1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/AssumptionCache.h" 25 #include "llvm/Analysis/CaptureTracking.h" 26 #include "llvm/Analysis/CmpInstAnalysis.h" 27 #include "llvm/Analysis/ConstantFolding.h" 28 #include "llvm/Analysis/LoopAnalysisManager.h" 29 #include "llvm/Analysis/MemoryBuiltins.h" 30 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/Analysis/VectorUtils.h" 33 #include "llvm/IR/ConstantRange.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Dominators.h" 36 #include "llvm/IR/GetElementPtrTypeIterator.h" 37 #include "llvm/IR/GlobalAlias.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 55 unsigned); 56 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 57 const SimplifyQuery &, unsigned); 58 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 59 unsigned); 60 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 61 const SimplifyQuery &Q, unsigned MaxRecurse); 62 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 63 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 64 static Value *SimplifyCastInst(unsigned, Value *, Type *, 65 const SimplifyQuery &, unsigned); 66 67 /// For a boolean type or a vector of boolean type, return false or a vector 68 /// with every element false. 69 static Constant *getFalse(Type *Ty) { 70 return ConstantInt::getFalse(Ty); 71 } 72 73 /// For a boolean type or a vector of boolean type, return true or a vector 74 /// with every element true. 75 static Constant *getTrue(Type *Ty) { 76 return ConstantInt::getTrue(Ty); 77 } 78 79 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 80 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 81 Value *RHS) { 82 CmpInst *Cmp = dyn_cast<CmpInst>(V); 83 if (!Cmp) 84 return false; 85 CmpInst::Predicate CPred = Cmp->getPredicate(); 86 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 87 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 88 return true; 89 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 90 CRHS == LHS; 91 } 92 93 /// Does the given value dominate the specified phi node? 94 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 95 Instruction *I = dyn_cast<Instruction>(V); 96 if (!I) 97 // Arguments and constants dominate all instructions. 98 return true; 99 100 // If we are processing instructions (and/or basic blocks) that have not been 101 // fully added to a function, the parent nodes may still be null. Simply 102 // return the conservative answer in these cases. 103 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 104 return false; 105 106 // If we have a DominatorTree then do a precise test. 107 if (DT) 108 return DT->dominates(I, P); 109 110 // Otherwise, if the instruction is in the entry block and is not an invoke, 111 // then it obviously dominates all phi nodes. 112 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 113 !isa<InvokeInst>(I)) 114 return true; 115 116 return false; 117 } 118 119 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 120 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 121 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 122 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 123 /// Returns the simplified value, or null if no simplification was performed. 124 static Value *ExpandBinOp(Instruction::BinaryOps Opcode, Value *LHS, Value *RHS, 125 Instruction::BinaryOps OpcodeToExpand, 126 const SimplifyQuery &Q, unsigned MaxRecurse) { 127 // Recursion is always used, so bail out at once if we already hit the limit. 128 if (!MaxRecurse--) 129 return nullptr; 130 131 // Check whether the expression has the form "(A op' B) op C". 132 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 133 if (Op0->getOpcode() == OpcodeToExpand) { 134 // It does! Try turning it into "(A op C) op' (B op C)". 135 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 136 // Do "A op C" and "B op C" both simplify? 137 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 138 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 139 // They do! Return "L op' R" if it simplifies or is already available. 140 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 141 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 142 && L == B && R == A)) { 143 ++NumExpand; 144 return LHS; 145 } 146 // Otherwise return "L op' R" if it simplifies. 147 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 148 ++NumExpand; 149 return V; 150 } 151 } 152 } 153 154 // Check whether the expression has the form "A op (B op' C)". 155 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 156 if (Op1->getOpcode() == OpcodeToExpand) { 157 // It does! Try turning it into "(A op B) op' (A op C)". 158 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 159 // Do "A op B" and "A op C" both simplify? 160 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 161 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 162 // They do! Return "L op' R" if it simplifies or is already available. 163 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 164 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 165 && L == C && R == B)) { 166 ++NumExpand; 167 return RHS; 168 } 169 // Otherwise return "L op' R" if it simplifies. 170 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 171 ++NumExpand; 172 return V; 173 } 174 } 175 } 176 177 return nullptr; 178 } 179 180 /// Generic simplifications for associative binary operations. 181 /// Returns the simpler value, or null if none was found. 182 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 183 Value *LHS, Value *RHS, 184 const SimplifyQuery &Q, 185 unsigned MaxRecurse) { 186 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 187 188 // Recursion is always used, so bail out at once if we already hit the limit. 189 if (!MaxRecurse--) 190 return nullptr; 191 192 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 193 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 194 195 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 196 if (Op0 && Op0->getOpcode() == Opcode) { 197 Value *A = Op0->getOperand(0); 198 Value *B = Op0->getOperand(1); 199 Value *C = RHS; 200 201 // Does "B op C" simplify? 202 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 203 // It does! Return "A op V" if it simplifies or is already available. 204 // If V equals B then "A op V" is just the LHS. 205 if (V == B) return LHS; 206 // Otherwise return "A op V" if it simplifies. 207 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 208 ++NumReassoc; 209 return W; 210 } 211 } 212 } 213 214 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 215 if (Op1 && Op1->getOpcode() == Opcode) { 216 Value *A = LHS; 217 Value *B = Op1->getOperand(0); 218 Value *C = Op1->getOperand(1); 219 220 // Does "A op B" simplify? 221 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 222 // It does! Return "V op C" if it simplifies or is already available. 223 // If V equals B then "V op C" is just the RHS. 224 if (V == B) return RHS; 225 // Otherwise return "V op C" if it simplifies. 226 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 227 ++NumReassoc; 228 return W; 229 } 230 } 231 } 232 233 // The remaining transforms require commutativity as well as associativity. 234 if (!Instruction::isCommutative(Opcode)) 235 return nullptr; 236 237 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 238 if (Op0 && Op0->getOpcode() == Opcode) { 239 Value *A = Op0->getOperand(0); 240 Value *B = Op0->getOperand(1); 241 Value *C = RHS; 242 243 // Does "C op A" simplify? 244 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 245 // It does! Return "V op B" if it simplifies or is already available. 246 // If V equals A then "V op B" is just the LHS. 247 if (V == A) return LHS; 248 // Otherwise return "V op B" if it simplifies. 249 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 250 ++NumReassoc; 251 return W; 252 } 253 } 254 } 255 256 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 257 if (Op1 && Op1->getOpcode() == Opcode) { 258 Value *A = LHS; 259 Value *B = Op1->getOperand(0); 260 Value *C = Op1->getOperand(1); 261 262 // Does "C op A" simplify? 263 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 264 // It does! Return "B op V" if it simplifies or is already available. 265 // If V equals C then "B op V" is just the RHS. 266 if (V == C) return RHS; 267 // Otherwise return "B op V" if it simplifies. 268 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 269 ++NumReassoc; 270 return W; 271 } 272 } 273 } 274 275 return nullptr; 276 } 277 278 /// In the case of a binary operation with a select instruction as an operand, 279 /// try to simplify the binop by seeing whether evaluating it on both branches 280 /// of the select results in the same value. Returns the common value if so, 281 /// otherwise returns null. 282 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 283 Value *RHS, const SimplifyQuery &Q, 284 unsigned MaxRecurse) { 285 // Recursion is always used, so bail out at once if we already hit the limit. 286 if (!MaxRecurse--) 287 return nullptr; 288 289 SelectInst *SI; 290 if (isa<SelectInst>(LHS)) { 291 SI = cast<SelectInst>(LHS); 292 } else { 293 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 294 SI = cast<SelectInst>(RHS); 295 } 296 297 // Evaluate the BinOp on the true and false branches of the select. 298 Value *TV; 299 Value *FV; 300 if (SI == LHS) { 301 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 302 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 303 } else { 304 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 305 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 306 } 307 308 // If they simplified to the same value, then return the common value. 309 // If they both failed to simplify then return null. 310 if (TV == FV) 311 return TV; 312 313 // If one branch simplified to undef, return the other one. 314 if (TV && isa<UndefValue>(TV)) 315 return FV; 316 if (FV && isa<UndefValue>(FV)) 317 return TV; 318 319 // If applying the operation did not change the true and false select values, 320 // then the result of the binop is the select itself. 321 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 322 return SI; 323 324 // If one branch simplified and the other did not, and the simplified 325 // value is equal to the unsimplified one, return the simplified value. 326 // For example, select (cond, X, X & Z) & Z -> X & Z. 327 if ((FV && !TV) || (TV && !FV)) { 328 // Check that the simplified value has the form "X op Y" where "op" is the 329 // same as the original operation. 330 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 331 if (Simplified && Simplified->getOpcode() == Opcode) { 332 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 333 // We already know that "op" is the same as for the simplified value. See 334 // if the operands match too. If so, return the simplified value. 335 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 336 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 337 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 338 if (Simplified->getOperand(0) == UnsimplifiedLHS && 339 Simplified->getOperand(1) == UnsimplifiedRHS) 340 return Simplified; 341 if (Simplified->isCommutative() && 342 Simplified->getOperand(1) == UnsimplifiedLHS && 343 Simplified->getOperand(0) == UnsimplifiedRHS) 344 return Simplified; 345 } 346 } 347 348 return nullptr; 349 } 350 351 /// In the case of a comparison with a select instruction, try to simplify the 352 /// comparison by seeing whether both branches of the select result in the same 353 /// value. Returns the common value if so, otherwise returns null. 354 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 355 Value *RHS, const SimplifyQuery &Q, 356 unsigned MaxRecurse) { 357 // Recursion is always used, so bail out at once if we already hit the limit. 358 if (!MaxRecurse--) 359 return nullptr; 360 361 // Make sure the select is on the LHS. 362 if (!isa<SelectInst>(LHS)) { 363 std::swap(LHS, RHS); 364 Pred = CmpInst::getSwappedPredicate(Pred); 365 } 366 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 367 SelectInst *SI = cast<SelectInst>(LHS); 368 Value *Cond = SI->getCondition(); 369 Value *TV = SI->getTrueValue(); 370 Value *FV = SI->getFalseValue(); 371 372 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 373 // Does "cmp TV, RHS" simplify? 374 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 375 if (TCmp == Cond) { 376 // It not only simplified, it simplified to the select condition. Replace 377 // it with 'true'. 378 TCmp = getTrue(Cond->getType()); 379 } else if (!TCmp) { 380 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 381 // condition then we can replace it with 'true'. Otherwise give up. 382 if (!isSameCompare(Cond, Pred, TV, RHS)) 383 return nullptr; 384 TCmp = getTrue(Cond->getType()); 385 } 386 387 // Does "cmp FV, RHS" simplify? 388 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 389 if (FCmp == Cond) { 390 // It not only simplified, it simplified to the select condition. Replace 391 // it with 'false'. 392 FCmp = getFalse(Cond->getType()); 393 } else if (!FCmp) { 394 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 395 // condition then we can replace it with 'false'. Otherwise give up. 396 if (!isSameCompare(Cond, Pred, FV, RHS)) 397 return nullptr; 398 FCmp = getFalse(Cond->getType()); 399 } 400 401 // If both sides simplified to the same value, then use it as the result of 402 // the original comparison. 403 if (TCmp == FCmp) 404 return TCmp; 405 406 // The remaining cases only make sense if the select condition has the same 407 // type as the result of the comparison, so bail out if this is not so. 408 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 409 return nullptr; 410 // If the false value simplified to false, then the result of the compare 411 // is equal to "Cond && TCmp". This also catches the case when the false 412 // value simplified to false and the true value to true, returning "Cond". 413 if (match(FCmp, m_Zero())) 414 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 415 return V; 416 // If the true value simplified to true, then the result of the compare 417 // is equal to "Cond || FCmp". 418 if (match(TCmp, m_One())) 419 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 420 return V; 421 // Finally, if the false value simplified to true and the true value to 422 // false, then the result of the compare is equal to "!Cond". 423 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 424 if (Value *V = 425 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 426 Q, MaxRecurse)) 427 return V; 428 429 return nullptr; 430 } 431 432 /// In the case of a binary operation with an operand that is a PHI instruction, 433 /// try to simplify the binop by seeing whether evaluating it on the incoming 434 /// phi values yields the same result for every value. If so returns the common 435 /// value, otherwise returns null. 436 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 437 Value *RHS, const SimplifyQuery &Q, 438 unsigned MaxRecurse) { 439 // Recursion is always used, so bail out at once if we already hit the limit. 440 if (!MaxRecurse--) 441 return nullptr; 442 443 PHINode *PI; 444 if (isa<PHINode>(LHS)) { 445 PI = cast<PHINode>(LHS); 446 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 447 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 448 return nullptr; 449 } else { 450 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 451 PI = cast<PHINode>(RHS); 452 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 453 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 454 return nullptr; 455 } 456 457 // Evaluate the BinOp on the incoming phi values. 458 Value *CommonValue = nullptr; 459 for (Value *Incoming : PI->incoming_values()) { 460 // If the incoming value is the phi node itself, it can safely be skipped. 461 if (Incoming == PI) continue; 462 Value *V = PI == LHS ? 463 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 464 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 465 // If the operation failed to simplify, or simplified to a different value 466 // to previously, then give up. 467 if (!V || (CommonValue && V != CommonValue)) 468 return nullptr; 469 CommonValue = V; 470 } 471 472 return CommonValue; 473 } 474 475 /// In the case of a comparison with a PHI instruction, try to simplify the 476 /// comparison by seeing whether comparing with all of the incoming phi values 477 /// yields the same result every time. If so returns the common result, 478 /// otherwise returns null. 479 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 480 const SimplifyQuery &Q, unsigned MaxRecurse) { 481 // Recursion is always used, so bail out at once if we already hit the limit. 482 if (!MaxRecurse--) 483 return nullptr; 484 485 // Make sure the phi is on the LHS. 486 if (!isa<PHINode>(LHS)) { 487 std::swap(LHS, RHS); 488 Pred = CmpInst::getSwappedPredicate(Pred); 489 } 490 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 491 PHINode *PI = cast<PHINode>(LHS); 492 493 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 494 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 495 return nullptr; 496 497 // Evaluate the BinOp on the incoming phi values. 498 Value *CommonValue = nullptr; 499 for (Value *Incoming : PI->incoming_values()) { 500 // If the incoming value is the phi node itself, it can safely be skipped. 501 if (Incoming == PI) continue; 502 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 503 // If the operation failed to simplify, or simplified to a different value 504 // to previously, then give up. 505 if (!V || (CommonValue && V != CommonValue)) 506 return nullptr; 507 CommonValue = V; 508 } 509 510 return CommonValue; 511 } 512 513 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 514 Value *&Op0, Value *&Op1, 515 const SimplifyQuery &Q) { 516 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 517 if (auto *CRHS = dyn_cast<Constant>(Op1)) 518 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 519 520 // Canonicalize the constant to the RHS if this is a commutative operation. 521 if (Instruction::isCommutative(Opcode)) 522 std::swap(Op0, Op1); 523 } 524 return nullptr; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const SimplifyQuery &Q, unsigned MaxRecurse) { 531 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 532 return C; 533 534 // X + undef -> undef 535 if (match(Op1, m_Undef())) 536 return Op1; 537 538 // X + 0 -> X 539 if (match(Op1, m_Zero())) 540 return Op0; 541 542 // X + (Y - X) -> Y 543 // (Y - X) + X -> Y 544 // Eg: X + -X -> 0 545 Value *Y = nullptr; 546 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 547 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 548 return Y; 549 550 // X + ~X -> -1 since ~X = -X-1 551 Type *Ty = Op0->getType(); 552 if (match(Op0, m_Not(m_Specific(Op1))) || 553 match(Op1, m_Not(m_Specific(Op0)))) 554 return Constant::getAllOnesValue(Ty); 555 556 // add nsw/nuw (xor Y, signmask), signmask --> Y 557 // The no-wrapping add guarantees that the top bit will be set by the add. 558 // Therefore, the xor must be clearing the already set sign bit of Y. 559 if ((isNSW || isNUW) && match(Op1, m_SignMask()) && 560 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 561 return Y; 562 563 /// i1 add -> xor. 564 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 565 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 566 return V; 567 568 // Try some generic simplifications for associative operations. 569 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 570 MaxRecurse)) 571 return V; 572 573 // Threading Add over selects and phi nodes is pointless, so don't bother. 574 // Threading over the select in "A + select(cond, B, C)" means evaluating 575 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 576 // only if B and C are equal. If B and C are equal then (since we assume 577 // that operands have already been simplified) "select(cond, B, C)" should 578 // have been simplified to the common value of B and C already. Analysing 579 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 580 // for threading over phi nodes. 