1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/MemoryBuiltins.h" 27 #include "llvm/Analysis/ValueTracking.h" 28 #include "llvm/Analysis/VectorUtils.h" 29 #include "llvm/IR/ConstantRange.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/GetElementPtrTypeIterator.h" 33 #include "llvm/IR/GlobalAlias.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/ValueHandle.h" 37 #include <algorithm> 38 using namespace llvm; 39 using namespace llvm::PatternMatch; 40 41 #define DEBUG_TYPE "instsimplify" 42 43 enum { RecursionLimit = 3 }; 44 45 STATISTIC(NumExpand, "Number of expansions"); 46 STATISTIC(NumReassoc, "Number of reassociations"); 47 48 namespace { 49 struct Query { 50 const DataLayout &DL; 51 const TargetLibraryInfo *TLI; 52 const DominatorTree *DT; 53 AssumptionCache *AC; 54 const Instruction *CxtI; 55 56 Query(const DataLayout &DL, const TargetLibraryInfo *tli, 57 const DominatorTree *dt, AssumptionCache *ac = nullptr, 58 const Instruction *cxti = nullptr) 59 : DL(DL), TLI(tli), DT(dt), AC(ac), CxtI(cxti) {} 60 }; 61 } // end anonymous namespace 62 63 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 64 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 65 unsigned); 66 static Value *SimplifyFPBinOp(unsigned, Value *, Value *, const FastMathFlags &, 67 const Query &, unsigned); 68 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 69 unsigned); 70 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 71 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 72 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 73 74 /// For a boolean type, or a vector of boolean type, return false, or 75 /// a vector with every element false, as appropriate for the type. 76 static Constant *getFalse(Type *Ty) { 77 assert(Ty->getScalarType()->isIntegerTy(1) && 78 "Expected i1 type or a vector of i1!"); 79 return Constant::getNullValue(Ty); 80 } 81 82 /// For a boolean type, or a vector of boolean type, return true, or 83 /// a vector with every element true, as appropriate for the type. 84 static Constant *getTrue(Type *Ty) { 85 assert(Ty->getScalarType()->isIntegerTy(1) && 86 "Expected i1 type or a vector of i1!"); 87 return Constant::getAllOnesValue(Ty); 88 } 89 90 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 91 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 92 Value *RHS) { 93 CmpInst *Cmp = dyn_cast<CmpInst>(V); 94 if (!Cmp) 95 return false; 96 CmpInst::Predicate CPred = Cmp->getPredicate(); 97 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 98 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 99 return true; 100 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 101 CRHS == LHS; 102 } 103 104 /// Does the given value dominate the specified phi node? 105 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 106 Instruction *I = dyn_cast<Instruction>(V); 107 if (!I) 108 // Arguments and constants dominate all instructions. 109 return true; 110 111 // If we are processing instructions (and/or basic blocks) that have not been 112 // fully added to a function, the parent nodes may still be null. Simply 113 // return the conservative answer in these cases. 114 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 115 return false; 116 117 // If we have a DominatorTree then do a precise test. 118 if (DT) { 119 if (!DT->isReachableFromEntry(P->getParent())) 120 return true; 121 if (!DT->isReachableFromEntry(I->getParent())) 122 return false; 123 return DT->dominates(I, P); 124 } 125 126 // Otherwise, if the instruction is in the entry block and is not an invoke, 127 // then it obviously dominates all phi nodes. 128 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 129 !isa<InvokeInst>(I)) 130 return true; 131 132 return false; 133 } 134 135 /// Simplify "A op (B op' C)" by distributing op over op', turning it into 136 /// "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 137 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 138 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 139 /// Returns the simplified value, or null if no simplification was performed. 140 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 141 unsigned OpcToExpand, const Query &Q, 142 unsigned MaxRecurse) { 143 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 144 // Recursion is always used, so bail out at once if we already hit the limit. 145 if (!MaxRecurse--) 146 return nullptr; 147 148 // Check whether the expression has the form "(A op' B) op C". 149 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 150 if (Op0->getOpcode() == OpcodeToExpand) { 151 // It does! Try turning it into "(A op C) op' (B op C)". 152 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 153 // Do "A op C" and "B op C" both simplify? 154 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 155 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 156 // They do! Return "L op' R" if it simplifies or is already available. 157 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 158 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 159 && L == B && R == A)) { 160 ++NumExpand; 161 return LHS; 162 } 163 // Otherwise return "L op' R" if it simplifies. 164 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 165 ++NumExpand; 166 return V; 167 } 168 } 169 } 170 171 // Check whether the expression has the form "A op (B op' C)". 172 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 173 if (Op1->getOpcode() == OpcodeToExpand) { 174 // It does! Try turning it into "(A op B) op' (A op C)". 175 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 176 // Do "A op B" and "A op C" both simplify? 177 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 178 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 179 // They do! Return "L op' R" if it simplifies or is already available. 180 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 181 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 182 && L == C && R == B)) { 183 ++NumExpand; 184 return RHS; 185 } 186 // Otherwise return "L op' R" if it simplifies. 187 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 188 ++NumExpand; 189 return V; 190 } 191 } 192 } 193 194 return nullptr; 195 } 196 197 /// Generic simplifications for associative binary operations. 198 /// Returns the simpler value, or null if none was found. 199 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 200 const Query &Q, unsigned MaxRecurse) { 201 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 202 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 203 204 // Recursion is always used, so bail out at once if we already hit the limit. 205 if (!MaxRecurse--) 206 return nullptr; 207 208 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 209 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 210 211 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 212 if (Op0 && Op0->getOpcode() == Opcode) { 213 Value *A = Op0->getOperand(0); 214 Value *B = Op0->getOperand(1); 215 Value *C = RHS; 216 217 // Does "B op C" simplify? 218 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 219 // It does! Return "A op V" if it simplifies or is already available. 220 // If V equals B then "A op V" is just the LHS. 221 if (V == B) return LHS; 222 // Otherwise return "A op V" if it simplifies. 223 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 224 ++NumReassoc; 225 return W; 226 } 227 } 228 } 229 230 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 231 if (Op1 && Op1->getOpcode() == Opcode) { 232 Value *A = LHS; 233 Value *B = Op1->getOperand(0); 234 Value *C = Op1->getOperand(1); 235 236 // Does "A op B" simplify? 237 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 238 // It does! Return "V op C" if it simplifies or is already available. 239 // If V equals B then "V op C" is just the RHS. 240 if (V == B) return RHS; 241 // Otherwise return "V op C" if it simplifies. 242 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 243 ++NumReassoc; 244 return W; 245 } 246 } 247 } 248 249 // The remaining transforms require commutativity as well as associativity. 250 if (!Instruction::isCommutative(Opcode)) 251 return nullptr; 252 253 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 254 if (Op0 && Op0->getOpcode() == Opcode) { 255 Value *A = Op0->getOperand(0); 256 Value *B = Op0->getOperand(1); 257 Value *C = RHS; 258 259 // Does "C op A" simplify? 260 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 261 // It does! Return "V op B" if it simplifies or is already available. 262 // If V equals A then "V op B" is just the LHS. 263 if (V == A) return LHS; 264 // Otherwise return "V op B" if it simplifies. 265 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 266 ++NumReassoc; 267 return W; 268 } 269 } 270 } 271 272 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 273 if (Op1 && Op1->getOpcode() == Opcode) { 274 Value *A = LHS; 275 Value *B = Op1->getOperand(0); 276 Value *C = Op1->getOperand(1); 277 278 // Does "C op A" simplify? 279 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 280 // It does! Return "B op V" if it simplifies or is already available. 281 // If V equals C then "B op V" is just the RHS. 282 if (V == C) return RHS; 283 // Otherwise return "B op V" if it simplifies. 284 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 285 ++NumReassoc; 286 return W; 287 } 288 } 289 } 290 291 return nullptr; 292 } 293 294 /// In the case of a binary operation with a select instruction as an operand, 295 /// try to simplify the binop by seeing whether evaluating it on both branches 296 /// of the select results in the same value. Returns the common value if so, 297 /// otherwise returns null. 298 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 299 const Query &Q, unsigned MaxRecurse) { 300 // Recursion is always used, so bail out at once if we already hit the limit. 301 if (!MaxRecurse--) 302 return nullptr; 303 304 SelectInst *SI; 305 if (isa<SelectInst>(LHS)) { 306 SI = cast<SelectInst>(LHS); 307 } else { 308 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 309 SI = cast<SelectInst>(RHS); 310 } 311 312 // Evaluate the BinOp on the true and false branches of the select. 313 Value *TV; 314 Value *FV; 315 if (SI == LHS) { 316 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 317 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 318 } else { 319 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 320 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 321 } 322 323 // If they simplified to the same value, then return the common value. 324 // If they both failed to simplify then return null. 325 if (TV == FV) 326 return TV; 327 328 // If one branch simplified to undef, return the other one. 329 if (TV && isa<UndefValue>(TV)) 330 return FV; 331 if (FV && isa<UndefValue>(FV)) 332 return TV; 333 334 // If applying the operation did not change the true and false select values, 335 // then the result of the binop is the select itself. 336 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 337 return SI; 338 339 // If one branch simplified and the other did not, and the simplified 340 // value is equal to the unsimplified one, return the simplified value. 341 // For example, select (cond, X, X & Z) & Z -> X & Z. 342 if ((FV && !TV) || (TV && !FV)) { 343 // Check that the simplified value has the form "X op Y" where "op" is the 344 // same as the original operation. 345 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 346 if (Simplified && Simplified->getOpcode() == Opcode) { 347 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 348 // We already know that "op" is the same as for the simplified value. See 349 // if the operands match too. If so, return the simplified value. 350 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 351 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 352 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 353 if (Simplified->getOperand(0) == UnsimplifiedLHS && 354 Simplified->getOperand(1) == UnsimplifiedRHS) 355 return Simplified; 356 if (Simplified->isCommutative() && 357 Simplified->getOperand(1) == UnsimplifiedLHS && 358 Simplified->getOperand(0) == UnsimplifiedRHS) 359 return Simplified; 360 } 361 } 362 363 return nullptr; 364 } 365 366 /// In the case of a comparison with a select instruction, try to simplify the 367 /// comparison by seeing whether both branches of the select result in the same 368 /// value. Returns the common value if so, otherwise returns null. 369 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 370 Value *RHS, const Query &Q, 371 unsigned MaxRecurse) { 372 // Recursion is always used, so bail out at once if we already hit the limit. 373 if (!MaxRecurse--) 374 return nullptr; 375 376 // Make sure the select is on the LHS. 377 if (!isa<SelectInst>(LHS)) { 378 std::swap(LHS, RHS); 379 Pred = CmpInst::getSwappedPredicate(Pred); 380 } 381 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 382 SelectInst *SI = cast<SelectInst>(LHS); 383 Value *Cond = SI->getCondition(); 384 Value *TV = SI->getTrueValue(); 385 Value *FV = SI->getFalseValue(); 386 387 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 388 // Does "cmp TV, RHS" simplify? 389 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 390 if (TCmp == Cond) { 391 // It not only simplified, it simplified to the select condition. Replace 392 // it with 'true'. 393 TCmp = getTrue(Cond->getType()); 394 } else if (!TCmp) { 395 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 396 // condition then we can replace it with 'true'. Otherwise give up. 397 if (!isSameCompare(Cond, Pred, TV, RHS)) 398 return nullptr; 399 TCmp = getTrue(Cond->getType()); 400 } 401 402 // Does "cmp FV, RHS" simplify? 403 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 404 if (FCmp == Cond) { 405 // It not only simplified, it simplified to the select condition. Replace 406 // it with 'false'. 407 FCmp = getFalse(Cond->getType()); 408 } else if (!FCmp) { 409 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 410 // condition then we can replace it with 'false'. Otherwise give up. 411 if (!isSameCompare(Cond, Pred, FV, RHS)) 412 return nullptr; 413 FCmp = getFalse(Cond->getType()); 414 } 415 416 // If both sides simplified to the same value, then use it as the result of 417 // the original comparison. 418 if (TCmp == FCmp) 419 return TCmp; 420 421 // The remaining cases only make sense if the select condition has the same 422 // type as the result of the comparison, so bail out if this is not so. 423 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 424 return nullptr; 425 // If the false value simplified to false, then the result of the compare 426 // is equal to "Cond && TCmp". This also catches the case when the false 427 // value simplified to false and the true value to true, returning "Cond". 428 if (match(FCmp, m_Zero())) 429 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 430 return V; 431 // If the true value simplified to true, then the result of the compare 432 // is equal to "Cond || FCmp". 