
3649     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
3650       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
3651                                            Pred == ICmpInst::ICMP_EQ))
3652         return V;
3653   }
3654 
3655   // Check for other compares that behave like bit test.
3656   if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred,
3657                                               TrueVal, FalseVal))
3658     return V;
3659 
3660   if (CondVal->hasOneUse()) {
3661     const APInt *C;
3662     if (match(CmpRHS, m_APInt(C))) {
3663       // X < MIN ? T : F  -->  F
3664       if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue())
3665         return FalseVal;
3666       // X < MIN ? T : F  -->  F
3667       if (Pred == ICmpInst::ICMP_ULT && C->isMinValue())
3668         return FalseVal;
3669       // X > MAX ? T : F  -->  F
3670       if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue())
3671         return FalseVal;
3672       // X > MAX ? T : F  -->  F
3673       if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue())
3674         return FalseVal;
3675     }
3676   }
3677 
3678   // If we have an equality comparison, then we know the value in one of the
3679   // arms of the select. See if substituting this value into the arm and
3680   // simplifying the result yields the same value as the other arm.
3681   if (Pred == ICmpInst::ICMP_EQ) {
3682     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3683             TrueVal ||
3684         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3685             TrueVal)
3686       return FalseVal;
3687     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3688             FalseVal ||
3689         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3690             FalseVal)
3691       return FalseVal;
3692   } else if (Pred == ICmpInst::ICMP_NE) {
3693     if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3694             FalseVal ||
3695         SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3696             FalseVal)
3697       return TrueVal;
3698     if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) ==
3699             TrueVal ||
3700         SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) ==
3701             TrueVal)
3702       return TrueVal;
3703   }
3704 
3705   return nullptr;
3706 }
3707 
3708 /// Given operands for a SelectInst, see if we can fold the result.
3709 /// If not, this returns null.
3710 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
3711                                  Value *FalseVal, const SimplifyQuery &Q,
3712                                  unsigned MaxRecurse) {
3713   // select true, X, Y  -> X
3714   // select false, X, Y -> Y
3715   if (Constant *CB = dyn_cast<Constant>(CondVal)) {
3716     if (CB->isAllOnesValue())
3717       return TrueVal;
3718     if (CB->isNullValue())
3719       return FalseVal;
3720   }
3721 
3722   // select C, X, X -> X
3723   if (TrueVal == FalseVal)
3724     return TrueVal;
3725 
3726   if (isa<UndefValue>(CondVal)) {  // select undef, X, Y -> X or Y
3727     if (isa<Constant>(FalseVal))
3728       return FalseVal;
3729     return TrueVal;
3730   }
3731   if (isa<UndefValue>(TrueVal))   // select C, undef, X -> X
3732     return FalseVal;
3733   if (isa<UndefValue>(FalseVal))   // select C, X, undef -> X
3734     return TrueVal;
3735 
3736   if (Value *V =
3737           simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse))
3738     return V;
3739 
3740   return nullptr;
3741 }
3742 
3743 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
3744                                 const SimplifyQuery &Q) {
3745   return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
3746 }
3747 
3748 /// Given operands for an GetElementPtrInst, see if we can fold the result.
3749 /// If not, this returns null.
3750 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3751                               const SimplifyQuery &Q, unsigned) {
3752   // The type of the GEP pointer operand.
3753   unsigned AS =
3754       cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace();
3755 
3756   // getelementptr P -> P.
3757   if (Ops.size() == 1)
3758     return Ops[0];
3759 
3760   // Compute the (pointer) type returned by the GEP instruction.
3761   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1));
3762   Type *GEPTy = PointerType::get(LastType, AS);
3763   if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType()))
3764     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3765   else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType()))
3766     GEPTy = VectorType::get(GEPTy, VT->getNumElements());
3767 
3768   if (isa<UndefValue>(Ops[0]))
3769     return UndefValue::get(GEPTy);
3770 
3771   if (Ops.size() == 2) {
3772     // getelementptr P, 0 -> P.
3773     if (match(Ops[1], m_Zero()))
3774       return Ops[0];
3775 
3776     Type *Ty = SrcTy;
3777     if (Ty->isSized()) {
3778       Value *P;
3779       uint64_t C;
3780       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
3781       // getelementptr P, N -> P if P points to a type of zero size.
3782       if (TyAllocSize == 0)
3783         return Ops[0];
3784 
3785       // The following transforms are only safe if the ptrtoint cast
3786       // doesn't truncate the pointers.