581 582 return nullptr; 583 } 584 585 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 586 const SimplifyQuery &Query) { 587 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query, RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->isPtrOrPtrVectorTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 if (auto CS = CallSite(V)) 625 if (Value *RV = CS.getReturnedArgOperand()) { 626 V = RV; 627 continue; 628 } 629 break; 630 } 631 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!"); 632 } while (Visited.insert(V).second); 633 634 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 635 if (V->getType()->isVectorTy()) 636 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 637 OffsetIntPtr); 638 return OffsetIntPtr; 639 } 640 641 /// \brief Compute the constant difference between two pointer values. 642 /// If the difference is not a constant, returns zero. 643 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 644 Value *RHS) { 645 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 646 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 647 648 // If LHS and RHS are not related via constant offsets to the same base 649 // value, there is nothing we can do here. 650 if (LHS != RHS) 651 return nullptr; 652 653 // Otherwise, the difference of LHS - RHS can be computed as: 654 // LHS - RHS 655 // = (LHSOffset + Base) - (RHSOffset + Base) 656 // = LHSOffset - RHSOffset 657 return ConstantExpr::getSub(LHSOffset, RHSOffset); 658 } 659 660 /// Given operands for a Sub, see if we can fold the result. 661 /// If not, this returns null. 662 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 663 const SimplifyQuery &Q, unsigned MaxRecurse) { 664 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 665 return C; 666 667 // X - undef -> undef 668 // undef - X -> undef 669 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 670 return UndefValue::get(Op0->getType()); 671 672 // X - 0 -> X 673 if (match(Op1, m_Zero())) 674 return Op0; 675 676 // X - X -> 0 677 if (Op0 == Op1) 678 return Constant::getNullValue(Op0->getType()); 679 680 // Is this a negation? 681 if (match(Op0, m_Zero())) { 682 // 0 - X -> 0 if the sub is NUW. 683 if (isNUW) 684 return Op0; 685 686 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 687 if (Known.Zero.isMaxSignedValue()) { 688 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 689 // Op1 must be 0 because negating the minimum signed value is undefined. 690 if (isNSW) 691 return Op0; 692 693 // 0 - X -> X if X is 0 or the minimum signed value. 694 return Op1; 695 } 696 } 697 698 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 699 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 700 Value *X = nullptr, *Y = nullptr, *Z = Op1; 701 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 702 // See if "V === Y - Z" simplifies. 703 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 704 // It does! Now see if "X + V" simplifies. 705 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 706 // It does, we successfully reassociated! 707 ++NumReassoc; 708 return W; 709 } 710 // See if "V === X - Z" simplifies. 711 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 712 // It does! Now see if "Y + V" simplifies. 713 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 714 // It does, we successfully reassociated! 715 ++NumReassoc; 716 return W; 717 } 718 } 719 720 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 721 // For example, X - (X + 1) -> -1 722 X = Op0; 723 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 724 // See if "V === X - Y" simplifies. 725 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 726 // It does! Now see if "V - Z" simplifies. 727 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 728 // It does, we successfully reassociated! 729 ++NumReassoc; 730 return W; 731 } 732 // See if "V === X - Z" simplifies. 733 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 734 // It does! Now see if "V - Y" simplifies. 735 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 736 // It does, we successfully reassociated! 737 ++NumReassoc; 738 return W; 739 } 740 } 741 742 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 743 // For example, X - (X - Y) -> Y. 744 Z = Op0; 745 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 746 // See if "V === Z - X" simplifies. 747 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 748 // It does! Now see if "V + Y" simplifies. 749 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 750 // It does, we successfully reassociated! 751 ++NumReassoc; 752 return W; 753 } 754 755 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 756 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 757 match(Op1, m_Trunc(m_Value(Y)))) 758 if (X->getType() == Y->getType()) 759 // See if "V === X - Y" simplifies. 760 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 761 // It does! Now see if "trunc V" simplifies. 762 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 763 Q, MaxRecurse - 1)) 764 // It does, return the simplified "trunc V". 765 return W; 766 767 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 768 if (match(Op0, m_PtrToInt(m_Value(X))) && 769 match(Op1, m_PtrToInt(m_Value(Y)))) 770 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 771 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 772 773 // i1 sub -> xor. 774 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 775 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 776 return V; 777 778 // Threading Sub over selects and phi nodes is pointless, so don't bother. 779 // Threading over the select in "A - select(cond, B, C)" means evaluating 780 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 781 // only if B and C are equal. If B and C are equal then (since we assume 782 // that operands have already been simplified) "select(cond, B, C)" should 783 // have been simplified to the common value of B and C already. Analysing 784 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 785 // for threading over phi nodes. 786 787 return nullptr; 788 } 789 790 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 791 const SimplifyQuery &Q) { 792 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 793 } 794 795 /// Given operands for an FAdd, see if we can fold the result. If not, this 796 /// returns null. 797 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 798 const SimplifyQuery &Q, unsigned MaxRecurse) { 799 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 800 return C; 801 802 // fadd X, -0 ==> X 803 if (match(Op1, m_NegZero())) 804 return Op0; 805 806 // fadd X, 0 ==> X, when we know X is not -0 807 if (match(Op1, m_Zero()) && 808 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 809 return Op0; 810 811 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 812 // where nnan and ninf have to occur at least once somewhere in this 813 // expression 814 Value *SubOp = nullptr; 815 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 816 SubOp = Op1; 817 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 818 SubOp = Op0; 819 if (SubOp) { 820 Instruction *FSub = cast<Instruction>(SubOp); 821 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 822 (FMF.noInfs() || FSub->hasNoInfs())) 823 return Constant::getNullValue(Op0->getType()); 824 } 825 826 return nullptr; 827 } 828 829 /// Given operands for an FSub, see if we can fold the result. If not, this 830 /// returns null. 831 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 832 const SimplifyQuery &Q, unsigned MaxRecurse) { 833 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 834 return C; 835 836 // fsub X, 0 ==> X 837 if (match(Op1, m_Zero())) 838 return Op0; 839 840 // fsub X, -0 ==> X, when we know X is not -0 841 if (match(Op1, m_NegZero()) && 842 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 843 return Op0; 844 845 // fsub -0.0, (fsub -0.0, X) ==> X 846 Value *X; 847 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 848 return X; 849 850 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 851 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 852 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 853 return X; 854 855 // fsub nnan x, x ==> 0.0 856 if (FMF.noNaNs() && Op0 == Op1) 857 return Constant::getNullValue(Op0->getType()); 858 859 return nullptr; 860 } 861 862 /// Given the operands for an FMul, see if we can fold the result 863 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 864 const SimplifyQuery &Q, unsigned MaxRecurse) { 865 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 866 return C; 867 868 // fmul X, 1.0 ==> X 869 if (match(Op1, m_FPOne())) 870 return Op0; 871 872 // fmul nnan nsz X, 0 ==> 0 873 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 874 return Op1; 875 876 return nullptr; 877 } 878 879 /// Given operands for a Mul, see if we can fold the result. 880 /// If not, this returns null. 881 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 882 unsigned MaxRecurse) { 883 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 884 return C; 885 886 // X * undef -> 0 887 if (match(Op1, m_Undef())) 888 return Constant::getNullValue(Op0->getType()); 889 890 // X * 0 -> 0 891 if (match(Op1, m_Zero())) 892 return Op1; 893 894 // X * 1 -> X 895 if (match(Op1, m_One())) 896 return Op0; 897 898 // (X / Y) * Y -> X if the division is exact. 899 Value *X = nullptr; 900 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 901 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 902 return X; 903 904 // i1 mul -> and. 905 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 906 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 907 return V; 908 909 // Try some generic simplifications for associative operations. 910 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 911 MaxRecurse)) 912 return V; 913 914 // Mul distributes over Add. Try some generic simplifications based on this. 915 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 916 Q, MaxRecurse)) 917 return V; 918 919 // If the operation is with the result of a select instruction, check whether 920 // operating on either branch of the select always yields the same value. 921 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 922 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 923 MaxRecurse)) 924 return V; 925 926 // If the operation is with the result of a phi instruction, check whether 927 // operating on all incoming values of the phi always yields the same value. 928 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 929 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 930 MaxRecurse)) 931 return V; 932 933 return nullptr; 934 } 935 936 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 937 const SimplifyQuery &Q) { 938 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 939 } 940 941 942 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 943 const SimplifyQuery &Q) { 944 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 945 } 946 947 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 948 const SimplifyQuery &Q) { 949 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 950 } 951 952 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 953 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 954 } 955 956 /// Check for common or similar folds of integer division or integer remainder. 957 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 958 Type *Ty = Op0->getType(); 959 960 // X / undef -> undef 961 // X % undef -> undef 962 if (match(Op1, m_Undef())) 963 return Op1; 964 965 // X / 0 -> undef 966 // X % 0 -> undef 967 // We don't need to preserve faults! 968 if (match(Op1, m_Zero())) 969 return UndefValue::get(Ty); 970 971 // If any element of a constant divisor vector is zero, the whole op is undef. 972 auto *Op1C = dyn_cast<Constant>(Op1); 973 if (Op1C && Ty->isVectorTy()) { 974 unsigned NumElts = Ty->getVectorNumElements(); 975 for (unsigned i = 0; i != NumElts; ++i) { 976 Constant *Elt = Op1C->getAggregateElement(i); 977 if (Elt && Elt->isNullValue()) 978 return UndefValue::get(Ty); 979 } 980 } 981 982 // undef / X -> 0 983 // undef % X -> 0 984 if (match(Op0, m_Undef())) 985 return Constant::getNullValue(Ty); 986 987 // 0 / X -> 0 988 // 0 % X -> 0 989 if (match(Op0, m_Zero())) 990 return Op0; 991 992 // X / X -> 1 993 // X % X -> 0 994 if (Op0 == Op1) 995 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 996 997 // X / 1 -> X 998 // X % 1 -> 0 999 // If this is a boolean op (single-bit element type), we can't have 1000 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 1001 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1)) 1002 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1003 1004 return nullptr; 1005 } 1006 1007 /// Given operands for an SDiv or UDiv, see if we can fold the result. 1008 /// If not, this returns null. 1009 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1010 const SimplifyQuery &Q, unsigned MaxRecurse) { 1011 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1012 return C; 1013 1014 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1015 return V; 1016 1017 bool isSigned = Opcode == Instruction::SDiv; 1018 1019 // (X * Y) / Y -> X if the multiplication does not overflow. 1020 Value *X = nullptr, *Y = nullptr; 1021 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1022 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1023 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1024 // If the Mul knows it does not overflow, then we are good to go. 1025 if ((isSigned && Mul->hasNoSignedWrap()) || 1026 (!isSigned && Mul->hasNoUnsignedWrap())) 1027 return X; 1028 // If X has the form X = A / Y then X * Y cannot overflow. 1029 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1030 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1031 return X; 1032 } 1033 1034 // (X rem Y) / Y -> 0 1035 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1036 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1037 return Constant::getNullValue(Op0->getType()); 1038 1039 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1040 ConstantInt *C1, *C2; 1041 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1042 match(Op1, m_ConstantInt(C2))) { 1043 bool Overflow; 1044 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1045 if (Overflow) 1046 return Constant::getNullValue(Op0->getType()); 1047 } 1048 1049 // If the operation is with the result of a select instruction, check whether 1050 // operating on either branch of the select always yields the same value. 1051 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1052 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1053 return V; 1054 1055 // If the operation is with the result of a phi instruction, check whether 1056 // operating on all incoming values of the phi always yields the same value. 1057 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1058 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1059 return V; 1060 1061 return nullptr; 1062 } 1063 1064 /// Given operands for an SDiv, see if we can fold the result. 1065 /// If not, this returns null. 1066 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1067 unsigned MaxRecurse) { 1068 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1069 return V; 1070 1071 return nullptr; 1072 } 1073 1074 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1075 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1076 } 1077 1078 /// Given operands for a UDiv, see if we can fold the result. 1079 /// If not, this returns null. 1080 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1081 unsigned MaxRecurse) { 1082 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1083 return V; 1084 1085 // udiv %V, C -> 0 if %V < C 1086 if (MaxRecurse) { 1087 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1088 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1089 if (C->isAllOnesValue()) { 1090 return Constant::getNullValue(Op0->getType()); 1091 } 1092 } 1093 } 1094 1095 return nullptr; 1096 } 1097 1098 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1099 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1100 } 1101 1102 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1103 const SimplifyQuery &Q, unsigned) { 1104 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 1105 return C; 1106 1107 // undef / X -> undef (the undef could be a snan). 1108 if (match(Op0, m_Undef())) 1109 return Op0; 1110 1111 // X / undef -> undef 1112 if (match(Op1, m_Undef())) 1113 return Op1; 1114 1115 // X / 1.0 -> X 1116 if (match(Op1, m_FPOne())) 1117 return Op0; 1118 1119 // 0 / X -> 0 1120 // Requires that NaNs are off (X could be zero) and signed zeroes are 1121 // ignored (X could be positive or negative, so the output sign is unknown). 1122 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1123 return Op0; 1124 1125 if (FMF.noNaNs()) { 1126 // X / X -> 1.0 is legal when NaNs are ignored. 1127 if (Op0 == Op1) 1128 return ConstantFP::get(Op0->getType(), 1.0); 1129 1130 // -X / X -> -1.0 and 1131 // X / -X -> -1.0 are legal when NaNs are ignored. 1132 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1133 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1134 BinaryOperator::getFNegArgument(Op0) == Op1) || 1135 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1136 BinaryOperator::getFNegArgument(Op1) == Op0)) 1137 return ConstantFP::get(Op0->getType(), -1.0); 1138 } 1139 1140 return nullptr; 1141 } 1142 1143 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1144 const SimplifyQuery &Q) { 1145 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 1146 } 1147 1148 /// Given operands for an SRem or URem, see if we can fold the result. 1149 /// If not, this returns null. 1150 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1151 const SimplifyQuery &Q, unsigned MaxRecurse) { 1152 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1153 return C; 1154 1155 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1156 return V; 1157 1158 // (X % Y) % Y -> X % Y 1159 if ((Opcode == Instruction::SRem && 1160 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1161 (Opcode == Instruction::URem && 1162 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1163 return Op0; 1164 1165 // If the operation is with the result of a select instruction, check whether 1166 // operating on either branch of the select always yields the same value. 1167 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1168 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1169 return V; 1170 1171 // If the operation is with the result of a phi instruction, check whether 1172 // operating on all incoming values of the phi always yields the same value. 1173 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1174 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1175 return V; 1176 1177 return nullptr; 1178 } 1179 1180 /// Given operands for an SRem, see if we can fold the result. 1181 /// If not, this returns null. 1182 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1183 unsigned MaxRecurse) { 1184 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1185 return V; 1186 1187 return nullptr; 1188 } 1189 1190 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1191 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1192 } 1193 1194 /// Given operands for a URem, see if we can fold the result. 1195 /// If not, this returns null. 1196 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1197 unsigned MaxRecurse) { 1198 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1199 return V; 1200 1201 // urem %V, C -> %V if %V < C 1202 if (MaxRecurse) { 1203 if (Constant *C = dyn_cast_or_null<Constant>(SimplifyICmpInst( 1204 ICmpInst::ICMP_ULT, Op0, Op1, Q, MaxRecurse - 1))) { 1205 if (C->isAllOnesValue()) { 1206 return Op0; 1207 } 1208 } 1209 } 1210 1211 return nullptr; 1212 } 1213 1214 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1215 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1216 } 1217 1218 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1219 const SimplifyQuery &Q, unsigned) { 1220 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 1221 return C; 1222 1223 // undef % X -> undef (the undef could be a snan). 1224 if (match(Op0, m_Undef())) 1225 return Op0; 1226 1227 // X % undef -> undef 1228 if (match(Op1, m_Undef())) 1229 return Op1; 1230 1231 // 0 % X -> 0 1232 // Requires that NaNs are off (X could be zero) and signed zeroes are 1233 // ignored (X could be positive or negative, so the output sign is unknown). 1234 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1235 return Op0; 1236 1237 return nullptr; 1238 } 1239 1240 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1241 const SimplifyQuery &Q) { 1242 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 1243 } 1244 1245 /// Returns true if a shift by \c Amount always yields undef. 