433 if (match(TCmp, m_One())) 434 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 435 return V; 436 // Finally, if the false value simplified to true and the true value to 437 // false, then the result of the compare is equal to "!Cond". 438 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 439 if (Value *V = 440 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 441 Q, MaxRecurse)) 442 return V; 443 444 return nullptr; 445 } 446 447 /// In the case of a binary operation with an operand that is a PHI instruction, 448 /// try to simplify the binop by seeing whether evaluating it on the incoming 449 /// phi values yields the same result for every value. If so returns the common 450 /// value, otherwise returns null. 451 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 452 const Query &Q, unsigned MaxRecurse) { 453 // Recursion is always used, so bail out at once if we already hit the limit. 454 if (!MaxRecurse--) 455 return nullptr; 456 457 PHINode *PI; 458 if (isa<PHINode>(LHS)) { 459 PI = cast<PHINode>(LHS); 460 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 461 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 462 return nullptr; 463 } else { 464 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 465 PI = cast<PHINode>(RHS); 466 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 467 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 468 return nullptr; 469 } 470 471 // Evaluate the BinOp on the incoming phi values. 472 Value *CommonValue = nullptr; 473 for (Value *Incoming : PI->incoming_values()) { 474 // If the incoming value is the phi node itself, it can safely be skipped. 475 if (Incoming == PI) continue; 476 Value *V = PI == LHS ? 477 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 478 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 479 // If the operation failed to simplify, or simplified to a different value 480 // to previously, then give up. 481 if (!V || (CommonValue && V != CommonValue)) 482 return nullptr; 483 CommonValue = V; 484 } 485 486 return CommonValue; 487 } 488 489 /// In the case of a comparison with a PHI instruction, try to simplify the 490 /// comparison by seeing whether comparing with all of the incoming phi values 491 /// yields the same result every time. If so returns the common result, 492 /// otherwise returns null. 493 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 494 const Query &Q, unsigned MaxRecurse) { 495 // Recursion is always used, so bail out at once if we already hit the limit. 496 if (!MaxRecurse--) 497 return nullptr; 498 499 // Make sure the phi is on the LHS. 500 if (!isa<PHINode>(LHS)) { 501 std::swap(LHS, RHS); 502 Pred = CmpInst::getSwappedPredicate(Pred); 503 } 504 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 505 PHINode *PI = cast<PHINode>(LHS); 506 507 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 508 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 509 return nullptr; 510 511 // Evaluate the BinOp on the incoming phi values. 512 Value *CommonValue = nullptr; 513 for (Value *Incoming : PI->incoming_values()) { 514 // If the incoming value is the phi node itself, it can safely be skipped. 515 if (Incoming == PI) continue; 516 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 517 // If the operation failed to simplify, or simplified to a different value 518 // to previously, then give up. 519 if (!V || (CommonValue && V != CommonValue)) 520 return nullptr; 521 CommonValue = V; 522 } 523 524 return CommonValue; 525 } 526 527 /// Given operands for an Add, see if we can fold the result. 528 /// If not, this returns null. 529 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 530 const Query &Q, unsigned MaxRecurse) { 531 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 532 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 533 return ConstantFoldBinaryOpOperands(Instruction::Add, CLHS, CRHS, Q.DL); 534 535 // Canonicalize the constant to the RHS. 536 std::swap(Op0, Op1); 537 } 538 539 // X + undef -> undef 540 if (match(Op1, m_Undef())) 541 return Op1; 542 543 // X + 0 -> X 544 if (match(Op1, m_Zero())) 545 return Op0; 546 547 // X + (Y - X) -> Y 548 // (Y - X) + X -> Y 549 // Eg: X + -X -> 0 550 Value *Y = nullptr; 551 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 552 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 553 return Y; 554 555 // X + ~X -> -1 since ~X = -X-1 556 if (match(Op0, m_Not(m_Specific(Op1))) || 557 match(Op1, m_Not(m_Specific(Op0)))) 558 return Constant::getAllOnesValue(Op0->getType()); 559 560 /// i1 add -> xor. 561 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 562 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 563 return V; 564 565 // Try some generic simplifications for associative operations. 566 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 567 MaxRecurse)) 568 return V; 569 570 // Threading Add over selects and phi nodes is pointless, so don't bother. 571 // Threading over the select in "A + select(cond, B, C)" means evaluating 572 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 573 // only if B and C are equal. If B and C are equal then (since we assume 574 // that operands have already been simplified) "select(cond, B, C)" should 575 // have been simplified to the common value of B and C already. Analysing 576 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 577 // for threading over phi nodes. 578 579 return nullptr; 580 } 581 582 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 583 const DataLayout &DL, const TargetLibraryInfo *TLI, 584 const DominatorTree *DT, AssumptionCache *AC, 585 const Instruction *CxtI) { 586 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 587 RecursionLimit); 588 } 589 590 /// \brief Compute the base pointer and cumulative constant offsets for V. 591 /// 592 /// This strips all constant offsets off of V, leaving it the base pointer, and 593 /// accumulates the total constant offset applied in the returned constant. It 594 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 595 /// no constant offsets applied. 596 /// 597 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 598 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 599 /// folding. 600 static Constant *stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 601 bool AllowNonInbounds = false) { 602 assert(V->getType()->getScalarType()->isPointerTy()); 603 604 Type *IntPtrTy = DL.getIntPtrType(V->getType())->getScalarType(); 605 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 606 607 // Even though we don't look through PHI nodes, we could be called on an 608 // instruction in an unreachable block, which may be on a cycle. 609 SmallPtrSet<Value *, 4> Visited; 610 Visited.insert(V); 611 do { 612 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 613 if ((!AllowNonInbounds && !GEP->isInBounds()) || 614 !GEP->accumulateConstantOffset(DL, Offset)) 615 break; 616 V = GEP->getPointerOperand(); 617 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 618 V = cast<Operator>(V)->getOperand(0); 619 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 620 if (GA->isInterposable()) 621 break; 622 V = GA->getAliasee(); 623 } else { 624 break; 625 } 626 assert(V->getType()->getScalarType()->isPointerTy() && 627 "Unexpected operand type!"); 628 } while (Visited.insert(V).second); 629 630 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 631 if (V->getType()->isVectorTy()) 632 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 633 OffsetIntPtr); 634 return OffsetIntPtr; 635 } 636 637 /// \brief Compute the constant difference between two pointer values. 638 /// If the difference is not a constant, returns zero. 639 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 640 Value *RHS) { 641 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 642 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 643 644 // If LHS and RHS are not related via constant offsets to the same base 645 // value, there is nothing we can do here. 646 if (LHS != RHS) 647 return nullptr; 648 649 // Otherwise, the difference of LHS - RHS can be computed as: 650 // LHS - RHS 651 // = (LHSOffset + Base) - (RHSOffset + Base) 652 // = LHSOffset - RHSOffset 653 return ConstantExpr::getSub(LHSOffset, RHSOffset); 654 } 655 656 /// Given operands for a Sub, see if we can fold the result. 657 /// If not, this returns null. 658 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 659 const Query &Q, unsigned MaxRecurse) { 660 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 661 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 662 return ConstantFoldBinaryOpOperands(Instruction::Sub, CLHS, CRHS, Q.DL); 663 664 // X - undef -> undef 665 // undef - X -> undef 666 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 667 return UndefValue::get(Op0->getType()); 668 669 // X - 0 -> X 670 if (match(Op1, m_Zero())) 671 return Op0; 672 673 // X - X -> 0 674 if (Op0 == Op1) 675 return Constant::getNullValue(Op0->getType()); 676 677 // 0 - X -> 0 if the sub is NUW. 678 if (isNUW && match(Op0, m_Zero())) 679 return Op0; 680 681 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 682 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 683 Value *X = nullptr, *Y = nullptr, *Z = Op1; 684 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 685 // See if "V === Y - Z" simplifies. 686 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 687 // It does! Now see if "X + V" simplifies. 688 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 689 // It does, we successfully reassociated! 690 ++NumReassoc; 691 return W; 692 } 693 // See if "V === X - Z" simplifies. 694 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 695 // It does! Now see if "Y + V" simplifies. 696 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 697 // It does, we successfully reassociated! 698 ++NumReassoc; 699 return W; 700 } 701 } 702 703 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 704 // For example, X - (X + 1) -> -1 705 X = Op0; 706 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 707 // See if "V === X - Y" simplifies. 708 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 709 // It does! Now see if "V - Z" simplifies. 710 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 711 // It does, we successfully reassociated! 712 ++NumReassoc; 713 return W; 714 } 715 // See if "V === X - Z" simplifies. 716 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 717 // It does! Now see if "V - Y" simplifies. 718 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 719 // It does, we successfully reassociated! 720 ++NumReassoc; 721 return W; 722 } 723 } 724 725 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 726 // For example, X - (X - Y) -> Y. 727 Z = Op0; 728 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 729 // See if "V === Z - X" simplifies. 730 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 731 // It does! Now see if "V + Y" simplifies. 732 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 733 // It does, we successfully reassociated! 734 ++NumReassoc; 735 return W; 736 } 737 738 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 739 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 740 match(Op1, m_Trunc(m_Value(Y)))) 741 if (X->getType() == Y->getType()) 742 // See if "V === X - Y" simplifies. 743 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 744 // It does! Now see if "trunc V" simplifies. 745 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 746 // It does, return the simplified "trunc V". 747 return W; 748 749 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 750 if (match(Op0, m_PtrToInt(m_Value(X))) && 751 match(Op1, m_PtrToInt(m_Value(Y)))) 752 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 753 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 754 755 // i1 sub -> xor. 756 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 757 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 758 return V; 759 760 // Threading Sub over selects and phi nodes is pointless, so don't bother. 761 // Threading over the select in "A - select(cond, B, C)" means evaluating 762 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 763 // only if B and C are equal. If B and C are equal then (since we assume 764 // that operands have already been simplified) "select(cond, B, C)" should 765 // have been simplified to the common value of B and C already. Analysing 766 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 767 // for threading over phi nodes. 768 769 return nullptr; 770 } 771 772 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 773 const DataLayout &DL, const TargetLibraryInfo *TLI, 774 const DominatorTree *DT, AssumptionCache *AC, 775 const Instruction *CxtI) { 776 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 777 RecursionLimit); 778 } 779 780 /// Given operands for an FAdd, see if we can fold the result. If not, this 781 /// returns null. 782 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 783 const Query &Q, unsigned MaxRecurse) { 784 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 785 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 786 return ConstantFoldBinaryOpOperands(Instruction::FAdd, CLHS, CRHS, Q.DL); 787 788 // Canonicalize the constant to the RHS. 789 std::swap(Op0, Op1); 790 } 791 792 // fadd X, -0 ==> X 793 if (match(Op1, m_NegZero())) 794 return Op0; 795 796 // fadd X, 0 ==> X, when we know X is not -0 797 if (match(Op1, m_Zero()) && 798 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 799 return Op0; 800 801 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 802 // where nnan and ninf have to occur at least once somewhere in this 803 // expression 804 Value *SubOp = nullptr; 805 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 806 SubOp = Op1; 807 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 808 SubOp = Op0; 809 if (SubOp) { 810 Instruction *FSub = cast<Instruction>(SubOp); 811 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 812 (FMF.noInfs() || FSub->hasNoInfs())) 813 return Constant::getNullValue(Op0->getType()); 814 } 815 816 return nullptr; 817 } 818 819 /// Given operands for an FSub, see if we can fold the result. If not, this 820 /// returns null. 821 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 822 const Query &Q, unsigned MaxRecurse) { 823 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 824 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 825 return ConstantFoldBinaryOpOperands(Instruction::FSub, CLHS, CRHS, Q.DL); 826 } 827 828 // fsub X, 0 ==> X 829 if (match(Op1, m_Zero())) 830 return Op0; 831 832 // fsub X, -0 ==> X, when we know X is not -0 833 if (match(Op1, m_NegZero()) && 834 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0, Q.TLI))) 835 return Op0; 836 837 // fsub -0.0, (fsub -0.0, X) ==> X 838 Value *X; 839 if (match(Op0, m_NegZero()) && match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 840 return X; 841 842 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 843 if (FMF.noSignedZeros() && match(Op0, m_AnyZero()) && 844 match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 845 return X; 846 847 // fsub nnan x, x ==> 0.0 848 if (FMF.noNaNs() && Op0 == Op1) 849 return Constant::getNullValue(Op0->getType()); 850 851 return nullptr; 852 } 853 854 /// Given the operands for an FMul, see if we can fold the result 855 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 856 FastMathFlags FMF, 857 const Query &Q, 858 unsigned MaxRecurse) { 859 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 860 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 861 return ConstantFoldBinaryOpOperands(Instruction::FMul, CLHS, CRHS, Q.DL); 862 863 // Canonicalize the constant to the RHS. 864 std::swap(Op0, Op1); 865 } 866 867 // fmul X, 1.0 ==> X 868 if (match(Op1, m_FPOne())) 869 return Op0; 870 871 // fmul nnan nsz X, 0 ==> 0 872 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 873 return Op1; 874 875 return nullptr; 876 } 877 878 /// Given operands for a Mul, see if we can fold the result. 