3787       if (Ops[1]->getType()->getScalarSizeInBits() ==
3788           Q.DL.getPointerSizeInBits(AS)) {
3789         auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * {
3790           if (match(P, m_Zero()))
3791             return Constant::getNullValue(GEPTy);
3792           Value *Temp;
3793           if (match(P, m_PtrToInt(m_Value(Temp))))
3794             if (Temp->getType() == GEPTy)
3795               return Temp;
3796           return nullptr;
3797         };
3798 
3799         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
3800         if (TyAllocSize == 1 &&
3801             match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0])))))
3802           if (Value *R = PtrToIntOrZero(P))
3803             return R;
3804 
3805         // getelementptr V, (ashr (sub P, V), C) -> Q
3806         // if P points to a type of size 1 << C.
3807         if (match(Ops[1],
3808                   m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3809                          m_ConstantInt(C))) &&
3810             TyAllocSize == 1ULL << C)
3811           if (Value *R = PtrToIntOrZero(P))
3812             return R;
3813 
3814         // getelementptr V, (sdiv (sub P, V), C) -> Q
3815         // if P points to a type of size C.
3816         if (match(Ops[1],
3817                   m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))),
3818                          m_SpecificInt(TyAllocSize))))
3819           if (Value *R = PtrToIntOrZero(P))
3820             return R;
3821       }
3822     }
3823   }
3824 
3825   if (Q.DL.getTypeAllocSize(LastType) == 1 &&
3826       all_of(Ops.slice(1).drop_back(1),
3827              [](Value *Idx) { return match(Idx, m_Zero()); })) {
3828     unsigned PtrWidth =
3829         Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace());
3830     if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) {
3831       APInt BasePtrOffset(PtrWidth, 0);
3832       Value *StrippedBasePtr =
3833           Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL,
3834                                                             BasePtrOffset);
3835 
3836       // gep (gep V, C), (sub 0, V) -> C
3837       if (match(Ops.back(),
3838                 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) {
3839         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
3840         return ConstantExpr::getIntToPtr(CI, GEPTy);
3841       }
3842       // gep (gep V, C), (xor V, -1) -> C-1
3843       if (match(Ops.back(),
3844                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) {
3845         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
3846         return ConstantExpr::getIntToPtr(CI, GEPTy);
3847       }
3848     }
3849   }
3850 
3851   // Check to see if this is constant foldable.
3852   if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); }))
3853     return nullptr;
3854 
3855   auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]),
3856                                             Ops.slice(1));
3857   if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL))
3858     return CEFolded;
3859   return CE;
3860 }
3861 
3862 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops,
3863                              const SimplifyQuery &Q) {
3864   return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit);
3865 }
3866 
3867 /// Given operands for an InsertValueInst, see if we can fold the result.
3868 /// If not, this returns null.
3869 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
3870                                       ArrayRef<unsigned> Idxs, const SimplifyQuery &Q,
3871                                       unsigned) {
3872   if (Constant *CAgg = dyn_cast<Constant>(Agg))
3873     if (Constant *CVal = dyn_cast<Constant>(Val))
3874       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
3875 
3876   // insertvalue x, undef, n -> x
3877   if (match(Val, m_Undef()))
3878     return Agg;
3879 
3880   // insertvalue x, (extractvalue y, n), n
3881   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
3882     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
3883         EV->getIndices() == Idxs) {
3884       // insertvalue undef, (extractvalue y, n), n -> y
3885       if (match(Agg, m_Undef()))
3886         return EV->getAggregateOperand();
3887 
3888       // insertvalue y, (extractvalue y, n), n -> y
3889       if (Agg == EV->getAggregateOperand())
3890         return Agg;
3891     }
3892 
3893   return nullptr;
3894 }
3895 
3896 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
3897                                      ArrayRef<unsigned> Idxs,
3898                                      const SimplifyQuery &Q) {
3899   return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
3900 }
3901 
3902 /// Given operands for an ExtractValueInst, see if we can fold the result.
3903 /// If not, this returns null.
3904 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3905                                        const SimplifyQuery &, unsigned) {
3906   if (auto *CAgg = dyn_cast<Constant>(Agg))
3907     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
3908 
3909   // extractvalue x, (insertvalue y, elt, n), n -> elt
3910   unsigned NumIdxs = Idxs.size();
3911   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
3912        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
3913     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
3914     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
3915     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
3916     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
3917         Idxs.slice(0, NumCommonIdxs)) {
3918       if (NumIdxs == NumInsertValueIdxs)
3919         return IVI->getInsertedValueOperand();
3920       break;
3921     }
3922   }
3923 
3924   return nullptr;
3925 }
3926 
3927 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
3928                                       const SimplifyQuery &Q) {
3929   return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
3930 }
3931 
3932 /// Given operands for an ExtractElementInst, see if we can fold the result.
