1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/Statistic.h" 22 #include "llvm/Analysis/AliasAnalysis.h" 23 #include "llvm/Analysis/AssumptionCache.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/CmpInstAnalysis.h" 26 #include "llvm/Analysis/ConstantFolding.h" 27 #include "llvm/Analysis/LoopAnalysisManager.h" 28 #include "llvm/Analysis/MemoryBuiltins.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/IR/ConstantRange.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Dominators.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalAlias.h" 36 #include "llvm/IR/InstrTypes.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/ValueHandle.h" 41 #include "llvm/Support/KnownBits.h" 42 #include <algorithm> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 #define DEBUG_TYPE "instsimplify" 47 48 enum { RecursionLimit = 3 }; 49 50 STATISTIC(NumExpand, "Number of expansions"); 51 STATISTIC(NumReassoc, "Number of reassociations"); 52 53 static Value *SimplifyAndInst(Value *, Value *, const SimplifyQuery &, unsigned); 54 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 55 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 56 const SimplifyQuery &, unsigned); 57 static Value *SimplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *SimplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 64 const SimplifyQuery &Q, unsigned MaxRecurse); 65 static Value *SimplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 66 static Value *SimplifyXorInst(Value *, Value *, const SimplifyQuery &, unsigned); 67 static Value *SimplifyCastInst(unsigned, Value *, Type *, 68 const SimplifyQuery &, unsigned); 69 static Value *SimplifyGEPInst(Type *, ArrayRef<Value *>, const SimplifyQuery &, 70 unsigned); 71 72 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 73 Value *FalseVal) { 74 BinaryOperator::BinaryOps BinOpCode; 75 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 76 BinOpCode = BO->getOpcode(); 77 else 78 return nullptr; 79 80 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 81 if (BinOpCode == BinaryOperator::Or) { 82 ExpectedPred = ICmpInst::ICMP_NE; 83 } else if (BinOpCode == BinaryOperator::And) { 84 ExpectedPred = ICmpInst::ICMP_EQ; 85 } else 86 return nullptr; 87 88 // %A = icmp eq %TV, %FV 89 // %B = icmp eq %X, %Y (and one of these is a select operand) 90 // %C = and %A, %B 91 // %D = select %C, %TV, %FV 92 // --> 93 // %FV 94 95 // %A = icmp ne %TV, %FV 96 // %B = icmp ne %X, %Y (and one of these is a select operand) 97 // %C = or %A, %B 98 // %D = select %C, %TV, %FV 99 // --> 100 // %TV 101 Value *X, *Y; 102 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 103 m_Specific(FalseVal)), 104 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 105 Pred1 != Pred2 || Pred1 != ExpectedPred) 106 return nullptr; 107 108 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 109 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 110 111 return nullptr; 112 } 113 114 /// For a boolean type or a vector of boolean type, return false or a vector 115 /// with every element false. 116 static Constant *getFalse(Type *Ty) { 117 return ConstantInt::getFalse(Ty); 118 } 119 120 /// For a boolean type or a vector of boolean type, return true or a vector 121 /// with every element true. 122 static Constant *getTrue(Type *Ty) { 123 return ConstantInt::getTrue(Ty); 124 } 125 126 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 127 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 128 Value *RHS) { 129 CmpInst *Cmp = dyn_cast<CmpInst>(V); 130 if (!Cmp) 131 return false; 132 CmpInst::Predicate CPred = Cmp->getPredicate(); 133 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 134 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 135 return true; 136 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 137 CRHS == LHS; 138 } 139 140 /// Simplify comparison with true or false branch of select: 141 /// %sel = select i1 %cond, i32 %tv, i32 %fv 142 /// %cmp = icmp sle i32 %sel, %rhs 143 /// Compose new comparison by substituting %sel with either %tv or %fv 144 /// and see if it simplifies. 145 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 146 Value *RHS, Value *Cond, 147 const SimplifyQuery &Q, unsigned MaxRecurse, 148 Constant *TrueOrFalse) { 149 Value *SimplifiedCmp = SimplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 150 if (SimplifiedCmp == Cond) { 151 // %cmp simplified to the select condition (%cond). 152 return TrueOrFalse; 153 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 154 // It didn't simplify. However, if composed comparison is equivalent 155 // to the select condition (%cond) then we can replace it. 156 return TrueOrFalse; 157 } 158 return SimplifiedCmp; 159 } 160 161 /// Simplify comparison with true branch of select 162 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 163 Value *RHS, Value *Cond, 164 const SimplifyQuery &Q, 165 unsigned MaxRecurse) { 166 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 167 getTrue(Cond->getType())); 168 } 169 170 /// Simplify comparison with false branch of select 171 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 172 Value *RHS, Value *Cond, 173 const SimplifyQuery &Q, 174 unsigned MaxRecurse) { 175 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 176 getFalse(Cond->getType())); 177 } 178 179 /// We know comparison with both branches of select can be simplified, but they 180 /// are not equal. This routine handles some logical simplifications. 181 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 182 Value *Cond, 183 const SimplifyQuery &Q, 184 unsigned MaxRecurse) { 185 // If the false value simplified to false, then the result of the compare 186 // is equal to "Cond && TCmp". This also catches the case when the false 187 // value simplified to false and the true value to true, returning "Cond". 188 if (match(FCmp, m_Zero())) 189 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 190 return V; 191 // If the true value simplified to true, then the result of the compare 192 // is equal to "Cond || FCmp". 193 if (match(TCmp, m_One())) 194 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 195 return V; 196 // Finally, if the false value simplified to true and the true value to 197 // false, then the result of the compare is equal to "!Cond". 198 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 199 if (Value *V = SimplifyXorInst( 200 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 201 return V; 202 return nullptr; 203 } 204 205 /// Does the given value dominate the specified phi node? 206 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 207 Instruction *I = dyn_cast<Instruction>(V); 208 if (!I) 209 // Arguments and constants dominate all instructions. 210 return true; 211 212 // If we are processing instructions (and/or basic blocks) that have not been 213 // fully added to a function, the parent nodes may still be null. Simply 214 // return the conservative answer in these cases. 215 if (!I->getParent() || !P->getParent() || !I->getFunction()) 216 return false; 217 218 // If we have a DominatorTree then do a precise test. 219 if (DT) 220 return DT->dominates(I, P); 221 222 // Otherwise, if the instruction is in the entry block and is not an invoke, 223 // then it obviously dominates all phi nodes. 224 if (I->getParent() == &I->getFunction()->getEntryBlock() && 225 !isa<InvokeInst>(I) && !isa<CallBrInst>(I)) 226 return true; 227 228 return false; 229 } 230 231 /// Try to simplify a binary operator of form "V op OtherOp" where V is 232 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 233 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 234 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 235 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 236 const SimplifyQuery &Q, unsigned MaxRecurse) { 237 auto *B = dyn_cast<BinaryOperator>(V); 238 if (!B || B->getOpcode() != OpcodeToExpand) 239 return nullptr; 240 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 241 Value *L = SimplifyBinOp(Opcode, B0, OtherOp, Q, MaxRecurse); 242 if (!L) 243 return nullptr; 244 Value *R = SimplifyBinOp(Opcode, B1, OtherOp, Q, MaxRecurse); 245 if (!R) 246 return nullptr; 247 248 // Does the expanded pair of binops simplify to the existing binop? 249 if ((L == B0 && R == B1) || 250 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 251 ++NumExpand; 252 return B; 253 } 254 255 // Otherwise, return "L op' R" if it simplifies. 256 Value *S = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 257 if (!S) 258 return nullptr; 259 260 ++NumExpand; 261 return S; 262 } 263 264 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 265 /// distributing op over op'. 266 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, 267 Value *L, Value *R, 268 Instruction::BinaryOps OpcodeToExpand, 269 const SimplifyQuery &Q, 270 unsigned MaxRecurse) { 271 // Recursion is always used, so bail out at once if we already hit the limit. 272 if (!MaxRecurse--) 273 return nullptr; 274 275 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 276 return V; 277 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 278 return V; 279 return nullptr; 280 } 281 282 /// Generic simplifications for associative binary operations. 283 /// Returns the simpler value, or null if none was found. 284 static Value *SimplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 285 Value *LHS, Value *RHS, 286 const SimplifyQuery &Q, 287 unsigned MaxRecurse) { 288 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 289 290 // Recursion is always used, so bail out at once if we already hit the limit. 291 if (!MaxRecurse--) 292 return nullptr; 293 294 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 295 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 296 297 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 298 if (Op0 && Op0->getOpcode() == Opcode) { 299 Value *A = Op0->getOperand(0); 300 Value *B = Op0->getOperand(1); 301 Value *C = RHS; 302 303 // Does "B op C" simplify? 304 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 305 // It does! Return "A op V" if it simplifies or is already available. 306 // If V equals B then "A op V" is just the LHS. 307 if (V == B) return LHS; 308 // Otherwise return "A op V" if it simplifies. 309 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 310 ++NumReassoc; 311 return W; 312 } 313 } 314 } 315 316 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 317 if (Op1 && Op1->getOpcode() == Opcode) { 318 Value *A = LHS; 319 Value *B = Op1->getOperand(0); 320 Value *C = Op1->getOperand(1); 321 322 // Does "A op B" simplify? 323 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 324 // It does! Return "V op C" if it simplifies or is already available. 325 // If V equals B then "V op C" is just the RHS. 326 if (V == B) return RHS; 327 // Otherwise return "V op C" if it simplifies. 328 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 329 ++NumReassoc; 330 return W; 331 } 332 } 333 } 334 335 // The remaining transforms require commutativity as well as associativity. 336 if (!Instruction::isCommutative(Opcode)) 337 return nullptr; 338 339 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 340 if (Op0 && Op0->getOpcode() == Opcode) { 341 Value *A = Op0->getOperand(0); 342 Value *B = Op0->getOperand(1); 343 Value *C = RHS; 344 345 // Does "C op A" simplify? 346 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 347 // It does! Return "V op B" if it simplifies or is already available. 348 // If V equals A then "V op B" is just the LHS. 349 if (V == A) return LHS; 350 // Otherwise return "V op B" if it simplifies. 351 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 352 ++NumReassoc; 353 return W; 354 } 355 } 356 } 357 358 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 359 if (Op1 && Op1->getOpcode() == Opcode) { 360 Value *A = LHS; 361 Value *B = Op1->getOperand(0); 362 Value *C = Op1->getOperand(1); 363 364 // Does "C op A" simplify? 365 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 366 // It does! Return "B op V" if it simplifies or is already available. 367 // If V equals C then "B op V" is just the RHS. 368 if (V == C) return RHS; 369 // Otherwise return "B op V" if it simplifies. 370 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 371 ++NumReassoc; 372 return W; 373 } 374 } 375 } 376 377 return nullptr; 378 } 379 380 /// In the case of a binary operation with a select instruction as an operand, 381 /// try to simplify the binop by seeing whether evaluating it on both branches 382 /// of the select results in the same value. Returns the common value if so, 383 /// otherwise returns null. 384 static Value *ThreadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 385 Value *RHS, const SimplifyQuery &Q, 386 unsigned MaxRecurse) { 387 // Recursion is always used, so bail out at once if we already hit the limit. 388 if (!MaxRecurse--) 389 return nullptr; 390 391 SelectInst *SI; 392 if (isa<SelectInst>(LHS)) { 393 SI = cast<SelectInst>(LHS); 394 } else { 395 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 396 SI = cast<SelectInst>(RHS); 397 } 398 399 // Evaluate the BinOp on the true and false branches of the select. 400 Value *TV; 401 Value *FV; 402 if (SI == LHS) { 403 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 404 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 405 } else { 406 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 407 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 408 } 409 410 // If they simplified to the same value, then return the common value. 411 // If they both failed to simplify then return null. 412 if (TV == FV) 413 return TV; 414 415 // If one branch simplified to undef, return the other one. 416 if (TV && isa<UndefValue>(TV)) 417 return FV; 418 if (FV && isa<UndefValue>(FV)) 419 return TV; 420 421 // If applying the operation did not change the true and false select values, 422 // then the result of the binop is the select itself. 423 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 424 return SI; 425 426 // If one branch simplified and the other did not, and the simplified 427 // value is equal to the unsimplified one, return the simplified value. 428 // For example, select (cond, X, X & Z) & Z -> X & Z. 429 if ((FV && !TV) || (TV && !FV)) { 430 // Check that the simplified value has the form "X op Y" where "op" is the 431 // same as the original operation. 432 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 433 if (Simplified && Simplified->getOpcode() == unsigned(Opcode)) { 434 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 435 // We already know that "op" is the same as for the simplified value. See 436 // if the operands match too. If so, return the simplified value. 437 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 438 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 439 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 440 if (Simplified->getOperand(0) == UnsimplifiedLHS && 441 Simplified->getOperand(1) == UnsimplifiedRHS) 442 return Simplified; 443 if (Simplified->isCommutative() && 444 Simplified->getOperand(1) == UnsimplifiedLHS && 445 Simplified->getOperand(0) == UnsimplifiedRHS) 446 return Simplified; 447 } 448 } 449 450 return nullptr; 451 } 452 453 /// In the case of a comparison with a select instruction, try to simplify the 454 /// comparison by seeing whether both branches of the select result in the same 455 /// value. Returns the common value if so, otherwise returns null. 456 /// For example, if we have: 457 /// %tmp = select i1 %cmp, i32 1, i32 2 458 /// %cmp1 = icmp sle i32 %tmp, 3 459 /// We can simplify %cmp1 to true, because both branches of select are 460 /// less than 3. We compose new comparison by substituting %tmp with both 461 /// branches of select and see if it can be simplified. 462 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 463 Value *RHS, const SimplifyQuery &Q, 464 unsigned MaxRecurse) { 465 // Recursion is always used, so bail out at once if we already hit the limit. 466 if (!MaxRecurse--) 467 return nullptr; 468 469 // Make sure the select is on the LHS. 470 if (!isa<SelectInst>(LHS)) { 471 std::swap(LHS, RHS); 472 Pred = CmpInst::getSwappedPredicate(Pred); 473 } 474 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 475 SelectInst *SI = cast<SelectInst>(LHS); 476 Value *Cond = SI->getCondition(); 477 Value *TV = SI->getTrueValue(); 478 Value *FV = SI->getFalseValue(); 479 480 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 481 // Does "cmp TV, RHS" simplify? 482 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 483 if (!TCmp) 484 return nullptr; 485 486 // Does "cmp FV, RHS" simplify? 487 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 488 if (!FCmp) 489 return nullptr; 490 491 // If both sides simplified to the same value, then use it as the result of 492 // the original comparison. 493 if (TCmp == FCmp) 494 return TCmp; 495 496 // The remaining cases only make sense if the select condition has the same 497 // type as the result of the comparison, so bail out if this is not so. 498 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 499 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 500 501 return nullptr; 502 } 503 504 /// In the case of a binary operation with an operand that is a PHI instruction, 505 /// try to simplify the binop by seeing whether evaluating it on the incoming 506 /// phi values yields the same result for every value. If so returns the common 507 /// value, otherwise returns null. 508 static Value *ThreadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 509 Value *RHS, const SimplifyQuery &Q, 510 unsigned MaxRecurse) { 511 // Recursion is always used, so bail out at once if we already hit the limit. 512 if (!MaxRecurse--) 513 return nullptr; 514 515 PHINode *PI; 516 if (isa<PHINode>(LHS)) { 517 PI = cast<PHINode>(LHS); 518 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 519 if (!valueDominatesPHI(RHS, PI, Q.DT)) 520 return nullptr; 521 } else { 522 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 523 PI = cast<PHINode>(RHS); 524 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 525 if (!valueDominatesPHI(LHS, PI, Q.DT)) 526 return nullptr; 527 } 528 529 // Evaluate the BinOp on the incoming phi values. 530 Value *CommonValue = nullptr; 531 for (Value *Incoming : PI->incoming_values()) { 532 // If the incoming value is the phi node itself, it can safely be skipped. 533 if (Incoming == PI) continue; 534 Value *V = PI == LHS ? 535 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 536 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 537 // If the operation failed to simplify, or simplified to a different value 538 // to previously, then give up. 539 if (!V || (CommonValue && V != CommonValue)) 540 return nullptr; 541 CommonValue = V; 542 } 543 544 return CommonValue; 545 } 546 547 /// In the case of a comparison with a PHI instruction, try to simplify the 548 /// comparison by seeing whether comparing with all of the incoming phi values 549 /// yields the same result every time. If so returns the common result, 550 /// otherwise returns null. 551 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 552 const SimplifyQuery &Q, unsigned MaxRecurse) { 553 // Recursion is always used, so bail out at once if we already hit the limit. 554 if (!MaxRecurse--) 555 return nullptr; 556 557 // Make sure the phi is on the LHS. 558 if (!isa<PHINode>(LHS)) { 559 std::swap(LHS, RHS); 560 Pred = CmpInst::getSwappedPredicate(Pred); 561 } 562 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 563 PHINode *PI = cast<PHINode>(LHS); 564 565 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 566 if (!valueDominatesPHI(RHS, PI, Q.DT)) 567 return nullptr; 568 569 // Evaluate the BinOp on the incoming phi values. 570 Value *CommonValue = nullptr; 571 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 572 Value *Incoming = PI->getIncomingValue(u); 573 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 574 // If the incoming value is the phi node itself, it can safely be skipped. 575 if (Incoming == PI) continue; 576 // Change the context instruction to the "edge" that flows into the phi. 577 // This is important because that is where incoming is actually "evaluated" 578 // even though it is used later somewhere else. 579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 580 MaxRecurse); 581 // If the operation failed to simplify, or simplified to a different value 582 // to previously, then give up. 583 if (!V || (CommonValue && V != CommonValue)) 584 return nullptr; 585 CommonValue = V; 586 } 587 588 return CommonValue; 589 } 590 591 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 592 Value *&Op0, Value *&Op1, 593 const SimplifyQuery &Q) { 594 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 595 if (auto *CRHS = dyn_cast<Constant>(Op1)) 596 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 597 598 // Canonicalize the constant to the RHS if this is a commutative operation. 599 if (Instruction::isCommutative(Opcode)) 600 std::swap(Op0, Op1); 601 } 602 return nullptr; 603 } 604 605 /// Given operands for an Add, see if we can fold the result. 606 /// If not, this returns null. 607 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 608 const SimplifyQuery &Q, unsigned MaxRecurse) { 609 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 610 return C; 611 612 // X + undef -> undef 613 if (match(Op1, m_Undef())) 614 return Op1; 615 616 // X + 0 -> X 617 if (match(Op1, m_Zero())) 618 return Op0; 619 620 // If two operands are negative, return 0. 621 if (isKnownNegation(Op0, Op1)) 622 return Constant::getNullValue(Op0->getType()); 623 624 // X + (Y - X) -> Y 625 // (Y - X) + X -> Y 626 // Eg: X + -X -> 0 627 Value *Y = nullptr; 628 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 629 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 630 return Y; 631 632 // X + ~X -> -1 since ~X = -X-1 633 Type *Ty = Op0->getType(); 634 if (match(Op0, m_Not(m_Specific(Op1))) || 635 match(Op1, m_Not(m_Specific(Op0)))) 636 return Constant::getAllOnesValue(Ty); 637 638 // add nsw/nuw (xor Y, signmask), signmask --> Y 639 // The no-wrapping add guarantees that the top bit will be set by the add. 640 // Therefore, the xor must be clearing the already set sign bit of Y. 641 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 642 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 643 return Y; 644 645 // add nuw %x, -1 -> -1, because %x can only be 0. 646 if (IsNUW && match(Op1, m_AllOnes())) 647 return Op1; // Which is -1. 648 649 /// i1 add -> xor. 650 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 651 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 652 return V; 653 654 // Try some generic simplifications for associative operations. 655 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 656 MaxRecurse)) 657 return V; 658 659 // Threading Add over selects and phi nodes is pointless, so don't bother. 660 // Threading over the select in "A + select(cond, B, C)" means evaluating 661 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 662 // only if B and C are equal. If B and C are equal then (since we assume 663 // that operands have already been simplified) "select(cond, B, C)" should 664 // have been simplified to the common value of B and C already. Analysing 665 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 666 // for threading over phi nodes. 667 668 return nullptr; 669 } 670 671 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 672 const SimplifyQuery &Query) { 673 return ::SimplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 674 } 675 676 /// Compute the base pointer and cumulative constant offsets for V. 677 /// 678 /// This strips all constant offsets off of V, leaving it the base pointer, and 679 /// accumulates the total constant offset applied in the returned constant. It 680 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 681 /// no constant offsets applied. 682 /// 683 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 684 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 685 /// folding. 686 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 687 bool AllowNonInbounds = false) { 688 assert(V->getType()->isPtrOrPtrVectorTy()); 689 690 Type *IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 691 APInt Offset = APInt::getNullValue(IntIdxTy->getIntegerBitWidth()); 692 693 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 694 // As that strip may trace through `addrspacecast`, need to sext or trunc 695 // the offset calculated. 696 IntIdxTy = DL.getIndexType(V->getType())->getScalarType(); 697 Offset = Offset.sextOrTrunc(IntIdxTy->getIntegerBitWidth()); 698 699 Constant *OffsetIntPtr = ConstantInt::get(IntIdxTy, Offset); 700 if (VectorType *VecTy = dyn_cast<VectorType>(V->getType())) 701 return ConstantVector::getSplat(VecTy->getElementCount(), OffsetIntPtr); 702 return OffsetIntPtr; 703 } 704 705 /// Compute the constant difference between two pointer values. 706 /// If the difference is not a constant, returns zero. 707 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 708 Value *RHS) { 709 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 710 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 711 712 // If LHS and RHS are not related via constant offsets to the same base 713 // value, there is nothing we can do here. 714 if (LHS != RHS) 715 return nullptr; 716 717 // Otherwise, the difference of LHS - RHS can be computed as: 718 // LHS - RHS 719 // = (LHSOffset + Base) - (RHSOffset + Base) 720 // = LHSOffset - RHSOffset 721 return ConstantExpr::getSub(LHSOffset, RHSOffset); 722 } 723 724 /// Given operands for a Sub, see if we can fold the result. 725 /// If not, this returns null. 726 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 727 const SimplifyQuery &Q, unsigned MaxRecurse) { 728 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 729 return C; 730 731 // X - undef -> undef 732 // undef - X -> undef 733 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 734 return UndefValue::get(Op0->getType()); 735 736 // X - 0 -> X 737 if (match(Op1, m_Zero())) 738 return Op0; 739 740 // X - X -> 0 741 if (Op0 == Op1) 742 return Constant::getNullValue(Op0->getType()); 743 744 // Is this a negation? 745 if (match(Op0, m_Zero())) { 746 // 0 - X -> 0 if the sub is NUW. 747 if (isNUW) 748 return Constant::getNullValue(Op0->getType()); 749 750 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 751 if (Known.Zero.isMaxSignedValue()) { 752 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 753 // Op1 must be 0 because negating the minimum signed value is undefined. 754 if (isNSW) 755 return Constant::getNullValue(Op0->getType()); 756 757 // 0 - X -> X if X is 0 or the minimum signed value. 