879 /// If not, this returns null. 880 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 881 unsigned MaxRecurse) { 882 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 883 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 884 return ConstantFoldBinaryOpOperands(Instruction::Mul, CLHS, CRHS, Q.DL); 885 886 // Canonicalize the constant to the RHS. 887 std::swap(Op0, Op1); 888 } 889 890 // X * undef -> 0 891 if (match(Op1, m_Undef())) 892 return Constant::getNullValue(Op0->getType()); 893 894 // X * 0 -> 0 895 if (match(Op1, m_Zero())) 896 return Op1; 897 898 // X * 1 -> X 899 if (match(Op1, m_One())) 900 return Op0; 901 902 // (X / Y) * Y -> X if the division is exact. 903 Value *X = nullptr; 904 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 905 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 906 return X; 907 908 // i1 mul -> and. 909 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 910 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 911 return V; 912 913 // Try some generic simplifications for associative operations. 914 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 915 MaxRecurse)) 916 return V; 917 918 // Mul distributes over Add. Try some generic simplifications based on this. 919 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 920 Q, MaxRecurse)) 921 return V; 922 923 // If the operation is with the result of a select instruction, check whether 924 // operating on either branch of the select always yields the same value. 925 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 926 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 927 MaxRecurse)) 928 return V; 929 930 // If the operation is with the result of a phi instruction, check whether 931 // operating on all incoming values of the phi always yields the same value. 932 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 933 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 934 MaxRecurse)) 935 return V; 936 937 return nullptr; 938 } 939 940 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 941 const DataLayout &DL, 942 const TargetLibraryInfo *TLI, 943 const DominatorTree *DT, AssumptionCache *AC, 944 const Instruction *CxtI) { 945 return ::SimplifyFAddInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 946 RecursionLimit); 947 } 948 949 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 950 const DataLayout &DL, 951 const TargetLibraryInfo *TLI, 952 const DominatorTree *DT, AssumptionCache *AC, 953 const Instruction *CxtI) { 954 return ::SimplifyFSubInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 955 RecursionLimit); 956 } 957 958 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 959 const DataLayout &DL, 960 const TargetLibraryInfo *TLI, 961 const DominatorTree *DT, AssumptionCache *AC, 962 const Instruction *CxtI) { 963 return ::SimplifyFMulInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 964 RecursionLimit); 965 } 966 967 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout &DL, 968 const TargetLibraryInfo *TLI, 969 const DominatorTree *DT, AssumptionCache *AC, 970 const Instruction *CxtI) { 971 return ::SimplifyMulInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 972 RecursionLimit); 973 } 974 975 /// Given operands for an SDiv or UDiv, see if we can fold the result. 976 /// If not, this returns null. 977 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 978 const Query &Q, unsigned MaxRecurse) { 979 if (Constant *C0 = dyn_cast<Constant>(Op0)) 980 if (Constant *C1 = dyn_cast<Constant>(Op1)) 981 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 982 983 bool isSigned = Opcode == Instruction::SDiv; 984 985 // X / undef -> undef 986 if (match(Op1, m_Undef())) 987 return Op1; 988 989 // X / 0 -> undef, we don't need to preserve faults! 990 if (match(Op1, m_Zero())) 991 return UndefValue::get(Op1->getType()); 992 993 // undef / X -> 0 994 if (match(Op0, m_Undef())) 995 return Constant::getNullValue(Op0->getType()); 996 997 // 0 / X -> 0, we don't need to preserve faults! 998 if (match(Op0, m_Zero())) 999 return Op0; 1000 1001 // X / 1 -> X 1002 if (match(Op1, m_One())) 1003 return Op0; 1004 1005 if (Op0->getType()->isIntegerTy(1)) 1006 // It can't be division by zero, hence it must be division by one. 1007 return Op0; 1008 1009 // X / X -> 1 1010 if (Op0 == Op1) 1011 return ConstantInt::get(Op0->getType(), 1); 1012 1013 // (X * Y) / Y -> X if the multiplication does not overflow. 1014 Value *X = nullptr, *Y = nullptr; 1015 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1016 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1017 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1018 // If the Mul knows it does not overflow, then we are good to go. 1019 if ((isSigned && Mul->hasNoSignedWrap()) || 1020 (!isSigned && Mul->hasNoUnsignedWrap())) 1021 return X; 1022 // If X has the form X = A / Y then X * Y cannot overflow. 1023 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1024 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1025 return X; 1026 } 1027 1028 // (X rem Y) / Y -> 0 1029 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1030 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1031 return Constant::getNullValue(Op0->getType()); 1032 1033 // (X /u C1) /u C2 -> 0 if C1 * C2 overflow 1034 ConstantInt *C1, *C2; 1035 if (!isSigned && match(Op0, m_UDiv(m_Value(X), m_ConstantInt(C1))) && 1036 match(Op1, m_ConstantInt(C2))) { 1037 bool Overflow; 1038 C1->getValue().umul_ov(C2->getValue(), Overflow); 1039 if (Overflow) 1040 return Constant::getNullValue(Op0->getType()); 1041 } 1042 1043 // If the operation is with the result of a select instruction, check whether 1044 // operating on either branch of the select always yields the same value. 1045 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1046 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1047 return V; 1048 1049 // If the operation is with the result of a phi instruction, check whether 1050 // operating on all incoming values of the phi always yields the same value. 1051 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1052 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1053 return V; 1054 1055 return nullptr; 1056 } 1057 1058 /// Given operands for an SDiv, see if we can fold the result. 1059 /// If not, this returns null. 1060 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1061 unsigned MaxRecurse) { 1062 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1063 return V; 1064 1065 return nullptr; 1066 } 1067 1068 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1069 const TargetLibraryInfo *TLI, 1070 const DominatorTree *DT, AssumptionCache *AC, 1071 const Instruction *CxtI) { 1072 return ::SimplifySDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1073 RecursionLimit); 1074 } 1075 1076 /// Given operands for a UDiv, see if we can fold the result. 1077 /// If not, this returns null. 1078 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1079 unsigned MaxRecurse) { 1080 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1081 return V; 1082 1083 return nullptr; 1084 } 1085 1086 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout &DL, 1087 const TargetLibraryInfo *TLI, 1088 const DominatorTree *DT, AssumptionCache *AC, 1089 const Instruction *CxtI) { 1090 return ::SimplifyUDivInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1091 RecursionLimit); 1092 } 1093 1094 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1095 const Query &Q, unsigned) { 1096 // undef / X -> undef (the undef could be a snan). 1097 if (match(Op0, m_Undef())) 1098 return Op0; 1099 1100 // X / undef -> undef 1101 if (match(Op1, m_Undef())) 1102 return Op1; 1103 1104 // 0 / X -> 0 1105 // Requires that NaNs are off (X could be zero) and signed zeroes are 1106 // ignored (X could be positive or negative, so the output sign is unknown). 1107 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1108 return Op0; 1109 1110 if (FMF.noNaNs()) { 1111 // X / X -> 1.0 is legal when NaNs are ignored. 1112 if (Op0 == Op1) 1113 return ConstantFP::get(Op0->getType(), 1.0); 1114 1115 // -X / X -> -1.0 and 1116 // X / -X -> -1.0 are legal when NaNs are ignored. 1117 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 1118 if ((BinaryOperator::isFNeg(Op0, /*IgnoreZeroSign=*/true) && 1119 BinaryOperator::getFNegArgument(Op0) == Op1) || 1120 (BinaryOperator::isFNeg(Op1, /*IgnoreZeroSign=*/true) && 1121 BinaryOperator::getFNegArgument(Op1) == Op0)) 1122 return ConstantFP::get(Op0->getType(), -1.0); 1123 } 1124 1125 return nullptr; 1126 } 1127 1128 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1129 const DataLayout &DL, 1130 const TargetLibraryInfo *TLI, 1131 const DominatorTree *DT, AssumptionCache *AC, 1132 const Instruction *CxtI) { 1133 return ::SimplifyFDivInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1134 RecursionLimit); 1135 } 1136 1137 /// Given operands for an SRem or URem, see if we can fold the result. 1138 /// If not, this returns null. 1139 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1140 const Query &Q, unsigned MaxRecurse) { 1141 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1142 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1143 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1144 1145 // X % undef -> undef 1146 if (match(Op1, m_Undef())) 1147 return Op1; 1148 1149 // undef % X -> 0 1150 if (match(Op0, m_Undef())) 1151 return Constant::getNullValue(Op0->getType()); 1152 1153 // 0 % X -> 0, we don't need to preserve faults! 1154 if (match(Op0, m_Zero())) 1155 return Op0; 1156 1157 // X % 0 -> undef, we don't need to preserve faults! 1158 if (match(Op1, m_Zero())) 1159 return UndefValue::get(Op0->getType()); 1160 1161 // X % 1 -> 0 1162 if (match(Op1, m_One())) 1163 return Constant::getNullValue(Op0->getType()); 1164 1165 if (Op0->getType()->isIntegerTy(1)) 1166 // It can't be remainder by zero, hence it must be remainder by one. 1167 return Constant::getNullValue(Op0->getType()); 1168 1169 // X % X -> 0 1170 if (Op0 == Op1) 1171 return Constant::getNullValue(Op0->getType()); 1172 1173 // (X % Y) % Y -> X % Y 1174 if ((Opcode == Instruction::SRem && 1175 match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1176 (Opcode == Instruction::URem && 1177 match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1178 return Op0; 1179 1180 // If the operation is with the result of a select instruction, check whether 1181 // operating on either branch of the select always yields the same value. 1182 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1183 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1184 return V; 1185 1186 // If the operation is with the result of a phi instruction, check whether 1187 // operating on all incoming values of the phi always yields the same value. 1188 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1189 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1190 return V; 1191 1192 return nullptr; 1193 } 1194 1195 /// Given operands for an SRem, see if we can fold the result. 1196 /// If not, this returns null. 1197 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1198 unsigned MaxRecurse) { 1199 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1200 return V; 1201 1202 return nullptr; 1203 } 1204 1205 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1206 const TargetLibraryInfo *TLI, 1207 const DominatorTree *DT, AssumptionCache *AC, 1208 const Instruction *CxtI) { 1209 return ::SimplifySRemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1210 RecursionLimit); 1211 } 1212 1213 /// Given operands for a URem, see if we can fold the result. 1214 /// If not, this returns null. 1215 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1216 unsigned MaxRecurse) { 1217 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1218 return V; 1219 1220 return nullptr; 1221 } 1222 1223 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout &DL, 1224 const TargetLibraryInfo *TLI, 1225 const DominatorTree *DT, AssumptionCache *AC, 1226 const Instruction *CxtI) { 1227 return ::SimplifyURemInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1228 RecursionLimit); 1229 } 1230 1231 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1232 const Query &, unsigned) { 1233 // undef % X -> undef (the undef could be a snan). 1234 if (match(Op0, m_Undef())) 1235 return Op0; 1236 1237 // X % undef -> undef 1238 if (match(Op1, m_Undef())) 1239 return Op1; 1240 1241 // 0 % X -> 0 1242 // Requires that NaNs are off (X could be zero) and signed zeroes are 1243 // ignored (X could be positive or negative, so the output sign is unknown). 1244 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZero())) 1245 return Op0; 1246 1247 return nullptr; 1248 } 1249 1250 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1251 const DataLayout &DL, 1252 const TargetLibraryInfo *TLI, 1253 const DominatorTree *DT, AssumptionCache *AC, 1254 const Instruction *CxtI) { 1255 return ::SimplifyFRemInst(Op0, Op1, FMF, Query(DL, TLI, DT, AC, CxtI), 1256 RecursionLimit); 1257 } 1258 1259 /// Returns true if a shift by \c Amount always yields undef. 1260 static bool isUndefShift(Value *Amount) { 1261 Constant *C = dyn_cast<Constant>(Amount); 1262 if (!C) 1263 return false; 1264 1265 // X shift by undef -> undef because it may shift by the bitwidth. 1266 if (isa<UndefValue>(C)) 1267 return true; 1268 1269 // Shifting by the bitwidth or more is undefined. 1270 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1271 if (CI->getValue().getLimitedValue() >= 1272 CI->getType()->getScalarSizeInBits()) 1273 return true; 1274 1275 // If all lanes of a vector shift are undefined the whole shift is. 1276 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1277 for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E; ++I) 1278 if (!isUndefShift(C->getAggregateElement(I))) 1279 return false; 1280 return true; 1281 } 1282 1283 return false; 1284 } 1285 1286 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1287 /// If not, this returns null. 1288 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1289 const Query &Q, unsigned MaxRecurse) { 1290 if (Constant *C0 = dyn_cast<Constant>(Op0)) 1291 if (Constant *C1 = dyn_cast<Constant>(Op1)) 1292 return ConstantFoldBinaryOpOperands(Opcode, C0, C1, Q.DL); 1293 1294 // 0 shift by X -> 0 1295 if (match(Op0, m_Zero())) 1296 return Op0; 1297 1298 // X shift by 0 -> X 1299 if (match(Op1, m_Zero())) 1300 return Op0; 1301 1302 // Fold undefined shifts. 