3933 /// If not, this returns null.
3934 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &,
3935                                          unsigned) {
3936   if (auto *CVec = dyn_cast<Constant>(Vec)) {
3937     if (auto *CIdx = dyn_cast<Constant>(Idx))
3938       return ConstantFoldExtractElementInstruction(CVec, CIdx);
3939 
3940     // The index is not relevant if our vector is a splat.
3941     if (auto *Splat = CVec->getSplatValue())
3942       return Splat;
3943 
3944     if (isa<UndefValue>(Vec))
3945       return UndefValue::get(Vec->getType()->getVectorElementType());
3946   }
3947 
3948   // If extracting a specified index from the vector, see if we can recursively
3949   // find a previously computed scalar that was inserted into the vector.
3950   if (auto *IdxC = dyn_cast<ConstantInt>(Idx))
3951     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
3952       return Elt;
3953 
3954   return nullptr;
3955 }
3956 
3957 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx,
3958                                         const SimplifyQuery &Q) {
3959   return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
3960 }
3961 
3962 /// See if we can fold the given phi. If not, returns null.
3963 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) {
3964   // If all of the PHI's incoming values are the same then replace the PHI node
3965   // with the common value.
3966   Value *CommonValue = nullptr;
3967   bool HasUndefInput = false;
3968   for (Value *Incoming : PN->incoming_values()) {
3969     // If the incoming value is the phi node itself, it can safely be skipped.
3970     if (Incoming == PN) continue;
3971     if (isa<UndefValue>(Incoming)) {
3972       // Remember that we saw an undef value, but otherwise ignore them.
3973       HasUndefInput = true;
3974       continue;
3975     }
3976     if (CommonValue && Incoming != CommonValue)
3977       return nullptr;  // Not the same, bail out.
3978     CommonValue = Incoming;
3979   }
3980 
3981   // If CommonValue is null then all of the incoming values were either undef or
3982   // equal to the phi node itself.
3983   if (!CommonValue)
3984     return UndefValue::get(PN->getType());
3985 
3986   // If we have a PHI node like phi(X, undef, X), where X is defined by some
3987   // instruction, we cannot return X as the result of the PHI node unless it
3988   // dominates the PHI block.
3989   if (HasUndefInput)
3990     return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
3991 
3992   return CommonValue;
3993 }
3994 
3995 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op,
3996                                Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) {
3997   if (auto *C = dyn_cast<Constant>(Op))
3998     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
3999 
4000   if (auto *CI = dyn_cast<CastInst>(Op)) {
4001     auto *Src = CI->getOperand(0);
4002     Type *SrcTy = Src->getType();
4003     Type *MidTy = CI->getType();
4004     Type *DstTy = Ty;
4005     if (Src->getType() == Ty) {
4006       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
4007       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
4008       Type *SrcIntPtrTy =
4009           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
4010       Type *MidIntPtrTy =
4011           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
4012       Type *DstIntPtrTy =
4013           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
4014       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
4015                                          SrcIntPtrTy, MidIntPtrTy,
4016                                          DstIntPtrTy) == Instruction::BitCast)
4017         return Src;
4018     }
4019   }
4020 
4021   // bitcast x -> x
4022   if (CastOpc == Instruction::BitCast)
4023     if (Op->getType() == Ty)
4024       return Op;
4025 
4026   return nullptr;
4027 }
4028 
4029 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
4030                               const SimplifyQuery &Q) {
4031   return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
4032 }
4033 
4034 /// For the given destination element of a shuffle, peek through shuffles to
4035 /// match a root vector source operand that contains that element in the same
4036 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
4037 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
4038                                    int MaskVal, Value *RootVec,
4039                                    unsigned MaxRecurse) {
4040   if (!MaxRecurse--)
4041     return nullptr;
4042 
4043   // Bail out if any mask value is undefined. That kind of shuffle may be
4044   // simplified further based on demanded bits or other folds.
4045   if (MaskVal == -1)
4046     return nullptr;
4047 
4048   // The mask value chooses which source operand we need to look at next.
4049   int InVecNumElts = Op0->getType()->getVectorNumElements();
4050   int RootElt = MaskVal;
4051   Value *SourceOp = Op0;
4052   if (MaskVal >= InVecNumElts) {
4053     RootElt = MaskVal - InVecNumElts;
4054     SourceOp = Op1;
4055   }
4056 
4057   // If the source operand is a shuffle itself, look through it to find the
4058   // matching root vector.