1246 static bool isUndefShift(Value *Amount) { 1247 Constant *C = dyn_cast<Constant>(Amount); 1248 if (!C) 1249 return false; 1250 1251 // X shift by undef -> undef because it may shift by the bitwidth. 1252 if (isa<UndefValue>(C)) 1253 return true; 1254 1255 // Shifting by the bitwidth or more is undefined. 1256 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1257 if (CI->getValue().getLimitedValue() >= 1258 CI->getType()->getScalarSizeInBits()) 1259 return true; 1260 1261 // If all lanes of a vector shift are undefined the whole shift is. 1262 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1263 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1264 if (!isUndefShift(C->getAggregateElement(I))) 1265 return false; 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1273 /// If not, this returns null. 1274 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1275 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1276 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1277 return C; 1278 1279 // 0 shift by X -> 0 1280 if (match(Op0, m_Zero())) 1281 return Op0; 1282 1283 // X shift by 0 -> X 1284 if (match(Op1, m_Zero())) 1285 return Op0; 1286 1287 // Fold undefined shifts. 1288 if (isUndefShift(Op1)) 1289 return UndefValue::get(Op0->getType()); 1290 1291 // If the operation is with the result of a select instruction, check whether 1292 // operating on either branch of the select always yields the same value. 1293 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1294 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1295 return V; 1296 1297 // If the operation is with the result of a phi instruction, check whether 1298 // operating on all incoming values of the phi always yields the same value. 1299 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1300 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1301 return V; 1302 1303 // If any bits in the shift amount make that value greater than or equal to 1304 // the number of bits in the type, the shift is undefined. 1305 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1306 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1307 return UndefValue::get(Op0->getType()); 1308 1309 // If all valid bits in the shift amount are known zero, the first operand is 1310 // unchanged. 1311 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1312 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1313 return Op0; 1314 1315 return nullptr; 1316 } 1317 1318 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1319 /// fold the result. If not, this returns null. 1320 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1321 Value *Op1, bool isExact, const SimplifyQuery &Q, 1322 unsigned MaxRecurse) { 1323 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1324 return V; 1325 1326 // X >> X -> 0 1327 if (Op0 == Op1) 1328 return Constant::getNullValue(Op0->getType()); 1329 1330 // undef >> X -> 0 1331 // undef >> X -> undef (if it's exact) 1332 if (match(Op0, m_Undef())) 1333 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1334 1335 // The low bit cannot be shifted out of an exact shift if it is set. 1336 if (isExact) { 1337 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1338 if (Op0Known.One[0]) 1339 return Op0; 1340 } 1341 1342 return nullptr; 1343 } 1344 1345 /// Given operands for an Shl, see if we can fold the result. 1346 /// If not, this returns null. 1347 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1348 const SimplifyQuery &Q, unsigned MaxRecurse) { 1349 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1350 return V; 1351 1352 // undef << X -> 0 1353 // undef << X -> undef if (if it's NSW/NUW) 1354 if (match(Op0, m_Undef())) 1355 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1356 1357 // (X >> A) << A -> X 1358 Value *X; 1359 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1360 return X; 1361 return nullptr; 1362 } 1363 1364 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1365 const SimplifyQuery &Q) { 1366 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1367 } 1368 1369 /// Given operands for an LShr, see if we can fold the result. 1370 /// If not, this returns null. 1371 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1372 const SimplifyQuery &Q, unsigned MaxRecurse) { 1373 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1374 MaxRecurse)) 1375 return V; 1376 1377 // (X << A) >> A -> X 1378 Value *X; 1379 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1380 return X; 1381 1382 return nullptr; 1383 } 1384 1385 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1386 const SimplifyQuery &Q) { 1387 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1388 } 1389 1390 /// Given operands for an AShr, see if we can fold the result. 1391 /// If not, this returns null. 1392 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1393 const SimplifyQuery &Q, unsigned MaxRecurse) { 1394 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1395 MaxRecurse)) 1396 return V; 1397 1398 // all ones >>a X -> all ones 1399 if (match(Op0, m_AllOnes())) 1400 return Op0; 1401 1402 // (X << A) >> A -> X 1403 Value *X; 1404 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1405 return X; 1406 1407 // Arithmetic shifting an all-sign-bit value is a no-op. 1408 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1409 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1410 return Op0; 1411 1412 return nullptr; 1413 } 1414 1415 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1416 const SimplifyQuery &Q) { 1417 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1418 } 1419 1420 /// Commuted variants are assumed to be handled by calling this function again 1421 /// with the parameters swapped. 1422 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1423 ICmpInst *UnsignedICmp, bool IsAnd) { 1424 Value *X, *Y; 1425 1426 ICmpInst::Predicate EqPred; 1427 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1428 !ICmpInst::isEquality(EqPred)) 1429 return nullptr; 1430 1431 ICmpInst::Predicate UnsignedPred; 1432 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1433 ICmpInst::isUnsigned(UnsignedPred)) 1434 ; 1435 else if (match(UnsignedICmp, 1436 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1437 ICmpInst::isUnsigned(UnsignedPred)) 1438 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1439 else 1440 return nullptr; 1441 1442 // X < Y && Y != 0 --> X < Y 1443 // X < Y || Y != 0 --> Y != 0 1444 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1445 return IsAnd ? UnsignedICmp : ZeroICmp; 1446 1447 // X >= Y || Y != 0 --> true 1448 // X >= Y || Y == 0 --> X >= Y 1449 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1450 if (EqPred == ICmpInst::ICMP_NE) 1451 return getTrue(UnsignedICmp->getType()); 1452 return UnsignedICmp; 1453 } 1454 1455 // X < Y && Y == 0 --> false 1456 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1457 IsAnd) 1458 return getFalse(UnsignedICmp->getType()); 1459 1460 return nullptr; 1461 } 1462 1463 /// Commuted variants are assumed to be handled by calling this function again 1464 /// with the parameters swapped. 1465 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1466 ICmpInst::Predicate Pred0, Pred1; 1467 Value *A ,*B; 1468 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1469 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1470 return nullptr; 1471 1472 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1473 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1474 // can eliminate Op1 from this 'and'. 1475 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1476 return Op0; 1477 1478 // Check for any combination of predicates that are guaranteed to be disjoint. 1479 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1480 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1481 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1482 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1483 return getFalse(Op0->getType()); 1484 1485 return nullptr; 1486 } 1487 1488 /// Commuted variants are assumed to be handled by calling this function again 1489 /// with the parameters swapped. 1490 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1491 ICmpInst::Predicate Pred0, Pred1; 1492 Value *A ,*B; 1493 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1494 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1495 return nullptr; 1496 1497 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1498 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1499 // can eliminate Op0 from this 'or'. 1500 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1501 return Op1; 1502 1503 // Check for any combination of predicates that cover the entire range of 1504 // possibilities. 1505 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1506 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1507 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1508 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1509 return getTrue(Op0->getType()); 1510 1511 return nullptr; 1512 } 1513 1514 /// Test if a pair of compares with a shared operand and 2 constants has an 1515 /// empty set intersection, full set union, or if one compare is a superset of 1516 /// the other. 1517 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1518 bool IsAnd) { 1519 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1520 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1521 return nullptr; 1522 1523 const APInt *C0, *C1; 1524 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1525 !match(Cmp1->getOperand(1), m_APInt(C1))) 1526 return nullptr; 1527 1528 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1529 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1530 1531 // For and-of-compares, check if the intersection is empty: 1532 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1533 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1534 return getFalse(Cmp0->getType()); 1535 1536 // For or-of-compares, check if the union is full: 1537 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1538 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1539 return getTrue(Cmp0->getType()); 1540 1541 // Is one range a superset of the other? 1542 // If this is and-of-compares, take the smaller set: 1543 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1544 // If this is or-of-compares, take the larger set: 1545 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1546 if (Range0.contains(Range1)) 1547 return IsAnd ? Cmp1 : Cmp0; 1548 if (Range1.contains(Range0)) 1549 return IsAnd ? Cmp0 : Cmp1; 1550 1551 return nullptr; 1552 } 1553 1554 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1555 // (icmp (add V, C0), C1) & (icmp V, C0) 1556 ICmpInst::Predicate Pred0, Pred1; 1557 const APInt *C0, *C1; 1558 Value *V; 1559 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1560 return nullptr; 1561 1562 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1563 return nullptr; 1564 1565 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1566 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1567 return nullptr; 1568 1569 Type *ITy = Op0->getType(); 1570 bool isNSW = AddInst->hasNoSignedWrap(); 1571 bool isNUW = AddInst->hasNoUnsignedWrap(); 1572 1573 const APInt Delta = *C1 - *C0; 1574 if (C0->isStrictlyPositive()) { 1575 if (Delta == 2) { 1576 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1577 return getFalse(ITy); 1578 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1579 return getFalse(ITy); 1580 } 1581 if (Delta == 1) { 1582 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1583 return getFalse(ITy); 1584 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1585 return getFalse(ITy); 1586 } 1587 } 1588 if (C0->getBoolValue() && isNUW) { 1589 if (Delta == 2) 1590 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1591 return getFalse(ITy); 1592 if (Delta == 1) 1593 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1594 return getFalse(ITy); 1595 } 1596 1597 return nullptr; 1598 } 1599 1600 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1601 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1602 return X; 1603 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true)) 1604 return X; 1605 1606 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1607 return X; 1608 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1609 return X; 1610 1611 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1612 return X; 1613 1614 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1)) 1615 return X; 1616 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0)) 1617 return X; 1618 1619 return nullptr; 1620 } 1621 1622 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1) { 1623 // (icmp (add V, C0), C1) | (icmp V, C0) 1624 ICmpInst::Predicate Pred0, Pred1; 1625 const APInt *C0, *C1; 1626 Value *V; 1627 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1628 return nullptr; 1629 1630 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1631 return nullptr; 1632 1633 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1634 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1635 return nullptr; 1636 1637 Type *ITy = Op0->getType(); 1638 bool isNSW = AddInst->hasNoSignedWrap(); 1639 bool isNUW = AddInst->hasNoUnsignedWrap(); 1640 1641 const APInt Delta = *C1 - *C0; 1642 if (C0->isStrictlyPositive()) { 1643 if (Delta == 2) { 1644 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1645 return getTrue(ITy); 1646 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1647 return getTrue(ITy); 1648 } 1649 if (Delta == 1) { 1650 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1651 return getTrue(ITy); 1652 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1653 return getTrue(ITy); 1654 } 1655 } 1656 if (C0->getBoolValue() && isNUW) { 1657 if (Delta == 2) 1658 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1659 return getTrue(ITy); 1660 if (Delta == 1) 1661 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1662 return getTrue(ITy); 1663 } 1664 1665 return nullptr; 1666 } 1667 1668 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1669 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1670 return X; 1671 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false)) 1672 return X; 1673 1674 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1675 return X; 1676 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1677 return X; 1678 1679 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1680 return X; 1681 1682 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1)) 1683 return X; 1684 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0)) 1685 return X; 1686 1687 return nullptr; 1688 } 1689 1690 static Value *simplifyAndOrOfICmps(Value *Op0, Value *Op1, bool IsAnd) { 1691 // Look through casts of the 'and' operands to find compares. 1692 auto *Cast0 = dyn_cast<CastInst>(Op0); 1693 auto *Cast1 = dyn_cast<CastInst>(Op1); 1694 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1695 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1696 Op0 = Cast0->getOperand(0); 1697 Op1 = Cast1->getOperand(0); 1698 } 1699 1700 auto *Cmp0 = dyn_cast<ICmpInst>(Op0); 1701 auto *Cmp1 = dyn_cast<ICmpInst>(Op1); 1702 if (!Cmp0 || !Cmp1) 1703 return nullptr; 1704 1705 Value *V = 1706 IsAnd ? simplifyAndOfICmps(Cmp0, Cmp1) : simplifyOrOfICmps(Cmp0, Cmp1); 1707 if (!V) 1708 return nullptr; 1709 if (!Cast0) 1710 return V; 1711 1712 // If we looked through casts, we can only handle a constant simplification 1713 // because we are not allowed to create a cast instruction here. 1714 if (auto *C = dyn_cast<Constant>(V)) 1715 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1716 1717 return nullptr; 1718 } 1719 1720 /// Given operands for an And, see if we can fold the result. 1721 /// If not, this returns null. 1722 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1723 unsigned MaxRecurse) { 1724 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 1725 return C; 1726 1727 // X & undef -> 0 1728 if (match(Op1, m_Undef())) 1729 return Constant::getNullValue(Op0->getType()); 1730 1731 // X & X = X 1732 if (Op0 == Op1) 1733 return Op0; 1734 1735 // X & 0 = 0 1736 if (match(Op1, m_Zero())) 1737 return Op1; 1738 1739 // X & -1 = X 1740 if (match(Op1, m_AllOnes())) 1741 return Op0; 1742 1743 // A & ~A = ~A & A = 0 1744 if (match(Op0, m_Not(m_Specific(Op1))) || 1745 match(Op1, m_Not(m_Specific(Op0)))) 1746 return Constant::getNullValue(Op0->getType()); 1747 1748 // (A | ?) & A = A 1749 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1750 return Op1; 1751 1752 // A & (A | ?) = A 1753 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 1754 return Op0; 1755 1756 // A mask that only clears known zeros of a shifted value is a no-op. 1757 Value *X; 1758 const APInt *Mask; 1759 const APInt *ShAmt; 1760 if (match(Op1, m_APInt(Mask))) { 1761 // If all bits in the inverted and shifted mask are clear: 1762 // and (shl X, ShAmt), Mask --> shl X, ShAmt 1763 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 1764 (~(*Mask)).lshr(*ShAmt).isNullValue()) 1765 return Op0; 1766 1767 // If all bits in the inverted and shifted mask are clear: 1768 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 1769 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 1770 (~(*Mask)).shl(*ShAmt).isNullValue()) 1771 return Op0; 1772 } 1773 1774 // A & (-A) = A if A is a power of two or zero. 1775 if (match(Op0, m_Neg(m_Specific(Op1))) || 1776 match(Op1, m_Neg(m_Specific(Op0)))) { 1777 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1778 Q.DT)) 1779 return Op0; 1780 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1781 Q.DT)) 1782 return Op1; 1783 } 1784 1785 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, true)) 1786 return V; 1787 1788 // Try some generic simplifications for associative operations. 1789 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1790 MaxRecurse)) 1791 return V; 1792 1793 // And distributes over Or. Try some generic simplifications based on this. 1794 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1795 Q, MaxRecurse)) 1796 return V; 1797 1798 // And distributes over Xor. Try some generic simplifications based on this. 1799 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1800 Q, MaxRecurse)) 1801 return V; 1802 1803 // If the operation is with the result of a select instruction, check whether 1804 // operating on either branch of the select always yields the same value. 1805 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1806 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1807 MaxRecurse)) 1808 return V; 1809 1810 // If the operation is with the result of a phi instruction, check whether 1811 // operating on all incoming values of the phi always yields the same value. 1812 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1813 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1814 MaxRecurse)) 1815 return V; 1816 1817 return nullptr; 1818 } 1819 1820 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1821 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 1822 } 1823 1824 /// Given operands for an Or, see if we can fold the result. 1825 /// If not, this returns null. 1826 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1827 unsigned MaxRecurse) { 1828 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 1829 return C; 1830 1831 // X | undef -> -1 1832 if (match(Op1, m_Undef())) 1833 return Constant::getAllOnesValue(Op0->getType()); 1834 1835 // X | X = X 1836 if (Op0 == Op1) 1837 return Op0; 1838 1839 // X | 0 = X 1840 if (match(Op1, m_Zero())) 1841 return Op0; 1842 1843 // X | -1 = -1 1844 if (match(Op1, m_AllOnes())) 1845 return Op1; 1846 1847 // A | ~A = ~A | A = -1 1848 if (match(Op0, m_Not(m_Specific(Op1))) || 1849 match(Op1, m_Not(m_Specific(Op0)))) 1850 return Constant::getAllOnesValue(Op0->getType()); 1851 1852 // (A & ?) | A = A 1853 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 1854 return Op1; 1855 1856 // A | (A & ?) = A 1857 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 1858 return Op0; 1859 1860 // ~(A & ?) | A = -1 1861 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1862 return Constant::getAllOnesValue(Op1->getType()); 1863 1864 // A | ~(A & ?) = -1 1865 if (match(Op1, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 1866 return Constant::getAllOnesValue(Op0->getType()); 1867 1868 Value *A, *B; 1869 // (A & ~B) | (A ^ B) -> (A ^ B) 1870 // (~B & A) | (A ^ B) -> (A ^ B) 1871 // (A & ~B) | (B ^ A) -> (B ^ A) 1872 // (~B & A) | (B ^ A) -> (B ^ A) 1873 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 1874 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1875 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1876 return Op1; 1877 1878 // Commute the 'or' operands. 