1303 if (isUndefShift(Op1)) 1304 return UndefValue::get(Op0->getType()); 1305 1306 // If the operation is with the result of a select instruction, check whether 1307 // operating on either branch of the select always yields the same value. 1308 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1309 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1310 return V; 1311 1312 // If the operation is with the result of a phi instruction, check whether 1313 // operating on all incoming values of the phi always yields the same value. 1314 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1315 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1316 return V; 1317 1318 // If any bits in the shift amount make that value greater than or equal to 1319 // the number of bits in the type, the shift is undefined. 1320 unsigned BitWidth = Op1->getType()->getScalarSizeInBits(); 1321 APInt KnownZero(BitWidth, 0); 1322 APInt KnownOne(BitWidth, 0); 1323 computeKnownBits(Op1, KnownZero, KnownOne, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1324 if (KnownOne.getLimitedValue() >= BitWidth) 1325 return UndefValue::get(Op0->getType()); 1326 1327 // If all valid bits in the shift amount are known zero, the first operand is 1328 // unchanged. 1329 unsigned NumValidShiftBits = Log2_32_Ceil(BitWidth); 1330 APInt ShiftAmountMask = APInt::getLowBitsSet(BitWidth, NumValidShiftBits); 1331 if ((KnownZero & ShiftAmountMask) == ShiftAmountMask) 1332 return Op0; 1333 1334 return nullptr; 1335 } 1336 1337 /// \brief Given operands for an Shl, LShr or AShr, see if we can 1338 /// fold the result. If not, this returns null. 1339 static Value *SimplifyRightShift(unsigned Opcode, Value *Op0, Value *Op1, 1340 bool isExact, const Query &Q, 1341 unsigned MaxRecurse) { 1342 if (Value *V = SimplifyShift(Opcode, Op0, Op1, Q, MaxRecurse)) 1343 return V; 1344 1345 // X >> X -> 0 1346 if (Op0 == Op1) 1347 return Constant::getNullValue(Op0->getType()); 1348 1349 // undef >> X -> 0 1350 // undef >> X -> undef (if it's exact) 1351 if (match(Op0, m_Undef())) 1352 return isExact ? Op0 : Constant::getNullValue(Op0->getType()); 1353 1354 // The low bit cannot be shifted out of an exact shift if it is set. 1355 if (isExact) { 1356 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 1357 APInt Op0KnownZero(BitWidth, 0); 1358 APInt Op0KnownOne(BitWidth, 0); 1359 computeKnownBits(Op0, Op0KnownZero, Op0KnownOne, Q.DL, /*Depth=*/0, Q.AC, 1360 Q.CxtI, Q.DT); 1361 if (Op0KnownOne[0]) 1362 return Op0; 1363 } 1364 1365 return nullptr; 1366 } 1367 1368 /// Given operands for an Shl, see if we can fold the result. 1369 /// If not, this returns null. 1370 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1371 const Query &Q, unsigned MaxRecurse) { 1372 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1373 return V; 1374 1375 // undef << X -> 0 1376 // undef << X -> undef if (if it's NSW/NUW) 1377 if (match(Op0, m_Undef())) 1378 return isNSW || isNUW ? Op0 : Constant::getNullValue(Op0->getType()); 1379 1380 // (X >> A) << A -> X 1381 Value *X; 1382 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1383 return X; 1384 return nullptr; 1385 } 1386 1387 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1388 const DataLayout &DL, const TargetLibraryInfo *TLI, 1389 const DominatorTree *DT, AssumptionCache *AC, 1390 const Instruction *CxtI) { 1391 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query(DL, TLI, DT, AC, CxtI), 1392 RecursionLimit); 1393 } 1394 1395 /// Given operands for an LShr, see if we can fold the result. 1396 /// If not, this returns null. 1397 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1398 const Query &Q, unsigned MaxRecurse) { 1399 if (Value *V = SimplifyRightShift(Instruction::LShr, Op0, Op1, isExact, Q, 1400 MaxRecurse)) 1401 return V; 1402 1403 // (X << A) >> A -> X 1404 Value *X; 1405 if (match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1406 return X; 1407 1408 return nullptr; 1409 } 1410 1411 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1412 const DataLayout &DL, 1413 const TargetLibraryInfo *TLI, 1414 const DominatorTree *DT, AssumptionCache *AC, 1415 const Instruction *CxtI) { 1416 return ::SimplifyLShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1417 RecursionLimit); 1418 } 1419 1420 /// Given operands for an AShr, see if we can fold the result. 1421 /// If not, this returns null. 1422 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1423 const Query &Q, unsigned MaxRecurse) { 1424 if (Value *V = SimplifyRightShift(Instruction::AShr, Op0, Op1, isExact, Q, 1425 MaxRecurse)) 1426 return V; 1427 1428 // all ones >>a X -> all ones 1429 if (match(Op0, m_AllOnes())) 1430 return Op0; 1431 1432 // (X << A) >> A -> X 1433 Value *X; 1434 if (match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1435 return X; 1436 1437 // Arithmetic shifting an all-sign-bit value is a no-op. 1438 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1439 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1440 return Op0; 1441 1442 return nullptr; 1443 } 1444 1445 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1446 const DataLayout &DL, 1447 const TargetLibraryInfo *TLI, 1448 const DominatorTree *DT, AssumptionCache *AC, 1449 const Instruction *CxtI) { 1450 return ::SimplifyAShrInst(Op0, Op1, isExact, Query(DL, TLI, DT, AC, CxtI), 1451 RecursionLimit); 1452 } 1453 1454 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1455 ICmpInst *UnsignedICmp, bool IsAnd) { 1456 Value *X, *Y; 1457 1458 ICmpInst::Predicate EqPred; 1459 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1460 !ICmpInst::isEquality(EqPred)) 1461 return nullptr; 1462 1463 ICmpInst::Predicate UnsignedPred; 1464 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1465 ICmpInst::isUnsigned(UnsignedPred)) 1466 ; 1467 else if (match(UnsignedICmp, 1468 m_ICmp(UnsignedPred, m_Value(Y), m_Specific(X))) && 1469 ICmpInst::isUnsigned(UnsignedPred)) 1470 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1471 else 1472 return nullptr; 1473 1474 // X < Y && Y != 0 --> X < Y 1475 // X < Y || Y != 0 --> Y != 0 1476 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1477 return IsAnd ? UnsignedICmp : ZeroICmp; 1478 1479 // X >= Y || Y != 0 --> true 1480 // X >= Y || Y == 0 --> X >= Y 1481 if (UnsignedPred == ICmpInst::ICMP_UGE && !IsAnd) { 1482 if (EqPred == ICmpInst::ICMP_NE) 1483 return getTrue(UnsignedICmp->getType()); 1484 return UnsignedICmp; 1485 } 1486 1487 // X < Y && Y == 0 --> false 1488 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1489 IsAnd) 1490 return getFalse(UnsignedICmp->getType()); 1491 1492 return nullptr; 1493 } 1494 1495 static Value *SimplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1496 Type *ITy = Op0->getType(); 1497 ICmpInst::Predicate Pred0, Pred1; 1498 ConstantInt *CI1, *CI2; 1499 Value *V; 1500 1501 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true)) 1502 return X; 1503 1504 // Look for this pattern: (icmp V, C0) & (icmp V, C1)). 1505 const APInt *C0, *C1; 1506 if (match(Op0, m_ICmp(Pred0, m_Value(V), m_APInt(C0))) && 1507 match(Op1, m_ICmp(Pred1, m_Specific(V), m_APInt(C1)))) { 1508 // Make a constant range that's the intersection of the two icmp ranges. 1509 // If the intersection is empty, we know that the result is false. 1510 auto Range0 = ConstantRange::makeAllowedICmpRegion(Pred0, *C0); 1511 auto Range1 = ConstantRange::makeAllowedICmpRegion(Pred1, *C1); 1512 if (Range0.intersectWith(Range1).isEmptySet()) 1513 return getFalse(ITy); 1514 } 1515 1516 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1517 m_ConstantInt(CI2)))) 1518 return nullptr; 1519 1520 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1521 return nullptr; 1522 1523 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1524 bool isNSW = AddInst->hasNoSignedWrap(); 1525 bool isNUW = AddInst->hasNoUnsignedWrap(); 1526 1527 const APInt &CI1V = CI1->getValue(); 1528 const APInt &CI2V = CI2->getValue(); 1529 const APInt Delta = CI2V - CI1V; 1530 if (CI1V.isStrictlyPositive()) { 1531 if (Delta == 2) { 1532 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1533 return getFalse(ITy); 1534 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1535 return getFalse(ITy); 1536 } 1537 if (Delta == 1) { 1538 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1539 return getFalse(ITy); 1540 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && isNSW) 1541 return getFalse(ITy); 1542 } 1543 } 1544 if (CI1V.getBoolValue() && isNUW) { 1545 if (Delta == 2) 1546 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1547 return getFalse(ITy); 1548 if (Delta == 1) 1549 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1550 return getFalse(ITy); 1551 } 1552 1553 return nullptr; 1554 } 1555 1556 /// Given operands for an And, see if we can fold the result. 1557 /// If not, this returns null. 1558 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1559 unsigned MaxRecurse) { 1560 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1561 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1562 return ConstantFoldBinaryOpOperands(Instruction::And, CLHS, CRHS, Q.DL); 1563 1564 // Canonicalize the constant to the RHS. 1565 std::swap(Op0, Op1); 1566 } 1567 1568 // X & undef -> 0 1569 if (match(Op1, m_Undef())) 1570 return Constant::getNullValue(Op0->getType()); 1571 1572 // X & X = X 1573 if (Op0 == Op1) 1574 return Op0; 1575 1576 // X & 0 = 0 1577 if (match(Op1, m_Zero())) 1578 return Op1; 1579 1580 // X & -1 = X 1581 if (match(Op1, m_AllOnes())) 1582 return Op0; 1583 1584 // A & ~A = ~A & A = 0 1585 if (match(Op0, m_Not(m_Specific(Op1))) || 1586 match(Op1, m_Not(m_Specific(Op0)))) 1587 return Constant::getNullValue(Op0->getType()); 1588 1589 // (A | ?) & A = A 1590 Value *A = nullptr, *B = nullptr; 1591 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1592 (A == Op1 || B == Op1)) 1593 return Op1; 1594 1595 // A & (A | ?) = A 1596 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1597 (A == Op0 || B == Op0)) 1598 return Op0; 1599 1600 // A & (-A) = A if A is a power of two or zero. 1601 if (match(Op0, m_Neg(m_Specific(Op1))) || 1602 match(Op1, m_Neg(m_Specific(Op0)))) { 1603 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1604 Q.DT)) 1605 return Op0; 1606 if (isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, 1607 Q.DT)) 1608 return Op1; 1609 } 1610 1611 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1612 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1613 if (Value *V = SimplifyAndOfICmps(ICILHS, ICIRHS)) 1614 return V; 1615 if (Value *V = SimplifyAndOfICmps(ICIRHS, ICILHS)) 1616 return V; 1617 } 1618 } 1619 1620 // The compares may be hidden behind casts. Look through those and try the 1621 // same folds as above. 1622 auto *Cast0 = dyn_cast<CastInst>(Op0); 1623 auto *Cast1 = dyn_cast<CastInst>(Op1); 1624 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1625 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1626 auto *Cmp0 = dyn_cast<ICmpInst>(Cast0->getOperand(0)); 1627 auto *Cmp1 = dyn_cast<ICmpInst>(Cast1->getOperand(0)); 1628 if (Cmp0 && Cmp1) { 1629 Instruction::CastOps CastOpc = Cast0->getOpcode(); 1630 Type *ResultType = Cast0->getType(); 1631 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp0, Cmp1))) 1632 return ConstantExpr::getCast(CastOpc, V, ResultType); 1633 if (auto *V = dyn_cast_or_null<Constant>(SimplifyAndOfICmps(Cmp1, Cmp0))) 1634 return ConstantExpr::getCast(CastOpc, V, ResultType); 1635 } 1636 } 1637 1638 // Try some generic simplifications for associative operations. 1639 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1640 MaxRecurse)) 1641 return V; 1642 1643 // And distributes over Or. Try some generic simplifications based on this. 1644 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1645 Q, MaxRecurse)) 1646 return V; 1647 1648 // And distributes over Xor. Try some generic simplifications based on this. 1649 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1650 Q, MaxRecurse)) 1651 return V; 1652 1653 // If the operation is with the result of a select instruction, check whether 1654 // operating on either branch of the select always yields the same value. 1655 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1656 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1657 MaxRecurse)) 1658 return V; 1659 1660 // If the operation is with the result of a phi instruction, check whether 1661 // operating on all incoming values of the phi always yields the same value. 1662 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1663 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1664 MaxRecurse)) 1665 return V; 1666 1667 return nullptr; 1668 } 1669 1670 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout &DL, 1671 const TargetLibraryInfo *TLI, 1672 const DominatorTree *DT, AssumptionCache *AC, 1673 const Instruction *CxtI) { 1674 return ::SimplifyAndInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1675 RecursionLimit); 1676 } 1677 1678 /// Simplify (or (icmp ...) (icmp ...)) to true when we can tell that the union 1679 /// contains all possible values. 1680 static Value *SimplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1) { 1681 ICmpInst::Predicate Pred0, Pred1; 1682 ConstantInt *CI1, *CI2; 1683 Value *V; 1684 1685 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false)) 1686 return X; 1687 1688 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_ConstantInt(CI1)), 1689 m_ConstantInt(CI2)))) 1690 return nullptr; 1691 1692 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Specific(CI1)))) 1693 return nullptr; 1694 1695 Type *ITy = Op0->getType(); 1696 1697 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1698 bool isNSW = AddInst->hasNoSignedWrap(); 1699 bool isNUW = AddInst->hasNoUnsignedWrap(); 1700 1701 const APInt &CI1V = CI1->getValue(); 1702 const APInt &CI2V = CI2->getValue(); 1703 const APInt Delta = CI2V - CI1V; 1704 if (CI1V.isStrictlyPositive()) { 1705 if (Delta == 2) { 1706 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1707 return getTrue(ITy); 1708 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1709 return getTrue(ITy); 1710 } 1711 if (Delta == 1) { 1712 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1713 return getTrue(ITy); 1714 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && isNSW) 1715 return getTrue(ITy); 1716 } 1717 } 1718 if (CI1V.getBoolValue() && isNUW) { 1719 if (Delta == 2) 1720 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1721 return getTrue(ITy); 1722 if (Delta == 1) 1723 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1724 return getTrue(ITy); 1725 } 1726 1727 return nullptr; 1728 } 1729 1730 /// Given operands for an Or, see if we can fold the result. 