4059   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
4060     return foldIdentityShuffles(
4061         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
4062         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
4063   }
4064 
4065   // TODO: Look through bitcasts? What if the bitcast changes the vector element
4066   // size?
4067 
4068   // The source operand is not a shuffle. Initialize the root vector value for
4069   // this shuffle if that has not been done yet.
4070   if (!RootVec)
4071     RootVec = SourceOp;
4072 
4073   // Give up as soon as a source operand does not match the existing root value.
4074   if (RootVec != SourceOp)
4075     return nullptr;
4076 
4077   // The element must be coming from the same lane in the source vector
4078   // (although it may have crossed lanes in intermediate shuffles).
4079   if (RootElt != DestElt)
4080     return nullptr;
4081 
4082   return RootVec;
4083 }
4084 
4085 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4086                                         Type *RetTy, const SimplifyQuery &Q,
4087                                         unsigned MaxRecurse) {
4088   if (isa<UndefValue>(Mask))
4089     return UndefValue::get(RetTy);
4090 
4091   Type *InVecTy = Op0->getType();
4092   unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
4093   unsigned InVecNumElts = InVecTy->getVectorNumElements();
4094 
4095   SmallVector<int, 32> Indices;
4096   ShuffleVectorInst::getShuffleMask(Mask, Indices);
4097   assert(MaskNumElts == Indices.size() &&
4098          "Size of Indices not same as number of mask elements?");
4099 
4100   // Canonicalization: If mask does not select elements from an input vector,
4101   // replace that input vector with undef.
4102   bool MaskSelects0 = false, MaskSelects1 = false;
4103   for (unsigned i = 0; i != MaskNumElts; ++i) {
4104     if (Indices[i] == -1)
4105       continue;
4106     if ((unsigned)Indices[i] < InVecNumElts)
4107       MaskSelects0 = true;
4108     else
4109       MaskSelects1 = true;
4110   }
4111   if (!MaskSelects0)
4112     Op0 = UndefValue::get(InVecTy);
4113   if (!MaskSelects1)
4114     Op1 = UndefValue::get(InVecTy);
4115 
4116   auto *Op0Const = dyn_cast<Constant>(Op0);
4117   auto *Op1Const = dyn_cast<Constant>(Op1);
4118 
4119   // If all operands are constant, constant fold the shuffle.
4120   if (Op0Const && Op1Const)
4121     return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask);
4122 
4123   // Canonicalization: if only one input vector is constant, it shall be the
4124   // second one.
4125   if (Op0Const && !Op1Const) {
4126     std::swap(Op0, Op1);
4127     ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts);
4128   }
4129 
4130   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
4131   // value type is same as the input vectors' type.
4132   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
4133     if (isa<UndefValue>(Op1) && RetTy == InVecTy &&
4134         OpShuf->getMask()->getSplatValue())
4135       return Op0;
4136 
4137   // Don't fold a shuffle with undef mask elements. This may get folded in a
4138   // better way using demanded bits or other analysis.
4139   // TODO: Should we allow this?
4140   if (find(Indices, -1) != Indices.end())
4141     return nullptr;
4142 
4143   // Check if every element of this shuffle can be mapped back to the
4144   // corresponding element of a single root vector. If so, we don't need this
4145   // shuffle. This handles simple identity shuffles as well as chains of
4146   // shuffles that may widen/narrow and/or move elements across lanes and back.
4147   Value *RootVec = nullptr;
4148   for (unsigned i = 0; i != MaskNumElts; ++i) {
4149     // Note that recursion is limited for each vector element, so if any element
4150     // exceeds the limit, this will fail to simplify.
4151     RootVec =
4152         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
4153 
4154     // We can't replace a widening/narrowing shuffle with one of its operands.
4155     if (!RootVec || RootVec->getType() != RetTy)
4156       return nullptr;
4157   }
4158   return RootVec;
4159 }
4160 
4161 /// Given operands for a ShuffleVectorInst, fold the result or return null.
4162 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask,
4163                                        Type *RetTy, const SimplifyQuery &Q) {
4164   return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
4165 }
4166 
4167 //=== Helper functions for higher up the class hierarchy.
4168 
4169 /// Given operands for a BinaryOperator, see if we can fold the result.
4170 /// If not, this returns null.