1879 // (A ^ B) | (A & ~B) -> (A ^ B) 1880 // (A ^ B) | (~B & A) -> (A ^ B) 1881 // (B ^ A) | (A & ~B) -> (B ^ A) 1882 // (B ^ A) | (~B & A) -> (B ^ A) 1883 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 1884 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 1885 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 1886 return Op0; 1887 1888 // (A & B) | (~A ^ B) -> (~A ^ B) 1889 // (B & A) | (~A ^ B) -> (~A ^ B) 1890 // (A & B) | (B ^ ~A) -> (B ^ ~A) 1891 // (B & A) | (B ^ ~A) -> (B ^ ~A) 1892 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1893 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1894 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1895 return Op1; 1896 1897 // (~A ^ B) | (A & B) -> (~A ^ B) 1898 // (~A ^ B) | (B & A) -> (~A ^ B) 1899 // (B ^ ~A) | (A & B) -> (B ^ ~A) 1900 // (B ^ ~A) | (B & A) -> (B ^ ~A) 1901 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1902 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 1903 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 1904 return Op0; 1905 1906 if (Value *V = simplifyAndOrOfICmps(Op0, Op1, false)) 1907 return V; 1908 1909 // Try some generic simplifications for associative operations. 1910 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1911 MaxRecurse)) 1912 return V; 1913 1914 // Or distributes over And. Try some generic simplifications based on this. 1915 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1916 MaxRecurse)) 1917 return V; 1918 1919 // If the operation is with the result of a select instruction, check whether 1920 // operating on either branch of the select always yields the same value. 1921 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1922 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1923 MaxRecurse)) 1924 return V; 1925 1926 // (A & C1)|(B & C2) 1927 const APInt *C1, *C2; 1928 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 1929 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 1930 if (*C1 == ~*C2) { 1931 // (A & C1)|(B & C2) 1932 // If we have: ((V + N) & C1) | (V & C2) 1933 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1934 // replace with V+N. 1935 Value *N; 1936 if (C2->isMask() && // C2 == 0+1+ 1937 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 1938 // Add commutes, try both ways. 1939 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1940 return A; 1941 } 1942 // Or commutes, try both ways. 1943 if (C1->isMask() && 1944 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 1945 // Add commutes, try both ways. 1946 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1947 return B; 1948 } 1949 } 1950 } 1951 1952 // If the operation is with the result of a phi instruction, check whether 1953 // operating on all incoming values of the phi always yields the same value. 1954 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1955 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1956 return V; 1957 1958 return nullptr; 1959 } 1960 1961 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1962 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 1963 } 1964 1965 /// Given operands for a Xor, see if we can fold the result. 1966 /// If not, this returns null. 1967 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1968 unsigned MaxRecurse) { 1969 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 1970 return C; 1971 1972 // A ^ undef -> undef 1973 if (match(Op1, m_Undef())) 1974 return Op1; 1975 1976 // A ^ 0 = A 1977 if (match(Op1, m_Zero())) 1978 return Op0; 1979 1980 // A ^ A = 0 1981 if (Op0 == Op1) 1982 return Constant::getNullValue(Op0->getType()); 1983 1984 // A ^ ~A = ~A ^ A = -1 1985 if (match(Op0, m_Not(m_Specific(Op1))) || 1986 match(Op1, m_Not(m_Specific(Op0)))) 1987 return Constant::getAllOnesValue(Op0->getType()); 1988 1989 // Try some generic simplifications for associative operations. 1990 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1991 MaxRecurse)) 1992 return V; 1993 1994 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1995 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1996 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1997 // only if B and C are equal. If B and C are equal then (since we assume 1998 // that operands have already been simplified) "select(cond, B, C)" should 1999 // have been simplified to the common value of B and C already. Analysing 2000 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2001 // for threading over phi nodes. 2002 2003 return nullptr; 2004 } 2005 2006 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2007 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2008 } 2009 2010 2011 static Type *GetCompareTy(Value *Op) { 2012 return CmpInst::makeCmpResultType(Op->getType()); 2013 } 2014 2015 /// Rummage around inside V looking for something equivalent to the comparison 2016 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2017 /// Helper function for analyzing max/min idioms. 2018 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2019 Value *LHS, Value *RHS) { 2020 SelectInst *SI = dyn_cast<SelectInst>(V); 2021 if (!SI) 2022 return nullptr; 2023 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2024 if (!Cmp) 2025 return nullptr; 2026 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2027 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2028 return Cmp; 2029 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2030 LHS == CmpRHS && RHS == CmpLHS) 2031 return Cmp; 2032 return nullptr; 2033 } 2034 2035 // A significant optimization not implemented here is assuming that alloca 2036 // addresses are not equal to incoming argument values. They don't *alias*, 2037 // as we say, but that doesn't mean they aren't equal, so we take a 2038 // conservative approach. 2039 // 2040 // This is inspired in part by C++11 5.10p1: 2041 // "Two pointers of the same type compare equal if and only if they are both 2042 // null, both point to the same function, or both represent the same 2043 // address." 2044 // 2045 // This is pretty permissive. 2046 // 2047 // It's also partly due to C11 6.5.9p6: 2048 // "Two pointers compare equal if and only if both are null pointers, both are 2049 // pointers to the same object (including a pointer to an object and a 2050 // subobject at its beginning) or function, both are pointers to one past the 2051 // last element of the same array object, or one is a pointer to one past the 2052 // end of one array object and the other is a pointer to the start of a 2053 // different array object that happens to immediately follow the first array 2054 // object in the address space.) 2055 // 2056 // C11's version is more restrictive, however there's no reason why an argument 2057 // couldn't be a one-past-the-end value for a stack object in the caller and be 2058 // equal to the beginning of a stack object in the callee. 2059 // 2060 // If the C and C++ standards are ever made sufficiently restrictive in this 2061 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2062 // this optimization. 2063 static Constant * 2064 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2065 const DominatorTree *DT, CmpInst::Predicate Pred, 2066 const Instruction *CxtI, Value *LHS, Value *RHS) { 2067 // First, skip past any trivial no-ops. 2068 LHS = LHS->stripPointerCasts(); 2069 RHS = RHS->stripPointerCasts(); 2070 2071 // A non-null pointer is not equal to a null pointer. 2072 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 2073 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 2074 return ConstantInt::get(GetCompareTy(LHS), 2075 !CmpInst::isTrueWhenEqual(Pred)); 2076 2077 // We can only fold certain predicates on pointer comparisons. 2078 switch (Pred) { 2079 default: 2080 return nullptr; 2081 2082 // Equality comaprisons are easy to fold. 2083 case CmpInst::ICMP_EQ: 2084 case CmpInst::ICMP_NE: 2085 break; 2086 2087 // We can only handle unsigned relational comparisons because 'inbounds' on 2088 // a GEP only protects against unsigned wrapping. 2089 case CmpInst::ICMP_UGT: 2090 case CmpInst::ICMP_UGE: 2091 case CmpInst::ICMP_ULT: 2092 case CmpInst::ICMP_ULE: 2093 // However, we have to switch them to their signed variants to handle 2094 // negative indices from the base pointer. 2095 Pred = ICmpInst::getSignedPredicate(Pred); 2096 break; 2097 } 2098 2099 // Strip off any constant offsets so that we can reason about them. 2100 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2101 // here and compare base addresses like AliasAnalysis does, however there are 2102 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2103 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2104 // doesn't need to guarantee pointer inequality when it says NoAlias. 2105 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2106 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2107 2108 // If LHS and RHS are related via constant offsets to the same base 2109 // value, we can replace it with an icmp which just compares the offsets. 2110 if (LHS == RHS) 2111 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2112 2113 // Various optimizations for (in)equality comparisons. 2114 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2115 // Different non-empty allocations that exist at the same time have 2116 // different addresses (if the program can tell). Global variables always 2117 // exist, so they always exist during the lifetime of each other and all 2118 // allocas. Two different allocas usually have different addresses... 2119 // 2120 // However, if there's an @llvm.stackrestore dynamically in between two 2121 // allocas, they may have the same address. It's tempting to reduce the 2122 // scope of the problem by only looking at *static* allocas here. That would 2123 // cover the majority of allocas while significantly reducing the likelihood 2124 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2125 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2126 // an entry block. Also, if we have a block that's not attached to a 2127 // function, we can't tell if it's "static" under the current definition. 2128 // Theoretically, this problem could be fixed by creating a new kind of 2129 // instruction kind specifically for static allocas. Such a new instruction 2130 // could be required to be at the top of the entry block, thus preventing it 2131 // from being subject to a @llvm.stackrestore. Instcombine could even 2132 // convert regular allocas into these special allocas. It'd be nifty. 2133 // However, until then, this problem remains open. 2134 // 2135 // So, we'll assume that two non-empty allocas have different addresses 2136 // for now. 2137 // 2138 // With all that, if the offsets are within the bounds of their allocations 2139 // (and not one-past-the-end! so we can't use inbounds!), and their 2140 // allocations aren't the same, the pointers are not equal. 2141 // 2142 // Note that it's not necessary to check for LHS being a global variable 2143 // address, due to canonicalization and constant folding. 2144 if (isa<AllocaInst>(LHS) && 2145 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2146 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2147 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2148 uint64_t LHSSize, RHSSize; 2149 if (LHSOffsetCI && RHSOffsetCI && 2150 getObjectSize(LHS, LHSSize, DL, TLI) && 2151 getObjectSize(RHS, RHSSize, DL, TLI)) { 2152 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2153 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2154 if (!LHSOffsetValue.isNegative() && 2155 !RHSOffsetValue.isNegative() && 2156 LHSOffsetValue.ult(LHSSize) && 2157 RHSOffsetValue.ult(RHSSize)) { 2158 return ConstantInt::get(GetCompareTy(LHS), 2159 !CmpInst::isTrueWhenEqual(Pred)); 2160 } 2161 } 2162 2163 // Repeat the above check but this time without depending on DataLayout 2164 // or being able to compute a precise size. 2165 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2166 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2167 LHSOffset->isNullValue() && 2168 RHSOffset->isNullValue()) 2169 return ConstantInt::get(GetCompareTy(LHS), 2170 !CmpInst::isTrueWhenEqual(Pred)); 2171 } 2172 2173 // Even if an non-inbounds GEP occurs along the path we can still optimize 2174 // equality comparisons concerning the result. We avoid walking the whole 2175 // chain again by starting where the last calls to 2176 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2177 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2178 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2179 if (LHS == RHS) 2180 return ConstantExpr::getICmp(Pred, 2181 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2182 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2183 2184 // If one side of the equality comparison must come from a noalias call 2185 // (meaning a system memory allocation function), and the other side must 2186 // come from a pointer that cannot overlap with dynamically-allocated 2187 // memory within the lifetime of the current function (allocas, byval 2188 // arguments, globals), then determine the comparison result here. 2189 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2190 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2191 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2192 2193 // Is the set of underlying objects all noalias calls? 2194 auto IsNAC = [](ArrayRef<Value *> Objects) { 2195 return all_of(Objects, isNoAliasCall); 2196 }; 2197 2198 // Is the set of underlying objects all things which must be disjoint from 2199 // noalias calls. For allocas, we consider only static ones (dynamic 2200 // allocas might be transformed into calls to malloc not simultaneously 2201 // live with the compared-to allocation). For globals, we exclude symbols 2202 // that might be resolve lazily to symbols in another dynamically-loaded 2203 // library (and, thus, could be malloc'ed by the implementation). 2204 auto IsAllocDisjoint = [](ArrayRef<Value *> Objects) { 2205 return all_of(Objects, [](Value *V) { 2206 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2207 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2208 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2209 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2210 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2211 !GV->isThreadLocal(); 2212 if (const Argument *A = dyn_cast<Argument>(V)) 2213 return A->hasByValAttr(); 2214 return false; 2215 }); 2216 }; 2217 2218 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2219 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2220 return ConstantInt::get(GetCompareTy(LHS), 2221 !CmpInst::isTrueWhenEqual(Pred)); 2222 2223 // Fold comparisons for non-escaping pointer even if the allocation call 2224 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2225 // dynamic allocation call could be either of the operands. 2226 Value *MI = nullptr; 2227 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT)) 2228 MI = LHS; 2229 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonNullAt(LHS, CxtI, DT)) 2230 MI = RHS; 2231 // FIXME: We should also fold the compare when the pointer escapes, but the 2232 // compare dominates the pointer escape 2233 if (MI && !PointerMayBeCaptured(MI, true, true)) 2234 return ConstantInt::get(GetCompareTy(LHS), 2235 CmpInst::isFalseWhenEqual(Pred)); 2236 } 2237 2238 // Otherwise, fail. 2239 return nullptr; 2240 } 2241 2242 /// Fold an icmp when its operands have i1 scalar type. 2243 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2244 Value *RHS, const SimplifyQuery &Q) { 2245 Type *ITy = GetCompareTy(LHS); // The return type. 2246 Type *OpTy = LHS->getType(); // The operand type. 2247 if (!OpTy->isIntOrIntVectorTy(1)) 2248 return nullptr; 2249 2250 // A boolean compared to true/false can be simplified in 14 out of the 20 2251 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2252 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2253 if (match(RHS, m_Zero())) { 2254 switch (Pred) { 2255 case CmpInst::ICMP_NE: // X != 0 -> X 2256 case CmpInst::ICMP_UGT: // X >u 0 -> X 2257 case CmpInst::ICMP_SLT: // X <s 0 -> X 2258 return LHS; 2259 2260 case CmpInst::ICMP_ULT: // X <u 0 -> false 2261 case CmpInst::ICMP_SGT: // X >s 0 -> false 2262 return getFalse(ITy); 2263 2264 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2265 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2266 return getTrue(ITy); 2267 2268 default: break; 2269 } 2270 } else if (match(RHS, m_One())) { 2271 switch (Pred) { 2272 case CmpInst::ICMP_EQ: // X == 1 -> X 2273 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2274 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2275 return LHS; 2276 2277 case CmpInst::ICMP_UGT: // X >u 1 -> false 2278 case CmpInst::ICMP_SLT: // X <s -1 -> false 2279 return getFalse(ITy); 2280 2281 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2282 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2283 return getTrue(ITy); 2284 2285 default: break; 2286 } 2287 } 2288 2289 switch (Pred) { 2290 default: 2291 break; 2292 case ICmpInst::ICMP_UGE: 2293 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2294 return getTrue(ITy); 2295 break; 2296 case ICmpInst::ICMP_SGE: 2297 /// For signed comparison, the values for an i1 are 0 and -1 2298 /// respectively. This maps into a truth table of: 2299 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2300 /// 0 | 0 | 1 (0 >= 0) | 1 2301 /// 0 | 1 | 1 (0 >= -1) | 1 2302 /// 1 | 0 | 0 (-1 >= 0) | 0 2303 /// 1 | 1 | 1 (-1 >= -1) | 1 2304 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2305 return getTrue(ITy); 2306 break; 2307 case ICmpInst::ICMP_ULE: 2308 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2309 return getTrue(ITy); 2310 break; 2311 } 2312 2313 return nullptr; 2314 } 2315 2316 /// Try hard to fold icmp with zero RHS because this is a common case. 2317 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2318 Value *RHS, const SimplifyQuery &Q) { 2319 if (!match(RHS, m_Zero())) 2320 return nullptr; 2321 2322 Type *ITy = GetCompareTy(LHS); // The return type. 2323 switch (Pred) { 2324 default: 2325 llvm_unreachable("Unknown ICmp predicate!"); 2326 case ICmpInst::ICMP_ULT: 2327 return getFalse(ITy); 2328 case ICmpInst::ICMP_UGE: 2329 return getTrue(ITy); 2330 case ICmpInst::ICMP_EQ: 2331 case ICmpInst::ICMP_ULE: 2332 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2333 return getFalse(ITy); 2334 break; 2335 case ICmpInst::ICMP_NE: 2336 case ICmpInst::ICMP_UGT: 2337 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2338 return getTrue(ITy); 2339 break; 2340 case ICmpInst::ICMP_SLT: { 2341 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2342 if (LHSKnown.isNegative()) 2343 return getTrue(ITy); 2344 if (LHSKnown.isNonNegative()) 2345 return getFalse(ITy); 2346 break; 2347 } 2348 case ICmpInst::ICMP_SLE: { 2349 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2350 if (LHSKnown.isNegative()) 2351 return getTrue(ITy); 2352 if (LHSKnown.isNonNegative() && 2353 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2354 return getFalse(ITy); 2355 break; 2356 } 2357 case ICmpInst::ICMP_SGE: { 2358 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2359 if (LHSKnown.isNegative()) 2360 return getFalse(ITy); 2361 if (LHSKnown.isNonNegative()) 2362 return getTrue(ITy); 2363 break; 2364 } 2365 case ICmpInst::ICMP_SGT: { 2366 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2367 if (LHSKnown.isNegative()) 2368 return getFalse(ITy); 2369 if (LHSKnown.isNonNegative() && 2370 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2371 return getTrue(ITy); 2372 break; 2373 } 2374 } 2375 2376 return nullptr; 2377 } 2378 2379 /// Many binary operators with a constant operand have an easy-to-compute 2380 /// range of outputs. This can be used to fold a comparison to always true or 2381 /// always false. 2382 static void setLimitsForBinOp(BinaryOperator &BO, APInt &Lower, APInt &Upper) { 2383 unsigned Width = Lower.getBitWidth(); 2384 const APInt *C; 2385 switch (BO.getOpcode()) { 2386 case Instruction::Add: 2387 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2388 // FIXME: If we have both nuw and nsw, we should reduce the range further. 