1731 /// If not, this returns null. 1732 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1733 unsigned MaxRecurse) { 1734 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1735 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1736 return ConstantFoldBinaryOpOperands(Instruction::Or, CLHS, CRHS, Q.DL); 1737 1738 // Canonicalize the constant to the RHS. 1739 std::swap(Op0, Op1); 1740 } 1741 1742 // X | undef -> -1 1743 if (match(Op1, m_Undef())) 1744 return Constant::getAllOnesValue(Op0->getType()); 1745 1746 // X | X = X 1747 if (Op0 == Op1) 1748 return Op0; 1749 1750 // X | 0 = X 1751 if (match(Op1, m_Zero())) 1752 return Op0; 1753 1754 // X | -1 = -1 1755 if (match(Op1, m_AllOnes())) 1756 return Op1; 1757 1758 // A | ~A = ~A | A = -1 1759 if (match(Op0, m_Not(m_Specific(Op1))) || 1760 match(Op1, m_Not(m_Specific(Op0)))) 1761 return Constant::getAllOnesValue(Op0->getType()); 1762 1763 // (A & ?) | A = A 1764 Value *A = nullptr, *B = nullptr; 1765 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1766 (A == Op1 || B == Op1)) 1767 return Op1; 1768 1769 // A | (A & ?) = A 1770 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1771 (A == Op0 || B == Op0)) 1772 return Op0; 1773 1774 // ~(A & ?) | A = -1 1775 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1776 (A == Op1 || B == Op1)) 1777 return Constant::getAllOnesValue(Op1->getType()); 1778 1779 // A | ~(A & ?) = -1 1780 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1781 (A == Op0 || B == Op0)) 1782 return Constant::getAllOnesValue(Op0->getType()); 1783 1784 if (auto *ICILHS = dyn_cast<ICmpInst>(Op0)) { 1785 if (auto *ICIRHS = dyn_cast<ICmpInst>(Op1)) { 1786 if (Value *V = SimplifyOrOfICmps(ICILHS, ICIRHS)) 1787 return V; 1788 if (Value *V = SimplifyOrOfICmps(ICIRHS, ICILHS)) 1789 return V; 1790 } 1791 } 1792 1793 // Try some generic simplifications for associative operations. 1794 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1795 MaxRecurse)) 1796 return V; 1797 1798 // Or distributes over And. Try some generic simplifications based on this. 1799 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1800 MaxRecurse)) 1801 return V; 1802 1803 // If the operation is with the result of a select instruction, check whether 1804 // operating on either branch of the select always yields the same value. 1805 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1806 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1807 MaxRecurse)) 1808 return V; 1809 1810 // (A & C)|(B & D) 1811 Value *C = nullptr, *D = nullptr; 1812 if (match(Op0, m_And(m_Value(A), m_Value(C))) && 1813 match(Op1, m_And(m_Value(B), m_Value(D)))) { 1814 ConstantInt *C1 = dyn_cast<ConstantInt>(C); 1815 ConstantInt *C2 = dyn_cast<ConstantInt>(D); 1816 if (C1 && C2 && (C1->getValue() == ~C2->getValue())) { 1817 // (A & C1)|(B & C2) 1818 // If we have: ((V + N) & C1) | (V & C2) 1819 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 1820 // replace with V+N. 1821 Value *V1, *V2; 1822 if ((C2->getValue() & (C2->getValue() + 1)) == 0 && // C2 == 0+1+ 1823 match(A, m_Add(m_Value(V1), m_Value(V2)))) { 1824 // Add commutes, try both ways. 1825 if (V1 == B && 1826 MaskedValueIsZero(V2, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1827 return A; 1828 if (V2 == B && 1829 MaskedValueIsZero(V1, C2->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1830 return A; 1831 } 1832 // Or commutes, try both ways. 1833 if ((C1->getValue() & (C1->getValue() + 1)) == 0 && 1834 match(B, m_Add(m_Value(V1), m_Value(V2)))) { 1835 // Add commutes, try both ways. 1836 if (V1 == A && 1837 MaskedValueIsZero(V2, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1838 return B; 1839 if (V2 == A && 1840 MaskedValueIsZero(V1, C1->getValue(), Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 1841 return B; 1842 } 1843 } 1844 } 1845 1846 // If the operation is with the result of a phi instruction, check whether 1847 // operating on all incoming values of the phi always yields the same value. 1848 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1849 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1850 return V; 1851 1852 return nullptr; 1853 } 1854 1855 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout &DL, 1856 const TargetLibraryInfo *TLI, 1857 const DominatorTree *DT, AssumptionCache *AC, 1858 const Instruction *CxtI) { 1859 return ::SimplifyOrInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1860 RecursionLimit); 1861 } 1862 1863 /// Given operands for a Xor, see if we can fold the result. 1864 /// If not, this returns null. 1865 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1866 unsigned MaxRecurse) { 1867 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1868 if (Constant *CRHS = dyn_cast<Constant>(Op1)) 1869 return ConstantFoldBinaryOpOperands(Instruction::Xor, CLHS, CRHS, Q.DL); 1870 1871 // Canonicalize the constant to the RHS. 1872 std::swap(Op0, Op1); 1873 } 1874 1875 // A ^ undef -> undef 1876 if (match(Op1, m_Undef())) 1877 return Op1; 1878 1879 // A ^ 0 = A 1880 if (match(Op1, m_Zero())) 1881 return Op0; 1882 1883 // A ^ A = 0 1884 if (Op0 == Op1) 1885 return Constant::getNullValue(Op0->getType()); 1886 1887 // A ^ ~A = ~A ^ A = -1 1888 if (match(Op0, m_Not(m_Specific(Op1))) || 1889 match(Op1, m_Not(m_Specific(Op0)))) 1890 return Constant::getAllOnesValue(Op0->getType()); 1891 1892 // Try some generic simplifications for associative operations. 1893 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1894 MaxRecurse)) 1895 return V; 1896 1897 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1898 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1899 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1900 // only if B and C are equal. If B and C are equal then (since we assume 1901 // that operands have already been simplified) "select(cond, B, C)" should 1902 // have been simplified to the common value of B and C already. Analysing 1903 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1904 // for threading over phi nodes. 1905 1906 return nullptr; 1907 } 1908 1909 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout &DL, 1910 const TargetLibraryInfo *TLI, 1911 const DominatorTree *DT, AssumptionCache *AC, 1912 const Instruction *CxtI) { 1913 return ::SimplifyXorInst(Op0, Op1, Query(DL, TLI, DT, AC, CxtI), 1914 RecursionLimit); 1915 } 1916 1917 static Type *GetCompareTy(Value *Op) { 1918 return CmpInst::makeCmpResultType(Op->getType()); 1919 } 1920 1921 /// Rummage around inside V looking for something equivalent to the comparison 1922 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 1923 /// Helper function for analyzing max/min idioms. 1924 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1925 Value *LHS, Value *RHS) { 1926 SelectInst *SI = dyn_cast<SelectInst>(V); 1927 if (!SI) 1928 return nullptr; 1929 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1930 if (!Cmp) 1931 return nullptr; 1932 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1933 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1934 return Cmp; 1935 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1936 LHS == CmpRHS && RHS == CmpLHS) 1937 return Cmp; 1938 return nullptr; 1939 } 1940 1941 // A significant optimization not implemented here is assuming that alloca 1942 // addresses are not equal to incoming argument values. They don't *alias*, 1943 // as we say, but that doesn't mean they aren't equal, so we take a 1944 // conservative approach. 1945 // 1946 // This is inspired in part by C++11 5.10p1: 1947 // "Two pointers of the same type compare equal if and only if they are both 1948 // null, both point to the same function, or both represent the same 1949 // address." 1950 // 1951 // This is pretty permissive. 1952 // 1953 // It's also partly due to C11 6.5.9p6: 1954 // "Two pointers compare equal if and only if both are null pointers, both are 1955 // pointers to the same object (including a pointer to an object and a 1956 // subobject at its beginning) or function, both are pointers to one past the 1957 // last element of the same array object, or one is a pointer to one past the 1958 // end of one array object and the other is a pointer to the start of a 1959 // different array object that happens to immediately follow the first array 1960 // object in the address space.) 1961 // 1962 // C11's version is more restrictive, however there's no reason why an argument 1963 // couldn't be a one-past-the-end value for a stack object in the caller and be 1964 // equal to the beginning of a stack object in the callee. 1965 // 1966 // If the C and C++ standards are ever made sufficiently restrictive in this 1967 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1968 // this optimization. 1969 static Constant * 1970 computePointerICmp(const DataLayout &DL, const TargetLibraryInfo *TLI, 1971 const DominatorTree *DT, CmpInst::Predicate Pred, 1972 const Instruction *CxtI, Value *LHS, Value *RHS) { 1973 // First, skip past any trivial no-ops. 1974 LHS = LHS->stripPointerCasts(); 1975 RHS = RHS->stripPointerCasts(); 1976 1977 // A non-null pointer is not equal to a null pointer. 1978 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) && 1979 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1980 return ConstantInt::get(GetCompareTy(LHS), 1981 !CmpInst::isTrueWhenEqual(Pred)); 1982 1983 // We can only fold certain predicates on pointer comparisons. 1984 switch (Pred) { 1985 default: 1986 return nullptr; 1987 1988 // Equality comaprisons are easy to fold. 1989 case CmpInst::ICMP_EQ: 1990 case CmpInst::ICMP_NE: 1991 break; 1992 1993 // We can only handle unsigned relational comparisons because 'inbounds' on 1994 // a GEP only protects against unsigned wrapping. 1995 case CmpInst::ICMP_UGT: 1996 case CmpInst::ICMP_UGE: 1997 case CmpInst::ICMP_ULT: 1998 case CmpInst::ICMP_ULE: 1999 // However, we have to switch them to their signed variants to handle 2000 // negative indices from the base pointer. 2001 Pred = ICmpInst::getSignedPredicate(Pred); 2002 break; 2003 } 2004 2005 // Strip off any constant offsets so that we can reason about them. 2006 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2007 // here and compare base addresses like AliasAnalysis does, however there are 2008 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2009 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2010 // doesn't need to guarantee pointer inequality when it says NoAlias. 2011 Constant *LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 2012 Constant *RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 2013 2014 // If LHS and RHS are related via constant offsets to the same base 2015 // value, we can replace it with an icmp which just compares the offsets. 2016 if (LHS == RHS) 2017 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 2018 2019 // Various optimizations for (in)equality comparisons. 2020 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2021 // Different non-empty allocations that exist at the same time have 2022 // different addresses (if the program can tell). Global variables always 2023 // exist, so they always exist during the lifetime of each other and all 2024 // allocas. Two different allocas usually have different addresses... 2025 // 2026 // However, if there's an @llvm.stackrestore dynamically in between two 2027 // allocas, they may have the same address. It's tempting to reduce the 2028 // scope of the problem by only looking at *static* allocas here. That would 2029 // cover the majority of allocas while significantly reducing the likelihood 2030 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2031 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2032 // an entry block. Also, if we have a block that's not attached to a 2033 // function, we can't tell if it's "static" under the current definition. 2034 // Theoretically, this problem could be fixed by creating a new kind of 2035 // instruction kind specifically for static allocas. Such a new instruction 2036 // could be required to be at the top of the entry block, thus preventing it 2037 // from being subject to a @llvm.stackrestore. Instcombine could even 2038 // convert regular allocas into these special allocas. It'd be nifty. 2039 // However, until then, this problem remains open. 2040 // 2041 // So, we'll assume that two non-empty allocas have different addresses 2042 // for now. 2043 // 2044 // With all that, if the offsets are within the bounds of their allocations 2045 // (and not one-past-the-end! so we can't use inbounds!), and their 2046 // allocations aren't the same, the pointers are not equal. 2047 // 2048 // Note that it's not necessary to check for LHS being a global variable 2049 // address, due to canonicalization and constant folding. 2050 if (isa<AllocaInst>(LHS) && 2051 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 2052 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 2053 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 2054 uint64_t LHSSize, RHSSize; 2055 if (LHSOffsetCI && RHSOffsetCI && 2056 getObjectSize(LHS, LHSSize, DL, TLI) && 2057 getObjectSize(RHS, RHSSize, DL, TLI)) { 2058 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 2059 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 2060 if (!LHSOffsetValue.isNegative() && 2061 !RHSOffsetValue.isNegative() && 2062 LHSOffsetValue.ult(LHSSize) && 2063 RHSOffsetValue.ult(RHSSize)) { 2064 return ConstantInt::get(GetCompareTy(LHS), 2065 !CmpInst::isTrueWhenEqual(Pred)); 2066 } 2067 } 2068 2069 // Repeat the above check but this time without depending on DataLayout 2070 // or being able to compute a precise size. 2071 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 2072 !cast<PointerType>(RHS->getType())->isEmptyTy() && 2073 LHSOffset->isNullValue() && 2074 RHSOffset->isNullValue()) 2075 return ConstantInt::get(GetCompareTy(LHS), 2076 !CmpInst::isTrueWhenEqual(Pred)); 2077 } 2078 2079 // Even if an non-inbounds GEP occurs along the path we can still optimize 2080 // equality comparisons concerning the result. We avoid walking the whole 2081 // chain again by starting where the last calls to 2082 // stripAndComputeConstantOffsets left off and accumulate the offsets. 2083 Constant *LHSNoBound = stripAndComputeConstantOffsets(DL, LHS, true); 2084 Constant *RHSNoBound = stripAndComputeConstantOffsets(DL, RHS, true); 2085 if (LHS == RHS) 2086 return ConstantExpr::getICmp(Pred, 2087 ConstantExpr::getAdd(LHSOffset, LHSNoBound), 2088 ConstantExpr::getAdd(RHSOffset, RHSNoBound)); 2089 2090 // If one side of the equality comparison must come from a noalias call 2091 // (meaning a system memory allocation function), and the other side must 2092 // come from a pointer that cannot overlap with dynamically-allocated 2093 // memory within the lifetime of the current function (allocas, byval 2094 // arguments, globals), then determine the comparison result here. 2095 SmallVector<Value *, 8> LHSUObjs, RHSUObjs; 2096 GetUnderlyingObjects(LHS, LHSUObjs, DL); 2097 GetUnderlyingObjects(RHS, RHSUObjs, DL); 2098 2099 // Is the set of underlying objects all noalias calls? 