4171 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4172                             const SimplifyQuery &Q, unsigned MaxRecurse) {
4173   switch (Opcode) {
4174   case Instruction::Add:
4175     return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse);
4176   case Instruction::FAdd:
4177     return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4178   case Instruction::Sub:
4179     return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse);
4180   case Instruction::FSub:
4181     return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4182   case Instruction::Mul:
4183     return SimplifyMulInst(LHS, RHS, Q, MaxRecurse);
4184   case Instruction::FMul:
4185     return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4186   case Instruction::SDiv:
4187     return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
4188   case Instruction::UDiv:
4189     return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
4190   case Instruction::FDiv:
4191     return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4192   case Instruction::SRem:
4193     return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
4194   case Instruction::URem:
4195     return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
4196   case Instruction::FRem:
4197     return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4198   case Instruction::Shl:
4199     return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse);
4200   case Instruction::LShr:
4201     return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse);
4202   case Instruction::AShr:
4203     return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse);
4204   case Instruction::And:
4205     return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
4206   case Instruction::Or:
4207     return SimplifyOrInst(LHS, RHS, Q, MaxRecurse);
4208   case Instruction::Xor:
4209     return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
4210   default:
4211     llvm_unreachable("Unexpected opcode");
4212   }
4213 }
4214 
4215 /// Given operands for a BinaryOperator, see if we can fold the result.
4216 /// If not, this returns null.
4217 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the
4218 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp.
4219 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4220                               const FastMathFlags &FMF, const SimplifyQuery &Q,
4221                               unsigned MaxRecurse) {
4222   switch (Opcode) {
4223   case Instruction::FAdd:
4224     return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
4225   case Instruction::FSub:
4226     return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
4227   case Instruction::FMul:
4228     return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
4229   case Instruction::FDiv:
4230     return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
4231   default:
4232     return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
4233   }
4234 }
4235 
4236 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4237                            const SimplifyQuery &Q) {
4238   return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
4239 }
4240 
4241 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS,
4242                              FastMathFlags FMF, const SimplifyQuery &Q) {
4243   return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
4244 }
4245 
4246 /// Given operands for a CmpInst, see if we can fold the result.
4247 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4248                               const SimplifyQuery &Q, unsigned MaxRecurse) {
4249   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
4250     return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
4251   return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
4252 }
4253 
4254 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4255                              const SimplifyQuery &Q) {
4256   return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4257 }
4258 
4259 static bool IsIdempotent(Intrinsic::ID ID) {
4260   switch (ID) {
4261   default: return false;
4262 
4263   // Unary idempotent: f(f(x)) = f(x)
4264   case Intrinsic::fabs:
4265   case Intrinsic::floor:
4266   case Intrinsic::ceil:
4267   case Intrinsic::trunc:
4268   case Intrinsic::rint:
4269   case Intrinsic::nearbyint:
4270   case Intrinsic::round:
4271   case Intrinsic::canonicalize:
4272     return true;
4273   }
4274 }
4275 
4276 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset,
4277                                    const DataLayout &DL) {
4278   GlobalValue *PtrSym;
4279   APInt PtrOffset;
4280   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
4281     return nullptr;
4282 
4283   Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext());
4284   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
4285   Type *Int32PtrTy = Int32Ty->getPointerTo();
4286   Type *Int64Ty = Type::getInt64Ty(Ptr->getContext());
4287 
4288   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
4289   if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64)
4290     return nullptr;
4291 
4292   uint64_t OffsetInt = OffsetConstInt->getSExtValue();
4293   if (OffsetInt % 4 != 0)
4294     return nullptr;
4295 
4296   Constant *C = ConstantExpr::getGetElementPtr(
4297       Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy),
4298       ConstantInt::get(Int64Ty, OffsetInt / 4));
4299   Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL);
4300   if (!Loaded)
4301     return nullptr;
4302 
4303   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
4304   if (!LoadedCE)
4305     return nullptr;
4306 
4307   if (LoadedCE->getOpcode() == Instruction::Trunc) {
4308     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4309     if (!LoadedCE)
4310       return nullptr;
4311   }
4312 
4313   if (LoadedCE->getOpcode() != Instruction::Sub)
4314     return nullptr;
4315 
4316   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