2389 if (BO.hasNoUnsignedWrap()) { 2390 // 'add nuw x, C' produces [C, UINT_MAX]. 2391 Lower = *C; 2392 } else if (BO.hasNoSignedWrap()) { 2393 if (C->isNegative()) { 2394 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 2395 Lower = APInt::getSignedMinValue(Width); 2396 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 2397 } else { 2398 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 2399 Lower = APInt::getSignedMinValue(Width) + *C; 2400 Upper = APInt::getSignedMaxValue(Width) + 1; 2401 } 2402 } 2403 } 2404 break; 2405 2406 case Instruction::And: 2407 if (match(BO.getOperand(1), m_APInt(C))) 2408 // 'and x, C' produces [0, C]. 2409 Upper = *C + 1; 2410 break; 2411 2412 case Instruction::Or: 2413 if (match(BO.getOperand(1), m_APInt(C))) 2414 // 'or x, C' produces [C, UINT_MAX]. 2415 Lower = *C; 2416 break; 2417 2418 case Instruction::AShr: 2419 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2420 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 2421 Lower = APInt::getSignedMinValue(Width).ashr(*C); 2422 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 2423 } else if (match(BO.getOperand(0), m_APInt(C))) { 2424 unsigned ShiftAmount = Width - 1; 2425 if (!C->isNullValue() && BO.isExact()) 2426 ShiftAmount = C->countTrailingZeros(); 2427 if (C->isNegative()) { 2428 // 'ashr C, x' produces [C, C >> (Width-1)] 2429 Lower = *C; 2430 Upper = C->ashr(ShiftAmount) + 1; 2431 } else { 2432 // 'ashr C, x' produces [C >> (Width-1), C] 2433 Lower = C->ashr(ShiftAmount); 2434 Upper = *C + 1; 2435 } 2436 } 2437 break; 2438 2439 case Instruction::LShr: 2440 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 2441 // 'lshr x, C' produces [0, UINT_MAX >> C]. 2442 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 2443 } else if (match(BO.getOperand(0), m_APInt(C))) { 2444 // 'lshr C, x' produces [C >> (Width-1), C]. 2445 unsigned ShiftAmount = Width - 1; 2446 if (!C->isNullValue() && BO.isExact()) 2447 ShiftAmount = C->countTrailingZeros(); 2448 Lower = C->lshr(ShiftAmount); 2449 Upper = *C + 1; 2450 } 2451 break; 2452 2453 case Instruction::Shl: 2454 if (match(BO.getOperand(0), m_APInt(C))) { 2455 if (BO.hasNoUnsignedWrap()) { 2456 // 'shl nuw C, x' produces [C, C << CLZ(C)] 2457 Lower = *C; 2458 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2459 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 2460 if (C->isNegative()) { 2461 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 2462 unsigned ShiftAmount = C->countLeadingOnes() - 1; 2463 Lower = C->shl(ShiftAmount); 2464 Upper = *C + 1; 2465 } else { 2466 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 2467 unsigned ShiftAmount = C->countLeadingZeros() - 1; 2468 Lower = *C; 2469 Upper = C->shl(ShiftAmount) + 1; 2470 } 2471 } 2472 } 2473 break; 2474 2475 case Instruction::SDiv: 2476 if (match(BO.getOperand(1), m_APInt(C))) { 2477 APInt IntMin = APInt::getSignedMinValue(Width); 2478 APInt IntMax = APInt::getSignedMaxValue(Width); 2479 if (C->isAllOnesValue()) { 2480 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2481 // where C != -1 and C != 0 and C != 1 2482 Lower = IntMin + 1; 2483 Upper = IntMax + 1; 2484 } else if (C->countLeadingZeros() < Width - 1) { 2485 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 2486 // where C != -1 and C != 0 and C != 1 2487 Lower = IntMin.sdiv(*C); 2488 Upper = IntMax.sdiv(*C); 2489 if (Lower.sgt(Upper)) 2490 std::swap(Lower, Upper); 2491 Upper = Upper + 1; 2492 assert(Upper != Lower && "Upper part of range has wrapped!"); 2493 } 2494 } else if (match(BO.getOperand(0), m_APInt(C))) { 2495 if (C->isMinSignedValue()) { 2496 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2497 Lower = *C; 2498 Upper = Lower.lshr(1) + 1; 2499 } else { 2500 // 'sdiv C, x' produces [-|C|, |C|]. 2501 Upper = C->abs() + 1; 2502 Lower = (-Upper) + 1; 2503 } 2504 } 2505 break; 2506 2507 case Instruction::UDiv: 2508 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 2509 // 'udiv x, C' produces [0, UINT_MAX / C]. 2510 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 2511 } else if (match(BO.getOperand(0), m_APInt(C))) { 2512 // 'udiv C, x' produces [0, C]. 2513 Upper = *C + 1; 2514 } 2515 break; 2516 2517 case Instruction::SRem: 2518 if (match(BO.getOperand(1), m_APInt(C))) { 2519 // 'srem x, C' produces (-|C|, |C|). 2520 Upper = C->abs(); 2521 Lower = (-Upper) + 1; 2522 } 2523 break; 2524 2525 case Instruction::URem: 2526 if (match(BO.getOperand(1), m_APInt(C))) 2527 // 'urem x, C' produces [0, C). 2528 Upper = *C; 2529 break; 2530 2531 default: 2532 break; 2533 } 2534 } 2535 2536 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2537 Value *RHS) { 2538 const APInt *C; 2539 if (!match(RHS, m_APInt(C))) 2540 return nullptr; 2541 2542 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2543 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2544 if (RHS_CR.isEmptySet()) 2545 return ConstantInt::getFalse(GetCompareTy(RHS)); 2546 if (RHS_CR.isFullSet()) 2547 return ConstantInt::getTrue(GetCompareTy(RHS)); 2548 2549 // Find the range of possible values for binary operators. 2550 unsigned Width = C->getBitWidth(); 2551 APInt Lower = APInt(Width, 0); 2552 APInt Upper = APInt(Width, 0); 2553 if (auto *BO = dyn_cast<BinaryOperator>(LHS)) 2554 setLimitsForBinOp(*BO, Lower, Upper); 2555 2556 ConstantRange LHS_CR = 2557 Lower != Upper ? ConstantRange(Lower, Upper) : ConstantRange(Width, true); 2558 2559 if (auto *I = dyn_cast<Instruction>(LHS)) 2560 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2561 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2562 2563 if (!LHS_CR.isFullSet()) { 2564 if (RHS_CR.contains(LHS_CR)) 2565 return ConstantInt::getTrue(GetCompareTy(RHS)); 2566 if (RHS_CR.inverse().contains(LHS_CR)) 2567 return ConstantInt::getFalse(GetCompareTy(RHS)); 2568 } 2569 2570 return nullptr; 2571 } 2572 2573 /// TODO: A large part of this logic is duplicated in InstCombine's 2574 /// foldICmpBinOp(). We should be able to share that and avoid the code 2575 /// duplication. 2576 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2577 Value *RHS, const SimplifyQuery &Q, 2578 unsigned MaxRecurse) { 2579 Type *ITy = GetCompareTy(LHS); // The return type. 2580 2581 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2582 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2583 if (MaxRecurse && (LBO || RBO)) { 2584 // Analyze the case when either LHS or RHS is an add instruction. 2585 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2586 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2587 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2588 if (LBO && LBO->getOpcode() == Instruction::Add) { 2589 A = LBO->getOperand(0); 2590 B = LBO->getOperand(1); 2591 NoLHSWrapProblem = 2592 ICmpInst::isEquality(Pred) || 2593 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2594 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2595 } 2596 if (RBO && RBO->getOpcode() == Instruction::Add) { 2597 C = RBO->getOperand(0); 2598 D = RBO->getOperand(1); 2599 NoRHSWrapProblem = 2600 ICmpInst::isEquality(Pred) || 2601 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2602 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2603 } 2604 2605 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2606 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2607 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2608 Constant::getNullValue(RHS->getType()), Q, 2609 MaxRecurse - 1)) 2610 return V; 2611 2612 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2613 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2614 if (Value *V = 2615 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2616 C == LHS ? D : C, Q, MaxRecurse - 1)) 2617 return V; 2618 2619 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2620 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2621 NoRHSWrapProblem) { 2622 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2623 Value *Y, *Z; 2624 if (A == C) { 2625 // C + B == C + D -> B == D 2626 Y = B; 2627 Z = D; 2628 } else if (A == D) { 2629 // D + B == C + D -> B == C 2630 Y = B; 2631 Z = C; 2632 } else if (B == C) { 2633 // A + C == C + D -> A == D 2634 Y = A; 2635 Z = D; 2636 } else { 2637 assert(B == D); 2638 // A + D == C + D -> A == C 2639 Y = A; 2640 Z = C; 2641 } 2642 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2643 return V; 2644 } 2645 } 2646 2647 { 2648 Value *Y = nullptr; 2649 // icmp pred (or X, Y), X 2650 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2651 if (Pred == ICmpInst::ICMP_ULT) 2652 return getFalse(ITy); 2653 if (Pred == ICmpInst::ICMP_UGE) 2654 return getTrue(ITy); 2655 2656 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2657 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2658 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2659 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2660 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2661 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2662 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2663 } 2664 } 2665 // icmp pred X, (or X, Y) 2666 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2667 if (Pred == ICmpInst::ICMP_ULE) 2668 return getTrue(ITy); 2669 if (Pred == ICmpInst::ICMP_UGT) 2670 return getFalse(ITy); 2671 2672 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2673 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2674 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2675 if (LHSKnown.isNonNegative() && YKnown.isNegative()) 2676 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2677 if (LHSKnown.isNegative() || YKnown.isNonNegative()) 2678 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2679 } 2680 } 2681 } 2682 2683 // icmp pred (and X, Y), X 2684 if (LBO && match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2685 if (Pred == ICmpInst::ICMP_UGT) 2686 return getFalse(ITy); 2687 if (Pred == ICmpInst::ICMP_ULE) 2688 return getTrue(ITy); 2689 } 2690 // icmp pred X, (and X, Y) 2691 if (RBO && match(RBO, m_c_And(m_Value(), m_Specific(LHS)))) { 2692 if (Pred == ICmpInst::ICMP_UGE) 2693 return getTrue(ITy); 2694 if (Pred == ICmpInst::ICMP_ULT) 2695 return getFalse(ITy); 2696 } 2697 2698 // 0 - (zext X) pred C 2699 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2700 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2701 if (RHSC->getValue().isStrictlyPositive()) { 2702 if (Pred == ICmpInst::ICMP_SLT) 2703 return ConstantInt::getTrue(RHSC->getContext()); 2704 if (Pred == ICmpInst::ICMP_SGE) 2705 return ConstantInt::getFalse(RHSC->getContext()); 2706 if (Pred == ICmpInst::ICMP_EQ) 2707 return ConstantInt::getFalse(RHSC->getContext()); 2708 if (Pred == ICmpInst::ICMP_NE) 2709 return ConstantInt::getTrue(RHSC->getContext()); 2710 } 2711 if (RHSC->getValue().isNonNegative()) { 2712 if (Pred == ICmpInst::ICMP_SLE) 2713 return ConstantInt::getTrue(RHSC->getContext()); 2714 if (Pred == ICmpInst::ICMP_SGT) 2715 return ConstantInt::getFalse(RHSC->getContext()); 2716 } 2717 } 2718 } 2719 2720 // icmp pred (urem X, Y), Y 2721 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2722 switch (Pred) { 2723 default: 2724 break; 2725 case ICmpInst::ICMP_SGT: 2726 case ICmpInst::ICMP_SGE: { 2727 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2728 if (!Known.isNonNegative()) 2729 break; 2730 LLVM_FALLTHROUGH; 2731 } 2732 case ICmpInst::ICMP_EQ: 2733 case ICmpInst::ICMP_UGT: 2734 case ICmpInst::ICMP_UGE: 2735 return getFalse(ITy); 2736 case ICmpInst::ICMP_SLT: 2737 case ICmpInst::ICMP_SLE: { 2738 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2739 if (!Known.isNonNegative()) 2740 break; 2741 LLVM_FALLTHROUGH; 2742 } 2743 case ICmpInst::ICMP_NE: 2744 case ICmpInst::ICMP_ULT: 2745 case ICmpInst::ICMP_ULE: 2746 return getTrue(ITy); 2747 } 2748 } 2749 2750 // icmp pred X, (urem Y, X) 2751 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2752 switch (Pred) { 2753 default: 2754 break; 2755 case ICmpInst::ICMP_SGT: 2756 case ICmpInst::ICMP_SGE: { 2757 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2758 if (!Known.isNonNegative()) 2759 break; 2760 LLVM_FALLTHROUGH; 2761 } 2762 case ICmpInst::ICMP_NE: 2763 case ICmpInst::ICMP_UGT: 2764 case ICmpInst::ICMP_UGE: 2765 return getTrue(ITy); 2766 case ICmpInst::ICMP_SLT: 2767 case ICmpInst::ICMP_SLE: { 2768 KnownBits Known = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2769 if (!Known.isNonNegative()) 2770 break; 2771 LLVM_FALLTHROUGH; 2772 } 2773 case ICmpInst::ICMP_EQ: 2774 case ICmpInst::ICMP_ULT: 2775 case ICmpInst::ICMP_ULE: 2776 return getFalse(ITy); 2777 } 2778 } 2779 2780 // x >> y <=u x 2781 // x udiv y <=u x. 2782 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2783 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2784 // icmp pred (X op Y), X 2785 if (Pred == ICmpInst::ICMP_UGT) 2786 return getFalse(ITy); 2787 if (Pred == ICmpInst::ICMP_ULE) 2788 return getTrue(ITy); 2789 } 2790 2791 // x >=u x >> y 2792 // x >=u x udiv y. 2793 if (RBO && (match(RBO, m_LShr(m_Specific(LHS), m_Value())) || 2794 match(RBO, m_UDiv(m_Specific(LHS), m_Value())))) { 2795 // icmp pred X, (X op Y) 2796 if (Pred == ICmpInst::ICMP_ULT) 2797 return getFalse(ITy); 2798 if (Pred == ICmpInst::ICMP_UGE) 2799 return getTrue(ITy); 2800 } 2801 2802 // handle: 2803 // CI2 << X == CI 2804 // CI2 << X != CI 2805 // 2806 // where CI2 is a power of 2 and CI isn't 2807 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2808 const APInt *CI2Val, *CIVal = &CI->getValue(); 2809 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2810 CI2Val->isPowerOf2()) { 2811 if (!CIVal->isPowerOf2()) { 2812 // CI2 << X can equal zero in some circumstances, 2813 // this simplification is unsafe if CI is zero. 2814 // 2815 // We know it is safe if: 2816 // - The shift is nsw, we can't shift out the one bit. 2817 // - The shift is nuw, we can't shift out the one bit. 2818 // - CI2 is one 2819 // - CI isn't zero 2820 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2821 CI2Val->isOneValue() || !CI->isZero()) { 2822 if (Pred == ICmpInst::ICMP_EQ) 2823 return ConstantInt::getFalse(RHS->getContext()); 2824 if (Pred == ICmpInst::ICMP_NE) 2825 return ConstantInt::getTrue(RHS->getContext()); 2826 } 2827 } 2828 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2829 if (Pred == ICmpInst::ICMP_UGT) 2830 return ConstantInt::getFalse(RHS->getContext()); 2831 if (Pred == ICmpInst::ICMP_ULE) 2832 return ConstantInt::getTrue(RHS->getContext()); 2833 } 2834 } 2835 } 2836 2837 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2838 LBO->getOperand(1) == RBO->getOperand(1)) { 2839 switch (LBO->getOpcode()) { 2840 default: 2841 break; 2842 case Instruction::UDiv: 2843 case Instruction::LShr: 2844 if (ICmpInst::isSigned(Pred) || !LBO->isExact() || !RBO->isExact()) 2845 break; 2846 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2847 RBO->getOperand(0), Q, MaxRecurse - 1)) 2848 return V; 2849 break; 2850 case Instruction::SDiv: 2851 if (!ICmpInst::isEquality(Pred) || !LBO->isExact() || !RBO->isExact()) 2852 break; 2853 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2854 RBO->getOperand(0), Q, MaxRecurse - 1)) 2855 return V; 2856 break; 2857 case Instruction::AShr: 2858 if (!LBO->isExact() || !RBO->isExact()) 2859 break; 2860 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2861 RBO->getOperand(0), Q, MaxRecurse - 1)) 2862 return V; 2863 break; 2864 case Instruction::Shl: { 2865 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2866 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2867 if (!NUW && !NSW) 2868 break; 2869 if (!NSW && ICmpInst::isSigned(Pred)) 2870 break; 2871 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2872 RBO->getOperand(0), Q, MaxRecurse - 1)) 2873 return V; 2874 break; 2875 } 2876 } 2877 } 2878 return nullptr; 2879 } 2880 2881 /// Simplify integer comparisons where at least one operand of the compare 2882 /// matches an integer min/max idiom. 2883 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 2884 Value *RHS, const SimplifyQuery &Q, 2885 unsigned MaxRecurse) { 2886 Type *ITy = GetCompareTy(LHS); // The return type. 2887 Value *A, *B; 2888 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2889 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2890 2891 // Signed variants on "max(a,b)>=a -> true". 2892 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2893 if (A != RHS) 2894 std::swap(A, B); // smax(A, B) pred A. 2895 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2896 // We analyze this as smax(A, B) pred A. 2897 P = Pred; 2898 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2899 (A == LHS || B == LHS)) { 2900 if (A != LHS) 2901 std::swap(A, B); // A pred smax(A, B). 2902 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2903 // We analyze this as smax(A, B) swapped-pred A. 2904 P = CmpInst::getSwappedPredicate(Pred); 2905 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2906 (A == RHS || B == RHS)) { 2907 if (A != RHS) 2908 std::swap(A, B); // smin(A, B) pred A. 2909 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2910 // We analyze this as smax(-A, -B) swapped-pred -A. 2911 // Note that we do not need to actually form -A or -B thanks to EqP. 2912 P = CmpInst::getSwappedPredicate(Pred); 2913 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2914 (A == LHS || B == LHS)) { 2915 if (A != LHS) 2916 std::swap(A, B); // A pred smin(A, B). 2917 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2918 // We analyze this as smax(-A, -B) pred -A. 2919 // Note that we do not need to actually form -A or -B thanks to EqP. 2920 P = Pred; 2921 } 2922 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2923 // Cases correspond to "max(A, B) p A". 2924 switch (P) { 2925 default: 2926 break; 2927 case CmpInst::ICMP_EQ: 2928 case CmpInst::ICMP_SLE: 2929 // Equivalent to "A EqP B". This may be the same as the condition tested 2930 // in the max/min; if so, we can just return that. 2931 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2932 return V; 2933 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2934 return V; 2935 // Otherwise, see if "A EqP B" simplifies. 2936 if (MaxRecurse) 2937 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 2938 return V; 2939 break; 2940 case CmpInst::ICMP_NE: 2941 case CmpInst::ICMP_SGT: { 2942 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2943 // Equivalent to "A InvEqP B". This may be the same as the condition 2944 // tested in the max/min; if so, we can just return that. 2945 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2946 return V; 2947 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2948 return V; 2949 // Otherwise, see if "A InvEqP B" simplifies. 2950 if (MaxRecurse) 2951 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 2952 return V; 2953 break; 2954 } 2955 case CmpInst::ICMP_SGE: 2956 // Always true. 2957 return getTrue(ITy); 2958 case CmpInst::ICMP_SLT: 2959 // Always false. 2960 return getFalse(ITy); 2961 } 2962 } 2963 2964 // Unsigned variants on "max(a,b)>=a -> true". 2965 P = CmpInst::BAD_ICMP_PREDICATE; 2966 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2967 if (A != RHS) 2968 std::swap(A, B); // umax(A, B) pred A. 2969 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2970 // We analyze this as umax(A, B) pred A. 2971 P = Pred; 2972 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2973 (A == LHS || B == LHS)) { 2974 if (A != LHS) 2975 std::swap(A, B); // A pred umax(A, B). 2976 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2977 // We analyze this as umax(A, B) swapped-pred A. 2978 P = CmpInst::getSwappedPredicate(Pred); 2979 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2980 (A == RHS || B == RHS)) { 2981 if (A != RHS) 2982 std::swap(A, B); // umin(A, B) pred A. 2983 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2984 // We analyze this as umax(-A, -B) swapped-pred -A. 2985 // Note that we do not need to actually form -A or -B thanks to EqP. 2986 P = CmpInst::getSwappedPredicate(Pred); 2987 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2988 (A == LHS || B == LHS)) { 2989 if (A != LHS) 2990 std::swap(A, B); // A pred umin(A, B). 2991 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2992 // We analyze this as umax(-A, -B) pred -A. 2993 // Note that we do not need to actually form -A or -B thanks to EqP. 2994 P = Pred; 2995 } 2996 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2997 // Cases correspond to "max(A, B) p A". 