2100 auto IsNAC = [](SmallVectorImpl<Value *> &Objects) { 2101 return std::all_of(Objects.begin(), Objects.end(), isNoAliasCall); 2102 }; 2103 2104 // Is the set of underlying objects all things which must be disjoint from 2105 // noalias calls. For allocas, we consider only static ones (dynamic 2106 // allocas might be transformed into calls to malloc not simultaneously 2107 // live with the compared-to allocation). For globals, we exclude symbols 2108 // that might be resolve lazily to symbols in another dynamically-loaded 2109 // library (and, thus, could be malloc'ed by the implementation). 2110 auto IsAllocDisjoint = [](SmallVectorImpl<Value *> &Objects) { 2111 return std::all_of(Objects.begin(), Objects.end(), [](Value *V) { 2112 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2113 return AI->getParent() && AI->getFunction() && AI->isStaticAlloca(); 2114 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2115 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2116 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2117 !GV->isThreadLocal(); 2118 if (const Argument *A = dyn_cast<Argument>(V)) 2119 return A->hasByValAttr(); 2120 return false; 2121 }); 2122 }; 2123 2124 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2125 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2126 return ConstantInt::get(GetCompareTy(LHS), 2127 !CmpInst::isTrueWhenEqual(Pred)); 2128 2129 // Fold comparisons for non-escaping pointer even if the allocation call 2130 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2131 // dynamic allocation call could be either of the operands. 2132 Value *MI = nullptr; 2133 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonNullAt(RHS, CxtI, DT, TLI)) 2134 MI = LHS; 2135 else if (isAllocLikeFn(RHS, TLI) && 2136 llvm::isKnownNonNullAt(LHS, CxtI, DT, TLI)) 2137 MI = RHS; 2138 // FIXME: We should also fold the compare when the pointer escapes, but the 2139 // compare dominates the pointer escape 2140 if (MI && !PointerMayBeCaptured(MI, true, true)) 2141 return ConstantInt::get(GetCompareTy(LHS), 2142 CmpInst::isFalseWhenEqual(Pred)); 2143 } 2144 2145 // Otherwise, fail. 2146 return nullptr; 2147 } 2148 2149 /// Given operands for an ICmpInst, see if we can fold the result. 2150 /// If not, this returns null. 2151 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2152 const Query &Q, unsigned MaxRecurse) { 2153 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2154 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 2155 2156 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2157 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2158 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 2159 2160 // If we have a constant, make sure it is on the RHS. 2161 std::swap(LHS, RHS); 2162 Pred = CmpInst::getSwappedPredicate(Pred); 2163 } 2164 2165 Type *ITy = GetCompareTy(LHS); // The return type. 2166 Type *OpTy = LHS->getType(); // The operand type. 2167 2168 // icmp X, X -> true/false 2169 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 2170 // because X could be 0. 2171 if (LHS == RHS || isa<UndefValue>(RHS)) 2172 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 2173 2174 // Special case logic when the operands have i1 type. 2175 if (OpTy->getScalarType()->isIntegerTy(1)) { 2176 switch (Pred) { 2177 default: break; 2178 case ICmpInst::ICMP_EQ: 2179 // X == 1 -> X 2180 if (match(RHS, m_One())) 2181 return LHS; 2182 break; 2183 case ICmpInst::ICMP_NE: 2184 // X != 0 -> X 2185 if (match(RHS, m_Zero())) 2186 return LHS; 2187 break; 2188 case ICmpInst::ICMP_UGT: 2189 // X >u 0 -> X 2190 if (match(RHS, m_Zero())) 2191 return LHS; 2192 break; 2193 case ICmpInst::ICMP_UGE: { 2194 // X >=u 1 -> X 2195 if (match(RHS, m_One())) 2196 return LHS; 2197 if (isImpliedCondition(RHS, LHS, Q.DL).getValueOr(false)) 2198 return getTrue(ITy); 2199 break; 2200 } 2201 case ICmpInst::ICMP_SGE: { 2202 /// For signed comparison, the values for an i1 are 0 and -1 2203 /// respectively. This maps into a truth table of: 2204 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2205 /// 0 | 0 | 1 (0 >= 0) | 1 2206 /// 0 | 1 | 1 (0 >= -1) | 1 2207 /// 1 | 0 | 0 (-1 >= 0) | 0 2208 /// 1 | 1 | 1 (-1 >= -1) | 1 2209 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2210 return getTrue(ITy); 2211 break; 2212 } 2213 case ICmpInst::ICMP_SLT: 2214 // X <s 0 -> X 2215 if (match(RHS, m_Zero())) 2216 return LHS; 2217 break; 2218 case ICmpInst::ICMP_SLE: 2219 // X <=s -1 -> X 2220 if (match(RHS, m_One())) 2221 return LHS; 2222 break; 2223 case ICmpInst::ICMP_ULE: { 2224 if (isImpliedCondition(LHS, RHS, Q.DL).getValueOr(false)) 2225 return getTrue(ITy); 2226 break; 2227 } 2228 } 2229 } 2230 2231 // If we are comparing with zero then try hard since this is a common case. 2232 if (match(RHS, m_Zero())) { 2233 bool LHSKnownNonNegative, LHSKnownNegative; 2234 switch (Pred) { 2235 default: llvm_unreachable("Unknown ICmp predicate!"); 2236 case ICmpInst::ICMP_ULT: 2237 return getFalse(ITy); 2238 case ICmpInst::ICMP_UGE: 2239 return getTrue(ITy); 2240 case ICmpInst::ICMP_EQ: 2241 case ICmpInst::ICMP_ULE: 2242 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2243 return getFalse(ITy); 2244 break; 2245 case ICmpInst::ICMP_NE: 2246 case ICmpInst::ICMP_UGT: 2247 if (isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2248 return getTrue(ITy); 2249 break; 2250 case ICmpInst::ICMP_SLT: 2251 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2252 Q.CxtI, Q.DT); 2253 if (LHSKnownNegative) 2254 return getTrue(ITy); 2255 if (LHSKnownNonNegative) 2256 return getFalse(ITy); 2257 break; 2258 case ICmpInst::ICMP_SLE: 2259 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2260 Q.CxtI, Q.DT); 2261 if (LHSKnownNegative) 2262 return getTrue(ITy); 2263 if (LHSKnownNonNegative && 2264 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2265 return getFalse(ITy); 2266 break; 2267 case ICmpInst::ICMP_SGE: 2268 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2269 Q.CxtI, Q.DT); 2270 if (LHSKnownNegative) 2271 return getFalse(ITy); 2272 if (LHSKnownNonNegative) 2273 return getTrue(ITy); 2274 break; 2275 case ICmpInst::ICMP_SGT: 2276 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, Q.AC, 2277 Q.CxtI, Q.DT); 2278 if (LHSKnownNegative) 2279 return getFalse(ITy); 2280 if (LHSKnownNonNegative && 2281 isKnownNonZero(LHS, Q.DL, 0, Q.AC, Q.CxtI, Q.DT)) 2282 return getTrue(ITy); 2283 break; 2284 } 2285 } 2286 2287 // See if we are doing a comparison with a constant integer. 2288 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2289 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2290 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 2291 if (RHS_CR.isEmptySet()) 2292 return ConstantInt::getFalse(CI->getContext()); 2293 if (RHS_CR.isFullSet()) 2294 return ConstantInt::getTrue(CI->getContext()); 2295 2296 // Many binary operators with constant RHS have easy to compute constant 2297 // range. Use them to check whether the comparison is a tautology. 2298 unsigned Width = CI->getBitWidth(); 2299 APInt Lower = APInt(Width, 0); 2300 APInt Upper = APInt(Width, 0); 2301 ConstantInt *CI2; 2302 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 2303 // 'urem x, CI2' produces [0, CI2). 2304 Upper = CI2->getValue(); 2305 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 2306 // 'srem x, CI2' produces (-|CI2|, |CI2|). 2307 Upper = CI2->getValue().abs(); 2308 Lower = (-Upper) + 1; 2309 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 2310 // 'udiv CI2, x' produces [0, CI2]. 2311 Upper = CI2->getValue() + 1; 2312 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 2313 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 2314 APInt NegOne = APInt::getAllOnesValue(Width); 2315 if (!CI2->isZero()) 2316 Upper = NegOne.udiv(CI2->getValue()) + 1; 2317 } else if (match(LHS, m_SDiv(m_ConstantInt(CI2), m_Value()))) { 2318 if (CI2->isMinSignedValue()) { 2319 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 2320 Lower = CI2->getValue(); 2321 Upper = Lower.lshr(1) + 1; 2322 } else { 2323 // 'sdiv CI2, x' produces [-|CI2|, |CI2|]. 2324 Upper = CI2->getValue().abs() + 1; 2325 Lower = (-Upper) + 1; 2326 } 2327 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 2328 APInt IntMin = APInt::getSignedMinValue(Width); 2329 APInt IntMax = APInt::getSignedMaxValue(Width); 2330 const APInt &Val = CI2->getValue(); 2331 if (Val.isAllOnesValue()) { 2332 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 2333 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2334 Lower = IntMin + 1; 2335 Upper = IntMax + 1; 2336 } else if (Val.countLeadingZeros() < Width - 1) { 2337 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2] 2338 // where CI2 != -1 and CI2 != 0 and CI2 != 1 2339 Lower = IntMin.sdiv(Val); 2340 Upper = IntMax.sdiv(Val); 2341 if (Lower.sgt(Upper)) 2342 std::swap(Lower, Upper); 2343 Upper = Upper + 1; 2344 assert(Upper != Lower && "Upper part of range has wrapped!"); 2345 } 2346 } else if (match(LHS, m_NUWShl(m_ConstantInt(CI2), m_Value()))) { 2347 // 'shl nuw CI2, x' produces [CI2, CI2 << CLZ(CI2)] 2348 Lower = CI2->getValue(); 2349 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 2350 } else if (match(LHS, m_NSWShl(m_ConstantInt(CI2), m_Value()))) { 2351 if (CI2->isNegative()) { 2352 // 'shl nsw CI2, x' produces [CI2 << CLO(CI2)-1, CI2] 2353 unsigned ShiftAmount = CI2->getValue().countLeadingOnes() - 1; 2354 Lower = CI2->getValue().shl(ShiftAmount); 2355 Upper = CI2->getValue() + 1; 2356 } else { 2357 // 'shl nsw CI2, x' produces [CI2, CI2 << CLZ(CI2)-1] 2358 unsigned ShiftAmount = CI2->getValue().countLeadingZeros() - 1; 2359 Lower = CI2->getValue(); 2360 Upper = CI2->getValue().shl(ShiftAmount) + 1; 2361 } 2362 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 2363 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 2364 APInt NegOne = APInt::getAllOnesValue(Width); 2365 if (CI2->getValue().ult(Width)) 2366 Upper = NegOne.lshr(CI2->getValue()) + 1; 2367 } else if (match(LHS, m_LShr(m_ConstantInt(CI2), m_Value()))) { 2368 // 'lshr CI2, x' produces [CI2 >> (Width-1), CI2]. 2369 unsigned ShiftAmount = Width - 1; 2370 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2371 ShiftAmount = CI2->getValue().countTrailingZeros(); 2372 Lower = CI2->getValue().lshr(ShiftAmount); 2373 Upper = CI2->getValue() + 1; 2374 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2375 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2376 APInt IntMin = APInt::getSignedMinValue(Width); 2377 APInt IntMax = APInt::getSignedMaxValue(Width); 2378 if (CI2->getValue().ult(Width)) { 2379 Lower = IntMin.ashr(CI2->getValue()); 2380 Upper = IntMax.ashr(CI2->getValue()) + 1; 2381 } 2382 } else if (match(LHS, m_AShr(m_ConstantInt(CI2), m_Value()))) { 2383 unsigned ShiftAmount = Width - 1; 2384 if (!CI2->isZero() && cast<BinaryOperator>(LHS)->isExact()) 2385 ShiftAmount = CI2->getValue().countTrailingZeros(); 2386 if (CI2->isNegative()) { 2387 // 'ashr CI2, x' produces [CI2, CI2 >> (Width-1)] 2388 Lower = CI2->getValue(); 2389 Upper = CI2->getValue().ashr(ShiftAmount) + 1; 2390 } else { 2391 // 'ashr CI2, x' produces [CI2 >> (Width-1), CI2] 2392 Lower = CI2->getValue().ashr(ShiftAmount); 2393 Upper = CI2->getValue() + 1; 2394 } 2395 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2396 // 'or x, CI2' produces [CI2, UINT_MAX]. 2397 Lower = CI2->getValue(); 2398 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2399 // 'and x, CI2' produces [0, CI2]. 2400 Upper = CI2->getValue() + 1; 2401 } else if (match(LHS, m_NUWAdd(m_Value(), m_ConstantInt(CI2)))) { 2402 // 'add nuw x, CI2' produces [CI2, UINT_MAX]. 2403 Lower = CI2->getValue(); 2404 } 2405 2406 ConstantRange LHS_CR = Lower != Upper ? ConstantRange(Lower, Upper) 2407 : ConstantRange(Width, true); 2408 2409 if (auto *I = dyn_cast<Instruction>(LHS)) 2410 if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) 2411 LHS_CR = LHS_CR.intersectWith(getConstantRangeFromMetadata(*Ranges)); 2412 2413 if (!LHS_CR.isFullSet()) { 2414 if (RHS_CR.contains(LHS_CR)) 2415 return ConstantInt::getTrue(RHS->getContext()); 2416 if (RHS_CR.inverse().contains(LHS_CR)) 2417 return ConstantInt::getFalse(RHS->getContext()); 2418 } 2419 } 2420 2421 // If both operands have range metadata, use the metadata 2422 // to simplify the comparison. 2423 if (isa<Instruction>(RHS) && isa<Instruction>(LHS)) { 2424 auto RHS_Instr = dyn_cast<Instruction>(RHS); 2425 auto LHS_Instr = dyn_cast<Instruction>(LHS); 2426 2427 if (RHS_Instr->getMetadata(LLVMContext::MD_range) && 2428 LHS_Instr->getMetadata(LLVMContext::MD_range)) { 2429 auto RHS_CR = getConstantRangeFromMetadata( 2430 *RHS_Instr->getMetadata(LLVMContext::MD_range)); 2431 auto LHS_CR = getConstantRangeFromMetadata( 2432 *LHS_Instr->getMetadata(LLVMContext::MD_range)); 2433 2434 auto Satisfied_CR = ConstantRange::makeSatisfyingICmpRegion(Pred, RHS_CR); 2435 if (Satisfied_CR.contains(LHS_CR)) 2436 return ConstantInt::getTrue(RHS->getContext()); 2437 2438 auto InversedSatisfied_CR = ConstantRange::makeSatisfyingICmpRegion( 2439 CmpInst::getInversePredicate(Pred), RHS_CR); 2440 if (InversedSatisfied_CR.contains(LHS_CR)) 2441 return ConstantInt::getFalse(RHS->getContext()); 2442 } 2443 } 2444 2445 // Compare of cast, for example (zext X) != 0 -> X != 0 2446 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2447 Instruction *LI = cast<CastInst>(LHS); 2448 Value *SrcOp = LI->getOperand(0); 2449 Type *SrcTy = SrcOp->getType(); 2450 Type *DstTy = LI->getType(); 2451 2452 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2453 // if the integer type is the same size as the pointer type. 2454 if (MaxRecurse && isa<PtrToIntInst>(LI) && 2455 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2456 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2457 // Transfer the cast to the constant. 2458 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2459 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2460 Q, MaxRecurse-1)) 2461 return V; 2462 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2463 if (RI->getOperand(0)->getType() == SrcTy) 2464 // Compare without the cast. 2465 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2466 Q, MaxRecurse-1)) 2467 return V; 2468 } 2469 } 2470 2471 if (isa<ZExtInst>(LHS)) { 2472 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2473 // same type. 2474 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2475 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2476 // Compare X and Y. Note that signed predicates become unsigned. 2477 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2478 SrcOp, RI->getOperand(0), Q, 2479 MaxRecurse-1)) 2480 return V; 2481 } 2482 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2483 // too. If not, then try to deduce the result of the comparison. 