4317   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
4318     return nullptr;
4319   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
4320 
4321   Constant *LoadedRHS = LoadedCE->getOperand(1);
4322   GlobalValue *LoadedRHSSym;
4323   APInt LoadedRHSOffset;
4324   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
4325                                   DL) ||
4326       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
4327     return nullptr;
4328 
4329   return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy);
4330 }
4331 
4332 static bool maskIsAllZeroOrUndef(Value *Mask) {
4333   auto *ConstMask = dyn_cast<Constant>(Mask);
4334   if (!ConstMask)
4335     return false;
4336   if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
4337     return true;
4338   for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E;
4339        ++I) {
4340     if (auto *MaskElt = ConstMask->getAggregateElement(I))
4341       if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
4342         continue;
4343     return false;
4344   }
4345   return true;
4346 }
4347 
4348 template <typename IterTy>
4349 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd,
4350                                 const SimplifyQuery &Q, unsigned MaxRecurse) {
4351   Intrinsic::ID IID = F->getIntrinsicID();
4352   unsigned NumOperands = std::distance(ArgBegin, ArgEnd);
4353 
4354   // Unary Ops
4355   if (NumOperands == 1) {
4356     // Perform idempotent optimizations
4357     if (IsIdempotent(IID)) {
4358       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) {
4359         if (II->getIntrinsicID() == IID)
4360           return II;
4361       }
4362     }
4363 
4364     switch (IID) {
4365     case Intrinsic::fabs: {
4366       if (SignBitMustBeZero(*ArgBegin, Q.TLI))
4367         return *ArgBegin;
4368       return nullptr;
4369     }
4370     default:
4371       return nullptr;
4372     }
4373   }
4374 
4375   // Binary Ops
4376   if (NumOperands == 2) {
4377     Value *LHS = *ArgBegin;
4378     Value *RHS = *(ArgBegin + 1);
4379     Type *ReturnType = F->getReturnType();
4380 
4381     switch (IID) {
4382     case Intrinsic::usub_with_overflow:
4383     case Intrinsic::ssub_with_overflow: {
4384       // X - X -> { 0, false }
4385       if (LHS == RHS)
4386         return Constant::getNullValue(ReturnType);
4387 
4388       // X - undef -> undef
4389       // undef - X -> undef
4390       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4391         return UndefValue::get(ReturnType);
4392 
4393       return nullptr;
4394     }
4395     case Intrinsic::uadd_with_overflow:
4396     case Intrinsic::sadd_with_overflow: {
4397       // X + undef -> undef
4398       if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
4399         return UndefValue::get(ReturnType);
4400 
4401       return nullptr;
4402     }
4403     case Intrinsic::umul_with_overflow:
4404     case Intrinsic::smul_with_overflow: {
4405       // 0 * X -> { 0, false }
4406       // X * 0 -> { 0, false }
4407       if (match(LHS, m_Zero()) || match(RHS, m_Zero()))
4408         return Constant::getNullValue(ReturnType);
4409 
4410       // undef * X -> { 0, false }
4411       // X * undef -> { 0, false }
4412       if (match(LHS, m_Undef()) || match(RHS, m_Undef()))
4413         return Constant::getNullValue(ReturnType);
4414 
4415       return nullptr;
4416     }
4417     case Intrinsic::load_relative: {
4418       Constant *C0 = dyn_cast<Constant>(LHS);
4419       Constant *C1 = dyn_cast<Constant>(RHS);
4420       if (C0 && C1)
4421         return SimplifyRelativeLoad(C0, C1, Q.DL);
4422       return nullptr;
4423     }
4424     default:
4425       return nullptr;
4426     }
4427   }
4428 
4429   // Simplify calls to llvm.masked.load.*
4430   switch (IID) {
4431   case Intrinsic::masked_load: {
4432     Value *MaskArg = ArgBegin[2];
4433     Value *PassthruArg = ArgBegin[3];
4434     // If the mask is all zeros or undef, the "passthru" argument is the result.
4435     if (maskIsAllZeroOrUndef(MaskArg))
4436       return PassthruArg;
4437     return nullptr;
4438   }
4439   default:
4440     return nullptr;
4441   }
4442 }
4443 
4444 template <typename IterTy>
4445 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin,
4446                            IterTy ArgEnd, const SimplifyQuery &Q,
4447                            unsigned MaxRecurse) {
4448   Type *Ty = V->getType();
4449   if (PointerType *PTy = dyn_cast<PointerType>(Ty))
4450     Ty = PTy->getElementType();
4451   FunctionType *FTy = cast<FunctionType>(Ty);
4452 
4453   // call undef -> undef
4454   // call null -> undef
4455   if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V))
4456     return UndefValue::get(FTy->getReturnType());
4457 
4458   Function *F = dyn_cast<Function>(V);
4459   if (!F)
4460     return nullptr;
4461 
4462   if (F->isIntrinsic())
4463     if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse))
4464       return Ret;
4465 
4466   if (!canConstantFoldCallTo(CS, F))
4467     return nullptr;
4468 
4469   SmallVector<Constant *, 4> ConstantArgs;
4470   ConstantArgs.reserve(ArgEnd - ArgBegin);
4471   for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
4472     Constant *C = dyn_cast<Constant>(*I);
4473     if (!C)
4474       return nullptr;
4475     ConstantArgs.push_back(C);
4476   }
4477 
4478   return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI);
4479 }
4480 
4481 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4482                           User::op_iterator ArgBegin, User::op_iterator ArgEnd,
4483                           const SimplifyQuery &Q) {
4484   return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit);
4485 }
4486 
4487 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V,
4488                           ArrayRef<Value *> Args, const SimplifyQuery &Q) {
4489   return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit);
4490 }
4491 
4492 /// See if we can compute a simplified version of this instruction.