2998 switch (P) { 2999 default: 3000 break; 3001 case CmpInst::ICMP_EQ: 3002 case CmpInst::ICMP_ULE: 3003 // Equivalent to "A EqP B". This may be the same as the condition tested 3004 // in the max/min; if so, we can just return that. 3005 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3006 return V; 3007 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3008 return V; 3009 // Otherwise, see if "A EqP B" simplifies. 3010 if (MaxRecurse) 3011 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3012 return V; 3013 break; 3014 case CmpInst::ICMP_NE: 3015 case CmpInst::ICMP_UGT: { 3016 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3017 // Equivalent to "A InvEqP B". This may be the same as the condition 3018 // tested in the max/min; if so, we can just return that. 3019 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3020 return V; 3021 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3022 return V; 3023 // Otherwise, see if "A InvEqP B" simplifies. 3024 if (MaxRecurse) 3025 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3026 return V; 3027 break; 3028 } 3029 case CmpInst::ICMP_UGE: 3030 // Always true. 3031 return getTrue(ITy); 3032 case CmpInst::ICMP_ULT: 3033 // Always false. 3034 return getFalse(ITy); 3035 } 3036 } 3037 3038 // Variants on "max(x,y) >= min(x,z)". 3039 Value *C, *D; 3040 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3041 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3042 (A == C || A == D || B == C || B == D)) { 3043 // max(x, ?) pred min(x, ?). 3044 if (Pred == CmpInst::ICMP_SGE) 3045 // Always true. 3046 return getTrue(ITy); 3047 if (Pred == CmpInst::ICMP_SLT) 3048 // Always false. 3049 return getFalse(ITy); 3050 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3051 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3052 (A == C || A == D || B == C || B == D)) { 3053 // min(x, ?) pred max(x, ?). 3054 if (Pred == CmpInst::ICMP_SLE) 3055 // Always true. 3056 return getTrue(ITy); 3057 if (Pred == CmpInst::ICMP_SGT) 3058 // Always false. 3059 return getFalse(ITy); 3060 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3061 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3062 (A == C || A == D || B == C || B == D)) { 3063 // max(x, ?) pred min(x, ?). 3064 if (Pred == CmpInst::ICMP_UGE) 3065 // Always true. 3066 return getTrue(ITy); 3067 if (Pred == CmpInst::ICMP_ULT) 3068 // Always false. 3069 return getFalse(ITy); 3070 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3071 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3072 (A == C || A == D || B == C || B == D)) { 3073 // min(x, ?) pred max(x, ?). 3074 if (Pred == CmpInst::ICMP_ULE) 3075 // Always true. 3076 return getTrue(ITy); 3077 if (Pred == CmpInst::ICMP_UGT) 3078 // Always false. 3079 return getFalse(ITy); 3080 } 3081 3082 return nullptr; 3083 } 3084 3085 /// Given operands for an ICmpInst, see if we can fold the result. 3086 /// If not, this returns null. 3087 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3088 const SimplifyQuery &Q, unsigned MaxRecurse) { 3089 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3090 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3091 3092 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3093 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3094 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3095 3096 // If we have a constant, make sure it is on the RHS. 3097 std::swap(LHS, RHS); 3098 Pred = CmpInst::getSwappedPredicate(Pred); 3099 } 3100 3101 Type *ITy = GetCompareTy(LHS); // The return type. 3102 3103 // icmp X, X -> true/false 3104 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 3105 // because X could be 0. 3106 if (LHS == RHS || isa<UndefValue>(RHS)) 3107 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3108 3109 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3110 return V; 3111 3112 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3113 return V; 3114 3115 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS)) 3116 return V; 3117 3118 // If both operands have range metadata, use the metadata 3119 // to simplify the comparison. 3120 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3121 auto RHS_Instr = cast<Instruction>(RHS); 3122 auto LHS_Instr = cast<Instruction>(LHS); 3123 3124 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 3125 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 3126 auto RHS_CR = getConstantRangeFromMetadata( 3127 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3128 auto LHS_CR = getConstantRangeFromMetadata( 3129 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3130 3131 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3132 if (Satisfied_CR.contains(LHS_CR)) 3133 return ConstantInt::getTrue(RHS->getContext()); 3134 3135 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3136 CmpInst::getInversePredicate(Pred), RHS_CR); 3137 if (InversedSatisfied_CR.contains(LHS_CR)) 3138 return ConstantInt::getFalse(RHS->getContext()); 3139 } 3140 } 3141 3142 // Compare of cast, for example (zext X) != 0 -> X != 0 3143 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3144 Instruction *LI = cast<CastInst>(LHS); 3145 Value *SrcOp = LI->getOperand(0); 3146 Type *SrcTy = SrcOp->getType(); 3147 Type *DstTy = LI->getType(); 3148 3149 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3150 // if the integer type is the same size as the pointer type. 3151 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3152 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3153 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3154 // Transfer the cast to the constant. 3155 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3156 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3157 Q, MaxRecurse-1)) 3158 return V; 3159 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3160 if (RI->getOperand(0)->getType() == SrcTy) 3161 // Compare without the cast. 3162 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3163 Q, MaxRecurse-1)) 3164 return V; 3165 } 3166 } 3167 3168 if (isa<ZExtInst>(LHS)) { 3169 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3170 // same type. 3171 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3172 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3173 // Compare X and Y. Note that signed predicates become unsigned. 3174 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3175 SrcOp, RI->getOperand(0), Q, 3176 MaxRecurse-1)) 3177 return V; 3178 } 3179 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3180 // too. If not, then try to deduce the result of the comparison. 3181 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3182 // Compute the constant that would happen if we truncated to SrcTy then 3183 // reextended to DstTy. 3184 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3185 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3186 3187 // If the re-extended constant didn't change then this is effectively 3188 // also a case of comparing two zero-extended values. 3189 if (RExt == CI && MaxRecurse) 3190 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3191 SrcOp, Trunc, Q, MaxRecurse-1)) 3192 return V; 3193 3194 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3195 // there. Use this to work out the result of the comparison. 3196 if (RExt != CI) { 3197 switch (Pred) { 3198 default: llvm_unreachable("Unknown ICmp predicate!"); 3199 // LHS <u RHS. 3200 case ICmpInst::ICMP_EQ: 3201 case ICmpInst::ICMP_UGT: 3202 case ICmpInst::ICMP_UGE: 3203 return ConstantInt::getFalse(CI->getContext()); 3204 3205 case ICmpInst::ICMP_NE: 3206 case ICmpInst::ICMP_ULT: 3207 case ICmpInst::ICMP_ULE: 3208 return ConstantInt::getTrue(CI->getContext()); 3209 3210 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3211 // is non-negative then LHS <s RHS. 3212 case ICmpInst::ICMP_SGT: 3213 case ICmpInst::ICMP_SGE: 3214 return CI->getValue().isNegative() ? 3215 ConstantInt::getTrue(CI->getContext()) : 3216 ConstantInt::getFalse(CI->getContext()); 3217 3218 case ICmpInst::ICMP_SLT: 3219 case ICmpInst::ICMP_SLE: 3220 return CI->getValue().isNegative() ? 3221 ConstantInt::getFalse(CI->getContext()) : 3222 ConstantInt::getTrue(CI->getContext()); 3223 } 3224 } 3225 } 3226 } 3227 3228 if (isa<SExtInst>(LHS)) { 3229 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3230 // same type. 3231 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3232 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3233 // Compare X and Y. Note that the predicate does not change. 3234 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3235 Q, MaxRecurse-1)) 3236 return V; 3237 } 3238 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3239 // too. If not, then try to deduce the result of the comparison. 3240 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3241 // Compute the constant that would happen if we truncated to SrcTy then 3242 // reextended to DstTy. 3243 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3244 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3245 3246 // If the re-extended constant didn't change then this is effectively 3247 // also a case of comparing two sign-extended values. 3248 if (RExt == CI && MaxRecurse) 3249 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3250 return V; 3251 3252 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3253 // bits there. Use this to work out the result of the comparison. 3254 if (RExt != CI) { 3255 switch (Pred) { 3256 default: llvm_unreachable("Unknown ICmp predicate!"); 3257 case ICmpInst::ICMP_EQ: 3258 return ConstantInt::getFalse(CI->getContext()); 3259 case ICmpInst::ICMP_NE: 3260 return ConstantInt::getTrue(CI->getContext()); 3261 3262 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3263 // LHS >s RHS. 3264 case ICmpInst::ICMP_SGT: 3265 case ICmpInst::ICMP_SGE: 3266 return CI->getValue().isNegative() ? 3267 ConstantInt::getTrue(CI->getContext()) : 3268 ConstantInt::getFalse(CI->getContext()); 3269 case ICmpInst::ICMP_SLT: 3270 case ICmpInst::ICMP_SLE: 3271 return CI->getValue().isNegative() ? 3272 ConstantInt::getFalse(CI->getContext()) : 3273 ConstantInt::getTrue(CI->getContext()); 3274 3275 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3276 // LHS >u RHS. 3277 case ICmpInst::ICMP_UGT: 3278 case ICmpInst::ICMP_UGE: 3279 // Comparison is true iff the LHS <s 0. 3280 if (MaxRecurse) 3281 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3282 Constant::getNullValue(SrcTy), 3283 Q, MaxRecurse-1)) 3284 return V; 3285 break; 3286 case ICmpInst::ICMP_ULT: 3287 case ICmpInst::ICMP_ULE: 3288 // Comparison is true iff the LHS >=s 0. 3289 if (MaxRecurse) 3290 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3291 Constant::getNullValue(SrcTy), 3292 Q, MaxRecurse-1)) 3293 return V; 3294 break; 3295 } 3296 } 3297 } 3298 } 3299 } 3300 3301 // icmp eq|ne X, Y -> false|true if X != Y 3302 if (ICmpInst::isEquality(Pred) && 3303 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 3304 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3305 } 3306 3307 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3308 return V; 3309 3310 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3311 return V; 3312 3313 // Simplify comparisons of related pointers using a powerful, recursive 3314 // GEP-walk when we have target data available.. 3315 if (LHS->getType()->isPointerTy()) 3316 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3317 return C; 3318 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3319 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3320 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3321 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3322 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3323 Q.DL.getTypeSizeInBits(CRHS->getType())) 3324 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, 3325 CLHS->getPointerOperand(), 3326 CRHS->getPointerOperand())) 3327 return C; 3328 3329 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3330 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3331 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3332 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3333 (ICmpInst::isEquality(Pred) || 3334 (GLHS->isInBounds() && GRHS->isInBounds() && 3335 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3336 // The bases are equal and the indices are constant. Build a constant 3337 // expression GEP with the same indices and a null base pointer to see 3338 // what constant folding can make out of it. 3339 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3340 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3341 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3342 GLHS->getSourceElementType(), Null, IndicesLHS); 3343 3344 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3345 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3346 GLHS->getSourceElementType(), Null, IndicesRHS); 3347 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3348 } 3349 } 3350 } 3351 3352 // If the comparison is with the result of a select instruction, check whether 3353 // comparing with either branch of the select always yields the same value. 3354 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3355 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3356 return V; 3357 3358 // If the comparison is with the result of a phi instruction, check whether 3359 // doing the compare with each incoming phi value yields a common result. 3360 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3361 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3362 return V; 3363 3364 return nullptr; 3365 } 3366 3367 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3368 const SimplifyQuery &Q) { 3369 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3370 } 3371 3372 /// Given operands for an FCmpInst, see if we can fold the result. 3373 /// If not, this returns null. 3374 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3375 FastMathFlags FMF, const SimplifyQuery &Q, 3376 unsigned MaxRecurse) { 3377 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3378 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3379 3380 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3381 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3382 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3383 3384 // If we have a constant, make sure it is on the RHS. 3385 std::swap(LHS, RHS); 3386 Pred = CmpInst::getSwappedPredicate(Pred); 3387 } 3388 3389 // Fold trivial predicates. 3390 Type *RetTy = GetCompareTy(LHS); 3391 if (Pred == FCmpInst::FCMP_FALSE) 3392 return getFalse(RetTy); 3393 if (Pred == FCmpInst::FCMP_TRUE) 3394 return getTrue(RetTy); 3395 3396 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3397 if (FMF.noNaNs()) { 3398 if (Pred == FCmpInst::FCMP_UNO) 3399 return getFalse(RetTy); 3400 if (Pred == FCmpInst::FCMP_ORD) 3401 return getTrue(RetTy); 3402 } 3403 3404 // fcmp pred x, undef and fcmp pred undef, x 3405 // fold to true if unordered, false if ordered 3406 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3407 // Choosing NaN for the undef will always make unordered comparison succeed 3408 // and ordered comparison fail. 3409 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3410 } 3411 3412 // fcmp x,x -> true/false. Not all compares are foldable. 3413 if (LHS == RHS) { 3414 if (CmpInst::isTrueWhenEqual(Pred)) 3415 return getTrue(RetTy); 3416 if (CmpInst::isFalseWhenEqual(Pred)) 3417 return getFalse(RetTy); 3418 } 3419 3420 // Handle fcmp with constant RHS 3421 const ConstantFP *CFP = nullptr; 3422 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3423 if (RHS->getType()->isVectorTy()) 3424 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3425 else 3426 CFP = dyn_cast<ConstantFP>(RHSC); 3427 } 3428 if (CFP) { 3429 // If the constant is a nan, see if we can fold the comparison based on it. 3430 if (CFP->getValueAPF().isNaN()) { 3431 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3432 return getFalse(RetTy); 3433 assert(FCmpInst::isUnordered(Pred) && 3434 "Comparison must be either ordered or unordered!"); 3435 // True if unordered. 3436 return getTrue(RetTy); 3437 } 3438 // Check whether the constant is an infinity. 3439 if (CFP->getValueAPF().isInfinity()) { 3440 if (CFP->getValueAPF().isNegative()) { 3441 switch (Pred) { 3442 case FCmpInst::FCMP_OLT: 3443 // No value is ordered and less than negative infinity. 3444 return getFalse(RetTy); 3445 case FCmpInst::FCMP_UGE: 3446 // All values are unordered with or at least negative infinity. 3447 return getTrue(RetTy); 3448 default: 3449 break; 3450 } 3451 } else { 3452 switch (Pred) { 3453 case FCmpInst::FCMP_OGT: 3454 // No value is ordered and greater than infinity. 3455 return getFalse(RetTy); 3456 case FCmpInst::FCMP_ULE: 3457 // All values are unordered with and at most infinity. 3458 return getTrue(RetTy); 3459 default: 3460 break; 3461 } 3462 } 3463 } 3464 if (CFP->getValueAPF().isZero()) { 3465 switch (Pred) { 3466 case FCmpInst::FCMP_UGE: 3467 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3468 return getTrue(RetTy); 3469 break; 3470 case FCmpInst::FCMP_OLT: 3471 // X < 0 3472 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3473 return getFalse(RetTy); 3474 break; 3475 default: 3476 break; 3477 } 3478 } 3479 } 3480 3481 // If the comparison is with the result of a select instruction, check whether 3482 // comparing with either branch of the select always yields the same value. 3483 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3484 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3485 return V; 3486 3487 // If the comparison is with the result of a phi instruction, check whether 3488 // doing the compare with each incoming phi value yields a common result. 3489 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3490 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3491 return V; 3492 3493 return nullptr; 3494 } 3495 3496 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3497 FastMathFlags FMF, const SimplifyQuery &Q) { 3498 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3499 } 3500 3501 /// See if V simplifies when its operand Op is replaced with RepOp. 3502 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3503 const SimplifyQuery &Q, 3504 unsigned MaxRecurse) { 3505 // Trivial replacement. 3506 if (V == Op) 3507 return RepOp; 3508 3509 // We cannot replace a constant, and shouldn't even try. 3510 if (isa<Constant>(Op)) 3511 return nullptr; 3512 3513 auto *I = dyn_cast<Instruction>(V); 3514 if (!I) 3515 return nullptr; 3516 3517 // If this is a binary operator, try to simplify it with the replaced op. 3518 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3519 // Consider: 3520 // %cmp = icmp eq i32 %x, 2147483647 3521 // %add = add nsw i32 %x, 1 3522 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3523 // 3524 // We can't replace %sel with %add unless we strip away the flags. 3525 if (isa<OverflowingBinaryOperator>(B)) 3526 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3527 return nullptr; 3528 if (isa<PossiblyExactOperator>(B)) 3529 if (B->isExact()) 3530 return nullptr; 3531 3532 if (MaxRecurse) { 3533 if (B->getOperand(0) == Op) 3534 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3535 MaxRecurse - 1); 3536 if (B->getOperand(1) == Op) 3537 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3538 MaxRecurse - 1); 3539 } 3540 } 3541 3542 // Same for CmpInsts. 3543 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3544 if (MaxRecurse) { 3545 if (C->getOperand(0) == Op) 3546 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3547 MaxRecurse - 1); 3548 if (C->getOperand(1) == Op) 3549 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3550 MaxRecurse - 1); 3551 } 3552 } 3553 3554 // TODO: We could hand off more cases to instsimplify here. 3555 3556 // If all operands are constant after substituting Op for RepOp then we can 3557 // constant fold the instruction. 3558 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3559 // Build a list of all constant operands. 