2484 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2485 // Compute the constant that would happen if we truncated to SrcTy then 2486 // reextended to DstTy. 2487 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2488 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2489 2490 // If the re-extended constant didn't change then this is effectively 2491 // also a case of comparing two zero-extended values. 2492 if (RExt == CI && MaxRecurse) 2493 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2494 SrcOp, Trunc, Q, MaxRecurse-1)) 2495 return V; 2496 2497 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2498 // there. Use this to work out the result of the comparison. 2499 if (RExt != CI) { 2500 switch (Pred) { 2501 default: llvm_unreachable("Unknown ICmp predicate!"); 2502 // LHS <u RHS. 2503 case ICmpInst::ICMP_EQ: 2504 case ICmpInst::ICMP_UGT: 2505 case ICmpInst::ICMP_UGE: 2506 return ConstantInt::getFalse(CI->getContext()); 2507 2508 case ICmpInst::ICMP_NE: 2509 case ICmpInst::ICMP_ULT: 2510 case ICmpInst::ICMP_ULE: 2511 return ConstantInt::getTrue(CI->getContext()); 2512 2513 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2514 // is non-negative then LHS <s RHS. 2515 case ICmpInst::ICMP_SGT: 2516 case ICmpInst::ICMP_SGE: 2517 return CI->getValue().isNegative() ? 2518 ConstantInt::getTrue(CI->getContext()) : 2519 ConstantInt::getFalse(CI->getContext()); 2520 2521 case ICmpInst::ICMP_SLT: 2522 case ICmpInst::ICMP_SLE: 2523 return CI->getValue().isNegative() ? 2524 ConstantInt::getFalse(CI->getContext()) : 2525 ConstantInt::getTrue(CI->getContext()); 2526 } 2527 } 2528 } 2529 } 2530 2531 if (isa<SExtInst>(LHS)) { 2532 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2533 // same type. 2534 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2535 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2536 // Compare X and Y. Note that the predicate does not change. 2537 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2538 Q, MaxRecurse-1)) 2539 return V; 2540 } 2541 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2542 // too. If not, then try to deduce the result of the comparison. 2543 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2544 // Compute the constant that would happen if we truncated to SrcTy then 2545 // reextended to DstTy. 2546 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2547 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2548 2549 // If the re-extended constant didn't change then this is effectively 2550 // also a case of comparing two sign-extended values. 2551 if (RExt == CI && MaxRecurse) 2552 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2553 return V; 2554 2555 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2556 // bits there. Use this to work out the result of the comparison. 2557 if (RExt != CI) { 2558 switch (Pred) { 2559 default: llvm_unreachable("Unknown ICmp predicate!"); 2560 case ICmpInst::ICMP_EQ: 2561 return ConstantInt::getFalse(CI->getContext()); 2562 case ICmpInst::ICMP_NE: 2563 return ConstantInt::getTrue(CI->getContext()); 2564 2565 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2566 // LHS >s RHS. 2567 case ICmpInst::ICMP_SGT: 2568 case ICmpInst::ICMP_SGE: 2569 return CI->getValue().isNegative() ? 2570 ConstantInt::getTrue(CI->getContext()) : 2571 ConstantInt::getFalse(CI->getContext()); 2572 case ICmpInst::ICMP_SLT: 2573 case ICmpInst::ICMP_SLE: 2574 return CI->getValue().isNegative() ? 2575 ConstantInt::getFalse(CI->getContext()) : 2576 ConstantInt::getTrue(CI->getContext()); 2577 2578 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2579 // LHS >u RHS. 2580 case ICmpInst::ICMP_UGT: 2581 case ICmpInst::ICMP_UGE: 2582 // Comparison is true iff the LHS <s 0. 2583 if (MaxRecurse) 2584 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2585 Constant::getNullValue(SrcTy), 2586 Q, MaxRecurse-1)) 2587 return V; 2588 break; 2589 case ICmpInst::ICMP_ULT: 2590 case ICmpInst::ICMP_ULE: 2591 // Comparison is true iff the LHS >=s 0. 2592 if (MaxRecurse) 2593 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2594 Constant::getNullValue(SrcTy), 2595 Q, MaxRecurse-1)) 2596 return V; 2597 break; 2598 } 2599 } 2600 } 2601 } 2602 } 2603 2604 // icmp eq|ne X, Y -> false|true if X != Y 2605 if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) && 2606 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT)) { 2607 LLVMContext &Ctx = LHS->getType()->getContext(); 2608 return Pred == ICmpInst::ICMP_NE ? 2609 ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx); 2610 } 2611 2612 // Special logic for binary operators. 2613 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2614 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2615 if (MaxRecurse && (LBO || RBO)) { 2616 // Analyze the case when either LHS or RHS is an add instruction. 2617 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 2618 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2619 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2620 if (LBO && LBO->getOpcode() == Instruction::Add) { 2621 A = LBO->getOperand(0); B = LBO->getOperand(1); 2622 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2623 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2624 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2625 } 2626 if (RBO && RBO->getOpcode() == Instruction::Add) { 2627 C = RBO->getOperand(0); D = RBO->getOperand(1); 2628 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2629 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2630 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2631 } 2632 2633 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2634 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2635 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2636 Constant::getNullValue(RHS->getType()), 2637 Q, MaxRecurse-1)) 2638 return V; 2639 2640 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2641 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2642 if (Value *V = SimplifyICmpInst(Pred, 2643 Constant::getNullValue(LHS->getType()), 2644 C == LHS ? D : C, Q, MaxRecurse-1)) 2645 return V; 2646 2647 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2648 if (A && C && (A == C || A == D || B == C || B == D) && 2649 NoLHSWrapProblem && NoRHSWrapProblem) { 2650 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2651 Value *Y, *Z; 2652 if (A == C) { 2653 // C + B == C + D -> B == D 2654 Y = B; 2655 Z = D; 2656 } else if (A == D) { 2657 // D + B == C + D -> B == C 2658 Y = B; 2659 Z = C; 2660 } else if (B == C) { 2661 // A + C == C + D -> A == D 2662 Y = A; 2663 Z = D; 2664 } else { 2665 assert(B == D); 2666 // A + D == C + D -> A == C 2667 Y = A; 2668 Z = C; 2669 } 2670 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2671 return V; 2672 } 2673 } 2674 2675 { 2676 Value *Y = nullptr; 2677 // icmp pred (or X, Y), X 2678 if (LBO && match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 2679 if (Pred == ICmpInst::ICMP_ULT) 2680 return getFalse(ITy); 2681 if (Pred == ICmpInst::ICMP_UGE) 2682 return getTrue(ITy); 2683 2684 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 2685 bool RHSKnownNonNegative, RHSKnownNegative; 2686 bool YKnownNonNegative, YKnownNegative; 2687 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, Q.DL, 0, 2688 Q.AC, Q.CxtI, Q.DT); 2689 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2690 Q.CxtI, Q.DT); 2691 if (RHSKnownNonNegative && YKnownNegative) 2692 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 2693 if (RHSKnownNegative || YKnownNonNegative) 2694 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 2695 } 2696 } 2697 // icmp pred X, (or X, Y) 2698 if (RBO && match(RBO, m_c_Or(m_Value(Y), m_Specific(LHS)))) { 2699 if (Pred == ICmpInst::ICMP_ULE) 2700 return getTrue(ITy); 2701 if (Pred == ICmpInst::ICMP_UGT) 2702 return getFalse(ITy); 2703 2704 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLE) { 2705 bool LHSKnownNonNegative, LHSKnownNegative; 2706 bool YKnownNonNegative, YKnownNegative; 2707 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.DL, 0, 2708 Q.AC, Q.CxtI, Q.DT); 2709 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Q.DL, 0, Q.AC, 2710 Q.CxtI, Q.DT); 2711 if (LHSKnownNonNegative && YKnownNegative) 2712 return Pred == ICmpInst::ICMP_SGT ? getTrue(ITy) : getFalse(ITy); 2713 if (LHSKnownNegative || YKnownNonNegative) 2714 return Pred == ICmpInst::ICMP_SGT ? getFalse(ITy) : getTrue(ITy); 2715 } 2716 } 2717 } 2718 2719 // icmp pred (and X, Y), X 2720 if (LBO && match(LBO, m_CombineOr(m_And(m_Value(), m_Specific(RHS)), 2721 m_And(m_Specific(RHS), m_Value())))) { 2722 if (Pred == ICmpInst::ICMP_UGT) 2723 return getFalse(ITy); 2724 if (Pred == ICmpInst::ICMP_ULE) 2725 return getTrue(ITy); 2726 } 2727 // icmp pred X, (and X, Y) 2728 if (RBO && match(RBO, m_CombineOr(m_And(m_Value(), m_Specific(LHS)), 2729 m_And(m_Specific(LHS), m_Value())))) { 2730 if (Pred == ICmpInst::ICMP_UGE) 2731 return getTrue(ITy); 2732 if (Pred == ICmpInst::ICMP_ULT) 2733 return getFalse(ITy); 2734 } 2735 2736 // 0 - (zext X) pred C 2737 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 2738 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 2739 if (RHSC->getValue().isStrictlyPositive()) { 2740 if (Pred == ICmpInst::ICMP_SLT) 2741 return ConstantInt::getTrue(RHSC->getContext()); 2742 if (Pred == ICmpInst::ICMP_SGE) 2743 return ConstantInt::getFalse(RHSC->getContext()); 2744 if (Pred == ICmpInst::ICMP_EQ) 2745 return ConstantInt::getFalse(RHSC->getContext()); 2746 if (Pred == ICmpInst::ICMP_NE) 2747 return ConstantInt::getTrue(RHSC->getContext()); 2748 } 2749 if (RHSC->getValue().isNonNegative()) { 2750 if (Pred == ICmpInst::ICMP_SLE) 2751 return ConstantInt::getTrue(RHSC->getContext()); 2752 if (Pred == ICmpInst::ICMP_SGT) 2753 return ConstantInt::getFalse(RHSC->getContext()); 2754 } 2755 } 2756 } 2757 2758 // icmp pred (urem X, Y), Y 2759 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2760 bool KnownNonNegative, KnownNegative; 2761 switch (Pred) { 2762 default: 2763 break; 2764 case ICmpInst::ICMP_SGT: 2765 case ICmpInst::ICMP_SGE: 2766 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2767 Q.CxtI, Q.DT); 2768 if (!KnownNonNegative) 2769 break; 2770 // fall-through 2771 case ICmpInst::ICMP_EQ: 2772 case ICmpInst::ICMP_UGT: 2773 case ICmpInst::ICMP_UGE: 2774 return getFalse(ITy); 2775 case ICmpInst::ICMP_SLT: 2776 case ICmpInst::ICMP_SLE: 2777 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2778 Q.CxtI, Q.DT); 2779 if (!KnownNonNegative) 2780 break; 2781 // fall-through 2782 case ICmpInst::ICMP_NE: 2783 case ICmpInst::ICMP_ULT: 2784 case ICmpInst::ICMP_ULE: 2785 return getTrue(ITy); 2786 } 2787 } 2788 2789 // icmp pred X, (urem Y, X) 2790 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2791 bool KnownNonNegative, KnownNegative; 2792 switch (Pred) { 2793 default: 2794 break; 2795 case ICmpInst::ICMP_SGT: 2796 case ICmpInst::ICMP_SGE: 2797 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2798 Q.CxtI, Q.DT); 2799 if (!KnownNonNegative) 2800 break; 2801 // fall-through 2802 case ICmpInst::ICMP_NE: 2803 case ICmpInst::ICMP_UGT: 2804 case ICmpInst::ICMP_UGE: 2805 return getTrue(ITy); 2806 case ICmpInst::ICMP_SLT: 2807 case ICmpInst::ICMP_SLE: 2808 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.DL, 0, Q.AC, 2809 Q.CxtI, Q.DT); 2810 if (!KnownNonNegative) 2811 break; 2812 // fall-through 2813 case ICmpInst::ICMP_EQ: 2814 case ICmpInst::ICMP_ULT: 2815 case ICmpInst::ICMP_ULE: 2816 return getFalse(ITy); 2817 } 2818 } 2819 2820 // x >> y <=u x 2821 // x udiv y <=u x. 2822 if (LBO && (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 2823 match(LBO, m_UDiv(m_Specific(RHS), m_Value())))) { 2824 // icmp pred (X op Y), X 2825 if (Pred == ICmpInst::ICMP_UGT) 2826 return getFalse(ITy); 2827 if (Pred == ICmpInst::ICMP_ULE) 2828 return getTrue(ITy); 2829 } 2830 2831 // handle: 2832 // CI2 << X == CI 2833 // CI2 << X != CI 2834 // 2835 // where CI2 is a power of 2 and CI isn't 2836 if (auto *CI = dyn_cast<ConstantInt>(RHS)) { 2837 const APInt *CI2Val, *CIVal = &CI->getValue(); 2838 if (LBO && match(LBO, m_Shl(m_APInt(CI2Val), m_Value())) && 2839 CI2Val->isPowerOf2()) { 2840 if (!CIVal->isPowerOf2()) { 2841 // CI2 << X can equal zero in some circumstances, 2842 // this simplification is unsafe if CI is zero. 2843 // 2844 // We know it is safe if: 2845 // - The shift is nsw, we can't shift out the one bit. 2846 // - The shift is nuw, we can't shift out the one bit. 2847 // - CI2 is one 2848 // - CI isn't zero 2849 if (LBO->hasNoSignedWrap() || LBO->hasNoUnsignedWrap() || 2850 *CI2Val == 1 || !CI->isZero()) { 2851 if (Pred == ICmpInst::ICMP_EQ) 2852 return ConstantInt::getFalse(RHS->getContext()); 2853 if (Pred == ICmpInst::ICMP_NE) 2854 return ConstantInt::getTrue(RHS->getContext()); 2855 } 2856 } 2857 if (CIVal->isSignBit() && *CI2Val == 1) { 2858 if (Pred == ICmpInst::ICMP_UGT) 2859 return ConstantInt::getFalse(RHS->getContext()); 2860 if (Pred == ICmpInst::ICMP_ULE) 2861 return ConstantInt::getTrue(RHS->getContext()); 2862 } 2863 } 2864 } 2865 2866 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2867 LBO->getOperand(1) == RBO->getOperand(1)) { 2868 switch (LBO->getOpcode()) { 2869 default: break; 2870 case Instruction::UDiv: 2871 case Instruction::LShr: 2872 if (ICmpInst::isSigned(Pred)) 2873 break; 2874 // fall-through 2875 case Instruction::SDiv: 2876 case Instruction::AShr: 2877 if (!LBO->isExact() || !RBO->isExact()) 2878 break; 2879 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2880 RBO->getOperand(0), Q, MaxRecurse-1)) 2881 return V; 2882 break; 2883 case Instruction::Shl: { 2884 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2885 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2886 if (!NUW && !NSW) 2887 break; 2888 if (!NSW && ICmpInst::isSigned(Pred)) 2889 break; 2890 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2891 RBO->getOperand(0), Q, MaxRecurse-1)) 2892 return V; 2893 break; 2894 } 2895 } 2896 } 2897 2898 // Simplify comparisons involving max/min. 2899 Value *A, *B; 2900 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2901 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2902 2903 // Signed variants on "max(a,b)>=a -> true". 2904 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2905 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2906 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2907 // We analyze this as smax(A, B) pred A. 2908 P = Pred; 2909 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2910 (A == LHS || B == LHS)) { 2911 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2912 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2913 // We analyze this as smax(A, B) swapped-pred A. 2914 P = CmpInst::getSwappedPredicate(Pred); 2915 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2916 (A == RHS || B == RHS)) { 2917 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2918 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2919 // We analyze this as smax(-A, -B) swapped-pred -A. 2920 // Note that we do not need to actually form -A or -B thanks to EqP. 2921 P = CmpInst::getSwappedPredicate(Pred); 2922 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2923 (A == LHS || B == LHS)) { 2924 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2925 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2926 // We analyze this as smax(-A, -B) pred -A. 2927 // Note that we do not need to actually form -A or -B thanks to EqP. 2928 P = Pred; 2929 } 2930 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2931 // Cases correspond to "max(A, B) p A". 