758 return Op1; 759 } 760 } 761 762 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 763 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 764 Value *X = nullptr, *Y = nullptr, *Z = Op1; 765 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 766 // See if "V === Y - Z" simplifies. 767 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 768 // It does! Now see if "X + V" simplifies. 769 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 770 // It does, we successfully reassociated! 771 ++NumReassoc; 772 return W; 773 } 774 // See if "V === X - Z" simplifies. 775 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 776 // It does! Now see if "Y + V" simplifies. 777 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 778 // It does, we successfully reassociated! 779 ++NumReassoc; 780 return W; 781 } 782 } 783 784 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 785 // For example, X - (X + 1) -> -1 786 X = Op0; 787 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 788 // See if "V === X - Y" simplifies. 789 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 790 // It does! Now see if "V - Z" simplifies. 791 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 792 // It does, we successfully reassociated! 793 ++NumReassoc; 794 return W; 795 } 796 // See if "V === X - Z" simplifies. 797 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 798 // It does! Now see if "V - Y" simplifies. 799 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 800 // It does, we successfully reassociated! 801 ++NumReassoc; 802 return W; 803 } 804 } 805 806 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 807 // For example, X - (X - Y) -> Y. 808 Z = Op0; 809 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 810 // See if "V === Z - X" simplifies. 811 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 812 // It does! Now see if "V + Y" simplifies. 813 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 814 // It does, we successfully reassociated! 815 ++NumReassoc; 816 return W; 817 } 818 819 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 820 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 821 match(Op1, m_Trunc(m_Value(Y)))) 822 if (X->getType() == Y->getType()) 823 // See if "V === X - Y" simplifies. 824 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 825 // It does! Now see if "trunc V" simplifies. 826 if (Value *W = SimplifyCastInst(Instruction::Trunc, V, Op0->getType(), 827 Q, MaxRecurse - 1)) 828 // It does, return the simplified "trunc V". 829 return W; 830 831 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 832 if (match(Op0, m_PtrToInt(m_Value(X))) && 833 match(Op1, m_PtrToInt(m_Value(Y)))) 834 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 835 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 836 837 // i1 sub -> xor. 838 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 839 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 840 return V; 841 842 // Threading Sub over selects and phi nodes is pointless, so don't bother. 843 // Threading over the select in "A - select(cond, B, C)" means evaluating 844 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 845 // only if B and C are equal. If B and C are equal then (since we assume 846 // that operands have already been simplified) "select(cond, B, C)" should 847 // have been simplified to the common value of B and C already. Analysing 848 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 849 // for threading over phi nodes. 850 851 return nullptr; 852 } 853 854 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 855 const SimplifyQuery &Q) { 856 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 857 } 858 859 /// Given operands for a Mul, see if we can fold the result. 860 /// If not, this returns null. 861 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 862 unsigned MaxRecurse) { 863 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 864 return C; 865 866 // X * undef -> 0 867 // X * 0 -> 0 868 if (match(Op1, m_CombineOr(m_Undef(), m_Zero()))) 869 return Constant::getNullValue(Op0->getType()); 870 871 // X * 1 -> X 872 if (match(Op1, m_One())) 873 return Op0; 874 875 // (X / Y) * Y -> X if the division is exact. 876 Value *X = nullptr; 877 if (Q.IIQ.UseInstrInfo && 878 (match(Op0, 879 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 880 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 881 return X; 882 883 // i1 mul -> and. 884 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 885 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 886 return V; 887 888 // Try some generic simplifications for associative operations. 889 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 890 MaxRecurse)) 891 return V; 892 893 // Mul distributes over Add. Try some generic simplifications based on this. 894 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 895 Instruction::Add, Q, MaxRecurse)) 896 return V; 897 898 // If the operation is with the result of a select instruction, check whether 899 // operating on either branch of the select always yields the same value. 900 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 901 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 902 MaxRecurse)) 903 return V; 904 905 // If the operation is with the result of a phi instruction, check whether 906 // operating on all incoming values of the phi always yields the same value. 907 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 908 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 909 MaxRecurse)) 910 return V; 911 912 return nullptr; 913 } 914 915 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 916 return ::SimplifyMulInst(Op0, Op1, Q, RecursionLimit); 917 } 918 919 /// Check for common or similar folds of integer division or integer remainder. 920 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 921 static Value *simplifyDivRem(Value *Op0, Value *Op1, bool IsDiv) { 922 Type *Ty = Op0->getType(); 923 924 // X / undef -> undef 925 // X % undef -> undef 926 if (match(Op1, m_Undef())) 927 return Op1; 928 929 // X / 0 -> undef 930 // X % 0 -> undef 931 // We don't need to preserve faults! 932 if (match(Op1, m_Zero())) 933 return UndefValue::get(Ty); 934 935 // If any element of a constant divisor fixed width vector is zero or undef, 936 // the whole op is undef. 937 auto *Op1C = dyn_cast<Constant>(Op1); 938 auto *VTy = dyn_cast<FixedVectorType>(Ty); 939 if (Op1C && VTy) { 940 unsigned NumElts = VTy->getNumElements(); 941 for (unsigned i = 0; i != NumElts; ++i) { 942 Constant *Elt = Op1C->getAggregateElement(i); 943 if (Elt && (Elt->isNullValue() || isa<UndefValue>(Elt))) 944 return UndefValue::get(Ty); 945 } 946 } 947 948 // undef / X -> 0 949 // undef % X -> 0 950 if (match(Op0, m_Undef())) 951 return Constant::getNullValue(Ty); 952 953 // 0 / X -> 0 954 // 0 % X -> 0 955 if (match(Op0, m_Zero())) 956 return Constant::getNullValue(Op0->getType()); 957 958 // X / X -> 1 959 // X % X -> 0 960 if (Op0 == Op1) 961 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 962 963 // X / 1 -> X 964 // X % 1 -> 0 965 // If this is a boolean op (single-bit element type), we can't have 966 // division-by-zero or remainder-by-zero, so assume the divisor is 1. 967 // Similarly, if we're zero-extending a boolean divisor, then assume it's a 1. 968 Value *X; 969 if (match(Op1, m_One()) || Ty->isIntOrIntVectorTy(1) || 970 (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 971 return IsDiv ? Op0 : Constant::getNullValue(Ty); 972 973 return nullptr; 974 } 975 976 /// Given a predicate and two operands, return true if the comparison is true. 977 /// This is a helper for div/rem simplification where we return some other value 978 /// when we can prove a relationship between the operands. 979 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 980 const SimplifyQuery &Q, unsigned MaxRecurse) { 981 Value *V = SimplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 982 Constant *C = dyn_cast_or_null<Constant>(V); 983 return (C && C->isAllOnesValue()); 984 } 985 986 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 987 /// to simplify X % Y to X. 988 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 989 unsigned MaxRecurse, bool IsSigned) { 990 // Recursion is always used, so bail out at once if we already hit the limit. 991 if (!MaxRecurse--) 992 return false; 993 994 if (IsSigned) { 995 // |X| / |Y| --> 0 996 // 997 // We require that 1 operand is a simple constant. That could be extended to 998 // 2 variables if we computed the sign bit for each. 999 // 1000 // Make sure that a constant is not the minimum signed value because taking 1001 // the abs() of that is undefined. 1002 Type *Ty = X->getType(); 1003 const APInt *C; 1004 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1005 // Is the variable divisor magnitude always greater than the constant 1006 // dividend magnitude? 1007 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1008 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1009 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1010 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1011 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1012 return true; 1013 } 1014 if (match(Y, m_APInt(C))) { 1015 // Special-case: we can't take the abs() of a minimum signed value. If 1016 // that's the divisor, then all we have to do is prove that the dividend 1017 // is also not the minimum signed value. 1018 if (C->isMinSignedValue()) 1019 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1020 1021 // Is the variable dividend magnitude always less than the constant 1022 // divisor magnitude? 1023 // |X| < |C| --> X > -abs(C) and X < abs(C) 1024 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1025 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1026 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1027 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1028 return true; 1029 } 1030 return false; 1031 } 1032 1033 // IsSigned == false. 1034 // Is the dividend unsigned less than the divisor? 1035 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1036 } 1037 1038 /// These are simplifications common to SDiv and UDiv. 1039 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1040 const SimplifyQuery &Q, unsigned MaxRecurse) { 1041 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1042 return C; 1043 1044 if (Value *V = simplifyDivRem(Op0, Op1, true)) 1045 return V; 1046 1047 bool IsSigned = Opcode == Instruction::SDiv; 1048 1049 // (X * Y) / Y -> X if the multiplication does not overflow. 1050 Value *X; 1051 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1052 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1053 // If the Mul does not overflow, then we are good to go. 1054 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1055 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul))) 1056 return X; 1057 // If X has the form X = A / Y, then X * Y cannot overflow. 1058 if ((IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1059 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) 1060 return X; 1061 } 1062 1063 // (X rem Y) / Y -> 0 1064 if ((IsSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1065 (!IsSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1066 return Constant::getNullValue(Op0->getType()); 1067 1068 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1069 ConstantInt *C1, *C2; 1070 if (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1071 match(Op1, m_ConstantInt(C2))) { 1072 bool Overflow; 1073 (void)C1->getValue().umul_ov(C2->getValue(), Overflow); 1074 if (Overflow) 1075 return Constant::getNullValue(Op0->getType()); 1076 } 1077 1078 // If the operation is with the result of a select instruction, check whether 1079 // operating on either branch of the select always yields the same value. 1080 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1081 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1082 return V; 1083 1084 // If the operation is with the result of a phi instruction, check whether 1085 // operating on all incoming values of the phi always yields the same value. 1086 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1087 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1088 return V; 1089 1090 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1091 return Constant::getNullValue(Op0->getType()); 1092 1093 return nullptr; 1094 } 1095 1096 /// These are simplifications common to SRem and URem. 1097 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1098 const SimplifyQuery &Q, unsigned MaxRecurse) { 1099 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1100 return C; 1101 1102 if (Value *V = simplifyDivRem(Op0, Op1, false)) 1103 return V; 1104 1105 // (X % Y) % Y -> X % Y 1106 if ((Opcode == Instruction::SRem && 1107 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1108 (Opcode == Instruction::URem && 1109 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1110 return Op0; 1111 1112 // (X << Y) % X -> 0 1113 if (Q.IIQ.UseInstrInfo && 1114 ((Opcode == Instruction::SRem && 1115 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1116 (Opcode == Instruction::URem && 1117 match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))) 1118 return Constant::getNullValue(Op0->getType()); 1119 1120 // If the operation is with the result of a select instruction, check whether 1121 // operating on either branch of the select always yields the same value. 1122 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1123 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1124 return V; 1125 1126 // If the operation is with the result of a phi instruction, check whether 1127 // operating on all incoming values of the phi always yields the same value. 1128 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1129 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1130 return V; 1131 1132 // If X / Y == 0, then X % Y == X. 1133 if (isDivZero(Op0, Op1, Q, MaxRecurse, Opcode == Instruction::SRem)) 1134 return Op0; 1135 1136 return nullptr; 1137 } 1138 1139 /// Given operands for an SDiv, see if we can fold the result. 1140 /// If not, this returns null. 1141 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1142 unsigned MaxRecurse) { 1143 // If two operands are negated and no signed overflow, return -1. 1144 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1145 return Constant::getAllOnesValue(Op0->getType()); 1146 1147 return simplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse); 1148 } 1149 1150 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1151 return ::SimplifySDivInst(Op0, Op1, Q, RecursionLimit); 1152 } 1153 1154 /// Given operands for a UDiv, see if we can fold the result. 1155 /// If not, this returns null. 1156 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1157 unsigned MaxRecurse) { 1158 return simplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse); 1159 } 1160 1161 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1162 return ::SimplifyUDivInst(Op0, Op1, Q, RecursionLimit); 1163 } 1164 1165 /// Given operands for an SRem, see if we can fold the result. 1166 /// If not, this returns null. 1167 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1168 unsigned MaxRecurse) { 1169 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1170 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1171 Value *X; 1172 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1173 return ConstantInt::getNullValue(Op0->getType()); 1174 1175 // If the two operands are negated, return 0. 1176 if (isKnownNegation(Op0, Op1)) 1177 return ConstantInt::getNullValue(Op0->getType()); 1178 1179 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1180 } 1181 1182 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1183 return ::SimplifySRemInst(Op0, Op1, Q, RecursionLimit); 1184 } 1185 1186 /// Given operands for a URem, see if we can fold the result. 1187 /// If not, this returns null. 1188 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1189 unsigned MaxRecurse) { 1190 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1191 } 1192 1193 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1194 return ::SimplifyURemInst(Op0, Op1, Q, RecursionLimit); 1195 } 1196 1197 /// Returns true if a shift by \c Amount always yields undef. 1198 static bool isUndefShift(Value *Amount) { 1199 Constant *C = dyn_cast<Constant>(Amount); 1200 if (!C) 1201 return false; 1202 1203 // X shift by undef -> undef because it may shift by the bitwidth. 1204 if (isa<UndefValue>(C)) 1205 return true; 1206 1207 // Shifting by the bitwidth or more is undefined. 1208 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1209 if (CI->getValue().getLimitedValue() >= 1210 CI->getType()->getScalarSizeInBits()) 1211 return true; 1212 1213 // If all lanes of a vector shift are undefined the whole shift is. 1214 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1215 for (unsigned I = 0, 1216 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1217 I != E; ++I) 1218 if (!isUndefShift(C->getAggregateElement(I))) 1219 return false; 1220 return true; 1221 } 1222 1223 return false; 1224 } 1225 1226 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1227 /// If not, this returns null. 1228 static Value *SimplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1229 Value *Op1, const SimplifyQuery &Q, unsigned MaxRecurse) { 1230 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1231 return C; 1232 1233 // 0 shift by X -> 0 1234 if (match(Op0, m_Zero())) 1235 return Constant::getNullValue(Op0->getType()); 1236 1237 // X shift by 0 -> X 1238 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1239 // would be poison. 1240 Value *X; 1241 if (match(Op1, m_Zero()) || 1242 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1243 return Op0; 1244 1245 // Fold undefined shifts. 1246 if (isUndefShift(Op1)) 1247 return UndefValue::get(Op0->getType()); 1248 1249 // If the operation is with the result of a select instruction, check whether 1250 // operating on either branch of the select always yields the same value. 1251 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1252 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1253 return V; 1254 1255 // If the operation is with the result of a phi instruction, check whether 1256 // operating on all incoming values of the phi always yields the same value. 1257 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1258 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1259 return V; 1260 1261 // If any bits in the shift amount make that value greater than or equal to 1262 // the number of bits in the type, the shift is undefined. 1263 KnownBits Known = computeKnownBits(Op1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1264 if (Known.One.getLimitedValue() >= Known.getBitWidth()) 1265 return UndefValue::get(Op0->getType()); 1266 1267 // If all valid bits in the shift amount are known zero, the first operand is 1268 // unchanged. 1269 unsigned NumValidShiftBits = Log2_32_Ceil(Known.getBitWidth()); 1270 if (Known.countMinTrailingZeros() >= NumValidShiftBits) 1271 return Op0; 1272 1273 return nullptr; 1274 } 1275 1276 /// Given operands for an Shl, LShr or AShr, see if we can 1277 /// fold the result. If not, this returns null. 1278 static Value *SimplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1279 Value *Op1, bool isExact, const SimplifyQuery &Q, 1280 unsigned MaxRecurse) { 1281 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1282 return V; 1283 1284 // X >> X -> 0 1285 if (Op0 == Op1) 1286 return Constant::getNullValue(Op0->getType()); 1287 1288 // undef >> X -> 0 1289 // undef >> X -> undef (if it's exact) 1290 if (match(Op0, m_Undef())) 1291 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1292 1293 // The low bit cannot be shifted out of an exact shift if it is set. 1294 if (isExact) { 1295 KnownBits Op0Known = computeKnownBits(Op0, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT); 1296 if (Op0Known.One[0]) 1297 return Op0; 1298 } 1299 1300 return nullptr; 1301 } 1302 1303 /// Given operands for an Shl, see if we can fold the result. 1304 /// If not, this returns null. 1305 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1306 const SimplifyQuery &Q, unsigned MaxRecurse) { 1307 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1308 return V; 1309 1310 // undef << X -> 0 1311 // undef << X -> undef if (if it's NSW/NUW) 1312 if (match(Op0, m_Undef())) 1313 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1314 1315 // (X >> A) << A -> X 1316 Value *X; 1317 if (Q.IIQ.UseInstrInfo && 1318 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1319 return X; 1320 1321 // shl nuw i8 C, %x -> C iff C has sign bit set. 1322 if (isNUW && match(Op0, m_Negative())) 1323 return Op0; 1324 // NOTE: could use computeKnownBits() / LazyValueInfo, 1325 // but the cost-benefit analysis suggests it isn't worth it. 1326 1327 return nullptr; 1328 } 1329 1330 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1331 const SimplifyQuery &Q) { 1332 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Q, RecursionLimit); 1333 } 1334 1335 /// Given operands for an LShr, see if we can fold the result. 1336 /// If not, this returns null. 1337 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1338 const SimplifyQuery &Q, unsigned MaxRecurse) { 1339 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1340 MaxRecurse)) 1341 return V; 1342 1343 // (X << A) >> A -> X 1344 Value *X; 1345 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1346 return X; 1347 1348 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1349 // We can return X as we do in the above case since OR alters no bits in X. 1350 // SimplifyDemandedBits in InstCombine can do more general optimization for 1351 // bit manipulation. This pattern aims to provide opportunities for other 1352 // optimizers by supporting a simple but common case in InstSimplify. 1353 Value *Y; 1354 const APInt *ShRAmt, *ShLAmt; 1355 if (match(Op1, m_APInt(ShRAmt)) && 1356 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1357 *ShRAmt == *ShLAmt) { 1358 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1359 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 1360 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 1361 if (ShRAmt->uge(EffWidthY)) 1362 return X; 1363 } 1364 1365 return nullptr; 1366 } 1367 1368 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1369 const SimplifyQuery &Q) { 1370 return ::SimplifyLShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1371 } 1372 1373 /// Given operands for an AShr, see if we can fold the result. 1374 /// If not, this returns null. 1375 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1376 const SimplifyQuery &Q, unsigned MaxRecurse) { 1377 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1378 MaxRecurse)) 1379 return V; 1380 1381 // all ones >>a X -> -1 1382 // Do not return Op0 because it may contain undef elements if it's a vector. 1383 if (match(Op0, m_AllOnes())) 1384 return Constant::getAllOnesValue(Op0->getType()); 1385 1386 // (X << A) >> A -> X 1387 Value *X; 1388 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1389 return X; 1390 1391 // Arithmetic shifting an all-sign-bit value is a no-op. 1392 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1393 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1394 return Op0; 1395 1396 return nullptr; 1397 } 1398 1399 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1400 const SimplifyQuery &Q) { 1401 return ::SimplifyAShrInst(Op0, Op1, isExact, Q, RecursionLimit); 1402 } 1403 1404 /// Commuted variants are assumed to be handled by calling this function again 1405 /// with the parameters swapped. 1406 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1407 ICmpInst *UnsignedICmp, bool IsAnd, 1408 const SimplifyQuery &Q) { 1409 Value *X, *Y; 1410 1411 ICmpInst::Predicate EqPred; 1412 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1413 !ICmpInst::isEquality(EqPred)) 1414 return nullptr; 1415 1416 ICmpInst::Predicate UnsignedPred; 1417 1418 Value *A, *B; 1419 // Y = (A - B); 1420 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1421 if (match(UnsignedICmp, 1422 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1423 ICmpInst::isUnsigned(UnsignedPred)) { 1424 // A >=/<= B || (A - B) != 0 <--> true 1425 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1426 UnsignedPred == ICmpInst::ICMP_ULE) && 1427 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1428 return ConstantInt::getTrue(UnsignedICmp->getType()); 1429 // A </> B && (A - B) == 0 <--> false 1430 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1431 UnsignedPred == ICmpInst::ICMP_UGT) && 1432 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1433 return ConstantInt::getFalse(UnsignedICmp->getType()); 1434 1435 // A </> B && (A - B) != 0 <--> A </> B 1436 // A </> B || (A - B) != 0 <--> (A - B) != 0 1437 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1438 UnsignedPred == ICmpInst::ICMP_UGT)) 1439 return IsAnd ? UnsignedICmp : ZeroICmp; 1440 1441 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1442 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1443 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1444 UnsignedPred == ICmpInst::ICMP_UGE)) 1445 return IsAnd ? ZeroICmp : UnsignedICmp; 1446 } 1447 1448 // Given Y = (A - B) 1449 // Y >= A && Y != 0 --> Y >= A iff B != 0 1450 // Y < A || Y == 0 --> Y < A iff B != 0 1451 if (match(UnsignedICmp, 1452 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1453 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1454 EqPred == ICmpInst::ICMP_NE && 1455 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1456 return UnsignedICmp; 1457 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1458 EqPred == ICmpInst::ICMP_EQ && 1459 isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1460 return UnsignedICmp; 1461 } 1462 } 1463 1464 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1465 ICmpInst::isUnsigned(UnsignedPred)) 1466 ; 1467 else if (match(UnsignedICmp, 1468 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1469 ICmpInst::isUnsigned(UnsignedPred)) 1470 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1471 else 1472 return nullptr; 1473 1474 // X > Y && Y == 0 --> Y == 0 iff X != 0 1475 // X > Y || Y == 0 --> X > Y iff X != 0 1476 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1477 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1478 return IsAnd ? ZeroICmp : UnsignedICmp; 1479 1480 // X <= Y && Y != 0 --> X <= Y iff X != 0 1481 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1482 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1483 isKnownNonZero(X, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT)) 1484 return IsAnd ? UnsignedICmp : ZeroICmp; 1485 1486 // The transforms below here are expected to be handled more generally with 1487 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1488 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1489 // these are candidates for removal. 