4493 /// If not, this returns null.
4494 
4495 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ,
4496                                  OptimizationRemarkEmitter *ORE) {
4497   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
4498   Value *Result;
4499 
4500   switch (I->getOpcode()) {
4501   default:
4502     Result = ConstantFoldInstruction(I, Q.DL, Q.TLI);
4503     break;
4504   case Instruction::FAdd:
4505     Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
4506                               I->getFastMathFlags(), Q);
4507     break;
4508   case Instruction::Add:
4509     Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
4510                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4511                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4512     break;
4513   case Instruction::FSub:
4514     Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
4515                               I->getFastMathFlags(), Q);
4516     break;
4517   case Instruction::Sub:
4518     Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
4519                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4520                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4521     break;
4522   case Instruction::FMul:
4523     Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
4524                               I->getFastMathFlags(), Q);
4525     break;
4526   case Instruction::Mul:
4527     Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q);
4528     break;
4529   case Instruction::SDiv:
4530     Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q);
4531     break;
4532   case Instruction::UDiv:
4533     Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q);
4534     break;
4535   case Instruction::FDiv:
4536     Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1),
4537                               I->getFastMathFlags(), Q);
4538     break;
4539   case Instruction::SRem:
4540     Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q);
4541     break;
4542   case Instruction::URem:
4543     Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q);
4544     break;
4545   case Instruction::FRem:
4546     Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1),
4547                               I->getFastMathFlags(), Q);
4548     break;
4549   case Instruction::Shl:
4550     Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
4551                              cast<BinaryOperator>(I)->hasNoSignedWrap(),
4552                              cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q);
4553     break;
4554   case Instruction::LShr:
4555     Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
4556                               cast<BinaryOperator>(I)->isExact(), Q);
4557     break;
4558   case Instruction::AShr:
4559     Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
4560                               cast<BinaryOperator>(I)->isExact(), Q);
4561     break;
4562   case Instruction::And:
4563     Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q);
4564     break;
4565   case Instruction::Or:
4566     Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q);
4567     break;
4568   case Instruction::Xor:
4569     Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q);
4570     break;
4571   case Instruction::ICmp:
4572     Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
4573                               I->getOperand(0), I->getOperand(1), Q);
4574     break;
4575   case Instruction::FCmp:
4576     Result =
4577         SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0),
4578                          I->getOperand(1), I->getFastMathFlags(), Q);
4579     break;
4580   case Instruction::Select:
4581     Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
4582                                 I->getOperand(2), Q);
4583     break;
4584   case Instruction::GetElementPtr: {
4585     SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end());
4586     Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(),
4587                              Ops, Q);
4588     break;
4589   }
4590   case Instruction::InsertValue: {
4591     InsertValueInst *IV = cast<InsertValueInst>(I);
4592     Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
4593                                      IV->getInsertedValueOperand(),
4594                                      IV->getIndices(), Q);
4595     break;
4596   }
4597   case Instruction::ExtractValue: {
4598     auto *EVI = cast<ExtractValueInst>(I);
4599     Result = SimplifyExtractValueInst(EVI->getAggregateOperand(),
4600                                       EVI->getIndices(), Q);
4601     break;
4602   }
4603   case Instruction::ExtractElement: {
4604     auto *EEI = cast<ExtractElementInst>(I);
4605     Result = SimplifyExtractElementInst(EEI->getVectorOperand(),
4606                                         EEI->getIndexOperand(), Q);
4607     break;
4608   }
4609   case Instruction::ShuffleVector: {
4610     auto *SVI = cast<ShuffleVectorInst>(I);
4611     Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1),
4612                                        SVI->getMask(), SVI->getType(), Q);
4613     break;
4614   }
4615   case Instruction::PHI:
4616     Result = SimplifyPHINode(cast<PHINode>(I), Q);
4617     break;
4618   case Instruction::Call: {
4619     CallSite CS(cast<CallInst>(I));
4620     Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
4621                           Q);
4622     break;
4623   }
4624 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
4625 #include "llvm/IR/Instruction.def"
4626 #undef HANDLE_CAST_INST
4627     Result =
4628         SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q);
4629     break;
4630   case Instruction::Alloca:
4631     // No simplifications for Alloca and it can't be constant folded.