3560 SmallVector<Constant *, 8> ConstOps; 3561 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3562 if (I->getOperand(i) == Op) 3563 ConstOps.push_back(CRepOp); 3564 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3565 ConstOps.push_back(COp); 3566 else 3567 break; 3568 } 3569 3570 // All operands were constants, fold it. 3571 if (ConstOps.size() == I->getNumOperands()) { 3572 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3573 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3574 ConstOps[1], Q.DL, Q.TLI); 3575 3576 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3577 if (!LI->isVolatile()) 3578 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3579 3580 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3581 } 3582 } 3583 3584 return nullptr; 3585 } 3586 3587 /// Try to simplify a select instruction when its condition operand is an 3588 /// integer comparison where one operand of the compare is a constant. 3589 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3590 const APInt *Y, bool TrueWhenUnset) { 3591 const APInt *C; 3592 3593 // (X & Y) == 0 ? X & ~Y : X --> X 3594 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3595 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3596 *Y == ~*C) 3597 return TrueWhenUnset ? FalseVal : TrueVal; 3598 3599 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3600 // (X & Y) != 0 ? X : X & ~Y --> X 3601 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3602 *Y == ~*C) 3603 return TrueWhenUnset ? FalseVal : TrueVal; 3604 3605 if (Y->isPowerOf2()) { 3606 // (X & Y) == 0 ? X | Y : X --> X | Y 3607 // (X & Y) != 0 ? X | Y : X --> X 3608 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3609 *Y == *C) 3610 return TrueWhenUnset ? TrueVal : FalseVal; 3611 3612 // (X & Y) == 0 ? X : X | Y --> X 3613 // (X & Y) != 0 ? X : X | Y --> X | Y 3614 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3615 *Y == *C) 3616 return TrueWhenUnset ? TrueVal : FalseVal; 3617 } 3618 3619 return nullptr; 3620 } 3621 3622 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3623 /// eq/ne. 3624 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3625 ICmpInst::Predicate Pred, 3626 Value *TrueVal, Value *FalseVal) { 3627 Value *X; 3628 APInt Mask; 3629 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3630 return nullptr; 3631 3632 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3633 Pred == ICmpInst::ICMP_EQ); 3634 } 3635 3636 /// Try to simplify a select instruction when its condition operand is an 3637 /// integer comparison. 3638 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3639 Value *FalseVal, const SimplifyQuery &Q, 3640 unsigned MaxRecurse) { 3641 ICmpInst::Predicate Pred; 3642 Value *CmpLHS, *CmpRHS; 3643 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3644 return nullptr; 3645 3646 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3647 Value *X; 3648 const APInt *Y; 3649 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3650 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3651 Pred == ICmpInst::ICMP_EQ)) 3652 return V; 3653 } 3654 3655 // Check for other compares that behave like bit test. 3656 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3657 TrueVal, FalseVal)) 3658 return V; 3659 3660 if (CondVal->hasOneUse()) { 3661 const APInt *C; 3662 if (match(CmpRHS, m_APInt(C))) { 3663 // X < MIN ? T : F --> F 3664 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3665 return FalseVal; 3666 // X < MIN ? T : F --> F 3667 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3668 return FalseVal; 3669 // X > MAX ? T : F --> F 3670 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3671 return FalseVal; 3672 // X > MAX ? T : F --> F 3673 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3674 return FalseVal; 3675 } 3676 } 3677 3678 // If we have an equality comparison, then we know the value in one of the 3679 // arms of the select. See if substituting this value into the arm and 3680 // simplifying the result yields the same value as the other arm. 3681 if (Pred == ICmpInst::ICMP_EQ) { 3682 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3683 TrueVal || 3684 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3685 TrueVal) 3686 return FalseVal; 3687 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3688 FalseVal || 3689 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3690 FalseVal) 3691 return FalseVal; 3692 } else if (Pred == ICmpInst::ICMP_NE) { 3693 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3694 FalseVal || 3695 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3696 FalseVal) 3697 return TrueVal; 3698 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3699 TrueVal || 3700 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3701 TrueVal) 3702 return TrueVal; 3703 } 3704 3705 return nullptr; 3706 } 3707 3708 /// Given operands for a SelectInst, see if we can fold the result. 3709 /// If not, this returns null. 3710 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3711 Value *FalseVal, const SimplifyQuery &Q, 3712 unsigned MaxRecurse) { 3713 // select true, X, Y -> X 3714 // select false, X, Y -> Y 3715 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3716 if (CB->isAllOnesValue()) 3717 return TrueVal; 3718 if (CB->isNullValue()) 3719 return FalseVal; 3720 } 3721 3722 // select C, X, X -> X 3723 if (TrueVal == FalseVal) 3724 return TrueVal; 3725 3726 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3727 if (isa<Constant>(FalseVal)) 3728 return FalseVal; 3729 return TrueVal; 3730 } 3731 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3732 return FalseVal; 3733 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3734 return TrueVal; 3735 3736 if (Value *V = 3737 simplifySelectWithICmpCond(CondVal, TrueVal, FalseVal, Q, MaxRecurse)) 3738 return V; 3739 3740 return nullptr; 3741 } 3742 3743 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3744 const SimplifyQuery &Q) { 3745 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 3746 } 3747 3748 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3749 /// If not, this returns null. 3750 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3751 const SimplifyQuery &Q, unsigned) { 3752 // The type of the GEP pointer operand. 3753 unsigned AS = 3754 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3755 3756 // getelementptr P -> P. 3757 if (Ops.size() == 1) 3758 return Ops[0]; 3759 3760 // Compute the (pointer) type returned by the GEP instruction. 3761 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3762 Type *GEPTy = PointerType::get(LastType, AS); 3763 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3764 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3765 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 3766 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3767 3768 if (isa<UndefValue>(Ops[0])) 3769 return UndefValue::get(GEPTy); 3770 3771 if (Ops.size() == 2) { 3772 // getelementptr P, 0 -> P. 3773 if (match(Ops[1], m_Zero())) 3774 return Ops[0]; 3775 3776 Type *Ty = SrcTy; 3777 if (Ty->isSized()) { 3778 Value *P; 3779 uint64_t C; 3780 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3781 // getelementptr P, N -> P if P points to a type of zero size. 3782 if (TyAllocSize == 0) 3783 return Ops[0]; 3784 3785 // The following transforms are only safe if the ptrtoint cast 3786 // doesn't truncate the pointers. 3787 if (Ops[1]->getType()->getScalarSizeInBits() == 3788 Q.DL.getPointerSizeInBits(AS)) { 3789 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3790 if (match(P, m_Zero())) 3791 return Constant::getNullValue(GEPTy); 3792 Value *Temp; 3793 if (match(P, m_PtrToInt(m_Value(Temp)))) 3794 if (Temp->getType() == GEPTy) 3795 return Temp; 3796 return nullptr; 3797 }; 3798 3799 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3800 if (TyAllocSize == 1 && 3801 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3802 if (Value *R = PtrToIntOrZero(P)) 3803 return R; 3804 3805 // getelementptr V, (ashr (sub P, V), C) -> Q 3806 // if P points to a type of size 1 << C. 3807 if (match(Ops[1], 3808 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3809 m_ConstantInt(C))) && 3810 TyAllocSize == 1ULL << C) 3811 if (Value *R = PtrToIntOrZero(P)) 3812 return R; 3813 3814 // getelementptr V, (sdiv (sub P, V), C) -> Q 3815 // if P points to a type of size C. 3816 if (match(Ops[1], 3817 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3818 m_SpecificInt(TyAllocSize)))) 3819 if (Value *R = PtrToIntOrZero(P)) 3820 return R; 3821 } 3822 } 3823 } 3824 3825 if (Q.DL.getTypeAllocSize(LastType) == 1 && 3826 all_of(Ops.slice(1).drop_back(1), 3827 [](Value *Idx) { return match(Idx, m_Zero()); })) { 3828 unsigned PtrWidth = 3829 Q.DL.getPointerSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 3830 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == PtrWidth) { 3831 APInt BasePtrOffset(PtrWidth, 0); 3832 Value *StrippedBasePtr = 3833 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 3834 BasePtrOffset); 3835 3836 // gep (gep V, C), (sub 0, V) -> C 3837 if (match(Ops.back(), 3838 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 3839 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 3840 return ConstantExpr::getIntToPtr(CI, GEPTy); 3841 } 3842 // gep (gep V, C), (xor V, -1) -> C-1 3843 if (match(Ops.back(), 3844 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 3845 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 3846 return ConstantExpr::getIntToPtr(CI, GEPTy); 3847 } 3848 } 3849 } 3850 3851 // Check to see if this is constant foldable. 3852 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 3853 return nullptr; 3854 3855 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3856 Ops.slice(1)); 3857 if (auto *CEFolded = ConstantFoldConstant(CE, Q.DL)) 3858 return CEFolded; 3859 return CE; 3860 } 3861 3862 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3863 const SimplifyQuery &Q) { 3864 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 3865 } 3866 3867 /// Given operands for an InsertValueInst, see if we can fold the result. 3868 /// If not, this returns null. 3869 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3870 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 3871 unsigned) { 3872 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3873 if (Constant *CVal = dyn_cast<Constant>(Val)) 3874 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3875 3876 // insertvalue x, undef, n -> x 3877 if (match(Val, m_Undef())) 3878 return Agg; 3879 3880 // insertvalue x, (extractvalue y, n), n 3881 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3882 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3883 EV->getIndices() == Idxs) { 3884 // insertvalue undef, (extractvalue y, n), n -> y 3885 if (match(Agg, m_Undef())) 3886 return EV->getAggregateOperand(); 3887 3888 // insertvalue y, (extractvalue y, n), n -> y 3889 if (Agg == EV->getAggregateOperand()) 3890 return Agg; 3891 } 3892 3893 return nullptr; 3894 } 3895 3896 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 3897 ArrayRef<unsigned> Idxs, 3898 const SimplifyQuery &Q) { 3899 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 3900 } 3901 3902 /// Given operands for an ExtractValueInst, see if we can fold the result. 3903 /// If not, this returns null. 3904 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3905 const SimplifyQuery &, unsigned) { 3906 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3907 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3908 3909 // extractvalue x, (insertvalue y, elt, n), n -> elt 3910 unsigned NumIdxs = Idxs.size(); 3911 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3912 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3913 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3914 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3915 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3916 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3917 Idxs.slice(0, NumCommonIdxs)) { 3918 if (NumIdxs == NumInsertValueIdxs) 3919 return IVI->getInsertedValueOperand(); 3920 break; 3921 } 3922 } 3923 3924 return nullptr; 3925 } 3926 3927 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3928 const SimplifyQuery &Q) { 3929 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 3930 } 3931 3932 /// Given operands for an ExtractElementInst, see if we can fold the result. 3933 /// If not, this returns null. 3934 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 3935 unsigned) { 3936 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3937 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3938 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3939 3940 // The index is not relevant if our vector is a splat. 3941 if (auto *Splat = CVec->getSplatValue()) 3942 return Splat; 3943 3944 if (isa<UndefValue>(Vec)) 3945 return UndefValue::get(Vec->getType()->getVectorElementType()); 3946 } 3947 3948 // If extracting a specified index from the vector, see if we can recursively 3949 // find a previously computed scalar that was inserted into the vector. 3950 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3951 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3952 return Elt; 3953 3954 return nullptr; 3955 } 3956 3957 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 3958 const SimplifyQuery &Q) { 3959 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 3960 } 3961 3962 /// See if we can fold the given phi. If not, returns null. 3963 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 3964 // If all of the PHI's incoming values are the same then replace the PHI node 3965 // with the common value. 3966 Value *CommonValue = nullptr; 3967 bool HasUndefInput = false; 3968 for (Value *Incoming : PN->incoming_values()) { 3969 // If the incoming value is the phi node itself, it can safely be skipped. 3970 if (Incoming == PN) continue; 3971 if (isa<UndefValue>(Incoming)) { 3972 // Remember that we saw an undef value, but otherwise ignore them. 3973 HasUndefInput = true; 3974 continue; 3975 } 3976 if (CommonValue && Incoming != CommonValue) 3977 return nullptr; // Not the same, bail out. 3978 CommonValue = Incoming; 3979 } 3980 3981 // If CommonValue is null then all of the incoming values were either undef or 3982 // equal to the phi node itself. 3983 if (!CommonValue) 3984 return UndefValue::get(PN->getType()); 3985 3986 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3987 // instruction, we cannot return X as the result of the PHI node unless it 3988 // dominates the PHI block. 3989 if (HasUndefInput) 3990 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3991 3992 return CommonValue; 3993 } 3994 3995 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 3996 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 3997 if (auto *C = dyn_cast<Constant>(Op)) 3998 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 3999 4000 if (auto *CI = dyn_cast<CastInst>(Op)) { 4001 auto *Src = CI->getOperand(0); 4002 Type *SrcTy = Src->getType(); 4003 Type *MidTy = CI->getType(); 4004 Type *DstTy = Ty; 4005 if (Src->getType() == Ty) { 4006 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4007 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4008 Type *SrcIntPtrTy = 4009 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4010 Type *MidIntPtrTy = 4011 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4012 Type *DstIntPtrTy = 4013 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4014 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4015 SrcIntPtrTy, MidIntPtrTy, 4016 DstIntPtrTy) == Instruction::BitCast) 4017 return Src; 4018 } 4019 } 4020 4021 // bitcast x -> x 4022 if (CastOpc == Instruction::BitCast) 4023 if (Op->getType() == Ty) 4024 return Op; 4025 4026 return nullptr; 4027 } 4028 4029 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4030 const SimplifyQuery &Q) { 4031 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4032 } 4033 4034 /// For the given destination element of a shuffle, peek through shuffles to 4035 /// match a root vector source operand that contains that element in the same 4036 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4037 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4038 int MaskVal, Value *RootVec, 4039 unsigned MaxRecurse) { 4040 if (!MaxRecurse--) 4041 return nullptr; 4042 4043 // Bail out if any mask value is undefined. That kind of shuffle may be 4044 // simplified further based on demanded bits or other folds. 4045 if (MaskVal == -1) 4046 return nullptr; 4047 4048 // The mask value chooses which source operand we need to look at next. 4049 int InVecNumElts = Op0->getType()->getVectorNumElements(); 4050 int RootElt = MaskVal; 4051 Value *SourceOp = Op0; 4052 if (MaskVal >= InVecNumElts) { 4053 RootElt = MaskVal - InVecNumElts; 4054 SourceOp = Op1; 4055 } 4056 4057 // If the source operand is a shuffle itself, look through it to find the 4058 // matching root vector. 4059 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4060 return foldIdentityShuffles( 4061 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4062 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4063 } 4064 4065 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4066 // size? 4067 4068 // The source operand is not a shuffle. Initialize the root vector value for 4069 // this shuffle if that has not been done yet. 4070 if (!RootVec) 4071 RootVec = SourceOp; 4072 4073 // Give up as soon as a source operand does not match the existing root value. 4074 if (RootVec != SourceOp) 4075 return nullptr; 4076 4077 // The element must be coming from the same lane in the source vector 4078 // (although it may have crossed lanes in intermediate shuffles). 4079 if (RootElt != DestElt) 4080 return nullptr; 4081 4082 return RootVec; 4083 } 4084 4085 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4086 Type *RetTy, const SimplifyQuery &Q, 4087 unsigned MaxRecurse) { 4088 if (isa<UndefValue>(Mask)) 4089 return UndefValue::get(RetTy); 4090 4091 Type *InVecTy = Op0->getType(); 4092 unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); 4093 unsigned InVecNumElts = InVecTy->getVectorNumElements(); 4094 4095 SmallVector<int, 32> Indices; 4096 ShuffleVectorInst::getShuffleMask(Mask, Indices); 4097 assert(MaskNumElts == Indices.size() && 4098 "Size of Indices not same as number of mask elements?"); 4099 4100 // Canonicalization: If mask does not select elements from an input vector, 4101 // replace that input vector with undef. 4102 bool MaskSelects0 = false, MaskSelects1 = false; 4103 for (unsigned i = 0; i != MaskNumElts; ++i) { 4104 if (Indices[i] == -1) 4105 continue; 4106 if ((unsigned)Indices[i] < InVecNumElts) 4107 MaskSelects0 = true; 4108 else 4109 MaskSelects1 = true; 4110 } 4111 if (!MaskSelects0) 4112 Op0 = UndefValue::get(InVecTy); 4113 if (!MaskSelects1) 4114 Op1 = UndefValue::get(InVecTy); 4115 4116 auto *Op0Const = dyn_cast<Constant>(Op0); 4117 auto *Op1Const = dyn_cast<Constant>(Op1); 4118 4119 // If all operands are constant, constant fold the shuffle. 4120 if (Op0Const && Op1Const) 4121 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4122 4123 // Canonicalization: if only one input vector is constant, it shall be the 4124 // second one. 4125 if (Op0Const && !Op1Const) { 4126 std::swap(Op0, Op1); 4127 ShuffleVectorInst::commuteShuffleMask(Indices, InVecNumElts); 4128 } 4129 4130 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4131 // value type is same as the input vectors' type. 4132 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4133 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4134 OpShuf->getMask()->getSplatValue()) 4135 return Op0; 4136 4137 // Don't fold a shuffle with undef mask elements. This may get folded in a 4138 // better way using demanded bits or other analysis. 4139 // TODO: Should we allow this? 4140 if (find(Indices, -1) != Indices.end()) 4141 return nullptr; 4142 4143 // Check if every element of this shuffle can be mapped back to the 4144 // corresponding element of a single root vector. If so, we don't need this 4145 // shuffle. This handles simple identity shuffles as well as chains of 4146 // shuffles that may widen/narrow and/or move elements across lanes and back. 4147 Value *RootVec = nullptr; 4148 for (unsigned i = 0; i != MaskNumElts; ++i) { 4149 // Note that recursion is limited for each vector element, so if any element 4150 // exceeds the limit, this will fail to simplify. 4151 RootVec = 4152 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4153 4154 // We can't replace a widening/narrowing shuffle with one of its operands. 4155 if (!RootVec || RootVec->getType() != RetTy) 4156 return nullptr; 4157 } 4158 return RootVec; 4159 } 4160 4161 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4162 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, Constant *Mask, 4163 Type *RetTy, const SimplifyQuery &Q) { 4164 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4165 } 4166 4167 //=== Helper functions for higher up the class hierarchy. 