1490 1491 // X < Y && Y != 0 --> X < Y 1492 // X < Y || Y != 0 --> Y != 0 1493 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1494 return IsAnd ? UnsignedICmp : ZeroICmp; 1495 1496 // X >= Y && Y == 0 --> Y == 0 1497 // X >= Y || Y == 0 --> X >= Y 1498 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1499 return IsAnd ? ZeroICmp : UnsignedICmp; 1500 1501 // X < Y && Y == 0 --> false 1502 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1503 IsAnd) 1504 return getFalse(UnsignedICmp->getType()); 1505 1506 // X >= Y || Y != 0 --> true 1507 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1508 !IsAnd) 1509 return getTrue(UnsignedICmp->getType()); 1510 1511 return nullptr; 1512 } 1513 1514 /// Commuted variants are assumed to be handled by calling this function again 1515 /// with the parameters swapped. 1516 static Value *simplifyAndOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1517 ICmpInst::Predicate Pred0, Pred1; 1518 Value *A ,*B; 1519 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1520 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1521 return nullptr; 1522 1523 // We have (icmp Pred0, A, B) & (icmp Pred1, A, B). 1524 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1525 // can eliminate Op1 from this 'and'. 1526 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1527 return Op0; 1528 1529 // Check for any combination of predicates that are guaranteed to be disjoint. 1530 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1531 (Pred0 == ICmpInst::ICMP_EQ && ICmpInst::isFalseWhenEqual(Pred1)) || 1532 (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT) || 1533 (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)) 1534 return getFalse(Op0->getType()); 1535 1536 return nullptr; 1537 } 1538 1539 /// Commuted variants are assumed to be handled by calling this function again 1540 /// with the parameters swapped. 1541 static Value *simplifyOrOfICmpsWithSameOperands(ICmpInst *Op0, ICmpInst *Op1) { 1542 ICmpInst::Predicate Pred0, Pred1; 1543 Value *A ,*B; 1544 if (!match(Op0, m_ICmp(Pred0, m_Value(A), m_Value(B))) || 1545 !match(Op1, m_ICmp(Pred1, m_Specific(A), m_Specific(B)))) 1546 return nullptr; 1547 1548 // We have (icmp Pred0, A, B) | (icmp Pred1, A, B). 1549 // If Op1 is always implied true by Op0, then Op0 is a subset of Op1, and we 1550 // can eliminate Op0 from this 'or'. 1551 if (ICmpInst::isImpliedTrueByMatchingCmp(Pred0, Pred1)) 1552 return Op1; 1553 1554 // Check for any combination of predicates that cover the entire range of 1555 // possibilities. 1556 if ((Pred0 == ICmpInst::getInversePredicate(Pred1)) || 1557 (Pred0 == ICmpInst::ICMP_NE && ICmpInst::isTrueWhenEqual(Pred1)) || 1558 (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGE) || 1559 (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGE)) 1560 return getTrue(Op0->getType()); 1561 1562 return nullptr; 1563 } 1564 1565 /// Test if a pair of compares with a shared operand and 2 constants has an 1566 /// empty set intersection, full set union, or if one compare is a superset of 1567 /// the other. 1568 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1569 bool IsAnd) { 1570 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1571 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1572 return nullptr; 1573 1574 const APInt *C0, *C1; 1575 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1576 !match(Cmp1->getOperand(1), m_APInt(C1))) 1577 return nullptr; 1578 1579 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1580 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1581 1582 // For and-of-compares, check if the intersection is empty: 1583 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1584 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1585 return getFalse(Cmp0->getType()); 1586 1587 // For or-of-compares, check if the union is full: 1588 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1589 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1590 return getTrue(Cmp0->getType()); 1591 1592 // Is one range a superset of the other? 1593 // If this is and-of-compares, take the smaller set: 1594 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1595 // If this is or-of-compares, take the larger set: 1596 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1597 if (Range0.contains(Range1)) 1598 return IsAnd ? Cmp1 : Cmp0; 1599 if (Range1.contains(Range0)) 1600 return IsAnd ? Cmp0 : Cmp1; 1601 1602 return nullptr; 1603 } 1604 1605 static Value *simplifyAndOrOfICmpsWithZero(ICmpInst *Cmp0, ICmpInst *Cmp1, 1606 bool IsAnd) { 1607 ICmpInst::Predicate P0 = Cmp0->getPredicate(), P1 = Cmp1->getPredicate(); 1608 if (!match(Cmp0->getOperand(1), m_Zero()) || 1609 !match(Cmp1->getOperand(1), m_Zero()) || P0 != P1) 1610 return nullptr; 1611 1612 if ((IsAnd && P0 != ICmpInst::ICMP_NE) || (!IsAnd && P1 != ICmpInst::ICMP_EQ)) 1613 return nullptr; 1614 1615 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)". 1616 Value *X = Cmp0->getOperand(0); 1617 Value *Y = Cmp1->getOperand(0); 1618 1619 // If one of the compares is a masked version of a (not) null check, then 1620 // that compare implies the other, so we eliminate the other. Optionally, look 1621 // through a pointer-to-int cast to match a null check of a pointer type. 1622 1623 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0 1624 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0 1625 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0 1626 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0 1627 if (match(Y, m_c_And(m_Specific(X), m_Value())) || 1628 match(Y, m_c_And(m_PtrToInt(m_Specific(X)), m_Value()))) 1629 return Cmp1; 1630 1631 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0 1632 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0 1633 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0 1634 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0 1635 if (match(X, m_c_And(m_Specific(Y), m_Value())) || 1636 match(X, m_c_And(m_PtrToInt(m_Specific(Y)), m_Value()))) 1637 return Cmp0; 1638 1639 return nullptr; 1640 } 1641 1642 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1643 const InstrInfoQuery &IIQ) { 1644 // (icmp (add V, C0), C1) & (icmp V, C0) 1645 ICmpInst::Predicate Pred0, Pred1; 1646 const APInt *C0, *C1; 1647 Value *V; 1648 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1649 return nullptr; 1650 1651 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1652 return nullptr; 1653 1654 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1655 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1656 return nullptr; 1657 1658 Type *ITy = Op0->getType(); 1659 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1660 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1661 1662 const APInt Delta = *C1 - *C0; 1663 if (C0->isStrictlyPositive()) { 1664 if (Delta == 2) { 1665 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1666 return getFalse(ITy); 1667 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1668 return getFalse(ITy); 1669 } 1670 if (Delta == 1) { 1671 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1672 return getFalse(ITy); 1673 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1674 return getFalse(ITy); 1675 } 1676 } 1677 if (C0->getBoolValue() && isNUW) { 1678 if (Delta == 2) 1679 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1680 return getFalse(ITy); 1681 if (Delta == 1) 1682 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1683 return getFalse(ITy); 1684 } 1685 1686 return nullptr; 1687 } 1688 1689 /// Try to eliminate compares with signed or unsigned min/max constants. 1690 static Value *simplifyAndOrOfICmpsWithLimitConst(ICmpInst *Cmp0, ICmpInst *Cmp1, 1691 bool IsAnd) { 1692 // Canonicalize an equality compare as Cmp0. 1693 if (Cmp1->isEquality()) 1694 std::swap(Cmp0, Cmp1); 1695 if (!Cmp0->isEquality()) 1696 return nullptr; 1697 1698 // The equality compare must be against a constant. Convert the 'null' pointer 1699 // constant to an integer zero value. 1700 APInt MinMaxC; 1701 const APInt *C; 1702 if (match(Cmp0->getOperand(1), m_APInt(C))) 1703 MinMaxC = *C; 1704 else if (isa<ConstantPointerNull>(Cmp0->getOperand(1))) 1705 MinMaxC = APInt::getNullValue(8); 1706 else 1707 return nullptr; 1708 1709 // The non-equality compare must include a common operand (X). Canonicalize 1710 // the common operand as operand 0 (the predicate is swapped if the common 1711 // operand was operand 1). 1712 ICmpInst::Predicate Pred0 = Cmp0->getPredicate(); 1713 Value *X = Cmp0->getOperand(0); 1714 ICmpInst::Predicate Pred1; 1715 if (!match(Cmp1, m_c_ICmp(Pred1, m_Specific(X), m_Value())) || 1716 ICmpInst::isEquality(Pred1)) 1717 return nullptr; 1718 1719 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1. 1720 if (!IsAnd) { 1721 Pred0 = ICmpInst::getInversePredicate(Pred0); 1722 Pred1 = ICmpInst::getInversePredicate(Pred1); 1723 } 1724 1725 // Normalize to unsigned compare and unsigned min/max value. 1726 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255 1727 if (ICmpInst::isSigned(Pred1)) { 1728 Pred1 = ICmpInst::getUnsignedPredicate(Pred1); 1729 MinMaxC += APInt::getSignedMinValue(MinMaxC.getBitWidth()); 1730 } 1731 1732 // (X != MAX) && (X < Y) --> X < Y 1733 // (X == MAX) || (X >= Y) --> X >= Y 1734 if (MinMaxC.isMaxValue()) 1735 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_ULT) 1736 return Cmp1; 1737 1738 // (X != MIN) && (X > Y) --> X > Y 1739 // (X == MIN) || (X <= Y) --> X <= Y 1740 if (MinMaxC.isMinValue()) 1741 if (Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_UGT) 1742 return Cmp1; 1743 1744 return nullptr; 1745 } 1746 1747 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1748 const SimplifyQuery &Q) { 1749 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1750 return X; 1751 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1752 return X; 1753 1754 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op0, Op1)) 1755 return X; 1756 if (Value *X = simplifyAndOfICmpsWithSameOperands(Op1, Op0)) 1757 return X; 1758 1759 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1760 return X; 1761 1762 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, true)) 1763 return X; 1764 1765 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, true)) 1766 return X; 1767 1768 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1769 return X; 1770 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1771 return X; 1772 1773 return nullptr; 1774 } 1775 1776 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1777 const InstrInfoQuery &IIQ) { 1778 // (icmp (add V, C0), C1) | (icmp V, C0) 1779 ICmpInst::Predicate Pred0, Pred1; 1780 const APInt *C0, *C1; 1781 Value *V; 1782 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1783 return nullptr; 1784 1785 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1786 return nullptr; 1787 1788 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1789 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1790 return nullptr; 1791 1792 Type *ITy = Op0->getType(); 1793 bool isNSW = IIQ.hasNoSignedWrap(AddInst); 1794 bool isNUW = IIQ.hasNoUnsignedWrap(AddInst); 1795 1796 const APInt Delta = *C1 - *C0; 1797 if (C0->isStrictlyPositive()) { 1798 if (Delta == 2) { 1799 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1800 return getTrue(ITy); 1801 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1802 return getTrue(ITy); 1803 } 1804 if (Delta == 1) { 1805 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1806 return getTrue(ITy); 1807 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1808 return getTrue(ITy); 1809 } 1810 } 1811 if (C0->getBoolValue() && isNUW) { 1812 if (Delta == 2) 1813 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1814 return getTrue(ITy); 1815 if (Delta == 1) 1816 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1817 return getTrue(ITy); 1818 } 1819 1820 return nullptr; 1821 } 1822 1823 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1824 const SimplifyQuery &Q) { 1825 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1826 return X; 1827 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1828 return X; 1829 1830 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op0, Op1)) 1831 return X; 1832 if (Value *X = simplifyOrOfICmpsWithSameOperands(Op1, Op0)) 1833 return X; 1834 1835 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1836 return X; 1837 1838 if (Value *X = simplifyAndOrOfICmpsWithLimitConst(Op0, Op1, false)) 1839 return X; 1840 1841 if (Value *X = simplifyAndOrOfICmpsWithZero(Op0, Op1, false)) 1842 return X; 1843 1844 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1845 return X; 1846 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1847 return X; 1848 1849 return nullptr; 1850 } 1851 1852 static Value *simplifyAndOrOfFCmps(const TargetLibraryInfo *TLI, 1853 FCmpInst *LHS, FCmpInst *RHS, bool IsAnd) { 1854 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1855 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1856 if (LHS0->getType() != RHS0->getType()) 1857 return nullptr; 1858 1859 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1860 if ((PredL == FCmpInst::FCMP_ORD && PredR == FCmpInst::FCMP_ORD && IsAnd) || 1861 (PredL == FCmpInst::FCMP_UNO && PredR == FCmpInst::FCMP_UNO && !IsAnd)) { 1862 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y 1863 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X 1864 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y 1865 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X 1866 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y 1867 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X 1868 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y 1869 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X 1870 if ((isKnownNeverNaN(LHS0, TLI) && (LHS1 == RHS0 || LHS1 == RHS1)) || 1871 (isKnownNeverNaN(LHS1, TLI) && (LHS0 == RHS0 || LHS0 == RHS1))) 1872 return RHS; 1873 1874 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y 1875 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X 1876 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y 1877 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X 1878 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y 1879 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X 1880 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y 1881 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X 1882 if ((isKnownNeverNaN(RHS0, TLI) && (RHS1 == LHS0 || RHS1 == LHS1)) || 1883 (isKnownNeverNaN(RHS1, TLI) && (RHS0 == LHS0 || RHS0 == LHS1))) 1884 return LHS; 1885 } 1886 1887 return nullptr; 1888 } 1889 1890 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, 1891 Value *Op0, Value *Op1, bool IsAnd) { 1892 // Look through casts of the 'and' operands to find compares. 1893 auto *Cast0 = dyn_cast<CastInst>(Op0); 1894 auto *Cast1 = dyn_cast<CastInst>(Op1); 1895 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1896 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1897 Op0 = Cast0->getOperand(0); 1898 Op1 = Cast1->getOperand(0); 1899 } 1900 1901 Value *V = nullptr; 1902 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1903 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1904 if (ICmp0 && ICmp1) 1905 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1906 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1907 1908 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1909 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1910 if (FCmp0 && FCmp1) 1911 V = simplifyAndOrOfFCmps(Q.TLI, FCmp0, FCmp1, IsAnd); 1912 1913 if (!V) 1914 return nullptr; 1915 if (!Cast0) 1916 return V; 1917 1918 // If we looked through casts, we can only handle a constant simplification 1919 // because we are not allowed to create a cast instruction here. 1920 if (auto *C = dyn_cast<Constant>(V)) 1921 return ConstantExpr::getCast(Cast0->getOpcode(), C, Cast0->getType()); 1922 1923 return nullptr; 1924 } 1925 1926 /// Check that the Op1 is in expected form, i.e.: 1927 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1928 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1929 static bool omitCheckForZeroBeforeMulWithOverflowInternal(Value *Op1, 1930 Value *X) { 1931 auto *Extract = dyn_cast<ExtractValueInst>(Op1); 1932 // We should only be extracting the overflow bit. 1933 if (!Extract || !Extract->getIndices().equals(1)) 1934 return false; 1935 Value *Agg = Extract->getAggregateOperand(); 1936 // This should be a multiplication-with-overflow intrinsic. 1937 if (!match(Agg, m_CombineOr(m_Intrinsic<Intrinsic::umul_with_overflow>(), 1938 m_Intrinsic<Intrinsic::smul_with_overflow>()))) 1939 return false; 1940 // One of its multipliers should be the value we checked for zero before. 1941 if (!match(Agg, m_CombineOr(m_Argument<0>(m_Specific(X)), 1942 m_Argument<1>(m_Specific(X))))) 1943 return false; 1944 return true; 1945 } 1946 1947 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1948 /// other form of check, e.g. one that was using division; it may have been 1949 /// guarded against division-by-zero. We can drop that check now. 1950 /// Look for: 1951 /// %Op0 = icmp ne i4 %X, 0 1952 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1953 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1954 /// %??? = and i1 %Op0, %Op1 1955 /// We can just return %Op1 1956 static Value *omitCheckForZeroBeforeMulWithOverflow(Value *Op0, Value *Op1) { 1957 ICmpInst::Predicate Pred; 1958 Value *X; 1959 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1960 Pred != ICmpInst::Predicate::ICMP_NE) 1961 return nullptr; 1962 // Is Op1 in expected form? 1963 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1964 return nullptr; 1965 // Can omit 'and', and just return the overflow bit. 1966 return Op1; 1967 } 1968 1969 /// The @llvm.[us]mul.with.overflow intrinsic could have been folded from some 1970 /// other form of check, e.g. one that was using division; it may have been 1971 /// guarded against division-by-zero. We can drop that check now. 1972 /// Look for: 1973 /// %Op0 = icmp eq i4 %X, 0 1974 /// %Agg = tail call { i4, i1 } @llvm.[us]mul.with.overflow.i4(i4 %X, i4 %???) 1975 /// %Op1 = extractvalue { i4, i1 } %Agg, 1 1976 /// %NotOp1 = xor i1 %Op1, true 1977 /// %or = or i1 %Op0, %NotOp1 1978 /// We can just return %NotOp1 1979 static Value *omitCheckForZeroBeforeInvertedMulWithOverflow(Value *Op0, 1980 Value *NotOp1) { 1981 ICmpInst::Predicate Pred; 1982 Value *X; 1983 if (!match(Op0, m_ICmp(Pred, m_Value(X), m_Zero())) || 1984 Pred != ICmpInst::Predicate::ICMP_EQ) 1985 return nullptr; 1986 // We expect the other hand of an 'or' to be a 'not'. 1987 Value *Op1; 1988 if (!match(NotOp1, m_Not(m_Value(Op1)))) 1989 return nullptr; 1990 // Is Op1 in expected form? 1991 if (!omitCheckForZeroBeforeMulWithOverflowInternal(Op1, X)) 1992 return nullptr; 1993 // Can omit 'and', and just return the inverted overflow bit. 1994 return NotOp1; 1995 } 1996 1997 /// Given operands for an And, see if we can fold the result. 1998 /// If not, this returns null. 1999 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2000 unsigned MaxRecurse) { 2001 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2002 return C; 2003 2004 // X & undef -> 0 2005 if (match(Op1, m_Undef())) 2006 return Constant::getNullValue(Op0->getType()); 2007 2008 // X & X = X 2009 if (Op0 == Op1) 2010 return Op0; 2011 2012 // X & 0 = 0 2013 if (match(Op1, m_Zero())) 2014 return Constant::getNullValue(Op0->getType()); 2015 2016 // X & -1 = X 2017 if (match(Op1, m_AllOnes())) 2018 return Op0; 2019 2020 // A & ~A = ~A & A = 0 2021 if (match(Op0, m_Not(m_Specific(Op1))) || 2022 match(Op1, m_Not(m_Specific(Op0)))) 2023 return Constant::getNullValue(Op0->getType()); 2024 2025 // (A | ?) & A = A 2026 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2027 return Op1; 2028 2029 // A & (A | ?) = A 2030 if (match(Op1, m_c_Or(m_Specific(Op0), m_Value()))) 2031 return Op0; 2032 2033 // A mask that only clears known zeros of a shifted value is a no-op. 2034 Value *X; 2035 const APInt *Mask; 2036 const APInt *ShAmt; 2037 if (match(Op1, m_APInt(Mask))) { 2038 // If all bits in the inverted and shifted mask are clear: 2039 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2040 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2041 (~(*Mask)).lshr(*ShAmt).isNullValue()) 2042 return Op0; 2043 2044 // If all bits in the inverted and shifted mask are clear: 2045 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2046 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2047 (~(*Mask)).shl(*ShAmt).isNullValue()) 2048 return Op0; 2049 } 2050 2051 // If we have a multiplication overflow check that is being 'and'ed with a 2052 // check that one of the multipliers is not zero, we can omit the 'and', and 2053 // only keep the overflow check. 2054 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op0, Op1)) 2055 return V; 2056 if (Value *V = omitCheckForZeroBeforeMulWithOverflow(Op1, Op0)) 2057 return V; 2058 2059 // A & (-A) = A if A is a power of two or zero. 2060 if (match(Op0, m_Neg(m_Specific(Op1))) || 2061 match(Op1, m_Neg(m_Specific(Op0)))) { 2062 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2063 Q.DT)) 2064 return Op0; 2065 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 2066 Q.DT)) 2067 return Op1; 2068 } 2069 2070 // This is a similar pattern used for checking if a value is a power-of-2: 2071 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2072 // A & (A - 1) --> 0 (if A is a power-of-2 or 0) 2073 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2074 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2075 return Constant::getNullValue(Op1->getType()); 2076 if (match(Op1, m_Add(m_Specific(Op0), m_AllOnes())) && 2077 isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2078 return Constant::getNullValue(Op0->getType()); 2079 2080 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2081 return V; 2082 2083 // Try some generic simplifications for associative operations. 2084 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 2085 MaxRecurse)) 2086 return V; 2087 2088 // And distributes over Or. Try some generic simplifications based on this. 2089 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2090 Instruction::Or, Q, MaxRecurse)) 2091 return V; 2092 2093 // And distributes over Xor. Try some generic simplifications based on this. 2094 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2095 Instruction::Xor, Q, MaxRecurse)) 2096 return V; 2097 2098 // If the operation is with the result of a select instruction, check whether 2099 // operating on either branch of the select always yields the same value. 2100 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2101 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 2102 MaxRecurse)) 2103 return V; 2104 2105 // If the operation is with the result of a phi instruction, check whether 2106 // operating on all incoming values of the phi always yields the same value. 2107 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2108 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 2109 MaxRecurse)) 2110 return V; 2111 2112 // Assuming the effective width of Y is not larger than A, i.e. all bits 2113 // from X and Y are disjoint in (X << A) | Y, 2114 // if the mask of this AND op covers all bits of X or Y, while it covers 2115 // no bits from the other, we can bypass this AND op. E.g., 2116 // ((X << A) | Y) & Mask -> Y, 2117 // if Mask = ((1 << effective_width_of(Y)) - 1) 2118 // ((X << A) | Y) & Mask -> X << A, 2119 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2120 // SimplifyDemandedBits in InstCombine can optimize the general case. 2121 // This pattern aims to help other passes for a common case. 2122 Value *Y, *XShifted; 2123 if (match(Op1, m_APInt(Mask)) && 2124 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2125 m_Value(XShifted)), 2126 m_Value(Y)))) { 2127 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2128 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2129 const KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2130 const unsigned EffWidthY = Width - YKnown.countMinLeadingZeros(); 2131 if (EffWidthY <= ShftCnt) { 2132 const KnownBits XKnown = computeKnownBits(X, Q.DL, 0, Q.AC, Q.CxtI, 2133 Q.DT); 2134 const unsigned EffWidthX = Width - XKnown.countMinLeadingZeros(); 2135 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2136 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2137 // If the mask is extracting all bits from X or Y as is, we can skip 2138 // this AND op. 2139 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2140 return Y; 2141 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2142 return XShifted; 2143 } 2144 } 2145 2146 return nullptr; 2147 } 2148 2149 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2150 return ::SimplifyAndInst(Op0, Op1, Q, RecursionLimit); 2151 } 2152 2153 /// Given operands for an Or, see if we can fold the result. 2154 /// If not, this returns null. 2155 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2156 unsigned MaxRecurse) { 2157 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2158 return C; 2159 2160 // X | undef -> -1 2161 // X | -1 = -1 2162 // Do not return Op1 because it may contain undef elements if it's a vector. 2163 if (match(Op1, m_Undef()) || match(Op1, m_AllOnes())) 2164 return Constant::getAllOnesValue(Op0->getType()); 2165 2166 // X | X = X 2167 // X | 0 = X 2168 if (Op0 == Op1 || match(Op1, m_Zero())) 2169 return Op0; 2170 2171 // A | ~A = ~A | A = -1 2172 if (match(Op0, m_Not(m_Specific(Op1))) || 2173 match(Op1, m_Not(m_Specific(Op0)))) 2174 return Constant::getAllOnesValue(Op0->getType()); 2175 2176 // (A & ?) | A = A 2177 if (match(Op0, m_c_And(m_Specific(Op1), m_Value()))) 2178 return Op1; 2179 2180 // A | (A & ?) = A 2181 if (match(Op1, m_c_And(m_Specific(Op0), m_Value()))) 2182 return Op0; 2183 2184 // ~(A & ?) | A = -1 2185 if (match(Op0, m_Not(m_c_And(m_Specific(Op1), m_Value())))) 2186 return Constant::getAllOnesValue(Op1->getType()); 2187 2188 // A | ~(A & ?) = -1 2189 if (match(Op1, m_Not(m_c_And(m_Specific(Op0), m_Value())))) 2190 return Constant::getAllOnesValue(Op0->getType()); 2191 2192 Value *A, *B; 2193 // (A & ~B) | (A ^ B) -> (A ^ B) 2194 // (~B & A) | (A ^ B) -> (A ^ B) 2195 // (A & ~B) | (B ^ A) -> (B ^ A) 2196 // (~B & A) | (B ^ A) -> (B ^ A) 2197 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && 2198 (match(Op0, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2199 match(Op0, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2200 return Op1; 2201 2202 // Commute the 'or' operands. 