4632     Result = nullptr;
4633     break;
4634   }
4635 
4636   // In general, it is possible for computeKnownBits to determine all bits in a
4637   // value even when the operands are not all constants.
4638   if (!Result && I->getType()->isIntOrIntVectorTy()) {
4639     KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE);
4640     if (Known.isConstant())
4641       Result = ConstantInt::get(I->getType(), Known.getConstant());
4642   }
4643 
4644   /// If called on unreachable code, the above logic may report that the
4645   /// instruction simplified to itself.  Make life easier for users by
4646   /// detecting that case here, returning a safe value instead.
4647   return Result == I ? UndefValue::get(I->getType()) : Result;
4648 }
4649 
4650 /// \brief Implementation of recursive simplification through an instruction's
4651 /// uses.
4652 ///
4653 /// This is the common implementation of the recursive simplification routines.
4654 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
4655 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
4656 /// instructions to process and attempt to simplify it using
4657 /// InstructionSimplify.
4658 ///
4659 /// This routine returns 'true' only when *it* simplifies something. The passed
4660 /// in simplified value does not count toward this.
4661 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
4662                                               const TargetLibraryInfo *TLI,
4663                                               const DominatorTree *DT,
4664                                               AssumptionCache *AC) {
4665   bool Simplified = false;
4666   SmallSetVector<Instruction *, 8> Worklist;
4667   const DataLayout &DL = I->getModule()->getDataLayout();
4668 
4669   // If we have an explicit value to collapse to, do that round of the
4670   // simplification loop by hand initially.
4671   if (SimpleV) {
4672     for (User *U : I->users())
4673       if (U != I)
4674         Worklist.insert(cast<Instruction>(U));
4675 
4676     // Replace the instruction with its simplified value.
4677     I->replaceAllUsesWith(SimpleV);
4678 
4679     // Gracefully handle edge cases where the instruction is not wired into any
4680     // parent block.
4681     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4682         !I->mayHaveSideEffects())
4683       I->eraseFromParent();
4684   } else {
4685     Worklist.insert(I);
4686   }
4687 
4688   // Note that we must test the size on each iteration, the worklist can grow.
4689   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
4690     I = Worklist[Idx];
4691 
4692     // See if this instruction simplifies.
4693     SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC});
4694     if (!SimpleV)
4695       continue;
4696 
4697     Simplified = true;
4698 
4699     // Stash away all the uses of the old instruction so we can check them for
4700     // recursive simplifications after a RAUW. This is cheaper than checking all
4701     // uses of To on the recursive step in most cases.
4702     for (User *U : I->users())
4703       Worklist.insert(cast<Instruction>(U));
4704 
4705     // Replace the instruction with its simplified value.
4706     I->replaceAllUsesWith(SimpleV);
4707 
4708     // Gracefully handle edge cases where the instruction is not wired into any
4709     // parent block.
4710     if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) &&
4711         !I->mayHaveSideEffects())
4712       I->eraseFromParent();
4713   }
4714   return Simplified;
4715 }
4716 
4717 bool llvm::recursivelySimplifyInstruction(Instruction *I,
4718                                           const TargetLibraryInfo *TLI,
4719                                           const DominatorTree *DT,
4720                                           AssumptionCache *AC) {
4721   return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC);
4722 }
4723 
4724 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
4725                                          const TargetLibraryInfo *TLI,
4726                                          const DominatorTree *DT,
4727                                          AssumptionCache *AC) {
4728   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
4729   assert(SimpleV && "Must provide a simplified value.");
4730   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC);
4731 }
4732 
4733 namespace llvm {
4734 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
4735   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
4736   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
4737   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4738   auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr;
4739   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
4740   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
4741   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4742 }
4743 
4744 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
4745                                          const DataLayout &DL) {
4746   return {DL, &AR.TLI, &AR.DT, &AR.AC};
4747 }
4748 
4749 template <class T, class... TArgs>
4750 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
4751                                          Function &F) {
4752   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
4753   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
4754   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
4755   return {F.getParent()->getDataLayout(), TLI, DT, AC};
4756 }
4757 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
4758                                                   Function &);
4759 }
4760