4168 4169 /// Given operands for a BinaryOperator, see if we can fold the result. 4170 /// If not, this returns null. 4171 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4172 const SimplifyQuery &Q, unsigned MaxRecurse) { 4173 switch (Opcode) { 4174 case Instruction::Add: 4175 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4176 case Instruction::FAdd: 4177 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4178 case Instruction::Sub: 4179 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4180 case Instruction::FSub: 4181 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4182 case Instruction::Mul: 4183 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4184 case Instruction::FMul: 4185 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4186 case Instruction::SDiv: 4187 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4188 case Instruction::UDiv: 4189 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4190 case Instruction::FDiv: 4191 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4192 case Instruction::SRem: 4193 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4194 case Instruction::URem: 4195 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4196 case Instruction::FRem: 4197 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4198 case Instruction::Shl: 4199 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4200 case Instruction::LShr: 4201 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4202 case Instruction::AShr: 4203 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4204 case Instruction::And: 4205 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4206 case Instruction::Or: 4207 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4208 case Instruction::Xor: 4209 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4210 default: 4211 llvm_unreachable("Unexpected opcode"); 4212 } 4213 } 4214 4215 /// Given operands for a BinaryOperator, see if we can fold the result. 4216 /// If not, this returns null. 4217 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 4218 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 4219 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4220 const FastMathFlags &FMF, const SimplifyQuery &Q, 4221 unsigned MaxRecurse) { 4222 switch (Opcode) { 4223 case Instruction::FAdd: 4224 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 4225 case Instruction::FSub: 4226 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 4227 case Instruction::FMul: 4228 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 4229 case Instruction::FDiv: 4230 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 4231 default: 4232 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 4233 } 4234 } 4235 4236 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4237 const SimplifyQuery &Q) { 4238 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 4239 } 4240 4241 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4242 FastMathFlags FMF, const SimplifyQuery &Q) { 4243 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 4244 } 4245 4246 /// Given operands for a CmpInst, see if we can fold the result. 4247 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4248 const SimplifyQuery &Q, unsigned MaxRecurse) { 4249 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 4250 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 4251 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4252 } 4253 4254 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4255 const SimplifyQuery &Q) { 4256 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4257 } 4258 4259 static bool IsIdempotent(Intrinsic::ID ID) { 4260 switch (ID) { 4261 default: return false; 4262 4263 // Unary idempotent: f(f(x)) = f(x) 4264 case Intrinsic::fabs: 4265 case Intrinsic::floor: 4266 case Intrinsic::ceil: 4267 case Intrinsic::trunc: 4268 case Intrinsic::rint: 4269 case Intrinsic::nearbyint: 4270 case Intrinsic::round: 4271 case Intrinsic::canonicalize: 4272 return true; 4273 } 4274 } 4275 4276 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 4277 const DataLayout &DL) { 4278 GlobalValue *PtrSym; 4279 APInt PtrOffset; 4280 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 4281 return nullptr; 4282 4283 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 4284 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 4285 Type *Int32PtrTy = Int32Ty->getPointerTo(); 4286 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 4287 4288 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 4289 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 4290 return nullptr; 4291 4292 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 4293 if (OffsetInt % 4 != 0) 4294 return nullptr; 4295 4296 Constant *C = ConstantExpr::getGetElementPtr( 4297 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 4298 ConstantInt::get(Int64Ty, OffsetInt / 4)); 4299 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 4300 if (!Loaded) 4301 return nullptr; 4302 4303 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 4304 if (!LoadedCE) 4305 return nullptr; 4306 4307 if (LoadedCE->getOpcode() == Instruction::Trunc) { 4308 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4309 if (!LoadedCE) 4310 return nullptr; 4311 } 4312 4313 if (LoadedCE->getOpcode() != Instruction::Sub) 4314 return nullptr; 4315 4316 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 4317 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 4318 return nullptr; 4319 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 4320 4321 Constant *LoadedRHS = LoadedCE->getOperand(1); 4322 GlobalValue *LoadedRHSSym; 4323 APInt LoadedRHSOffset; 4324 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 4325 DL) || 4326 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 4327 return nullptr; 4328 4329 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 4330 } 4331 4332 static bool maskIsAllZeroOrUndef(Value *Mask) { 4333 auto *ConstMask = dyn_cast<Constant>(Mask); 4334 if (!ConstMask) 4335 return false; 4336 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask)) 4337 return true; 4338 for (unsigned I = 0, E = ConstMask->getType()->getVectorNumElements(); I != E; 4339 ++I) { 4340 if (auto *MaskElt = ConstMask->getAggregateElement(I)) 4341 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt)) 4342 continue; 4343 return false; 4344 } 4345 return true; 4346 } 4347 4348 template <typename IterTy> 4349 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 4350 const SimplifyQuery &Q, unsigned MaxRecurse) { 4351 Intrinsic::ID IID = F->getIntrinsicID(); 4352 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 4353 4354 // Unary Ops 4355 if (NumOperands == 1) { 4356 // Perform idempotent optimizations 4357 if (IsIdempotent(IID)) { 4358 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) { 4359 if (II->getIntrinsicID() == IID) 4360 return II; 4361 } 4362 } 4363 4364 switch (IID) { 4365 case Intrinsic::fabs: { 4366 if (SignBitMustBeZero(*ArgBegin, Q.TLI)) 4367 return *ArgBegin; 4368 return nullptr; 4369 } 4370 default: 4371 return nullptr; 4372 } 4373 } 4374 4375 // Binary Ops 4376 if (NumOperands == 2) { 4377 Value *LHS = *ArgBegin; 4378 Value *RHS = *(ArgBegin + 1); 4379 Type *ReturnType = F->getReturnType(); 4380 4381 switch (IID) { 4382 case Intrinsic::usub_with_overflow: 4383 case Intrinsic::ssub_with_overflow: { 4384 // X - X -> { 0, false } 4385 if (LHS == RHS) 4386 return Constant::getNullValue(ReturnType); 4387 4388 // X - undef -> undef 4389 // undef - X -> undef 4390 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4391 return UndefValue::get(ReturnType); 4392 4393 return nullptr; 4394 } 4395 case Intrinsic::uadd_with_overflow: 4396 case Intrinsic::sadd_with_overflow: { 4397 // X + undef -> undef 4398 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 4399 return UndefValue::get(ReturnType); 4400 4401 return nullptr; 4402 } 4403 case Intrinsic::umul_with_overflow: 4404 case Intrinsic::smul_with_overflow: { 4405 // 0 * X -> { 0, false } 4406 // X * 0 -> { 0, false } 4407 if (match(LHS, m_Zero()) || match(RHS, m_Zero())) 4408 return Constant::getNullValue(ReturnType); 4409 4410 // undef * X -> { 0, false } 4411 // X * undef -> { 0, false } 4412 if (match(LHS, m_Undef()) || match(RHS, m_Undef())) 4413 return Constant::getNullValue(ReturnType); 4414 4415 return nullptr; 4416 } 4417 case Intrinsic::load_relative: { 4418 Constant *C0 = dyn_cast<Constant>(LHS); 4419 Constant *C1 = dyn_cast<Constant>(RHS); 4420 if (C0 && C1) 4421 return SimplifyRelativeLoad(C0, C1, Q.DL); 4422 return nullptr; 4423 } 4424 default: 4425 return nullptr; 4426 } 4427 } 4428 4429 // Simplify calls to llvm.masked.load.* 4430 switch (IID) { 4431 case Intrinsic::masked_load: { 4432 Value *MaskArg = ArgBegin[2]; 4433 Value *PassthruArg = ArgBegin[3]; 4434 // If the mask is all zeros or undef, the "passthru" argument is the result. 4435 if (maskIsAllZeroOrUndef(MaskArg)) 4436 return PassthruArg; 4437 return nullptr; 4438 } 4439 default: 4440 return nullptr; 4441 } 4442 } 4443 4444 template <typename IterTy> 4445 static Value *SimplifyCall(ImmutableCallSite CS, Value *V, IterTy ArgBegin, 4446 IterTy ArgEnd, const SimplifyQuery &Q, 4447 unsigned MaxRecurse) { 4448 Type *Ty = V->getType(); 4449 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4450 Ty = PTy->getElementType(); 4451 FunctionType *FTy = cast<FunctionType>(Ty); 4452 4453 // call undef -> undef 4454 // call null -> undef 4455 if (isa<UndefValue>(V) || isa<ConstantPointerNull>(V)) 4456 return UndefValue::get(FTy->getReturnType()); 4457 4458 Function *F = dyn_cast<Function>(V); 4459 if (!F) 4460 return nullptr; 4461 4462 if (F->isIntrinsic()) 4463 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4464 return Ret; 4465 4466 if (!canConstantFoldCallTo(CS, F)) 4467 return nullptr; 4468 4469 SmallVector<Constant *, 4> ConstantArgs; 4470 ConstantArgs.reserve(ArgEnd - ArgBegin); 4471 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4472 Constant *C = dyn_cast<Constant>(*I); 4473 if (!C) 4474 return nullptr; 4475 ConstantArgs.push_back(C); 4476 } 4477 4478 return ConstantFoldCall(CS, F, ConstantArgs, Q.TLI); 4479 } 4480 4481 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4482 User::op_iterator ArgBegin, User::op_iterator ArgEnd, 4483 const SimplifyQuery &Q) { 4484 return ::SimplifyCall(CS, V, ArgBegin, ArgEnd, Q, RecursionLimit); 4485 } 4486 4487 Value *llvm::SimplifyCall(ImmutableCallSite CS, Value *V, 4488 ArrayRef<Value *> Args, const SimplifyQuery &Q) { 4489 return ::SimplifyCall(CS, V, Args.begin(), Args.end(), Q, RecursionLimit); 4490 } 4491 4492 /// See if we can compute a simplified version of this instruction. 4493 /// If not, this returns null. 4494 4495 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 4496 OptimizationRemarkEmitter *ORE) { 4497 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 4498 Value *Result; 4499 4500 switch (I->getOpcode()) { 4501 default: 4502 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 4503 break; 4504 case Instruction::FAdd: 4505 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4506 I->getFastMathFlags(), Q); 4507 break; 4508 case Instruction::Add: 4509 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4510 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4511 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4512 break; 4513 case Instruction::FSub: 4514 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4515 I->getFastMathFlags(), Q); 4516 break; 4517 case Instruction::Sub: 4518 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4519 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4520 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4521 break; 4522 case Instruction::FMul: 4523 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4524 I->getFastMathFlags(), Q); 4525 break; 4526 case Instruction::Mul: 4527 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 4528 break; 4529 case Instruction::SDiv: 4530 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 4531 break; 4532 case Instruction::UDiv: 4533 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 4534 break; 4535 case Instruction::FDiv: 4536 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4537 I->getFastMathFlags(), Q); 4538 break; 4539 case Instruction::SRem: 4540 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 4541 break; 4542 case Instruction::URem: 4543 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 4544 break; 4545 case Instruction::FRem: 4546 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4547 I->getFastMathFlags(), Q); 4548 break; 4549 case Instruction::Shl: 4550 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4551 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4552 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), Q); 4553 break; 4554 case Instruction::LShr: 4555 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4556 cast<BinaryOperator>(I)->isExact(), Q); 4557 break; 4558 case Instruction::AShr: 4559 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4560 cast<BinaryOperator>(I)->isExact(), Q); 4561 break; 4562 case Instruction::And: 4563 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 4564 break; 4565 case Instruction::Or: 4566 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 4567 break; 4568 case Instruction::Xor: 4569 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 4570 break; 4571 case Instruction::ICmp: 4572 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 4573 I->getOperand(0), I->getOperand(1), Q); 4574 break; 4575 case Instruction::FCmp: 4576 Result = 4577 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 4578 I->getOperand(1), I->getFastMathFlags(), Q); 4579 break; 4580 case Instruction::Select: 4581 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4582 I->getOperand(2), Q); 4583 break; 4584 case Instruction::GetElementPtr: { 4585 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 4586 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4587 Ops, Q); 4588 break; 4589 } 4590 case Instruction::InsertValue: { 4591 InsertValueInst *IV = cast<InsertValueInst>(I); 4592 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4593 IV->getInsertedValueOperand(), 4594 IV->getIndices(), Q); 4595 break; 4596 } 4597 case Instruction::ExtractValue: { 4598 auto *EVI = cast<ExtractValueInst>(I); 4599 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4600 EVI->getIndices(), Q); 4601 break; 4602 } 4603 case Instruction::ExtractElement: { 4604 auto *EEI = cast<ExtractElementInst>(I); 4605 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 4606 EEI->getIndexOperand(), Q); 4607 break; 4608 } 4609 case Instruction::ShuffleVector: { 4610 auto *SVI = cast<ShuffleVectorInst>(I); 4611 Result = SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 4612 SVI->getMask(), SVI->getType(), Q); 4613 break; 4614 } 4615 case Instruction::PHI: 4616 Result = SimplifyPHINode(cast<PHINode>(I), Q); 4617 break; 4618 case Instruction::Call: { 4619 CallSite CS(cast<CallInst>(I)); 4620 Result = SimplifyCall(CS, CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 4621 Q); 4622 break; 4623 } 4624 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 4625 #include "llvm/IR/Instruction.def" 4626 #undef HANDLE_CAST_INST 4627 Result = 4628 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 4629 break; 4630 case Instruction::Alloca: 4631 // No simplifications for Alloca and it can't be constant folded. 4632 Result = nullptr; 4633 break; 4634 } 4635 4636 // In general, it is possible for computeKnownBits to determine all bits in a 4637 // value even when the operands are not all constants. 4638 if (!Result && I->getType()->isIntOrIntVectorTy()) { 4639 KnownBits Known = computeKnownBits(I, Q.DL, /*Depth*/ 0, Q.AC, I, Q.DT, ORE); 4640 if (Known.isConstant()) 4641 Result = ConstantInt::get(I->getType(), Known.getConstant()); 4642 } 4643 4644 /// If called on unreachable code, the above logic may report that the 4645 /// instruction simplified to itself. Make life easier for users by 4646 /// detecting that case here, returning a safe value instead. 4647 return Result == I ? UndefValue::get(I->getType()) : Result; 4648 } 4649 4650 /// \brief Implementation of recursive simplification through an instruction's 4651 /// uses. 4652 /// 4653 /// This is the common implementation of the recursive simplification routines. 4654 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4655 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4656 /// instructions to process and attempt to simplify it using 4657 /// InstructionSimplify. 4658 /// 4659 /// This routine returns 'true' only when *it* simplifies something. The passed 4660 /// in simplified value does not count toward this. 4661 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4662 const TargetLibraryInfo *TLI, 4663 const DominatorTree *DT, 4664 AssumptionCache *AC) { 4665 bool Simplified = false; 4666 SmallSetVector<Instruction *, 8> Worklist; 4667 const DataLayout &DL = I->getModule()->getDataLayout(); 4668 4669 // If we have an explicit value to collapse to, do that round of the 4670 // simplification loop by hand initially. 4671 if (SimpleV) { 4672 for (User *U : I->users()) 4673 if (U != I) 4674 Worklist.insert(cast<Instruction>(U)); 4675 4676 // Replace the instruction with its simplified value. 4677 I->replaceAllUsesWith(SimpleV); 4678 4679 // Gracefully handle edge cases where the instruction is not wired into any 4680 // parent block. 4681 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4682 !I->mayHaveSideEffects()) 4683 I->eraseFromParent(); 4684 } else { 4685 Worklist.insert(I); 4686 } 4687 4688 // Note that we must test the size on each iteration, the worklist can grow. 4689 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4690 I = Worklist[Idx]; 4691 4692 // See if this instruction simplifies. 4693 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 4694 if (!SimpleV) 4695 continue; 4696 4697 Simplified = true; 4698 4699 // Stash away all the uses of the old instruction so we can check them for 4700 // recursive simplifications after a RAUW. This is cheaper than checking all 4701 // uses of To on the recursive step in most cases. 4702 for (User *U : I->users()) 4703 Worklist.insert(cast<Instruction>(U)); 4704 4705 // Replace the instruction with its simplified value. 4706 I->replaceAllUsesWith(SimpleV); 4707 4708 // Gracefully handle edge cases where the instruction is not wired into any 4709 // parent block. 4710 if (I->getParent() && !I->isEHPad() && !isa<TerminatorInst>(I) && 4711 !I->mayHaveSideEffects()) 4712 I->eraseFromParent(); 4713 } 4714 return Simplified; 4715 } 4716 4717 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4718 const TargetLibraryInfo *TLI, 4719 const DominatorTree *DT, 4720 AssumptionCache *AC) { 4721 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4722 } 4723 4724 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4725 const TargetLibraryInfo *TLI, 4726 const DominatorTree *DT, 4727 AssumptionCache *AC) { 4728 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4729 assert(SimpleV && "Must provide a simplified value."); 4730 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4731 } 4732 4733 namespace llvm { 4734 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 4735 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 4736 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 4737 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 4738 auto *TLI = TLIWP ? &TLIWP->getTLI() : nullptr; 4739 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 4740 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 4741 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4742 } 4743 4744 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 4745 const DataLayout &DL) { 4746 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 4747 } 4748 4749 template <class T, class... TArgs> 4750 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 4751 Function &F) { 4752 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 4753 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 4754 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 4755 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 4756 } 4757 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 4758 Function &); 4759 } 4760