2203 // (A ^ B) | (A & ~B) -> (A ^ B) 2204 // (A ^ B) | (~B & A) -> (A ^ B) 2205 // (B ^ A) | (A & ~B) -> (B ^ A) 2206 // (B ^ A) | (~B & A) -> (B ^ A) 2207 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) && 2208 (match(Op1, m_c_And(m_Specific(A), m_Not(m_Specific(B)))) || 2209 match(Op1, m_c_And(m_Not(m_Specific(A)), m_Specific(B))))) 2210 return Op0; 2211 2212 // (A & B) | (~A ^ B) -> (~A ^ B) 2213 // (B & A) | (~A ^ B) -> (~A ^ B) 2214 // (A & B) | (B ^ ~A) -> (B ^ ~A) 2215 // (B & A) | (B ^ ~A) -> (B ^ ~A) 2216 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 2217 (match(Op1, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2218 match(Op1, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2219 return Op1; 2220 2221 // (~A ^ B) | (A & B) -> (~A ^ B) 2222 // (~A ^ B) | (B & A) -> (~A ^ B) 2223 // (B ^ ~A) | (A & B) -> (B ^ ~A) 2224 // (B ^ ~A) | (B & A) -> (B ^ ~A) 2225 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 2226 (match(Op0, m_c_Xor(m_Specific(A), m_Not(m_Specific(B)))) || 2227 match(Op0, m_c_Xor(m_Not(m_Specific(A)), m_Specific(B))))) 2228 return Op0; 2229 2230 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2231 return V; 2232 2233 // If we have a multiplication overflow check that is being 'and'ed with a 2234 // check that one of the multipliers is not zero, we can omit the 'and', and 2235 // only keep the overflow check. 2236 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op0, Op1)) 2237 return V; 2238 if (Value *V = omitCheckForZeroBeforeInvertedMulWithOverflow(Op1, Op0)) 2239 return V; 2240 2241 // Try some generic simplifications for associative operations. 2242 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 2243 MaxRecurse)) 2244 return V; 2245 2246 // Or distributes over And. Try some generic simplifications based on this. 2247 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2248 Instruction::And, Q, MaxRecurse)) 2249 return V; 2250 2251 // If the operation is with the result of a select instruction, check whether 2252 // operating on either branch of the select always yields the same value. 2253 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 2254 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 2255 MaxRecurse)) 2256 return V; 2257 2258 // (A & C1)|(B & C2) 2259 const APInt *C1, *C2; 2260 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2261 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2262 if (*C1 == ~*C2) { 2263 // (A & C1)|(B & C2) 2264 // If we have: ((V + N) & C1) | (V & C2) 2265 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2266 // replace with V+N. 2267 Value *N; 2268 if (C2->isMask() && // C2 == 0+1+ 2269 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2270 // Add commutes, try both ways. 2271 if (MaskedValueIsZero(N, *C2, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2272 return A; 2273 } 2274 // Or commutes, try both ways. 2275 if (C1->isMask() && 2276 match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2277 // Add commutes, try both ways. 2278 if (MaskedValueIsZero(N, *C1, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2279 return B; 2280 } 2281 } 2282 } 2283 2284 // If the operation is with the result of a phi instruction, check whether 2285 // operating on all incoming values of the phi always yields the same value. 2286 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2287 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2288 return V; 2289 2290 return nullptr; 2291 } 2292 2293 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2294 return ::SimplifyOrInst(Op0, Op1, Q, RecursionLimit); 2295 } 2296 2297 /// Given operands for a Xor, see if we can fold the result. 2298 /// If not, this returns null. 2299 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2300 unsigned MaxRecurse) { 2301 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2302 return C; 2303 2304 // A ^ undef -> undef 2305 if (match(Op1, m_Undef())) 2306 return Op1; 2307 2308 // A ^ 0 = A 2309 if (match(Op1, m_Zero())) 2310 return Op0; 2311 2312 // A ^ A = 0 2313 if (Op0 == Op1) 2314 return Constant::getNullValue(Op0->getType()); 2315 2316 // A ^ ~A = ~A ^ A = -1 2317 if (match(Op0, m_Not(m_Specific(Op1))) || 2318 match(Op1, m_Not(m_Specific(Op0)))) 2319 return Constant::getAllOnesValue(Op0->getType()); 2320 2321 // Try some generic simplifications for associative operations. 2322 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 2323 MaxRecurse)) 2324 return V; 2325 2326 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2327 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2328 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2329 // only if B and C are equal. If B and C are equal then (since we assume 2330 // that operands have already been simplified) "select(cond, B, C)" should 2331 // have been simplified to the common value of B and C already. Analysing 2332 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2333 // for threading over phi nodes. 2334 2335 return nullptr; 2336 } 2337 2338 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2339 return ::SimplifyXorInst(Op0, Op1, Q, RecursionLimit); 2340 } 2341 2342 2343 static Type *GetCompareTy(Value *Op) { 2344 return CmpInst::makeCmpResultType(Op->getType()); 2345 } 2346 2347 /// Rummage around inside V looking for something equivalent to the comparison 2348 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2349 /// Helper function for analyzing max/min idioms. 2350 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2351 Value *LHS, Value *RHS) { 2352 SelectInst *SI = dyn_cast<SelectInst>(V); 2353 if (!SI) 2354 return nullptr; 2355 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2356 if (!Cmp) 2357 return nullptr; 2358 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2359 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2360 return Cmp; 2361 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2362 LHS == CmpRHS && RHS == CmpLHS) 2363 return Cmp; 2364 return nullptr; 2365 } 2366 2367 // A significant optimization not implemented here is assuming that alloca 2368 // addresses are not equal to incoming argument values. They don't *alias*, 2369 // as we say, but that doesn't mean they aren't equal, so we take a 2370 // conservative approach. 2371 // 2372 // This is inspired in part by C++11 5.10p1: 2373 // "Two pointers of the same type compare equal if and only if they are both 2374 // null, both point to the same function, or both represent the same 2375 // address." 2376 // 2377 // This is pretty permissive. 2378 // 2379 // It's also partly due to C11 6.5.9p6: 2380 // "Two pointers compare equal if and only if both are null pointers, both are 2381 // pointers to the same object (including a pointer to an object and a 2382 // subobject at its beginning) or function, both are pointers to one past the 2383 // last element of the same array object, or one is a pointer to one past the 2384 // end of one array object and the other is a pointer to the start of a 2385 // different array object that happens to immediately follow the first array 2386 // object in the address space.) 2387 // 2388 // C11's version is more restrictive, however there's no reason why an argument 2389 // couldn't be a one-past-the-end value for a stack object in the caller and be 2390 // equal to the beginning of a stack object in the callee. 2391 // 2392 // If the C and C++ standards are ever made sufficiently restrictive in this 2393 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2394 // this optimization. 2395 static Constant * 2396 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 2397 const DominatorTree *DT, CmpInst::Predicate Pred, 2398 AssumptionCache *AC, const Instruction *CxtI, 2399 const InstrInfoQuery &IIQ, Value *LHS, Value *RHS) { 2400 // First, skip past any trivial no-ops. 2401 LHS = LHS->stripPointerCasts(); 2402 RHS = RHS->stripPointerCasts(); 2403 2404 // A non-null pointer is not equal to a null pointer. 2405 if (isa<ConstantPointerNull>(RHS) && ICmpInst::isEquality(Pred) && 2406 llvm::isKnownNonZero(LHS, DL, 0, nullptr, nullptr, nullptr, 2407 IIQ.UseInstrInfo)) 2408 return ConstantInt::get(GetCompareTy(LHS), 2409 !CmpInst::isTrueWhenEqual(Pred)); 2410 2411 // We can only fold certain predicates on pointer comparisons. 2412 switch (Pred) { 2413 default: 2414 return nullptr; 2415 2416 // Equality comaprisons are easy to fold. 2417 case CmpInst::ICMP_EQ: 2418 case CmpInst::ICMP_NE: 2419 break; 2420 2421 // We can only handle unsigned relational comparisons because 'inbounds' on 2422 // a GEP only protects against unsigned wrapping. 2423 case CmpInst::ICMP_UGT: 2424 case CmpInst::ICMP_UGE: 2425 case CmpInst::ICMP_ULT: 2426 case CmpInst::ICMP_ULE: 2427 // However, we have to switch them to their signed variants to handle 2428 // negative indices from the base pointer. 2429 Pred = ICmpInst::getSignedPredicate(Pred); 2430 break; 2431 } 2432 2433 // Strip off any constant offsets so that we can reason about them. 2434 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2435 // here and compare base addresses like AliasAnalysis does, however there are 2436 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2437 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2438 // doesn't need to guarantee pointer inequality when it says NoAlias. 2439 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2440 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2441 2442 // If LHS and RHS are related via constant offsets to the same base 2443 // value, we can replace it with an icmp which just compares the offsets. 2444 if (LHS == RHS) 2445 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2446 2447 // Various optimizations for (in)equality comparisons. 2448 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2449 // Different non-empty allocations that exist at the same time have 2450 // different addresses (if the program can tell). Global variables always 2451 // exist, so they always exist during the lifetime of each other and all 2452 // allocas. Two different allocas usually have different addresses... 2453 // 2454 // However, if there's an @llvm.stackrestore dynamically in between two 2455 // allocas, they may have the same address. It's tempting to reduce the 2456 // scope of the problem by only looking at *static* allocas here. That would 2457 // cover the majority of allocas while significantly reducing the likelihood 2458 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2459 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2460 // an entry block. Also, if we have a block that's not attached to a 2461 // function, we can't tell if it's "static" under the current definition. 2462 // Theoretically, this problem could be fixed by creating a new kind of 2463 // instruction kind specifically for static allocas. Such a new instruction 2464 // could be required to be at the top of the entry block, thus preventing it 2465 // from being subject to a @llvm.stackrestore. Instcombine could even 2466 // convert regular allocas into these special allocas. It'd be nifty. 2467 // However, until then, this problem remains open. 2468 // 2469 // So, we'll assume that two non-empty allocas have different addresses 2470 // for now. 2471 // 2472 // With all that, if the offsets are within the bounds of their allocations 2473 // (and not one-past-the-end! so we can't use inbounds!), and their 2474 // allocations aren't the same, the pointers are not equal. 2475 // 2476 // Note that it's not necessary to check for LHS being a global variable 2477 // address, due to canonicalization and constant folding. 2478 if (isa<AllocaInst>(LHS) && 2479 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2480 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2481 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2482 uint64_t LHSSize, RHSSize; 2483 ObjectSizeOpts Opts; 2484 Opts.NullIsUnknownSize = 2485 NullPointerIsDefined(cast<AllocaInst>(LHS)->getFunction()); 2486 if (LHSOffsetCI && RHSOffsetCI && 2487 getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2488 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2489 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2490 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2491 if (!LHSOffsetValue.isNegative() && 2492 !RHSOffsetValue.isNegative() && 2493 LHSOffsetValue.ult(LHSSize) && 2494 RHSOffsetValue.ult(RHSSize)) { 2495 return ConstantInt::get(GetCompareTy(LHS), 2496 !CmpInst::isTrueWhenEqual(Pred)); 2497 } 2498 } 2499 2500 // Repeat the above check but this time without depending on DataLayout 2501 // or being able to compute a precise size. 2502 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2503 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2504 LHSOffset->isNullValue() && 2505 RHSOffset->isNullValue()) 2506 return ConstantInt::get(GetCompareTy(LHS), 2507 !CmpInst::isTrueWhenEqual(Pred)); 2508 } 2509 2510 // Even if an non-inbounds GEP occurs along the path we can still optimize 2511 // equality comparisons concerning the result. We avoid walking the whole 2512 // chain again by starting where the last calls to 2513 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2514 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2515 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2516 if (LHS == RHS) 2517 return ConstantExpr::getICmp(Pred, 2518 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2519 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2520 2521 // If one side of the equality comparison must come from a noalias call 2522 // (meaning a system memory allocation function), and the other side must 2523 // come from a pointer that cannot overlap with dynamically-allocated 2524 // memory within the lifetime of the current function (allocas, byval 2525 // arguments, globals), then determine the comparison result here. 2526 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2527 getUnderlyingObjects(LHS, LHSUObjs); 2528 getUnderlyingObjects(RHS, RHSUObjs); 2529 2530 // Is the set of underlying objects all noalias calls? 2531 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2532 return all_of(Objects, isNoAliasCall); 2533 }; 2534 2535 // Is the set of underlying objects all things which must be disjoint from 2536 // noalias calls. For allocas, we consider only static ones (dynamic 2537 // allocas might be transformed into calls to malloc not simultaneously 2538 // live with the compared-to allocation). For globals, we exclude symbols 2539 // that might be resolve lazily to symbols in another dynamically-loaded 2540 // library (and, thus, could be malloc'ed by the implementation). 2541 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2542 return all_of(Objects, [](const Value *V) { 2543 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2544 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2545 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2546 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2547 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2548 !GV->isThreadLocal(); 2549 if (const Argument *A = dyn_cast<Argument>(V)) 2550 return A->hasByValAttr(); 2551 return false; 2552 }); 2553 }; 2554 2555 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2556 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2557 return ConstantInt::get(GetCompareTy(LHS), 2558 !CmpInst::isTrueWhenEqual(Pred)); 2559 2560 // Fold comparisons for non-escaping pointer even if the allocation call 2561 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2562 // dynamic allocation call could be either of the operands. 2563 Value *MI = nullptr; 2564 if (isAllocLikeFn(LHS, TLI) && 2565 llvm::isKnownNonZero(RHS, DL, 0, nullptr, CxtI, DT)) 2566 MI = LHS; 2567 else if (isAllocLikeFn(RHS, TLI) && 2568 llvm::isKnownNonZero(LHS, DL, 0, nullptr, CxtI, DT)) 2569 MI = RHS; 2570 // FIXME: We should also fold the compare when the pointer escapes, but the 2571 // compare dominates the pointer escape 2572 if (MI && !PointerMayBeCaptured(MI, true, true)) 2573 return ConstantInt::get(GetCompareTy(LHS), 2574 CmpInst::isFalseWhenEqual(Pred)); 2575 } 2576 2577 // Otherwise, fail. 2578 return nullptr; 2579 } 2580 2581 /// Fold an icmp when its operands have i1 scalar type. 2582 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2583 Value *RHS, const SimplifyQuery &Q) { 2584 Type *ITy = GetCompareTy(LHS); // The return type. 2585 Type *OpTy = LHS->getType(); // The operand type. 2586 if (!OpTy->isIntOrIntVectorTy(1)) 2587 return nullptr; 2588 2589 // A boolean compared to true/false can be simplified in 14 out of the 20 2590 // (10 predicates * 2 constants) possible combinations. Cases not handled here 2591 // require a 'not' of the LHS, so those must be transformed in InstCombine. 2592 if (match(RHS, m_Zero())) { 2593 switch (Pred) { 2594 case CmpInst::ICMP_NE: // X != 0 -> X 2595 case CmpInst::ICMP_UGT: // X >u 0 -> X 2596 case CmpInst::ICMP_SLT: // X <s 0 -> X 2597 return LHS; 2598 2599 case CmpInst::ICMP_ULT: // X <u 0 -> false 2600 case CmpInst::ICMP_SGT: // X >s 0 -> false 2601 return getFalse(ITy); 2602 2603 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2604 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2605 return getTrue(ITy); 2606 2607 default: break; 2608 } 2609 } else if (match(RHS, m_One())) { 2610 switch (Pred) { 2611 case CmpInst::ICMP_EQ: // X == 1 -> X 2612 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2613 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2614 return LHS; 2615 2616 case CmpInst::ICMP_UGT: // X >u 1 -> false 2617 case CmpInst::ICMP_SLT: // X <s -1 -> false 2618 return getFalse(ITy); 2619 2620 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2621 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2622 return getTrue(ITy); 2623 2624 default: break; 2625 } 2626 } 2627 2628 switch (Pred) { 2629 default: 2630 break; 2631 case ICmpInst::ICMP_UGE: 2632 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2633 return getTrue(ITy); 2634 break; 2635 case ICmpInst::ICMP_SGE: 2636 /// For signed comparison, the values for an i1 are 0 and -1 2637 /// respectively. This maps into a truth table of: 2638 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2639 /// 0 | 0 | 1 (0 >= 0) | 1 2640 /// 0 | 1 | 1 (0 >= -1) | 1 2641 /// 1 | 0 | 0 (-1 >= 0) | 0 2642 /// 1 | 1 | 1 (-1 >= -1) | 1 2643 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2644 return getTrue(ITy); 2645 break; 2646 case ICmpInst::ICMP_ULE: 2647 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2648 return getTrue(ITy); 2649 break; 2650 } 2651 2652 return nullptr; 2653 } 2654 2655 /// Try hard to fold icmp with zero RHS because this is a common case. 2656 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2657 Value *RHS, const SimplifyQuery &Q) { 2658 if (!match(RHS, m_Zero())) 2659 return nullptr; 2660 2661 Type *ITy = GetCompareTy(LHS); // The return type. 2662 switch (Pred) { 2663 default: 2664 llvm_unreachable("Unknown ICmp predicate!"); 2665 case ICmpInst::ICMP_ULT: 2666 return getFalse(ITy); 2667 case ICmpInst::ICMP_UGE: 2668 return getTrue(ITy); 2669 case ICmpInst::ICMP_EQ: 2670 case ICmpInst::ICMP_ULE: 2671 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2672 return getFalse(ITy); 2673 break; 2674 case ICmpInst::ICMP_NE: 2675 case ICmpInst::ICMP_UGT: 2676 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) 2677 return getTrue(ITy); 2678 break; 2679 case ICmpInst::ICMP_SLT: { 2680 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2681 if (LHSKnown.isNegative()) 2682 return getTrue(ITy); 2683 if (LHSKnown.isNonNegative()) 2684 return getFalse(ITy); 2685 break; 2686 } 2687 case ICmpInst::ICMP_SLE: { 2688 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2689 if (LHSKnown.isNegative()) 2690 return getTrue(ITy); 2691 if (LHSKnown.isNonNegative() && 2692 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2693 return getFalse(ITy); 2694 break; 2695 } 2696 case ICmpInst::ICMP_SGE: { 2697 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2698 if (LHSKnown.isNegative()) 2699 return getFalse(ITy); 2700 if (LHSKnown.isNonNegative()) 2701 return getTrue(ITy); 2702 break; 2703 } 2704 case ICmpInst::ICMP_SGT: { 2705 KnownBits LHSKnown = computeKnownBits(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2706 if (LHSKnown.isNegative()) 2707 return getFalse(ITy); 2708 if (LHSKnown.isNonNegative() && 2709 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2710 return getTrue(ITy); 2711 break; 2712 } 2713 } 2714 2715 return nullptr; 2716 } 2717 2718 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 2719 Value *RHS, const InstrInfoQuery &IIQ) { 2720 Type *ITy = GetCompareTy(RHS); // The return type. 2721 2722 Value *X; 2723 // Sign-bit checks can be optimized to true/false after unsigned 2724 // floating-point casts: 2725 // icmp slt (bitcast (uitofp X)), 0 --> false 2726 // icmp sgt (bitcast (uitofp X)), -1 --> true 2727 if (match(LHS, m_BitCast(m_UIToFP(m_Value(X))))) { 2728 if (Pred == ICmpInst::ICMP_SLT && match(RHS, m_Zero())) 2729 return ConstantInt::getFalse(ITy); 2730 if (Pred == ICmpInst::ICMP_SGT && match(RHS, m_AllOnes())) 2731 return ConstantInt::getTrue(ITy); 2732 } 2733 2734 const APInt *C; 2735 if (!match(RHS, m_APIntAllowUndef(C))) 2736 return nullptr; 2737 2738 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2739 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2740 if (RHS_CR.isEmptySet()) 2741 return ConstantInt::getFalse(ITy); 2742 if (RHS_CR.isFullSet()) 2743 return ConstantInt::getTrue(ITy); 2744 2745 ConstantRange LHS_CR = computeConstantRange(LHS, IIQ.UseInstrInfo); 2746 if (!LHS_CR.isFullSet()) { 2747 if (RHS_CR.contains(LHS_CR)) 2748 return ConstantInt::getTrue(ITy); 2749 if (RHS_CR.inverse().contains(LHS_CR)) 2750 return ConstantInt::getFalse(ITy); 2751 } 2752 2753 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 2754 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 2755 const APInt *MulC; 2756 if (ICmpInst::isEquality(Pred) && 2757 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2758 C->urem(*MulC) != 0) || 2759 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC))) && 2760 C->srem(*MulC) != 0))) 2761 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 2762 2763 return nullptr; 2764 } 2765 2766 static Value *simplifyICmpWithBinOpOnLHS( 2767 CmpInst::Predicate Pred, BinaryOperator *LBO, Value *RHS, 2768 const SimplifyQuery &Q, unsigned MaxRecurse) { 2769 Type *ITy = GetCompareTy(RHS); // The return type. 2770 2771 Value *Y = nullptr; 2772 // icmp pred (or X, Y), X 2773 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2774 if (Pred == ICmpInst::ICMP_ULT) 2775 return getFalse(ITy); 2776 if (Pred == ICmpInst::ICMP_UGE) 2777 return getTrue(ITy); 2778 2779 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2780 KnownBits RHSKnown = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2781 KnownBits YKnown = computeKnownBits(Y, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2782 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 2783 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2784 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 2785 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2786 } 2787 } 2788 2789 // icmp pred (and X, Y), X 2790 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 2791 if (Pred == ICmpInst::ICMP_UGT) 2792 return getFalse(ITy); 2793 if (Pred == ICmpInst::ICMP_ULE) 2794 return getTrue(ITy); 2795 } 2796 2797 // icmp pred (urem X, Y), Y 2798 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2799 switch (Pred) { 2800 default: 2801 break; 2802 case ICmpInst::ICMP_SGT: 2803 case ICmpInst::ICMP_SGE: { 2804 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2805 if (!Known.isNonNegative()) 2806 break; 2807 LLVM_FALLTHROUGH; 2808 } 2809 case ICmpInst::ICMP_EQ: 2810 case ICmpInst::ICMP_UGT: 2811 case ICmpInst::ICMP_UGE: 2812 return getFalse(ITy); 2813 case ICmpInst::ICMP_SLT: 2814 case ICmpInst::ICMP_SLE: { 2815 KnownBits Known = computeKnownBits(RHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 2816 if (!Known.isNonNegative()) 2817 break; 2818 LLVM_FALLTHROUGH; 2819 } 2820 case ICmpInst::ICMP_NE: 2821 case ICmpInst::ICMP_ULT: 2822 case ICmpInst::ICMP_ULE: 2823 return getTrue(ITy); 2824 } 2825 } 2826 2827 // icmp pred (urem X, Y), X 2828 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 2829 if (Pred == ICmpInst::ICMP_ULE) 2830 return getTrue(ITy); 2831 if (Pred == ICmpInst::ICMP_UGT) 2832 return getFalse(ITy); 2833 } 2834 2835 // x >> y <=u x 2836 // x udiv y <=u x. 2837 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2838 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2839 // icmp pred (X op Y), X 2840 if (Pred == ICmpInst::ICMP_UGT) 2841 return getFalse(ITy); 2842 if (Pred == ICmpInst::ICMP_ULE) 2843 return getTrue(ITy); 2844 } 2845 2846 return nullptr; 2847 } 2848 2849 /// TODO: A large part of this logic is duplicated in InstCombine's 2850 /// foldICmpBinOp(). We should be able to share that and avoid the code 2851 /// duplication. 2852 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 2853 Value *RHS, const SimplifyQuery &Q, 2854 unsigned MaxRecurse) { 2855 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2856 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2857 if (MaxRecurse && (LBO || RBO)) { 2858 // Analyze the case when either LHS or RHS is an add instruction. 2859 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2860 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2861 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2862 if (LBO && LBO->getOpcode() == Instruction::Add) { 2863 A = LBO->getOperand(0); 2864 B = LBO->getOperand(1); 2865 NoLHSWrapProblem = 2866 ICmpInst::isEquality(Pred) || 2867 (CmpInst::isUnsigned(Pred) && 2868 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 2869 (CmpInst::isSigned(Pred) && 2870 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 2871 } 2872 if (RBO && RBO->getOpcode() == Instruction::Add) { 2873 C = RBO->getOperand(0); 2874 D = RBO->getOperand(1); 2875 NoRHSWrapProblem = 2876 ICmpInst::isEquality(Pred) || 2877 (CmpInst::isUnsigned(Pred) && 2878 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 2879 (CmpInst::isSigned(Pred) && 2880 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 2881 } 2882 2883 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2884 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2885 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2886 Constant::getNullValue(RHS->getType()), Q, 2887 MaxRecurse - 1)) 2888 return V; 2889 2890 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2891 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2892 if (Value *V = 2893 SimplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 2894 C == LHS ? D : C, Q, MaxRecurse - 1)) 2895 return V; 2896 2897 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2898 if (A && C && (A == C || A == D || B == C || B == D) && NoLHSWrapProblem && 2899 NoRHSWrapProblem) { 2900 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2901 Value *Y, *Z; 2902 if (A == C) { 2903 // C + B == C + D -> B == D 2904 Y = B; 2905 Z = D; 2906 } else if (A == D) { 2907 // D + B == C + D -> B == C 2908 Y = B; 2909 Z = C; 2910 } else if (B == C) { 2911 // A + C == C + D -> A == D 2912 Y = A; 2913 Z = D; 2914 } else { 2915 assert(B == D); 2916 // A + D == C + D -> A == C 2917 Y = A; 2918 Z = C; 2919 } 2920 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 2921 return V; 2922 } 2923 } 2924 2925 if (LBO) 2926 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 2927 return V; 2928 2929 if (RBO) 2930 if (Value *V = simplifyICmpWithBinOpOnLHS( 2931 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 2932 return V; 2933 2934 // 0 - (zext X) pred C 2935 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2936 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2937 if (RHSC->getValue().isStrictlyPositive()) { 2938 if (Pred == ICmpInst::ICMP_SLT) 2939 return ConstantInt::getTrue(RHSC->getContext()); 2940 if (Pred == ICmpInst::ICMP_SGE) 2941 return ConstantInt::getFalse(RHSC->getContext()); 2942 if (Pred == ICmpInst::ICMP_EQ) 2943 return ConstantInt::getFalse(RHSC->getContext()); 2944 if (Pred == ICmpInst::ICMP_NE) 2945 return ConstantInt::getTrue(RHSC->getContext()); 2946 } 2947 if (RHSC->getValue().isNonNegative()) { 2948 if (Pred == ICmpInst::ICMP_SLE) 2949 return ConstantInt::getTrue(RHSC->getContext()); 2950 if (Pred == ICmpInst::ICMP_SGT) 2951 return ConstantInt::getFalse(RHSC->getContext()); 2952 } 2953 } 2954 } 2955 2956 // handle: 2957 // CI2 << X == CI 2958 // CI2 << X != CI 2959 // 2960 // where CI2 is a power of 2 and CI isn't 2961 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2962 const APInt *CI2Val, *CIVal = &CI->getValue(); 2963 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2964 CI2Val->isPowerOf2()) { 2965 if (!CIVal->isPowerOf2()) { 2966 // CI2 << X can equal zero in some circumstances, 2967 // this simplification is unsafe if CI is zero. 2968 // 2969 // We know it is safe if: 2970 // - The shift is nsw, we can't shift out the one bit. 2971 // - The shift is nuw, we can't shift out the one bit. 2972 // - CI2 is one 2973 // - CI isn't zero 2974 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2975 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 2976 CI2Val->isOneValue() || !CI->isZero()) { 2977 if (Pred == ICmpInst::ICMP_EQ) 2978 return ConstantInt::getFalse(RHS->getContext()); 2979 if (Pred == ICmpInst::ICMP_NE) 2980 return ConstantInt::getTrue(RHS->getContext()); 2981 } 2982 } 2983 if (CIVal->isSignMask() && CI2Val->isOneValue()) { 2984 if (Pred == ICmpInst::ICMP_UGT) 2985 return ConstantInt::getFalse(RHS->getContext()); 2986 if (Pred == ICmpInst::ICMP_ULE) 2987 return ConstantInt::getTrue(RHS->getContext()); 2988 } 2989 } 2990 } 2991 2992 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2993 LBO->getOperand(1) == RBO->getOperand(1)) { 2994 switch (LBO->getOpcode()) { 2995 default: 2996 break; 2997 case Instruction::UDiv: 2998 case Instruction::LShr: 2999 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3000 !Q.IIQ.isExact(RBO)) 3001 break; 3002 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3003 RBO->getOperand(0), Q, MaxRecurse - 1)) 3004 return V; 3005 break; 3006 case Instruction::SDiv: 3007 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3008 !Q.IIQ.isExact(RBO)) 3009 break; 3010 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3011 RBO->getOperand(0), Q, MaxRecurse - 1)) 3012 return V; 3013 break; 3014 case Instruction::AShr: 3015 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3016 break; 3017 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3018 RBO->getOperand(0), Q, MaxRecurse - 1)) 3019 return V; 3020 break; 3021 case Instruction::Shl: { 3022 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3023 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3024 if (!NUW && !NSW) 3025 break; 3026 if (!NSW && ICmpInst::isSigned(Pred)) 3027 break; 3028 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 3029 RBO->getOperand(0), Q, MaxRecurse - 1)) 3030 return V; 3031 break; 3032 } 3033 } 3034 } 3035 return nullptr; 3036 } 3037 3038 /// Simplify integer comparisons where at least one operand of the compare 3039 /// matches an integer min/max idiom. 3040 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3041 Value *RHS, const SimplifyQuery &Q, 3042 unsigned MaxRecurse) { 3043 Type *ITy = GetCompareTy(LHS); // The return type. 3044 Value *A, *B; 3045 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3046 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3047 3048 // Signed variants on "max(a,b)>=a -> true". 3049 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3050 if (A != RHS) 3051 std::swap(A, B); // smax(A, B) pred A. 3052 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3053 // We analyze this as smax(A, B) pred A. 3054 P = Pred; 3055 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3056 (A == LHS || B == LHS)) { 3057 if (A != LHS) 3058 std::swap(A, B); // A pred smax(A, B). 3059 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3060 // We analyze this as smax(A, B) swapped-pred A. 3061 P = CmpInst::getSwappedPredicate(Pred); 3062 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3063 (A == RHS || B == RHS)) { 3064 if (A != RHS) 3065 std::swap(A, B); // smin(A, B) pred A. 3066 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3067 // We analyze this as smax(-A, -B) swapped-pred -A. 3068 // Note that we do not need to actually form -A or -B thanks to EqP. 3069 P = CmpInst::getSwappedPredicate(Pred); 3070 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3071 (A == LHS || B == LHS)) { 3072 if (A != LHS) 3073 std::swap(A, B); // A pred smin(A, B). 3074 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3075 // We analyze this as smax(-A, -B) pred -A. 3076 // Note that we do not need to actually form -A or -B thanks to EqP. 3077 P = Pred; 3078 } 3079 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3080 // Cases correspond to "max(A, B) p A". 3081 switch (P) { 3082 default: 3083 break; 3084 case CmpInst::ICMP_EQ: 3085 case CmpInst::ICMP_SLE: 3086 // Equivalent to "A EqP B". This may be the same as the condition tested 3087 // in the max/min; if so, we can just return that. 3088 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3089 return V; 3090 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3091 return V; 3092 // Otherwise, see if "A EqP B" simplifies. 3093 if (MaxRecurse) 3094 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3095 return V; 3096 break; 3097 case CmpInst::ICMP_NE: 3098 case CmpInst::ICMP_SGT: { 3099 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3100 // Equivalent to "A InvEqP B". This may be the same as the condition 3101 // tested in the max/min; if so, we can just return that. 3102 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3103 return V; 3104 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3105 return V; 3106 // Otherwise, see if "A InvEqP B" simplifies. 3107 if (MaxRecurse) 3108 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3109 return V; 3110 break; 3111 } 3112 case CmpInst::ICMP_SGE: 3113 // Always true. 3114 return getTrue(ITy); 3115 case CmpInst::ICMP_SLT: 3116 // Always false. 3117 return getFalse(ITy); 3118 } 3119 } 3120 3121 // Unsigned variants on "max(a,b)>=a -> true". 3122 P = CmpInst::BAD_ICMP_PREDICATE; 3123 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3124 if (A != RHS) 3125 std::swap(A, B); // umax(A, B) pred A. 3126 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3127 // We analyze this as umax(A, B) pred A. 3128 P = Pred; 3129 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3130 (A == LHS || B == LHS)) { 3131 if (A != LHS) 3132 std::swap(A, B); // A pred umax(A, B). 3133 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3134 // We analyze this as umax(A, B) swapped-pred A. 3135 P = CmpInst::getSwappedPredicate(Pred); 3136 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3137 (A == RHS || B == RHS)) { 3138 if (A != RHS) 3139 std::swap(A, B); // umin(A, B) pred A. 3140 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3141 // We analyze this as umax(-A, -B) swapped-pred -A. 3142 // Note that we do not need to actually form -A or -B thanks to EqP. 3143 P = CmpInst::getSwappedPredicate(Pred); 3144 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3145 (A == LHS || B == LHS)) { 3146 if (A != LHS) 3147 std::swap(A, B); // A pred umin(A, B). 3148 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3149 // We analyze this as umax(-A, -B) pred -A. 3150 // Note that we do not need to actually form -A or -B thanks to EqP. 3151 P = Pred; 3152 } 3153 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3154 // Cases correspond to "max(A, B) p A". 3155 switch (P) { 3156 default: 3157 break; 3158 case CmpInst::ICMP_EQ: 3159 case CmpInst::ICMP_ULE: 3160 // Equivalent to "A EqP B". This may be the same as the condition tested 3161 // in the max/min; if so, we can just return that. 3162 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3163 return V; 3164 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3165 return V; 3166 // Otherwise, see if "A EqP B" simplifies. 3167 if (MaxRecurse) 3168 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3169 return V; 3170 break; 3171 case CmpInst::ICMP_NE: 3172 case CmpInst::ICMP_UGT: { 3173 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3174 // Equivalent to "A InvEqP B". This may be the same as the condition 3175 // tested in the max/min; if so, we can just return that. 3176 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3177 return V; 3178 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3179 return V; 3180 // Otherwise, see if "A InvEqP B" simplifies. 3181 if (MaxRecurse) 3182 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3183 return V; 3184 break; 3185 } 3186 case CmpInst::ICMP_UGE: 3187 return getTrue(ITy); 3188 case CmpInst::ICMP_ULT: 3189 return getFalse(ITy); 3190 } 3191 } 3192 3193 // Comparing 1 each of min/max with a common operand? 3194 // Canonicalize min operand to RHS. 3195 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3196 match(LHS, m_SMin(m_Value(), m_Value()))) { 3197 std::swap(LHS, RHS); 3198 Pred = ICmpInst::getSwappedPredicate(Pred); 3199 } 3200 3201 Value *C, *D; 3202 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3203 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3204 (A == C || A == D || B == C || B == D)) { 3205 // smax(A, B) >=s smin(A, D) --> true 3206 if (Pred == CmpInst::ICMP_SGE) 3207 return getTrue(ITy); 3208 // smax(A, B) <s smin(A, D) --> false 3209 if (Pred == CmpInst::ICMP_SLT) 3210 return getFalse(ITy); 3211 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3212 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3213 (A == C || A == D || B == C || B == D)) { 3214 // umax(A, B) >=u umin(A, D) --> true 3215 if (Pred == CmpInst::ICMP_UGE) 3216 return getTrue(ITy); 3217 // umax(A, B) <u umin(A, D) --> false 3218 if (Pred == CmpInst::ICMP_ULT) 3219 return getFalse(ITy); 3220 } 3221 3222 return nullptr; 3223 } 3224 3225 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3226 Value *LHS, Value *RHS, 3227 const SimplifyQuery &Q) { 3228 // Gracefully handle instructions that have not been inserted yet. 3229 if (!Q.AC || !Q.CxtI || !Q.CxtI->getParent()) 3230 return nullptr; 3231 3232 for (Value *AssumeBaseOp : {LHS, RHS}) { 3233 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3234 if (!AssumeVH) 3235 continue; 3236 3237 CallInst *Assume = cast<CallInst>(AssumeVH); 3238 if (Optional<bool> Imp = 3239 isImpliedCondition(Assume->getArgOperand(0), Predicate, LHS, RHS, 3240 Q.DL)) 3241 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3242 return ConstantInt::get(GetCompareTy(LHS), *Imp); 3243 } 3244 } 3245 3246 return nullptr; 3247 } 3248 3249 /// Given operands for an ICmpInst, see if we can fold the result. 3250 /// If not, this returns null. 3251 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3252 const SimplifyQuery &Q, unsigned MaxRecurse) { 3253 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3254 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3255 3256 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3257 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3258 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3259 3260 // If we have a constant, make sure it is on the RHS. 3261 std::swap(LHS, RHS); 3262 Pred = CmpInst::getSwappedPredicate(Pred); 3263 } 3264 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3265 3266 Type *ITy = GetCompareTy(LHS); // The return type. 3267 3268 // For EQ and NE, we can always pick a value for the undef to make the 3269 // predicate pass or fail, so we can return undef. 3270 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3271 if (isa<UndefValue>(RHS) && ICmpInst::isEquality(Pred)) 3272 return UndefValue::get(ITy); 3273 3274 // icmp X, X -> true/false 3275 // icmp X, undef -> true/false because undef could be X. 3276 if (LHS == RHS || isa<UndefValue>(RHS)) 3277 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3278 3279 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3280 return V; 3281 3282 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3283 return V; 3284 3285 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3286 return V; 3287 3288 // If both operands have range metadata, use the metadata 3289 // to simplify the comparison. 3290 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 3291 auto RHS_Instr = cast<Instruction>(RHS); 3292 auto LHS_Instr = cast<Instruction>(LHS); 3293 3294 if (Q.IIQ.getMetadata(RHS_Instr, LLVMContext::MD_range) && 3295 Q.IIQ.getMetadata(LHS_Instr, LLVMContext::MD_range)) { 3296 auto RHS_CR = getConstantRangeFromMetadata( 3297 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 3298 auto LHS_CR = getConstantRangeFromMetadata( 3299 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 3300 3301 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 3302 if (Satisfied_CR.contains(LHS_CR)) 3303 return ConstantInt::getTrue(RHS->getContext()); 3304 3305 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 3306 CmpInst::getInversePredicate(Pred), RHS_CR); 3307 if (InversedSatisfied_CR.contains(LHS_CR)) 3308 return ConstantInt::getFalse(RHS->getContext()); 3309 } 3310 } 3311 3312 // Compare of cast, for example (zext X) != 0 -> X != 0 3313 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3314 Instruction *LI = cast<CastInst>(LHS); 3315 Value *SrcOp = LI->getOperand(0); 3316 Type *SrcTy = SrcOp->getType(); 3317 Type *DstTy = LI->getType(); 3318 3319 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3320 // if the integer type is the same size as the pointer type. 3321 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3322 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3323 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3324 // Transfer the cast to the constant. 3325 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 3326 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3327 Q, MaxRecurse-1)) 3328 return V; 3329 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3330 if (RI->getOperand(0)->getType() == SrcTy) 3331 // Compare without the cast. 3332 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3333 Q, MaxRecurse-1)) 3334 return V; 3335 } 3336 } 3337 3338 if (isa<ZExtInst>(LHS)) { 3339 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3340 // same type. 3341 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3342 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3343 // Compare X and Y. Note that signed predicates become unsigned. 3344 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3345 SrcOp, RI->getOperand(0), Q, 3346 MaxRecurse-1)) 3347 return V; 3348 } 3349 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3350 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3351 if (SrcOp == RI->getOperand(0)) { 3352 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3353 return ConstantInt::getTrue(ITy); 3354 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3355 return ConstantInt::getFalse(ITy); 3356 } 3357 } 3358 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3359 // too. If not, then try to deduce the result of the comparison. 3360 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3361 // Compute the constant that would happen if we truncated to SrcTy then 3362 // reextended to DstTy. 3363 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3364 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 3365 3366 // If the re-extended constant didn't change then this is effectively 3367 // also a case of comparing two zero-extended values. 3368 if (RExt == CI && MaxRecurse) 3369 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3370 SrcOp, Trunc, Q, MaxRecurse-1)) 3371 return V; 3372 3373 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3374 // there. Use this to work out the result of the comparison. 3375 if (RExt != CI) { 3376 switch (Pred) { 3377 default: llvm_unreachable("Unknown ICmp predicate!"); 3378 // LHS <u RHS. 3379 case ICmpInst::ICMP_EQ: 3380 case ICmpInst::ICMP_UGT: 3381 case ICmpInst::ICMP_UGE: 3382 return ConstantInt::getFalse(CI->getContext()); 3383 3384 case ICmpInst::ICMP_NE: 3385 case ICmpInst::ICMP_ULT: 3386 case ICmpInst::ICMP_ULE: 3387 return ConstantInt::getTrue(CI->getContext()); 3388 3389 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3390 // is non-negative then LHS <s RHS. 3391 case ICmpInst::ICMP_SGT: 3392 case ICmpInst::ICMP_SGE: 3393 return CI->getValue().isNegative() ? 3394 ConstantInt::getTrue(CI->getContext()) : 3395 ConstantInt::getFalse(CI->getContext()); 3396 3397 case ICmpInst::ICMP_SLT: 3398 case ICmpInst::ICMP_SLE: 3399 return CI->getValue().isNegative() ? 3400 ConstantInt::getFalse(CI->getContext()) : 3401 ConstantInt::getTrue(CI->getContext()); 3402 } 3403 } 3404 } 3405 } 3406 3407 if (isa<SExtInst>(LHS)) { 3408 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3409 // same type. 3410 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3411 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3412 // Compare X and Y. Note that the predicate does not change. 3413 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 3414 Q, MaxRecurse-1)) 3415 return V; 3416 } 3417 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3418 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3419 if (SrcOp == RI->getOperand(0)) { 3420 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3421 return ConstantInt::getTrue(ITy); 3422 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3423 return ConstantInt::getFalse(ITy); 3424 } 3425 } 3426 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3427 // too. If not, then try to deduce the result of the comparison. 3428 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3429 // Compute the constant that would happen if we truncated to SrcTy then 3430 // reextended to DstTy. 3431 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 3432 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 3433 3434 // If the re-extended constant didn't change then this is effectively 3435 // also a case of comparing two sign-extended values. 3436 if (RExt == CI && MaxRecurse) 3437 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 3438 return V; 3439 3440 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3441 // bits there. Use this to work out the result of the comparison. 3442 if (RExt != CI) { 3443 switch (Pred) { 3444 default: llvm_unreachable("Unknown ICmp predicate!"); 3445 case ICmpInst::ICMP_EQ: 3446 return ConstantInt::getFalse(CI->getContext()); 3447 case ICmpInst::ICMP_NE: 3448 return ConstantInt::getTrue(CI->getContext()); 3449 3450 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3451 // LHS >s RHS. 3452 case ICmpInst::ICMP_SGT: 3453 case ICmpInst::ICMP_SGE: 3454 return CI->getValue().isNegative() ? 3455 ConstantInt::getTrue(CI->getContext()) : 3456 ConstantInt::getFalse(CI->getContext()); 3457 case ICmpInst::ICMP_SLT: 3458 case ICmpInst::ICMP_SLE: 3459 return CI->getValue().isNegative() ? 3460 ConstantInt::getFalse(CI->getContext()) : 3461 ConstantInt::getTrue(CI->getContext()); 3462 3463 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3464 // LHS >u RHS. 3465 case ICmpInst::ICMP_UGT: 3466 case ICmpInst::ICMP_UGE: 3467 // Comparison is true iff the LHS <s 0. 3468 if (MaxRecurse) 3469 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3470 Constant::getNullValue(SrcTy), 3471 Q, MaxRecurse-1)) 3472 return V; 3473 break; 3474 case ICmpInst::ICMP_ULT: 3475 case ICmpInst::ICMP_ULE: 3476 // Comparison is true iff the LHS >=s 0. 3477 if (MaxRecurse) 3478 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3479 Constant::getNullValue(SrcTy), 3480 Q, MaxRecurse-1)) 3481 return V; 3482 break; 3483 } 3484 } 3485 } 3486 } 3487 } 3488 3489 // icmp eq|ne X, Y -> false|true if X != Y 3490 if (ICmpInst::isEquality(Pred) && 3491 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3492 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3493 } 3494 3495 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3496 return V; 3497 3498 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3499 return V; 3500 3501 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 3502 return V; 3503 3504 // Simplify comparisons of related pointers using a powerful, recursive 3505 // GEP-walk when we have target data available.. 3506 if (LHS->getType()->isPointerTy()) 3507 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3508 Q.IIQ, LHS, RHS)) 3509 return C; 3510 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 3511 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 3512 if (Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 3513 Q.DL.getTypeSizeInBits(CLHS->getType()) && 3514 Q.DL.getTypeSizeInBits(CRHS->getPointerOperandType()) == 3515 Q.DL.getTypeSizeInBits(CRHS->getType())) 3516 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.AC, Q.CxtI, 3517 Q.IIQ, CLHS->getPointerOperand(), 3518 CRHS->getPointerOperand())) 3519 return C; 3520 3521 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3522 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3523 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3524 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3525 (ICmpInst::isEquality(Pred) || 3526 (GLHS->isInBounds() && GRHS->isInBounds() && 3527 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3528 // The bases are equal and the indices are constant. Build a constant 3529 // expression GEP with the same indices and a null base pointer to see 3530 // what constant folding can make out of it. 3531 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3532 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3533 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3534 GLHS->getSourceElementType(), Null, IndicesLHS); 3535 3536 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3537 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3538 GLHS->getSourceElementType(), Null, IndicesRHS); 3539 Constant *NewICmp = ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3540 return ConstantFoldConstant(NewICmp, Q.DL); 3541 } 3542 } 3543 } 3544 3545 // If the comparison is with the result of a select instruction, check whether 3546 // comparing with either branch of the select always yields the same value. 3547 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3548 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3549 return V; 3550 3551 // If the comparison is with the result of a phi instruction, check whether 3552 // doing the compare with each incoming phi value yields a common result. 3553 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3554 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3555 return V; 3556 3557 return nullptr; 3558 } 3559 3560 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3561 const SimplifyQuery &Q) { 3562 return ::SimplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 3563 } 3564 3565 /// Given operands for an FCmpInst, see if we can fold the result. 3566 /// If not, this returns null. 3567 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3568 FastMathFlags FMF, const SimplifyQuery &Q, 3569 unsigned MaxRecurse) { 3570 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3571 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3572 3573 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3574 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3575 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3576 3577 // If we have a constant, make sure it is on the RHS. 3578 std::swap(LHS, RHS); 3579 Pred = CmpInst::getSwappedPredicate(Pred); 3580 } 3581 3582 // Fold trivial predicates. 3583 Type *RetTy = GetCompareTy(LHS); 3584 if (Pred == FCmpInst::FCMP_FALSE) 3585 return getFalse(RetTy); 3586 if (Pred == FCmpInst::FCMP_TRUE) 3587 return getTrue(RetTy); 3588 3589 // Fold (un)ordered comparison if we can determine there are no NaNs. 3590 if (Pred == FCmpInst::FCMP_UNO || Pred == FCmpInst::FCMP_ORD) 3591 if (FMF.noNaNs() || 3592 (isKnownNeverNaN(LHS, Q.TLI) && isKnownNeverNaN(RHS, Q.TLI))) 3593 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 3594 3595 // NaN is unordered; NaN is not ordered. 3596 assert((FCmpInst::isOrdered(Pred) || FCmpInst::isUnordered(Pred)) && 3597 "Comparison must be either ordered or unordered"); 3598 if (match(RHS, m_NaN())) 3599 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3600 3601 // fcmp pred x, undef and fcmp pred undef, x 3602 // fold to true if unordered, false if ordered 3603 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3604 // Choosing NaN for the undef will always make unordered comparison succeed 3605 // and ordered comparison fail. 3606 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 3607 } 3608 3609 // fcmp x,x -> true/false. Not all compares are foldable. 3610 if (LHS == RHS) { 3611 if (CmpInst::isTrueWhenEqual(Pred)) 3612 return getTrue(RetTy); 3613 if (CmpInst::isFalseWhenEqual(Pred)) 3614 return getFalse(RetTy); 3615 } 3616 3617 // Handle fcmp with constant RHS. 3618 // TODO: Use match with a specific FP value, so these work with vectors with 3619 // undef lanes. 3620 const APFloat *C; 3621 if (match(RHS, m_APFloat(C))) { 3622 // Check whether the constant is an infinity. 3623 if (C->isInfinity()) { 3624 if (C->isNegative()) { 3625 switch (Pred) { 3626 case FCmpInst::FCMP_OLT: 3627 // No value is ordered and less than negative infinity. 3628 return getFalse(RetTy); 3629 case FCmpInst::FCMP_UGE: 3630 // All values are unordered with or at least negative infinity. 3631 return getTrue(RetTy); 3632 default: 3633 break; 3634 } 3635 } else { 3636 switch (Pred) { 3637 case FCmpInst::FCMP_OGT: 3638 // No value is ordered and greater than infinity. 3639 return getFalse(RetTy); 3640 case FCmpInst::FCMP_ULE: 3641 // All values are unordered with and at most infinity. 3642 return getTrue(RetTy); 3643 default: 3644 break; 3645 } 3646 } 3647 3648 // LHS == Inf 3649 if (Pred == FCmpInst::FCMP_OEQ && isKnownNeverInfinity(LHS, Q.TLI)) 3650 return getFalse(RetTy); 3651 // LHS != Inf 3652 if (Pred == FCmpInst::FCMP_UNE && isKnownNeverInfinity(LHS, Q.TLI)) 3653 return getTrue(RetTy); 3654 // LHS == Inf || LHS == NaN 3655 if (Pred == FCmpInst::FCMP_UEQ && isKnownNeverInfinity(LHS, Q.TLI) && 3656 isKnownNeverNaN(LHS, Q.TLI)) 3657 return getFalse(RetTy); 3658 // LHS != Inf && LHS != NaN 3659 if (Pred == FCmpInst::FCMP_ONE && isKnownNeverInfinity(LHS, Q.TLI) && 3660 isKnownNeverNaN(LHS, Q.TLI)) 3661 return getTrue(RetTy); 3662 } 3663 if (C->isNegative() && !C->isNegZero()) { 3664 assert(!C->isNaN() && "Unexpected NaN constant!"); 3665 // TODO: We can catch more cases by using a range check rather than 3666 // relying on CannotBeOrderedLessThanZero. 3667 switch (Pred) { 3668 case FCmpInst::FCMP_UGE: 3669 case FCmpInst::FCMP_UGT: 3670 case FCmpInst::FCMP_UNE: 3671 // (X >= 0) implies (X > C) when (C < 0) 3672 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3673 return getTrue(RetTy); 3674 break; 3675 case FCmpInst::FCMP_OEQ: 3676 case FCmpInst::FCMP_OLE: 3677 case FCmpInst::FCMP_OLT: 3678 // (X >= 0) implies !(X < C) when (C < 0) 3679 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3680 return getFalse(RetTy); 3681 break; 3682 default: 3683 break; 3684 } 3685 } 3686 3687 // Check comparison of [minnum/maxnum with constant] with other constant. 3688 const APFloat *C2; 3689 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 3690 *C2 < *C) || 3691 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 3692 *C2 > *C)) { 3693 bool IsMaxNum = 3694 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 3695 // The ordered relationship and minnum/maxnum guarantee that we do not 3696 // have NaN constants, so ordered/unordered preds are handled the same. 3697 switch (Pred) { 3698 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_UEQ: 3699 // minnum(X, LesserC) == C --> false 3700 // maxnum(X, GreaterC) == C --> false 3701 return getFalse(RetTy); 3702 case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_UNE: 3703 // minnum(X, LesserC) != C --> true 3704 // maxnum(X, GreaterC) != C --> true 3705 return getTrue(RetTy); 3706 case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_UGE: 3707 case FCmpInst::FCMP_OGT: case FCmpInst::FCMP_UGT: 3708 // minnum(X, LesserC) >= C --> false 3709 // minnum(X, LesserC) > C --> false 3710 // maxnum(X, GreaterC) >= C --> true 3711 // maxnum(X, GreaterC) > C --> true 3712 return ConstantInt::get(RetTy, IsMaxNum); 3713 case FCmpInst::FCMP_OLE: case FCmpInst::FCMP_ULE: 3714 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_ULT: 3715 // minnum(X, LesserC) <= C --> true 3716 // minnum(X, LesserC) < C --> true 3717 // maxnum(X, GreaterC) <= C --> false 3718 // maxnum(X, GreaterC) < C --> false 3719 return ConstantInt::get(RetTy, !IsMaxNum); 3720 default: 3721 // TRUE/FALSE/ORD/UNO should be handled before this. 3722 llvm_unreachable("Unexpected fcmp predicate"); 3723 } 3724 } 3725 } 3726 3727 if (match(RHS, m_AnyZeroFP())) { 3728 switch (Pred) { 3729 case FCmpInst::FCMP_OGE: 3730 case FCmpInst::FCMP_ULT: 3731 // Positive or zero X >= 0.0 --> true 3732 // Positive or zero X < 0.0 --> false 3733 if ((FMF.noNaNs() || isKnownNeverNaN(LHS, Q.TLI)) && 3734 CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3735 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 3736 break; 3737 case FCmpInst::FCMP_UGE: 3738 case FCmpInst::FCMP_OLT: 3739 // Positive or zero or nan X >= 0.0 --> true 3740 // Positive or zero or nan X < 0.0 --> false 3741 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3742 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 3743 break; 3744 default: 3745 break; 3746 } 3747 } 3748 3749 // If the comparison is with the result of a select instruction, check whether 3750 // comparing with either branch of the select always yields the same value. 3751 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3752 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3753 return V; 3754 3755 // If the comparison is with the result of a phi instruction, check whether 3756 // doing the compare with each incoming phi value yields a common result. 3757 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3758 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3759 return V; 3760 3761 return nullptr; 3762 } 3763 3764 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3765 FastMathFlags FMF, const SimplifyQuery &Q) { 3766 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 3767 } 3768 3769 /// See if V simplifies when its operand Op is replaced with RepOp. 3770 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3771 const SimplifyQuery &Q, 3772 unsigned MaxRecurse) { 3773 // Trivial replacement. 3774 if (V == Op) 3775 return RepOp; 3776 3777 // We cannot replace a constant, and shouldn't even try. 3778 if (isa<Constant>(Op)) 3779 return nullptr; 3780 3781 auto *I = dyn_cast<Instruction>(V); 3782 if (!I) 3783 return nullptr; 3784 3785 // If this is a binary operator, try to simplify it with the replaced op. 3786 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3787 // Consider: 3788 // %cmp = icmp eq i32 %x, 2147483647 3789 // %add = add nsw i32 %x, 1 3790 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3791 // 3792 // We can't replace %sel with %add unless we strip away the flags. 3793 // TODO: This is an unusual limitation because better analysis results in 3794 // worse simplification. InstCombine can do this fold more generally 3795 // by dropping the flags. Remove this fold to save compile-time? 3796 if (isa<OverflowingBinaryOperator>(B)) 3797 if (Q.IIQ.hasNoSignedWrap(B) || Q.IIQ.hasNoUnsignedWrap(B)) 3798 return nullptr; 3799 if (isa<PossiblyExactOperator>(B) && Q.IIQ.isExact(B)) 3800 return nullptr; 3801 3802 if (MaxRecurse) { 3803 if (B->getOperand(0) == Op) 3804 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3805 MaxRecurse - 1); 3806 if (B->getOperand(1) == Op) 3807 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3808 MaxRecurse - 1); 3809 } 3810 } 3811 3812 // Same for CmpInsts. 3813 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3814 if (MaxRecurse) { 3815 if (C->getOperand(0) == Op) 3816 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3817 MaxRecurse - 1); 3818 if (C->getOperand(1) == Op) 3819 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3820 MaxRecurse - 1); 3821 } 3822 } 3823 3824 // Same for GEPs. 3825 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 3826 if (MaxRecurse) { 3827 SmallVector<Value *, 8> NewOps(GEP->getNumOperands()); 3828 transform(GEP->operands(), NewOps.begin(), 3829 [&](Value *V) { return V == Op ? RepOp : V; }); 3830 return SimplifyGEPInst(GEP->getSourceElementType(), NewOps, Q, 3831 MaxRecurse - 1); 3832 } 3833 } 3834 3835 // TODO: We could hand off more cases to instsimplify here. 3836 3837 // If all operands are constant after substituting Op for RepOp then we can 3838 // constant fold the instruction. 3839 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3840 // Build a list of all constant operands. 3841 SmallVector<Constant *, 8> ConstOps; 3842 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3843 if (I->getOperand(i) == Op) 3844 ConstOps.push_back(CRepOp); 3845 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3846 ConstOps.push_back(COp); 3847 else 3848 break; 3849 } 3850 3851 // All operands were constants, fold it. 3852 if (ConstOps.size() == I->getNumOperands()) { 3853 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3854 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3855 ConstOps[1], Q.DL, Q.TLI); 3856 3857 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3858 if (!LI->isVolatile()) 3859 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3860 3861 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3862 } 3863 } 3864 3865 return nullptr; 3866 } 3867 3868 /// Try to simplify a select instruction when its condition operand is an 3869 /// integer comparison where one operand of the compare is a constant. 3870 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 3871 const APInt *Y, bool TrueWhenUnset) { 3872 const APInt *C; 3873 3874 // (X & Y) == 0 ? X & ~Y : X --> X 3875 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3876 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3877 *Y == ~*C) 3878 return TrueWhenUnset ? FalseVal : TrueVal; 3879 3880 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3881 // (X & Y) != 0 ? X : X & ~Y --> X 3882 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3883 *Y == ~*C) 3884 return TrueWhenUnset ? FalseVal : TrueVal; 3885 3886 if (Y->isPowerOf2()) { 3887 // (X & Y) == 0 ? X | Y : X --> X | Y 3888 // (X & Y) != 0 ? X | Y : X --> X 3889 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3890 *Y == *C) 3891 return TrueWhenUnset ? TrueVal : FalseVal; 3892 3893 // (X & Y) == 0 ? X : X | Y --> X 3894 // (X & Y) != 0 ? X : X | Y --> X | Y 3895 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3896 *Y == *C) 3897 return TrueWhenUnset ? TrueVal : FalseVal; 3898 } 3899 3900 return nullptr; 3901 } 3902 3903 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 3904 /// eq/ne. 3905 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 3906 ICmpInst::Predicate Pred, 3907 Value *TrueVal, Value *FalseVal) { 3908 Value *X; 3909 APInt Mask; 3910 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 3911 return nullptr; 3912 3913 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 3914 Pred == ICmpInst::ICMP_EQ); 3915 } 3916 3917 /// Try to simplify a select instruction when its condition operand is an 3918 /// integer comparison. 3919 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 3920 Value *FalseVal, const SimplifyQuery &Q, 3921 unsigned MaxRecurse) { 3922 ICmpInst::Predicate Pred; 3923 Value *CmpLHS, *CmpRHS; 3924 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 3925 return nullptr; 3926 3927 if (ICmpInst::isEquality(Pred) && match(CmpRHS, m_Zero())) { 3928 Value *X; 3929 const APInt *Y; 3930 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 3931 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 3932 Pred == ICmpInst::ICMP_EQ)) 3933 return V; 3934 3935 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 3936 Value *ShAmt; 3937 auto isFsh = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), 3938 m_Value(ShAmt)), 3939 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), 3940 m_Value(ShAmt))); 3941 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 3942 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 3943 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt && 3944 Pred == ICmpInst::ICMP_EQ) 3945 return X; 3946 // (ShAmt != 0) ? X : fshl(X, *, ShAmt) --> X 3947 // (ShAmt != 0) ? X : fshr(*, X, ShAmt) --> X 3948 if (match(FalseVal, isFsh) && TrueVal == X && CmpLHS == ShAmt && 3949 Pred == ICmpInst::ICMP_NE) 3950 return X; 3951 3952 // Test for a zero-shift-guard-op around rotates. These are used to 3953 // avoid UB from oversized shifts in raw IR rotate patterns, but the 3954 // intrinsics do not have that problem. 3955 // We do not allow this transform for the general funnel shift case because 3956 // that would not preserve the poison safety of the original code. 3957 auto isRotate = m_CombineOr(m_Intrinsic<Intrinsic::fshl>(m_Value(X), 3958 m_Deferred(X), 3959 m_Value(ShAmt)), 3960 m_Intrinsic<Intrinsic::fshr>(m_Value(X), 3961 m_Deferred(X), 3962 m_Value(ShAmt))); 3963 // (ShAmt != 0) ? fshl(X, X, ShAmt) : X --> fshl(X, X, ShAmt) 3964 // (ShAmt != 0) ? fshr(X, X, ShAmt) : X --> fshr(X, X, ShAmt) 3965 if (match(TrueVal, isRotate) && FalseVal == X && CmpLHS == ShAmt && 3966 Pred == ICmpInst::ICMP_NE) 3967 return TrueVal; 3968 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 3969 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 3970 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 3971 Pred == ICmpInst::ICMP_EQ) 3972 return FalseVal; 3973 } 3974 3975 // Check for other compares that behave like bit test. 3976 if (Value *V = simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, 3977 TrueVal, FalseVal)) 3978 return V; 3979 3980 // If we have an equality comparison, then we know the value in one of the 3981 // arms of the select. See if substituting this value into the arm and 3982 // simplifying the result yields the same value as the other arm. 3983 if (Pred == ICmpInst::ICMP_EQ) { 3984 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3985 TrueVal || 3986 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3987 TrueVal) 3988 return FalseVal; 3989 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3990 FalseVal || 3991 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3992 FalseVal) 3993 return FalseVal; 3994 } else if (Pred == ICmpInst::ICMP_NE) { 3995 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3996 FalseVal || 3997 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3998 FalseVal) 3999 return TrueVal; 4000 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 4001 TrueVal || 4002 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 4003 TrueVal) 4004 return TrueVal; 4005 } 4006 4007 return nullptr; 4008 } 4009 4010 /// Try to simplify a select instruction when its condition operand is a 4011 /// floating-point comparison. 4012 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4013 const SimplifyQuery &Q) { 4014 FCmpInst::Predicate Pred; 4015 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4016 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4017 return nullptr; 4018 4019 // This transform is safe if we do not have (do not care about) -0.0 or if 4020 // at least one operand is known to not be -0.0. Otherwise, the select can 4021 // change the sign of a zero operand. 4022 bool HasNoSignedZeros = Q.CxtI && isa<FPMathOperator>(Q.CxtI) && 4023 Q.CxtI->hasNoSignedZeros(); 4024 const APFloat *C; 4025 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4026 (match(F, m_APFloat(C)) && C->isNonZero())) { 4027 // (T == F) ? T : F --> F 4028 // (F == T) ? T : F --> F 4029 if (Pred == FCmpInst::FCMP_OEQ) 4030 return F; 4031 4032 // (T != F) ? T : F --> T 4033 // (F != T) ? T : F --> T 4034 if (Pred == FCmpInst::FCMP_UNE) 4035 return T; 4036 } 4037 4038 return nullptr; 4039 } 4040 4041 /// Given operands for a SelectInst, see if we can fold the result. 4042 /// If not, this returns null. 4043 static Value *SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4044 const SimplifyQuery &Q, unsigned MaxRecurse) { 4045 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4046 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4047 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4048 return ConstantFoldSelectInstruction(CondC, TrueC, FalseC); 4049 4050 // select undef, X, Y -> X or Y 4051 if (isa<UndefValue>(CondC)) 4052 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4053 4054 // TODO: Vector constants with undef elements don't simplify. 4055 4056 // select true, X, Y -> X 4057 if (CondC->isAllOnesValue()) 4058 return TrueVal; 4059 // select false, X, Y -> Y 4060 if (CondC->isNullValue()) 4061 return FalseVal; 4062 } 4063 4064 // select i1 Cond, i1 true, i1 false --> i1 Cond 4065 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4066 "Select must have bool or bool vector condition"); 4067 assert(TrueVal->getType() == FalseVal->getType() && 4068 "Select must have same types for true/false ops"); 4069 if (Cond->getType() == TrueVal->getType() && 4070 match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4071 return Cond; 4072 4073 // select ?, X, X -> X 4074 if (TrueVal == FalseVal) 4075 return TrueVal; 4076 4077 if (isa<UndefValue>(TrueVal)) // select ?, undef, X -> X 4078 return FalseVal; 4079 if (isa<UndefValue>(FalseVal)) // select ?, X, undef -> X 4080 return TrueVal; 4081 4082 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4083 Constant *TrueC, *FalseC; 4084 if (TrueVal->getType()->isVectorTy() && match(TrueVal, m_Constant(TrueC)) && 4085 match(FalseVal, m_Constant(FalseC))) { 4086 unsigned NumElts = 4087 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4088 SmallVector<Constant *, 16> NewC; 4089 for (unsigned i = 0; i != NumElts; ++i) { 4090 // Bail out on incomplete vector constants. 4091 Constant *TEltC = TrueC->getAggregateElement(i); 4092 Constant *FEltC = FalseC->getAggregateElement(i); 4093 if (!TEltC || !FEltC) 4094 break; 4095 4096 // If the elements match (undef or not), that value is the result. If only 4097 // one element is undef, choose the defined element as the safe result. 4098 if (TEltC == FEltC) 4099 NewC.push_back(TEltC); 4100 else if (isa<UndefValue>(TEltC)) 4101 NewC.push_back(FEltC); 4102 else if (isa<UndefValue>(FEltC)) 4103 NewC.push_back(TEltC); 4104 else 4105 break; 4106 } 4107 if (NewC.size() == NumElts) 4108 return ConstantVector::get(NewC); 4109 } 4110 4111 if (Value *V = 4112 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4113 return V; 4114 4115 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4116 return V; 4117 4118 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4119 return V; 4120 4121 Optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4122 if (Imp) 4123 return *Imp ? TrueVal : FalseVal; 4124 4125 return nullptr; 4126 } 4127 4128 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4129 const SimplifyQuery &Q) { 4130 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4131 } 4132 4133 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4134 /// If not, this returns null. 4135 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4136 const SimplifyQuery &Q, unsigned) { 4137 // The type of the GEP pointer operand. 4138 unsigned AS = 4139 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 4140 4141 // getelementptr P -> P. 4142 if (Ops.size() == 1) 4143 return Ops[0]; 4144 4145 // Compute the (pointer) type returned by the GEP instruction. 4146 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 4147 Type *GEPTy = PointerType::get(LastType, AS); 4148 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 4149 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4150 else if (VectorType *VT = dyn_cast<VectorType>(Ops[1]->getType())) 4151 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4152 4153 if (isa<UndefValue>(Ops[0])) 4154 return UndefValue::get(GEPTy); 4155 4156 bool IsScalableVec = isa<ScalableVectorType>(SrcTy); 4157 4158 if (Ops.size() == 2) { 4159 // getelementptr P, 0 -> P. 4160 if (match(Ops[1], m_Zero()) && Ops[0]->getType() == GEPTy) 4161 return Ops[0]; 4162 4163 Type *Ty = SrcTy; 4164 if (!IsScalableVec && Ty->isSized()) { 4165 Value *P; 4166 uint64_t C; 4167 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 4168 // getelementptr P, N -> P if P points to a type of zero size. 4169 if (TyAllocSize == 0 && Ops[0]->getType() == GEPTy) 4170 return Ops[0]; 4171 4172 // The following transforms are only safe if the ptrtoint cast 4173 // doesn't truncate the pointers. 4174 if (Ops[1]->getType()->getScalarSizeInBits() == 4175 Q.DL.getPointerSizeInBits(AS)) { 4176 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 4177 if (match(P, m_Zero())) 4178 return Constant::getNullValue(GEPTy); 4179 Value *Temp; 4180 if (match(P, m_PtrToInt(m_Value(Temp)))) 4181 if (Temp->getType() == GEPTy) 4182 return Temp; 4183 return nullptr; 4184 }; 4185 4186 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 4187 if (TyAllocSize == 1 && 4188 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 4189 if (Value *R = PtrToIntOrZero(P)) 4190 return R; 4191 4192 // getelementptr V, (ashr (sub P, V), C) -> Q 4193 // if P points to a type of size 1 << C. 4194 if (match(Ops[1], 4195 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4196 m_ConstantInt(C))) && 4197 TyAllocSize == 1ULL << C) 4198 if (Value *R = PtrToIntOrZero(P)) 4199 return R; 4200 4201 // getelementptr V, (sdiv (sub P, V), C) -> Q 4202 // if P points to a type of size C. 4203 if (match(Ops[1], 4204 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 4205 m_SpecificInt(TyAllocSize)))) 4206 if (Value *R = PtrToIntOrZero(P)) 4207 return R; 4208 } 4209 } 4210 } 4211 4212 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 4213 all_of(Ops.slice(1).drop_back(1), 4214 [](Value *Idx) { return match(Idx, m_Zero()); })) { 4215 unsigned IdxWidth = 4216 Q.DL.getIndexSizeInBits(Ops[0]->getType()->getPointerAddressSpace()); 4217 if (Q.DL.getTypeSizeInBits(Ops.back()->getType()) == IdxWidth) { 4218 APInt BasePtrOffset(IdxWidth, 0); 4219 Value *StrippedBasePtr = 4220 Ops[0]->stripAndAccumulateInBoundsConstantOffsets(Q.DL, 4221 BasePtrOffset); 4222 4223 // gep (gep V, C), (sub 0, V) -> C 4224 if (match(Ops.back(), 4225 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr))))) { 4226 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 4227 return ConstantExpr::getIntToPtr(CI, GEPTy); 4228 } 4229 // gep (gep V, C), (xor V, -1) -> C-1 4230 if (match(Ops.back(), 4231 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes()))) { 4232 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 4233 return ConstantExpr::getIntToPtr(CI, GEPTy); 4234 } 4235 } 4236 } 4237 4238 // Check to see if this is constant foldable. 4239 if (!all_of(Ops, [](Value *V) { return isa<Constant>(V); })) 4240 return nullptr; 4241 4242 auto *CE = ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 4243 Ops.slice(1)); 4244 return ConstantFoldConstant(CE, Q.DL); 4245 } 4246 4247 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 4248 const SimplifyQuery &Q) { 4249 return ::SimplifyGEPInst(SrcTy, Ops, Q, RecursionLimit); 4250 } 4251 4252 /// Given operands for an InsertValueInst, see if we can fold the result. 4253 /// If not, this returns null. 4254 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 4255 ArrayRef<unsigned> Idxs, const SimplifyQuery &Q, 4256 unsigned) { 4257 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 4258 if (Constant *CVal = dyn_cast<Constant>(Val)) 4259 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 4260 4261 // insertvalue x, undef, n -> x 4262 if (match(Val, m_Undef())) 4263 return Agg; 4264 4265 // insertvalue x, (extractvalue y, n), n 4266 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 4267 if (EV->getAggregateOperand()->getType() == Agg->getType() && 4268 EV->getIndices() == Idxs) { 4269 // insertvalue undef, (extractvalue y, n), n -> y 4270 if (match(Agg, m_Undef())) 4271 return EV->getAggregateOperand(); 4272 4273 // insertvalue y, (extractvalue y, n), n -> y 4274 if (Agg == EV->getAggregateOperand()) 4275 return Agg; 4276 } 4277 4278 return nullptr; 4279 } 4280 4281 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 4282 ArrayRef<unsigned> Idxs, 4283 const SimplifyQuery &Q) { 4284 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 4285 } 4286 4287 Value *llvm::SimplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 4288 const SimplifyQuery &Q) { 4289 // Try to constant fold. 4290 auto *VecC = dyn_cast<Constant>(Vec); 4291 auto *ValC = dyn_cast<Constant>(Val); 4292 auto *IdxC = dyn_cast<Constant>(Idx); 4293 if (VecC && ValC && IdxC) 4294 return ConstantFoldInsertElementInstruction(VecC, ValC, IdxC); 4295 4296 // For fixed-length vector, fold into undef if index is out of bounds. 4297 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 4298 if (isa<FixedVectorType>(Vec->getType()) && 4299 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 4300 return UndefValue::get(Vec->getType()); 4301 } 4302 4303 // If index is undef, it might be out of bounds (see above case) 4304 if (isa<UndefValue>(Idx)) 4305 return UndefValue::get(Vec->getType()); 4306 4307 // If the scalar is undef, and there is no risk of propagating poison from the 4308 // vector value, simplify to the vector value. 4309 if (isa<UndefValue>(Val) && isGuaranteedNotToBeUndefOrPoison(Vec)) 4310 return Vec; 4311 4312 // If we are extracting a value from a vector, then inserting it into the same 4313 // place, that's the input vector: 4314 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 4315 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 4316 return Vec; 4317 4318 return nullptr; 4319 } 4320 4321 /// Given operands for an ExtractValueInst, see if we can fold the result. 4322 /// If not, this returns null. 4323 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4324 const SimplifyQuery &, unsigned) { 4325 if (auto *CAgg = dyn_cast<Constant>(Agg)) 4326 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 4327 4328 // extractvalue x, (insertvalue y, elt, n), n -> elt 4329 unsigned NumIdxs = Idxs.size(); 4330 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 4331 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 4332 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 4333 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 4334 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 4335 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 4336 Idxs.slice(0, NumCommonIdxs)) { 4337 if (NumIdxs == NumInsertValueIdxs) 4338 return IVI->getInsertedValueOperand(); 4339 break; 4340 } 4341 } 4342 4343 return nullptr; 4344 } 4345 4346 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 4347 const SimplifyQuery &Q) { 4348 return ::SimplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 4349 } 4350 4351 /// Given operands for an ExtractElementInst, see if we can fold the result. 4352 /// If not, this returns null. 4353 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const SimplifyQuery &, 4354 unsigned) { 4355 auto *VecVTy = cast<VectorType>(Vec->getType()); 4356 if (auto *CVec = dyn_cast<Constant>(Vec)) { 4357 if (auto *CIdx = dyn_cast<Constant>(Idx)) 4358 return ConstantFoldExtractElementInstruction(CVec, CIdx); 4359 4360 // The index is not relevant if our vector is a splat. 4361 if (auto *Splat = CVec->getSplatValue()) 4362 return Splat; 4363 4364 if (isa<UndefValue>(Vec)) 4365 return UndefValue::get(VecVTy->getElementType()); 4366 } 4367 4368 // If extracting a specified index from the vector, see if we can recursively 4369 // find a previously computed scalar that was inserted into the vector. 4370 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 4371 // For fixed-length vector, fold into undef if index is out of bounds. 4372 if (isa<FixedVectorType>(VecVTy) && 4373 IdxC->getValue().uge(cast<FixedVectorType>(VecVTy)->getNumElements())) 4374 return UndefValue::get(VecVTy->getElementType()); 4375 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 4376 return Elt; 4377 } 4378 4379 // An undef extract index can be arbitrarily chosen to be an out-of-range 4380 // index value, which would result in the instruction being undef. 4381 if (isa<UndefValue>(Idx)) 4382 return UndefValue::get(VecVTy->getElementType()); 4383 4384 return nullptr; 4385 } 4386 4387 Value *llvm::SimplifyExtractElementInst(Value *Vec, Value *Idx, 4388 const SimplifyQuery &Q) { 4389 return ::SimplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 4390 } 4391 4392 /// See if we can fold the given phi. If not, returns null. 4393 static Value *SimplifyPHINode(PHINode *PN, const SimplifyQuery &Q) { 4394 // If all of the PHI's incoming values are the same then replace the PHI node 4395 // with the common value. 4396 Value *CommonValue = nullptr; 4397 bool HasUndefInput = false; 4398 for (Value *Incoming : PN->incoming_values()) { 4399 // If the incoming value is the phi node itself, it can safely be skipped. 4400 if (Incoming == PN) continue; 4401 if (isa<UndefValue>(Incoming)) { 4402 // Remember that we saw an undef value, but otherwise ignore them. 4403 HasUndefInput = true; 4404 continue; 4405 } 4406 if (CommonValue && Incoming != CommonValue) 4407 return nullptr; // Not the same, bail out. 4408 CommonValue = Incoming; 4409 } 4410 4411 // If CommonValue is null then all of the incoming values were either undef or 4412 // equal to the phi node itself. 4413 if (!CommonValue) 4414 return UndefValue::get(PN->getType()); 4415 4416 // If we have a PHI node like phi(X, undef, X), where X is defined by some 4417 // instruction, we cannot return X as the result of the PHI node unless it 4418 // dominates the PHI block. 4419 if (HasUndefInput) 4420 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 4421 4422 return CommonValue; 4423 } 4424 4425 static Value *SimplifyCastInst(unsigned CastOpc, Value *Op, 4426 Type *Ty, const SimplifyQuery &Q, unsigned MaxRecurse) { 4427 if (auto *C = dyn_cast<Constant>(Op)) 4428 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 4429 4430 if (auto *CI = dyn_cast<CastInst>(Op)) { 4431 auto *Src = CI->getOperand(0); 4432 Type *SrcTy = Src->getType(); 4433 Type *MidTy = CI->getType(); 4434 Type *DstTy = Ty; 4435 if (Src->getType() == Ty) { 4436 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 4437 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 4438 Type *SrcIntPtrTy = 4439 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 4440 Type *MidIntPtrTy = 4441 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 4442 Type *DstIntPtrTy = 4443 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 4444 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 4445 SrcIntPtrTy, MidIntPtrTy, 4446 DstIntPtrTy) == Instruction::BitCast) 4447 return Src; 4448 } 4449 } 4450 4451 // bitcast x -> x 4452 if (CastOpc == Instruction::BitCast) 4453 if (Op->getType() == Ty) 4454 return Op; 4455 4456 return nullptr; 4457 } 4458 4459 Value *llvm::SimplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 4460 const SimplifyQuery &Q) { 4461 return ::SimplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 4462 } 4463 4464 /// For the given destination element of a shuffle, peek through shuffles to 4465 /// match a root vector source operand that contains that element in the same 4466 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 4467 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 4468 int MaskVal, Value *RootVec, 4469 unsigned MaxRecurse) { 4470 if (!MaxRecurse--) 4471 return nullptr; 4472 4473 // Bail out if any mask value is undefined. That kind of shuffle may be 4474 // simplified further based on demanded bits or other folds. 4475 if (MaskVal == -1) 4476 return nullptr; 4477 4478 // The mask value chooses which source operand we need to look at next. 4479 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 4480 int RootElt = MaskVal; 4481 Value *SourceOp = Op0; 4482 if (MaskVal >= InVecNumElts) { 4483 RootElt = MaskVal - InVecNumElts; 4484 SourceOp = Op1; 4485 } 4486 4487 // If the source operand is a shuffle itself, look through it to find the 4488 // matching root vector. 4489 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 4490 return foldIdentityShuffles( 4491 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 4492 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 4493 } 4494 4495 // TODO: Look through bitcasts? What if the bitcast changes the vector element 4496 // size? 4497 4498 // The source operand is not a shuffle. Initialize the root vector value for 4499 // this shuffle if that has not been done yet. 4500 if (!RootVec) 4501 RootVec = SourceOp; 4502 4503 // Give up as soon as a source operand does not match the existing root value. 4504 if (RootVec != SourceOp) 4505 return nullptr; 4506 4507 // The element must be coming from the same lane in the source vector 4508 // (although it may have crossed lanes in intermediate shuffles). 4509 if (RootElt != DestElt) 4510 return nullptr; 4511 4512 return RootVec; 4513 } 4514 4515 static Value *SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4516 ArrayRef<int> Mask, Type *RetTy, 4517 const SimplifyQuery &Q, 4518 unsigned MaxRecurse) { 4519 if (all_of(Mask, [](int Elem) { return Elem == UndefMaskElem; })) 4520 return UndefValue::get(RetTy); 4521 4522 auto *InVecTy = cast<VectorType>(Op0->getType()); 4523 unsigned MaskNumElts = Mask.size(); 4524 ElementCount InVecEltCount = InVecTy->getElementCount(); 4525 4526 bool Scalable = InVecEltCount.Scalable; 4527 4528 SmallVector<int, 32> Indices; 4529 Indices.assign(Mask.begin(), Mask.end()); 4530 4531 // Canonicalization: If mask does not select elements from an input vector, 4532 // replace that input vector with undef. 4533 if (!Scalable) { 4534 bool MaskSelects0 = false, MaskSelects1 = false; 4535 unsigned InVecNumElts = InVecEltCount.Min; 4536 for (unsigned i = 0; i != MaskNumElts; ++i) { 4537 if (Indices[i] == -1) 4538 continue; 4539 if ((unsigned)Indices[i] < InVecNumElts) 4540 MaskSelects0 = true; 4541 else 4542 MaskSelects1 = true; 4543 } 4544 if (!MaskSelects0) 4545 Op0 = UndefValue::get(InVecTy); 4546 if (!MaskSelects1) 4547 Op1 = UndefValue::get(InVecTy); 4548 } 4549 4550 auto *Op0Const = dyn_cast<Constant>(Op0); 4551 auto *Op1Const = dyn_cast<Constant>(Op1); 4552 4553 // If all operands are constant, constant fold the shuffle. This 4554 // transformation depends on the value of the mask which is not known at 4555 // compile time for scalable vectors 4556 if (!Scalable && Op0Const && Op1Const) 4557 return ConstantFoldShuffleVectorInstruction(Op0Const, Op1Const, Mask); 4558 4559 // Canonicalization: if only one input vector is constant, it shall be the 4560 // second one. This transformation depends on the value of the mask which 4561 // is not known at compile time for scalable vectors 4562 if (!Scalable && Op0Const && !Op1Const) { 4563 std::swap(Op0, Op1); 4564 ShuffleVectorInst::commuteShuffleMask(Indices, InVecEltCount.Min); 4565 } 4566 4567 // A splat of an inserted scalar constant becomes a vector constant: 4568 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 4569 // NOTE: We may have commuted above, so analyze the updated Indices, not the 4570 // original mask constant. 4571 // NOTE: This transformation depends on the value of the mask which is not 4572 // known at compile time for scalable vectors 4573 Constant *C; 4574 ConstantInt *IndexC; 4575 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 4576 m_ConstantInt(IndexC)))) { 4577 // Match a splat shuffle mask of the insert index allowing undef elements. 4578 int InsertIndex = IndexC->getZExtValue(); 4579 if (all_of(Indices, [InsertIndex](int MaskElt) { 4580 return MaskElt == InsertIndex || MaskElt == -1; 4581 })) { 4582 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 4583 4584 // Shuffle mask undefs become undefined constant result elements. 4585 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 4586 for (unsigned i = 0; i != MaskNumElts; ++i) 4587 if (Indices[i] == -1) 4588 VecC[i] = UndefValue::get(C->getType()); 4589 return ConstantVector::get(VecC); 4590 } 4591 } 4592 4593 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 4594 // value type is same as the input vectors' type. 4595 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 4596 if (isa<UndefValue>(Op1) && RetTy == InVecTy && 4597 is_splat(OpShuf->getShuffleMask())) 4598 return Op0; 4599 4600 // All remaining transformation depend on the value of the mask, which is 4601 // not known at compile time for scalable vectors. 4602 if (Scalable) 4603 return nullptr; 4604 4605 // Don't fold a shuffle with undef mask elements. This may get folded in a 4606 // better way using demanded bits or other analysis. 4607 // TODO: Should we allow this? 4608 if (find(Indices, -1) != Indices.end()) 4609 return nullptr; 4610 4611 // Check if every element of this shuffle can be mapped back to the 4612 // corresponding element of a single root vector. If so, we don't need this 4613 // shuffle. This handles simple identity shuffles as well as chains of 4614 // shuffles that may widen/narrow and/or move elements across lanes and back. 4615 Value *RootVec = nullptr; 4616 for (unsigned i = 0; i != MaskNumElts; ++i) { 4617 // Note that recursion is limited for each vector element, so if any element 4618 // exceeds the limit, this will fail to simplify. 4619 RootVec = 4620 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 4621 4622 // We can't replace a widening/narrowing shuffle with one of its operands. 4623 if (!RootVec || RootVec->getType() != RetTy) 4624 return nullptr; 4625 } 4626 return RootVec; 4627 } 4628 4629 /// Given operands for a ShuffleVectorInst, fold the result or return null. 4630 Value *llvm::SimplifyShuffleVectorInst(Value *Op0, Value *Op1, 4631 ArrayRef<int> Mask, Type *RetTy, 4632 const SimplifyQuery &Q) { 4633 return ::SimplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 4634 } 4635 4636 static Constant *foldConstant(Instruction::UnaryOps Opcode, 4637 Value *&Op, const SimplifyQuery &Q) { 4638 if (auto *C = dyn_cast<Constant>(Op)) 4639 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 4640 return nullptr; 4641 } 4642 4643 /// Given the operand for an FNeg, see if we can fold the result. If not, this 4644 /// returns null. 4645 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 4646 const SimplifyQuery &Q, unsigned MaxRecurse) { 4647 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 4648 return C; 4649 4650 Value *X; 4651 // fneg (fneg X) ==> X 4652 if (match(Op, m_FNeg(m_Value(X)))) 4653 return X; 4654 4655 return nullptr; 4656 } 4657 4658 Value *llvm::SimplifyFNegInst(Value *Op, FastMathFlags FMF, 4659 const SimplifyQuery &Q) { 4660 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 4661 } 4662 4663 static Constant *propagateNaN(Constant *In) { 4664 // If the input is a vector with undef elements, just return a default NaN. 4665 if (!In->isNaN()) 4666 return ConstantFP::getNaN(In->getType()); 4667 4668 // Propagate the existing NaN constant when possible. 4669 // TODO: Should we quiet a signaling NaN? 4670 return In; 4671 } 4672 4673 /// Perform folds that are common to any floating-point operation. This implies 4674 /// transforms based on undef/NaN because the operation itself makes no 4675 /// difference to the result. 4676 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, 4677 FastMathFlags FMF = FastMathFlags()) { 4678 for (Value *V : Ops) { 4679 bool IsNan = match(V, m_NaN()); 4680 bool IsInf = match(V, m_Inf()); 4681 bool IsUndef = match(V, m_Undef()); 4682 4683 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 4684 // (an undef operand can be chosen to be Nan/Inf), then the result of 4685 // this operation is poison. That result can be relaxed to undef. 4686 if (FMF.noNaNs() && (IsNan || IsUndef)) 4687 return UndefValue::get(V->getType()); 4688 if (FMF.noInfs() && (IsInf || IsUndef)) 4689 return UndefValue::get(V->getType()); 4690 4691 if (IsUndef || IsNan) 4692 return propagateNaN(cast<Constant>(V)); 4693 } 4694 return nullptr; 4695 } 4696 4697 /// Given operands for an FAdd, see if we can fold the result. If not, this 4698 /// returns null. 4699 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4700 const SimplifyQuery &Q, unsigned MaxRecurse) { 4701 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 4702 return C; 4703 4704 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4705 return C; 4706 4707 // fadd X, -0 ==> X 4708 if (match(Op1, m_NegZeroFP())) 4709 return Op0; 4710 4711 // fadd X, 0 ==> X, when we know X is not -0 4712 if (match(Op1, m_PosZeroFP()) && 4713 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4714 return Op0; 4715 4716 // With nnan: -X + X --> 0.0 (and commuted variant) 4717 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 4718 // Negative zeros are allowed because we always end up with positive zero: 4719 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4720 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 4721 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 4722 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 4723 if (FMF.noNaNs()) { 4724 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 4725 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 4726 return ConstantFP::getNullValue(Op0->getType()); 4727 4728 if (match(Op0, m_FNeg(m_Specific(Op1))) || 4729 match(Op1, m_FNeg(m_Specific(Op0)))) 4730 return ConstantFP::getNullValue(Op0->getType()); 4731 } 4732 4733 // (X - Y) + Y --> X 4734 // Y + (X - Y) --> X 4735 Value *X; 4736 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4737 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 4738 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 4739 return X; 4740 4741 return nullptr; 4742 } 4743 4744 /// Given operands for an FSub, see if we can fold the result. If not, this 4745 /// returns null. 4746 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4747 const SimplifyQuery &Q, unsigned MaxRecurse) { 4748 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 4749 return C; 4750 4751 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4752 return C; 4753 4754 // fsub X, +0 ==> X 4755 if (match(Op1, m_PosZeroFP())) 4756 return Op0; 4757 4758 // fsub X, -0 ==> X, when we know X is not -0 4759 if (match(Op1, m_NegZeroFP()) && 4760 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 4761 return Op0; 4762 4763 // fsub -0.0, (fsub -0.0, X) ==> X 4764 // fsub -0.0, (fneg X) ==> X 4765 Value *X; 4766 if (match(Op0, m_NegZeroFP()) && 4767 match(Op1, m_FNeg(m_Value(X)))) 4768 return X; 4769 4770 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 4771 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 4772 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 4773 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 4774 match(Op1, m_FNeg(m_Value(X))))) 4775 return X; 4776 4777 // fsub nnan x, x ==> 0.0 4778 if (FMF.noNaNs() && Op0 == Op1) 4779 return Constant::getNullValue(Op0->getType()); 4780 4781 // Y - (Y - X) --> X 4782 // (X + Y) - Y --> X 4783 if (FMF.noSignedZeros() && FMF.allowReassoc() && 4784 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 4785 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 4786 return X; 4787 4788 return nullptr; 4789 } 4790 4791 static Value *SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4792 const SimplifyQuery &Q, unsigned MaxRecurse) { 4793 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4794 return C; 4795 4796 // fmul X, 1.0 ==> X 4797 if (match(Op1, m_FPOne())) 4798 return Op0; 4799 4800 // fmul 1.0, X ==> X 4801 if (match(Op0, m_FPOne())) 4802 return Op1; 4803 4804 // fmul nnan nsz X, 0 ==> 0 4805 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZeroFP())) 4806 return ConstantFP::getNullValue(Op0->getType()); 4807 4808 // fmul nnan nsz 0, X ==> 0 4809 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4810 return ConstantFP::getNullValue(Op1->getType()); 4811 4812 // sqrt(X) * sqrt(X) --> X, if we can: 4813 // 1. Remove the intermediate rounding (reassociate). 4814 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 4815 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 4816 Value *X; 4817 if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::sqrt>(m_Value(X))) && 4818 FMF.allowReassoc() && FMF.noNaNs() && FMF.noSignedZeros()) 4819 return X; 4820 4821 return nullptr; 4822 } 4823 4824 /// Given the operands for an FMul, see if we can fold the result 4825 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4826 const SimplifyQuery &Q, unsigned MaxRecurse) { 4827 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 4828 return C; 4829 4830 // Now apply simplifications that do not require rounding. 4831 return SimplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse); 4832 } 4833 4834 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4835 const SimplifyQuery &Q) { 4836 return ::SimplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit); 4837 } 4838 4839 4840 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4841 const SimplifyQuery &Q) { 4842 return ::SimplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit); 4843 } 4844 4845 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4846 const SimplifyQuery &Q) { 4847 return ::SimplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit); 4848 } 4849 4850 Value *llvm::SimplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 4851 const SimplifyQuery &Q) { 4852 return ::SimplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit); 4853 } 4854 4855 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4856 const SimplifyQuery &Q, unsigned) { 4857 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 4858 return C; 4859 4860 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4861 return C; 4862 4863 // X / 1.0 -> X 4864 if (match(Op1, m_FPOne())) 4865 return Op0; 4866 4867 // 0 / X -> 0 4868 // Requires that NaNs are off (X could be zero) and signed zeroes are 4869 // ignored (X could be positive or negative, so the output sign is unknown). 4870 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 4871 return ConstantFP::getNullValue(Op0->getType()); 4872 4873 if (FMF.noNaNs()) { 4874 // X / X -> 1.0 is legal when NaNs are ignored. 4875 // We can ignore infinities because INF/INF is NaN. 4876 if (Op0 == Op1) 4877 return ConstantFP::get(Op0->getType(), 1.0); 4878 4879 // (X * Y) / Y --> X if we can reassociate to the above form. 4880 Value *X; 4881 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 4882 return X; 4883 4884 // -X / X -> -1.0 and 4885 // X / -X -> -1.0 are legal when NaNs are ignored. 4886 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 4887 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 4888 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 4889 return ConstantFP::get(Op0->getType(), -1.0); 4890 } 4891 4892 return nullptr; 4893 } 4894 4895 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4896 const SimplifyQuery &Q) { 4897 return ::SimplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit); 4898 } 4899 4900 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4901 const SimplifyQuery &Q, unsigned) { 4902 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 4903 return C; 4904 4905 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF)) 4906 return C; 4907 4908 // Unlike fdiv, the result of frem always matches the sign of the dividend. 4909 // The constant match may include undef elements in a vector, so return a full 4910 // zero constant as the result. 4911 if (FMF.noNaNs()) { 4912 // +0 % X -> 0 4913 if (match(Op0, m_PosZeroFP())) 4914 return ConstantFP::getNullValue(Op0->getType()); 4915 // -0 % X -> -0 4916 if (match(Op0, m_NegZeroFP())) 4917 return ConstantFP::getNegativeZero(Op0->getType()); 4918 } 4919 4920 return nullptr; 4921 } 4922 4923 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 4924 const SimplifyQuery &Q) { 4925 return ::SimplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit); 4926 } 4927 4928 //=== Helper functions for higher up the class hierarchy. 4929 4930 /// Given the operand for a UnaryOperator, see if we can fold the result. 4931 /// If not, this returns null. 4932 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 4933 unsigned MaxRecurse) { 4934 switch (Opcode) { 4935 case Instruction::FNeg: 4936 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 4937 default: 4938 llvm_unreachable("Unexpected opcode"); 4939 } 4940 } 4941 4942 /// Given the operand for a UnaryOperator, see if we can fold the result. 4943 /// If not, this returns null. 4944 /// Try to use FastMathFlags when folding the result. 4945 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 4946 const FastMathFlags &FMF, 4947 const SimplifyQuery &Q, unsigned MaxRecurse) { 4948 switch (Opcode) { 4949 case Instruction::FNeg: 4950 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 4951 default: 4952 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 4953 } 4954 } 4955 4956 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 4957 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 4958 } 4959 4960 Value *llvm::SimplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 4961 const SimplifyQuery &Q) { 4962 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 4963 } 4964 4965 /// Given operands for a BinaryOperator, see if we can fold the result. 4966 /// If not, this returns null. 4967 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 4968 const SimplifyQuery &Q, unsigned MaxRecurse) { 4969 switch (Opcode) { 4970 case Instruction::Add: 4971 return SimplifyAddInst(LHS, RHS, false, false, Q, MaxRecurse); 4972 case Instruction::Sub: 4973 return SimplifySubInst(LHS, RHS, false, false, Q, MaxRecurse); 4974 case Instruction::Mul: 4975 return SimplifyMulInst(LHS, RHS, Q, MaxRecurse); 4976 case Instruction::SDiv: 4977 return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 4978 case Instruction::UDiv: 4979 return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 4980 case Instruction::SRem: 4981 return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 4982 case Instruction::URem: 4983 return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 4984 case Instruction::Shl: 4985 return SimplifyShlInst(LHS, RHS, false, false, Q, MaxRecurse); 4986 case Instruction::LShr: 4987 return SimplifyLShrInst(LHS, RHS, false, Q, MaxRecurse); 4988 case Instruction::AShr: 4989 return SimplifyAShrInst(LHS, RHS, false, Q, MaxRecurse); 4990 case Instruction::And: 4991 return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 4992 case Instruction::Or: 4993 return SimplifyOrInst(LHS, RHS, Q, MaxRecurse); 4994 case Instruction::Xor: 4995 return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 4996 case Instruction::FAdd: 4997 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 4998 case Instruction::FSub: 4999 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5000 case Instruction::FMul: 5001 return SimplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5002 case Instruction::FDiv: 5003 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5004 case Instruction::FRem: 5005 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5006 default: 5007 llvm_unreachable("Unexpected opcode"); 5008 } 5009 } 5010 5011 /// Given operands for a BinaryOperator, see if we can fold the result. 5012 /// If not, this returns null. 5013 /// Try to use FastMathFlags when folding the result. 5014 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5015 const FastMathFlags &FMF, const SimplifyQuery &Q, 5016 unsigned MaxRecurse) { 5017 switch (Opcode) { 5018 case Instruction::FAdd: 5019 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 5020 case Instruction::FSub: 5021 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 5022 case Instruction::FMul: 5023 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 5024 case Instruction::FDiv: 5025 return SimplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 5026 default: 5027 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 5028 } 5029 } 5030 5031 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5032 const SimplifyQuery &Q) { 5033 return ::SimplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 5034 } 5035 5036 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5037 FastMathFlags FMF, const SimplifyQuery &Q) { 5038 return ::SimplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 5039 } 5040 5041 /// Given operands for a CmpInst, see if we can fold the result. 5042 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5043 const SimplifyQuery &Q, unsigned MaxRecurse) { 5044 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 5045 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 5046 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 5047 } 5048 5049 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 5050 const SimplifyQuery &Q) { 5051 return ::SimplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 5052 } 5053 5054 static bool IsIdempotent(Intrinsic::ID ID) { 5055 switch (ID) { 5056 default: return false; 5057 5058 // Unary idempotent: f(f(x)) = f(x) 5059 case Intrinsic::fabs: 5060 case Intrinsic::floor: 5061 case Intrinsic::ceil: 5062 case Intrinsic::trunc: 5063 case Intrinsic::rint: 5064 case Intrinsic::nearbyint: 5065 case Intrinsic::round: 5066 case Intrinsic::roundeven: 5067 case Intrinsic::canonicalize: 5068 return true; 5069 } 5070 } 5071 5072 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 5073 const DataLayout &DL) { 5074 GlobalValue *PtrSym; 5075 APInt PtrOffset; 5076 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 5077 return nullptr; 5078 5079 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 5080 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 5081 Type *Int32PtrTy = Int32Ty->getPointerTo(); 5082 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 5083 5084 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 5085 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 5086 return nullptr; 5087 5088 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 5089 if (OffsetInt % 4 != 0) 5090 return nullptr; 5091 5092 Constant *C = ConstantExpr::getGetElementPtr( 5093 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 5094 ConstantInt::get(Int64Ty, OffsetInt / 4)); 5095 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 5096 if (!Loaded) 5097 return nullptr; 5098 5099 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 5100 if (!LoadedCE) 5101 return nullptr; 5102 5103 if (LoadedCE->getOpcode() == Instruction::Trunc) { 5104 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5105 if (!LoadedCE) 5106 return nullptr; 5107 } 5108 5109 if (LoadedCE->getOpcode() != Instruction::Sub) 5110 return nullptr; 5111 5112 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 5113 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 5114 return nullptr; 5115 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 5116 5117 Constant *LoadedRHS = LoadedCE->getOperand(1); 5118 GlobalValue *LoadedRHSSym; 5119 APInt LoadedRHSOffset; 5120 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 5121 DL) || 5122 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 5123 return nullptr; 5124 5125 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 5126 } 5127 5128 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 5129 const SimplifyQuery &Q) { 5130 // Idempotent functions return the same result when called repeatedly. 5131 Intrinsic::ID IID = F->getIntrinsicID(); 5132 if (IsIdempotent(IID)) 5133 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 5134 if (II->getIntrinsicID() == IID) 5135 return II; 5136 5137 Value *X; 5138 switch (IID) { 5139 case Intrinsic::fabs: 5140 if (SignBitMustBeZero(Op0, Q.TLI)) return Op0; 5141 break; 5142 case Intrinsic::bswap: 5143 // bswap(bswap(x)) -> x 5144 if (match(Op0, m_BSwap(m_Value(X)))) return X; 5145 break; 5146 case Intrinsic::bitreverse: 5147 // bitreverse(bitreverse(x)) -> x 5148 if (match(Op0, m_BitReverse(m_Value(X)))) return X; 5149 break; 5150 case Intrinsic::exp: 5151 // exp(log(x)) -> x 5152 if (Q.CxtI->hasAllowReassoc() && 5153 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) return X; 5154 break; 5155 case Intrinsic::exp2: 5156 // exp2(log2(x)) -> x 5157 if (Q.CxtI->hasAllowReassoc() && 5158 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) return X; 5159 break; 5160 case Intrinsic::log: 5161 // log(exp(x)) -> x 5162 if (Q.CxtI->hasAllowReassoc() && 5163 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) return X; 5164 break; 5165 case Intrinsic::log2: 5166 // log2(exp2(x)) -> x 5167 if (Q.CxtI->hasAllowReassoc() && 5168 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 5169 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), 5170 m_Value(X))))) return X; 5171 break; 5172 case Intrinsic::log10: 5173 // log10(pow(10.0, x)) -> x 5174 if (Q.CxtI->hasAllowReassoc() && 5175 match(Op0, m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), 5176 m_Value(X)))) return X; 5177 break; 5178 case Intrinsic::floor: 5179 case Intrinsic::trunc: 5180 case Intrinsic::ceil: 5181 case Intrinsic::round: 5182 case Intrinsic::roundeven: 5183 case Intrinsic::nearbyint: 5184 case Intrinsic::rint: { 5185 // floor (sitofp x) -> sitofp x 5186 // floor (uitofp x) -> uitofp x 5187 // 5188 // Converting from int always results in a finite integral number or 5189 // infinity. For either of those inputs, these rounding functions always 5190 // return the same value, so the rounding can be eliminated. 5191 if (match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 5192 return Op0; 5193 break; 5194 } 5195 default: 5196 break; 5197 } 5198 5199 return nullptr; 5200 } 5201 5202 static Intrinsic::ID getMaxMinOpposite(Intrinsic::ID IID) { 5203 switch (IID) { 5204 case Intrinsic::smax: return Intrinsic::smin; 5205 case Intrinsic::smin: return Intrinsic::smax; 5206 case Intrinsic::umax: return Intrinsic::umin; 5207 case Intrinsic::umin: return Intrinsic::umax; 5208 default: llvm_unreachable("Unexpected intrinsic"); 5209 } 5210 } 5211 5212 static APInt getMaxMinLimit(Intrinsic::ID IID, unsigned BitWidth) { 5213 switch (IID) { 5214 case Intrinsic::smax: return APInt::getSignedMaxValue(BitWidth); 5215 case Intrinsic::smin: return APInt::getSignedMinValue(BitWidth); 5216 case Intrinsic::umax: return APInt::getMaxValue(BitWidth); 5217 case Intrinsic::umin: return APInt::getMinValue(BitWidth); 5218 default: llvm_unreachable("Unexpected intrinsic"); 5219 } 5220 } 5221 5222 static bool isMinMax(Intrinsic::ID IID) { 5223 return IID == Intrinsic::smax || IID == Intrinsic::smin || 5224 IID == Intrinsic::umax || IID == Intrinsic::umin; 5225 } 5226 5227 /// Given a min/max intrinsic, see if it can be removed based on having an 5228 /// operand that is another min/max intrinsic with shared operand(s). The caller 5229 /// is expected to swap the operand arguments to handle commutation. 5230 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 5231 assert(isMinMax(IID) && "Expected min/max intrinsic"); 5232 auto *InnerMM = dyn_cast<IntrinsicInst>(Op0); 5233 if (!InnerMM) 5234 return nullptr; 5235 Intrinsic::ID InnerID = InnerMM->getIntrinsicID(); 5236 if (!isMinMax(InnerID)) 5237 return nullptr; 5238 5239 if (Op1 == InnerMM->getOperand(0) || Op1 == InnerMM->getOperand(1)) { 5240 // max (max X, Y), X --> max X, Y 5241 if (InnerID == IID) 5242 return InnerMM; 5243 // max (min X, Y), X --> X 5244 if (InnerID == getMaxMinOpposite(IID)) 5245 return Op1; 5246 } 5247 return nullptr; 5248 } 5249 5250 static Value *simplifyBinaryIntrinsic(Function *F, Value *Op0, Value *Op1, 5251 const SimplifyQuery &Q) { 5252 Intrinsic::ID IID = F->getIntrinsicID(); 5253 Type *ReturnType = F->getReturnType(); 5254 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 5255 switch (IID) { 5256 case Intrinsic::abs: 5257 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 5258 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 5259 // on the outer abs. 5260 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 5261 return Op0; 5262 // If the sign bit is clear already, then abs does not do anything. 5263 if (isKnownNonNegative(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 5264 return Op0; 5265 break; 5266 5267 case Intrinsic::smax: 5268 case Intrinsic::smin: 5269 case Intrinsic::umax: 5270 case Intrinsic::umin: { 5271 // If the arguments are the same, this is a no-op. 5272 if (Op0 == Op1) 5273 return Op0; 5274 5275 // Canonicalize constant operand as Op1. 5276 if (isa<Constant>(Op0)) 5277 std::swap(Op0, Op1); 5278 5279 // Assume undef is the limit value. 5280 if (isa<UndefValue>(Op1)) 5281 return ConstantInt::get(ReturnType, getMaxMinLimit(IID, BitWidth)); 5282 5283 const APInt *C; 5284 if (match(Op1, m_APIntAllowUndef(C))) { 5285 // Clamp to limit value. For example: 5286 // umax(i8 %x, i8 255) --> 255 5287 if (*C == getMaxMinLimit(IID, BitWidth)) 5288 return ConstantInt::get(ReturnType, *C); 5289 5290 // If the constant op is the opposite of the limit value, the other must 5291 // be larger/smaller or equal. For example: 5292 // umin(i8 %x, i8 255) --> %x 5293 if (*C == getMaxMinLimit(getMaxMinOpposite(IID), BitWidth)) 5294 return Op0; 5295 5296 // Remove nested call if constant operands allow it. Example: 5297 // max (max X, 7), 5 -> max X, 7 5298 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 5299 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 5300 // TODO: loosen undef/splat restrictions for vector constants. 5301 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 5302 const APInt *InnerC; 5303 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 5304 ((IID == Intrinsic::smax && InnerC->sge(*C)) || 5305 (IID == Intrinsic::smin && InnerC->sle(*C)) || 5306 (IID == Intrinsic::umax && InnerC->uge(*C)) || 5307 (IID == Intrinsic::umin && InnerC->ule(*C)))) 5308 return Op0; 5309 } 5310 } 5311 5312 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 5313 return V; 5314 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 5315 return V; 5316 5317 break; 5318 } 5319 case Intrinsic::usub_with_overflow: 5320 case Intrinsic::ssub_with_overflow: 5321 // X - X -> { 0, false } 5322 if (Op0 == Op1) 5323 return Constant::getNullValue(ReturnType); 5324 LLVM_FALLTHROUGH; 5325 case Intrinsic::uadd_with_overflow: 5326 case Intrinsic::sadd_with_overflow: 5327 // X - undef -> { undef, false } 5328 // undef - X -> { undef, false } 5329 // X + undef -> { undef, false } 5330 // undef + x -> { undef, false } 5331 if (isa<UndefValue>(Op0) || isa<UndefValue>(Op1)) { 5332 return ConstantStruct::get( 5333 cast<StructType>(ReturnType), 5334 {UndefValue::get(ReturnType->getStructElementType(0)), 5335 Constant::getNullValue(ReturnType->getStructElementType(1))}); 5336 } 5337 break; 5338 case Intrinsic::umul_with_overflow: 5339 case Intrinsic::smul_with_overflow: 5340 // 0 * X -> { 0, false } 5341 // X * 0 -> { 0, false } 5342 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 5343 return Constant::getNullValue(ReturnType); 5344 // undef * X -> { 0, false } 5345 // X * undef -> { 0, false } 5346 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5347 return Constant::getNullValue(ReturnType); 5348 break; 5349 case Intrinsic::uadd_sat: 5350 // sat(MAX + X) -> MAX 5351 // sat(X + MAX) -> MAX 5352 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 5353 return Constant::getAllOnesValue(ReturnType); 5354 LLVM_FALLTHROUGH; 5355 case Intrinsic::sadd_sat: 5356 // sat(X + undef) -> -1 5357 // sat(undef + X) -> -1 5358 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 5359 // For signed: Assume undef is ~X, in which case X + ~X = -1. 5360 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 5361 return Constant::getAllOnesValue(ReturnType); 5362 5363 // X + 0 -> X 5364 if (match(Op1, m_Zero())) 5365 return Op0; 5366 // 0 + X -> X 5367 if (match(Op0, m_Zero())) 5368 return Op1; 5369 break; 5370 case Intrinsic::usub_sat: 5371 // sat(0 - X) -> 0, sat(X - MAX) -> 0 5372 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 5373 return Constant::getNullValue(ReturnType); 5374 LLVM_FALLTHROUGH; 5375 case Intrinsic::ssub_sat: 5376 // X - X -> 0, X - undef -> 0, undef - X -> 0 5377 if (Op0 == Op1 || match(Op0, m_Undef()) || match(Op1, m_Undef())) 5378 return Constant::getNullValue(ReturnType); 5379 // X - 0 -> X 5380 if (match(Op1, m_Zero())) 5381 return Op0; 5382 break; 5383 case Intrinsic::load_relative: 5384 if (auto *C0 = dyn_cast<Constant>(Op0)) 5385 if (auto *C1 = dyn_cast<Constant>(Op1)) 5386 return SimplifyRelativeLoad(C0, C1, Q.DL); 5387 break; 5388 case Intrinsic::powi: 5389 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 5390 // powi(x, 0) -> 1.0 5391 if (Power->isZero()) 5392 return ConstantFP::get(Op0->getType(), 1.0); 5393 // powi(x, 1) -> x 5394 if (Power->isOne()) 5395 return Op0; 5396 } 5397 break; 5398 case Intrinsic::copysign: 5399 // copysign X, X --> X 5400 if (Op0 == Op1) 5401 return Op0; 5402 // copysign -X, X --> X 5403 // copysign X, -X --> -X 5404 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5405 match(Op1, m_FNeg(m_Specific(Op0)))) 5406 return Op1; 5407 break; 5408 case Intrinsic::maxnum: 5409 case Intrinsic::minnum: 5410 case Intrinsic::maximum: 5411 case Intrinsic::minimum: { 5412 // If the arguments are the same, this is a no-op. 5413 if (Op0 == Op1) return Op0; 5414 5415 // If one argument is undef, return the other argument. 5416 if (match(Op0, m_Undef())) 5417 return Op1; 5418 if (match(Op1, m_Undef())) 5419 return Op0; 5420 5421 // If one argument is NaN, return other or NaN appropriately. 5422 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 5423 if (match(Op0, m_NaN())) 5424 return PropagateNaN ? Op0 : Op1; 5425 if (match(Op1, m_NaN())) 5426 return PropagateNaN ? Op1 : Op0; 5427 5428 // Min/max of the same operation with common operand: 5429 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 5430 if (auto *M0 = dyn_cast<IntrinsicInst>(Op0)) 5431 if (M0->getIntrinsicID() == IID && 5432 (M0->getOperand(0) == Op1 || M0->getOperand(1) == Op1)) 5433 return Op0; 5434 if (auto *M1 = dyn_cast<IntrinsicInst>(Op1)) 5435 if (M1->getIntrinsicID() == IID && 5436 (M1->getOperand(0) == Op0 || M1->getOperand(1) == Op0)) 5437 return Op1; 5438 5439 // min(X, -Inf) --> -Inf (and commuted variant) 5440 // max(X, +Inf) --> +Inf (and commuted variant) 5441 bool UseNegInf = IID == Intrinsic::minnum || IID == Intrinsic::minimum; 5442 const APFloat *C; 5443 if ((match(Op0, m_APFloat(C)) && C->isInfinity() && 5444 C->isNegative() == UseNegInf) || 5445 (match(Op1, m_APFloat(C)) && C->isInfinity() && 5446 C->isNegative() == UseNegInf)) 5447 return ConstantFP::getInfinity(ReturnType, UseNegInf); 5448 5449 // TODO: minnum(nnan x, inf) -> x 5450 // TODO: minnum(nnan ninf x, flt_max) -> x 5451 // TODO: maxnum(nnan x, -inf) -> x 5452 // TODO: maxnum(nnan ninf x, -flt_max) -> x 5453 break; 5454 } 5455 default: 5456 break; 5457 } 5458 5459 return nullptr; 5460 } 5461 5462 static Value *simplifyIntrinsic(CallBase *Call, const SimplifyQuery &Q) { 5463 5464 // Intrinsics with no operands have some kind of side effect. Don't simplify. 5465 unsigned NumOperands = Call->getNumArgOperands(); 5466 if (!NumOperands) 5467 return nullptr; 5468 5469 Function *F = cast<Function>(Call->getCalledFunction()); 5470 Intrinsic::ID IID = F->getIntrinsicID(); 5471 if (NumOperands == 1) 5472 return simplifyUnaryIntrinsic(F, Call->getArgOperand(0), Q); 5473 5474 if (NumOperands == 2) 5475 return simplifyBinaryIntrinsic(F, Call->getArgOperand(0), 5476 Call->getArgOperand(1), Q); 5477 5478 // Handle intrinsics with 3 or more arguments. 5479 switch (IID) { 5480 case Intrinsic::masked_load: 5481 case Intrinsic::masked_gather: { 5482 Value *MaskArg = Call->getArgOperand(2); 5483 Value *PassthruArg = Call->getArgOperand(3); 5484 // If the mask is all zeros or undef, the "passthru" argument is the result. 5485 if (maskIsAllZeroOrUndef(MaskArg)) 5486 return PassthruArg; 5487 return nullptr; 5488 } 5489 case Intrinsic::fshl: 5490 case Intrinsic::fshr: { 5491 Value *Op0 = Call->getArgOperand(0), *Op1 = Call->getArgOperand(1), 5492 *ShAmtArg = Call->getArgOperand(2); 5493 5494 // If both operands are undef, the result is undef. 5495 if (match(Op0, m_Undef()) && match(Op1, m_Undef())) 5496 return UndefValue::get(F->getReturnType()); 5497 5498 // If shift amount is undef, assume it is zero. 5499 if (match(ShAmtArg, m_Undef())) 5500 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5501 5502 const APInt *ShAmtC; 5503 if (match(ShAmtArg, m_APInt(ShAmtC))) { 5504 // If there's effectively no shift, return the 1st arg or 2nd arg. 5505 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 5506 if (ShAmtC->urem(BitWidth).isNullValue()) 5507 return Call->getArgOperand(IID == Intrinsic::fshl ? 0 : 1); 5508 } 5509 return nullptr; 5510 } 5511 case Intrinsic::fma: 5512 case Intrinsic::fmuladd: { 5513 Value *Op0 = Call->getArgOperand(0); 5514 Value *Op1 = Call->getArgOperand(1); 5515 Value *Op2 = Call->getArgOperand(2); 5516 if (Value *V = simplifyFPOp({ Op0, Op1, Op2 })) 5517 return V; 5518 return nullptr; 5519 } 5520 default: 5521 return nullptr; 5522 } 5523 } 5524 5525 static Value *tryConstantFoldCall(CallBase *Call, const SimplifyQuery &Q) { 5526 auto *F = dyn_cast<Function>(Call->getCalledOperand()); 5527 if (!F || !canConstantFoldCallTo(Call, F)) 5528 return nullptr; 5529 5530 SmallVector<Constant *, 4> ConstantArgs; 5531 unsigned NumArgs = Call->getNumArgOperands(); 5532 ConstantArgs.reserve(NumArgs); 5533 for (auto &Arg : Call->args()) { 5534 Constant *C = dyn_cast<Constant>(&Arg); 5535 if (!C) { 5536 if (isa<MetadataAsValue>(Arg.get())) 5537 continue; 5538 return nullptr; 5539 } 5540 ConstantArgs.push_back(C); 5541 } 5542 5543 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 5544 } 5545 5546 Value *llvm::SimplifyCall(CallBase *Call, const SimplifyQuery &Q) { 5547 // musttail calls can only be simplified if they are also DCEd. 5548 // As we can't guarantee this here, don't simplify them. 5549 if (Call->isMustTailCall()) 5550 return nullptr; 5551 5552 // call undef -> undef 5553 // call null -> undef 5554 Value *Callee = Call->getCalledOperand(); 5555 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 5556 return UndefValue::get(Call->getType()); 5557 5558 if (Value *V = tryConstantFoldCall(Call, Q)) 5559 return V; 5560 5561 auto *F = dyn_cast<Function>(Callee); 5562 if (F && F->isIntrinsic()) 5563 if (Value *Ret = simplifyIntrinsic(Call, Q)) 5564 return Ret; 5565 5566 return nullptr; 5567 } 5568 5569 /// Given operands for a Freeze, see if we can fold the result. 5570 static Value *SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5571 // Use a utility function defined in ValueTracking. 5572 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.CxtI, Q.DT)) 5573 return Op0; 5574 // We have room for improvement. 5575 return nullptr; 5576 } 5577 5578 Value *llvm::SimplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 5579 return ::SimplifyFreezeInst(Op0, Q); 5580 } 5581 5582 /// See if we can compute a simplified version of this instruction. 5583 /// If not, this returns null. 5584 5585 Value *llvm::SimplifyInstruction(Instruction *I, const SimplifyQuery &SQ, 5586 OptimizationRemarkEmitter *ORE) { 5587 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 5588 Value *Result; 5589 5590 switch (I->getOpcode()) { 5591 default: 5592 Result = ConstantFoldInstruction(I, Q.DL, Q.TLI); 5593 break; 5594 case Instruction::FNeg: 5595 Result = SimplifyFNegInst(I->getOperand(0), I->getFastMathFlags(), Q); 5596 break; 5597 case Instruction::FAdd: 5598 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 5599 I->getFastMathFlags(), Q); 5600 break; 5601 case Instruction::Add: 5602 Result = 5603 SimplifyAddInst(I->getOperand(0), I->getOperand(1), 5604 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5605 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5606 break; 5607 case Instruction::FSub: 5608 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 5609 I->getFastMathFlags(), Q); 5610 break; 5611 case Instruction::Sub: 5612 Result = 5613 SimplifySubInst(I->getOperand(0), I->getOperand(1), 5614 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5615 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5616 break; 5617 case Instruction::FMul: 5618 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 5619 I->getFastMathFlags(), Q); 5620 break; 5621 case Instruction::Mul: 5622 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), Q); 5623 break; 5624 case Instruction::SDiv: 5625 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), Q); 5626 break; 5627 case Instruction::UDiv: 5628 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), Q); 5629 break; 5630 case Instruction::FDiv: 5631 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 5632 I->getFastMathFlags(), Q); 5633 break; 5634 case Instruction::SRem: 5635 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), Q); 5636 break; 5637 case Instruction::URem: 5638 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), Q); 5639 break; 5640 case Instruction::FRem: 5641 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 5642 I->getFastMathFlags(), Q); 5643 break; 5644 case Instruction::Shl: 5645 Result = 5646 SimplifyShlInst(I->getOperand(0), I->getOperand(1), 5647 Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 5648 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q); 5649 break; 5650 case Instruction::LShr: 5651 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 5652 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5653 break; 5654 case Instruction::AShr: 5655 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 5656 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q); 5657 break; 5658 case Instruction::And: 5659 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), Q); 5660 break; 5661 case Instruction::Or: 5662 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), Q); 5663 break; 5664 case Instruction::Xor: 5665 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), Q); 5666 break; 5667 case Instruction::ICmp: 5668 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 5669 I->getOperand(0), I->getOperand(1), Q); 5670 break; 5671 case Instruction::FCmp: 5672 Result = 5673 SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), I->getOperand(0), 5674 I->getOperand(1), I->getFastMathFlags(), Q); 5675 break; 5676 case Instruction::Select: 5677 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 5678 I->getOperand(2), Q); 5679 break; 5680 case Instruction::GetElementPtr: { 5681 SmallVector<Value *, 8> Ops(I->op_begin(), I->op_end()); 5682 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 5683 Ops, Q); 5684 break; 5685 } 5686 case Instruction::InsertValue: { 5687 InsertValueInst *IV = cast<InsertValueInst>(I); 5688 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 5689 IV->getInsertedValueOperand(), 5690 IV->getIndices(), Q); 5691 break; 5692 } 5693 case Instruction::InsertElement: { 5694 auto *IE = cast<InsertElementInst>(I); 5695 Result = SimplifyInsertElementInst(IE->getOperand(0), IE->getOperand(1), 5696 IE->getOperand(2), Q); 5697 break; 5698 } 5699 case Instruction::ExtractValue: { 5700 auto *EVI = cast<ExtractValueInst>(I); 5701 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 5702 EVI->getIndices(), Q); 5703 break; 5704 } 5705 case Instruction::ExtractElement: { 5706 auto *EEI = cast<ExtractElementInst>(I); 5707 Result = SimplifyExtractElementInst(EEI->getVectorOperand(), 5708 EEI->getIndexOperand(), Q); 5709 break; 5710 } 5711 case Instruction::ShuffleVector: { 5712 auto *SVI = cast<ShuffleVectorInst>(I); 5713 Result = 5714 SimplifyShuffleVectorInst(SVI->getOperand(0), SVI->getOperand(1), 5715 SVI->getShuffleMask(), SVI->getType(), Q); 5716 break; 5717 } 5718 case Instruction::PHI: 5719 Result = SimplifyPHINode(cast<PHINode>(I), Q); 5720 break; 5721 case Instruction::Call: { 5722 Result = SimplifyCall(cast<CallInst>(I), Q); 5723 break; 5724 } 5725 case Instruction::Freeze: 5726 Result = SimplifyFreezeInst(I->getOperand(0), Q); 5727 break; 5728 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 5729 #include "llvm/IR/Instruction.def" 5730 #undef HANDLE_CAST_INST 5731 Result = 5732 SimplifyCastInst(I->getOpcode(), I->getOperand(0), I->getType(), Q); 5733 break; 5734 case Instruction::Alloca: 5735 // No simplifications for Alloca and it can't be constant folded. 5736 Result = nullptr; 5737 break; 5738 } 5739 5740 /// If called on unreachable code, the above logic may report that the 5741 /// instruction simplified to itself. Make life easier for users by 5742 /// detecting that case here, returning a safe value instead. 5743 return Result == I ? UndefValue::get(I->getType()) : Result; 5744 } 5745 5746 /// Implementation of recursive simplification through an instruction's 5747 /// uses. 5748 /// 5749 /// This is the common implementation of the recursive simplification routines. 5750 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 5751 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 5752 /// instructions to process and attempt to simplify it using 5753 /// InstructionSimplify. Recursively visited users which could not be 5754 /// simplified themselves are to the optional UnsimplifiedUsers set for 5755 /// further processing by the caller. 5756 /// 5757 /// This routine returns 'true' only when *it* simplifies something. The passed 5758 /// in simplified value does not count toward this. 5759 static bool replaceAndRecursivelySimplifyImpl( 5760 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5761 const DominatorTree *DT, AssumptionCache *AC, 5762 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 5763 bool Simplified = false; 5764 SmallSetVector<Instruction *, 8> Worklist; 5765 const DataLayout &DL = I->getModule()->getDataLayout(); 5766 5767 // If we have an explicit value to collapse to, do that round of the 5768 // simplification loop by hand initially. 5769 if (SimpleV) { 5770 for (User *U : I->users()) 5771 if (U != I) 5772 Worklist.insert(cast<Instruction>(U)); 5773 5774 // Replace the instruction with its simplified value. 5775 I->replaceAllUsesWith(SimpleV); 5776 5777 // Gracefully handle edge cases where the instruction is not wired into any 5778 // parent block. 5779 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5780 !I->mayHaveSideEffects()) 5781 I->eraseFromParent(); 5782 } else { 5783 Worklist.insert(I); 5784 } 5785 5786 // Note that we must test the size on each iteration, the worklist can grow. 5787 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 5788 I = Worklist[Idx]; 5789 5790 // See if this instruction simplifies. 5791 SimpleV = SimplifyInstruction(I, {DL, TLI, DT, AC}); 5792 if (!SimpleV) { 5793 if (UnsimplifiedUsers) 5794 UnsimplifiedUsers->insert(I); 5795 continue; 5796 } 5797 5798 Simplified = true; 5799 5800 // Stash away all the uses of the old instruction so we can check them for 5801 // recursive simplifications after a RAUW. This is cheaper than checking all 5802 // uses of To on the recursive step in most cases. 5803 for (User *U : I->users()) 5804 Worklist.insert(cast<Instruction>(U)); 5805 5806 // Replace the instruction with its simplified value. 5807 I->replaceAllUsesWith(SimpleV); 5808 5809 // Gracefully handle edge cases where the instruction is not wired into any 5810 // parent block. 5811 if (I->getParent() && !I->isEHPad() && !I->isTerminator() && 5812 !I->mayHaveSideEffects()) 5813 I->eraseFromParent(); 5814 } 5815 return Simplified; 5816 } 5817 5818 bool llvm::recursivelySimplifyInstruction(Instruction *I, 5819 const TargetLibraryInfo *TLI, 5820 const DominatorTree *DT, 5821 AssumptionCache *AC) { 5822 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC, nullptr); 5823 } 5824 5825 bool llvm::replaceAndRecursivelySimplify( 5826 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 5827 const DominatorTree *DT, AssumptionCache *AC, 5828 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 5829 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 5830 assert(SimpleV && "Must provide a simplified value."); 5831 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 5832 UnsimplifiedUsers); 5833 } 5834 5835 namespace llvm { 5836 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 5837 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 5838 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 5839 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 5840 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 5841 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 5842 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 5843 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5844 } 5845 5846 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 5847 const DataLayout &DL) { 5848 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 5849 } 5850 5851 template <class T, class... TArgs> 5852 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 5853 Function &F) { 5854 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 5855 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 5856 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 5857 return {F.getParent()->getDataLayout(), TLI, DT, AC}; 5858 } 5859 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 5860 Function &); 5861 } 5862