2932 switch (P) { 2933 default: 2934 break; 2935 case CmpInst::ICMP_EQ: 2936 case CmpInst::ICMP_SLE: 2937 // Equivalent to "A EqP B". This may be the same as the condition tested 2938 // in the max/min; if so, we can just return that. 2939 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2940 return V; 2941 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2942 return V; 2943 // Otherwise, see if "A EqP B" simplifies. 2944 if (MaxRecurse) 2945 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2946 return V; 2947 break; 2948 case CmpInst::ICMP_NE: 2949 case CmpInst::ICMP_SGT: { 2950 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2951 // Equivalent to "A InvEqP B". This may be the same as the condition 2952 // tested in the max/min; if so, we can just return that. 2953 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2954 return V; 2955 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2956 return V; 2957 // Otherwise, see if "A InvEqP B" simplifies. 2958 if (MaxRecurse) 2959 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2960 return V; 2961 break; 2962 } 2963 case CmpInst::ICMP_SGE: 2964 // Always true. 2965 return getTrue(ITy); 2966 case CmpInst::ICMP_SLT: 2967 // Always false. 2968 return getFalse(ITy); 2969 } 2970 } 2971 2972 // Unsigned variants on "max(a,b)>=a -> true". 2973 P = CmpInst::BAD_ICMP_PREDICATE; 2974 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2975 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2976 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2977 // We analyze this as umax(A, B) pred A. 2978 P = Pred; 2979 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2980 (A == LHS || B == LHS)) { 2981 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2982 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2983 // We analyze this as umax(A, B) swapped-pred A. 2984 P = CmpInst::getSwappedPredicate(Pred); 2985 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2986 (A == RHS || B == RHS)) { 2987 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2988 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2989 // We analyze this as umax(-A, -B) swapped-pred -A. 2990 // Note that we do not need to actually form -A or -B thanks to EqP. 2991 P = CmpInst::getSwappedPredicate(Pred); 2992 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2993 (A == LHS || B == LHS)) { 2994 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2995 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2996 // We analyze this as umax(-A, -B) pred -A. 2997 // Note that we do not need to actually form -A or -B thanks to EqP. 2998 P = Pred; 2999 } 3000 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3001 // Cases correspond to "max(A, B) p A". 3002 switch (P) { 3003 default: 3004 break; 3005 case CmpInst::ICMP_EQ: 3006 case CmpInst::ICMP_ULE: 3007 // Equivalent to "A EqP B". This may be the same as the condition tested 3008 // in the max/min; if so, we can just return that. 3009 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 3010 return V; 3011 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 3012 return V; 3013 // Otherwise, see if "A EqP B" simplifies. 3014 if (MaxRecurse) 3015 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 3016 return V; 3017 break; 3018 case CmpInst::ICMP_NE: 3019 case CmpInst::ICMP_UGT: { 3020 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3021 // Equivalent to "A InvEqP B". This may be the same as the condition 3022 // tested in the max/min; if so, we can just return that. 3023 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 3024 return V; 3025 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 3026 return V; 3027 // Otherwise, see if "A InvEqP B" simplifies. 3028 if (MaxRecurse) 3029 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 3030 return V; 3031 break; 3032 } 3033 case CmpInst::ICMP_UGE: 3034 // Always true. 3035 return getTrue(ITy); 3036 case CmpInst::ICMP_ULT: 3037 // Always false. 3038 return getFalse(ITy); 3039 } 3040 } 3041 3042 // Variants on "max(x,y) >= min(x,z)". 3043 Value *C, *D; 3044 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3045 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3046 (A == C || A == D || B == C || B == D)) { 3047 // max(x, ?) pred min(x, ?). 3048 if (Pred == CmpInst::ICMP_SGE) 3049 // Always true. 3050 return getTrue(ITy); 3051 if (Pred == CmpInst::ICMP_SLT) 3052 // Always false. 3053 return getFalse(ITy); 3054 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3055 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 3056 (A == C || A == D || B == C || B == D)) { 3057 // min(x, ?) pred max(x, ?). 3058 if (Pred == CmpInst::ICMP_SLE) 3059 // Always true. 3060 return getTrue(ITy); 3061 if (Pred == CmpInst::ICMP_SGT) 3062 // Always false. 3063 return getFalse(ITy); 3064 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3065 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3066 (A == C || A == D || B == C || B == D)) { 3067 // max(x, ?) pred min(x, ?). 3068 if (Pred == CmpInst::ICMP_UGE) 3069 // Always true. 3070 return getTrue(ITy); 3071 if (Pred == CmpInst::ICMP_ULT) 3072 // Always false. 3073 return getFalse(ITy); 3074 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3075 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 3076 (A == C || A == D || B == C || B == D)) { 3077 // min(x, ?) pred max(x, ?). 3078 if (Pred == CmpInst::ICMP_ULE) 3079 // Always true. 3080 return getTrue(ITy); 3081 if (Pred == CmpInst::ICMP_UGT) 3082 // Always false. 3083 return getFalse(ITy); 3084 } 3085 3086 // Simplify comparisons of related pointers using a powerful, recursive 3087 // GEP-walk when we have target data available.. 3088 if (LHS->getType()->isPointerTy()) 3089 if (auto *C = computePointerICmp(Q.DL, Q.TLI, Q.DT, Pred, Q.CxtI, LHS, RHS)) 3090 return C; 3091 3092 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 3093 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 3094 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 3095 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 3096 (ICmpInst::isEquality(Pred) || 3097 (GLHS->isInBounds() && GRHS->isInBounds() && 3098 Pred == ICmpInst::getSignedPredicate(Pred)))) { 3099 // The bases are equal and the indices are constant. Build a constant 3100 // expression GEP with the same indices and a null base pointer to see 3101 // what constant folding can make out of it. 3102 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 3103 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 3104 Constant *NewLHS = ConstantExpr::getGetElementPtr( 3105 GLHS->getSourceElementType(), Null, IndicesLHS); 3106 3107 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 3108 Constant *NewRHS = ConstantExpr::getGetElementPtr( 3109 GLHS->getSourceElementType(), Null, IndicesRHS); 3110 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 3111 } 3112 } 3113 } 3114 3115 // If a bit is known to be zero for A and known to be one for B, 3116 // then A and B cannot be equal. 3117 if (ICmpInst::isEquality(Pred)) { 3118 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 3119 uint32_t BitWidth = CI->getBitWidth(); 3120 APInt LHSKnownZero(BitWidth, 0); 3121 APInt LHSKnownOne(BitWidth, 0); 3122 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, Q.DL, /*Depth=*/0, Q.AC, 3123 Q.CxtI, Q.DT); 3124 const APInt &RHSVal = CI->getValue(); 3125 if (((LHSKnownZero & RHSVal) != 0) || ((LHSKnownOne & ~RHSVal) != 0)) 3126 return Pred == ICmpInst::ICMP_EQ 3127 ? ConstantInt::getFalse(CI->getContext()) 3128 : ConstantInt::getTrue(CI->getContext()); 3129 } 3130 } 3131 3132 // If the comparison is with the result of a select instruction, check whether 3133 // comparing with either branch of the select always yields the same value. 3134 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3135 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3136 return V; 3137 3138 // If the comparison is with the result of a phi instruction, check whether 3139 // doing the compare with each incoming phi value yields a common result. 3140 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3141 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3142 return V; 3143 3144 return nullptr; 3145 } 3146 3147 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3148 const DataLayout &DL, 3149 const TargetLibraryInfo *TLI, 3150 const DominatorTree *DT, AssumptionCache *AC, 3151 const Instruction *CxtI) { 3152 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3153 RecursionLimit); 3154 } 3155 3156 /// Given operands for an FCmpInst, see if we can fold the result. 3157 /// If not, this returns null. 3158 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3159 FastMathFlags FMF, const Query &Q, 3160 unsigned MaxRecurse) { 3161 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3162 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 3163 3164 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3165 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3166 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3167 3168 // If we have a constant, make sure it is on the RHS. 3169 std::swap(LHS, RHS); 3170 Pred = CmpInst::getSwappedPredicate(Pred); 3171 } 3172 3173 // Fold trivial predicates. 3174 if (Pred == FCmpInst::FCMP_FALSE) 3175 return ConstantInt::get(GetCompareTy(LHS), 0); 3176 if (Pred == FCmpInst::FCMP_TRUE) 3177 return ConstantInt::get(GetCompareTy(LHS), 1); 3178 3179 // UNO/ORD predicates can be trivially folded if NaNs are ignored. 3180 if (FMF.noNaNs()) { 3181 if (Pred == FCmpInst::FCMP_UNO) 3182 return ConstantInt::get(GetCompareTy(LHS), 0); 3183 if (Pred == FCmpInst::FCMP_ORD) 3184 return ConstantInt::get(GetCompareTy(LHS), 1); 3185 } 3186 3187 // fcmp pred x, undef and fcmp pred undef, x 3188 // fold to true if unordered, false if ordered 3189 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) { 3190 // Choosing NaN for the undef will always make unordered comparison succeed 3191 // and ordered comparison fail. 3192 return ConstantInt::get(GetCompareTy(LHS), CmpInst::isUnordered(Pred)); 3193 } 3194 3195 // fcmp x,x -> true/false. Not all compares are foldable. 3196 if (LHS == RHS) { 3197 if (CmpInst::isTrueWhenEqual(Pred)) 3198 return ConstantInt::get(GetCompareTy(LHS), 1); 3199 if (CmpInst::isFalseWhenEqual(Pred)) 3200 return ConstantInt::get(GetCompareTy(LHS), 0); 3201 } 3202 3203 // Handle fcmp with constant RHS 3204 const ConstantFP *CFP = nullptr; 3205 if (const auto *RHSC = dyn_cast<Constant>(RHS)) { 3206 if (RHS->getType()->isVectorTy()) 3207 CFP = dyn_cast_or_null<ConstantFP>(RHSC->getSplatValue()); 3208 else 3209 CFP = dyn_cast<ConstantFP>(RHSC); 3210 } 3211 if (CFP) { 3212 // If the constant is a nan, see if we can fold the comparison based on it. 3213 if (CFP->getValueAPF().isNaN()) { 3214 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 3215 return ConstantInt::getFalse(CFP->getContext()); 3216 assert(FCmpInst::isUnordered(Pred) && 3217 "Comparison must be either ordered or unordered!"); 3218 // True if unordered. 3219 return ConstantInt::get(GetCompareTy(LHS), 1); 3220 } 3221 // Check whether the constant is an infinity. 3222 if (CFP->getValueAPF().isInfinity()) { 3223 if (CFP->getValueAPF().isNegative()) { 3224 switch (Pred) { 3225 case FCmpInst::FCMP_OLT: 3226 // No value is ordered and less than negative infinity. 3227 return ConstantInt::get(GetCompareTy(LHS), 0); 3228 case FCmpInst::FCMP_UGE: 3229 // All values are unordered with or at least negative infinity. 3230 return ConstantInt::get(GetCompareTy(LHS), 1); 3231 default: 3232 break; 3233 } 3234 } else { 3235 switch (Pred) { 3236 case FCmpInst::FCMP_OGT: 3237 // No value is ordered and greater than infinity. 3238 return ConstantInt::get(GetCompareTy(LHS), 0); 3239 case FCmpInst::FCMP_ULE: 3240 // All values are unordered with and at most infinity. 3241 return ConstantInt::get(GetCompareTy(LHS), 1); 3242 default: 3243 break; 3244 } 3245 } 3246 } 3247 if (CFP->getValueAPF().isZero()) { 3248 switch (Pred) { 3249 case FCmpInst::FCMP_UGE: 3250 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3251 return ConstantInt::get(GetCompareTy(LHS), 1); 3252 break; 3253 case FCmpInst::FCMP_OLT: 3254 // X < 0 3255 if (CannotBeOrderedLessThanZero(LHS, Q.TLI)) 3256 return ConstantInt::get(GetCompareTy(LHS), 0); 3257 break; 3258 default: 3259 break; 3260 } 3261 } 3262 } 3263 3264 // If the comparison is with the result of a select instruction, check whether 3265 // comparing with either branch of the select always yields the same value. 3266 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3267 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 3268 return V; 3269 3270 // If the comparison is with the result of a phi instruction, check whether 3271 // doing the compare with each incoming phi value yields a common result. 3272 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3273 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 3274 return V; 3275 3276 return nullptr; 3277 } 3278 3279 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3280 FastMathFlags FMF, const DataLayout &DL, 3281 const TargetLibraryInfo *TLI, 3282 const DominatorTree *DT, AssumptionCache *AC, 3283 const Instruction *CxtI) { 3284 return ::SimplifyFCmpInst(Predicate, LHS, RHS, FMF, 3285 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3286 } 3287 3288 /// See if V simplifies when its operand Op is replaced with RepOp. 3289 static const Value *SimplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 3290 const Query &Q, 3291 unsigned MaxRecurse) { 3292 // Trivial replacement. 3293 if (V == Op) 3294 return RepOp; 3295 3296 auto *I = dyn_cast<Instruction>(V); 3297 if (!I) 3298 return nullptr; 3299 3300 // If this is a binary operator, try to simplify it with the replaced op. 3301 if (auto *B = dyn_cast<BinaryOperator>(I)) { 3302 // Consider: 3303 // %cmp = icmp eq i32 %x, 2147483647 3304 // %add = add nsw i32 %x, 1 3305 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 3306 // 3307 // We can't replace %sel with %add unless we strip away the flags. 3308 if (isa<OverflowingBinaryOperator>(B)) 3309 if (B->hasNoSignedWrap() || B->hasNoUnsignedWrap()) 3310 return nullptr; 3311 if (isa<PossiblyExactOperator>(B)) 3312 if (B->isExact()) 3313 return nullptr; 3314 3315 if (MaxRecurse) { 3316 if (B->getOperand(0) == Op) 3317 return SimplifyBinOp(B->getOpcode(), RepOp, B->getOperand(1), Q, 3318 MaxRecurse - 1); 3319 if (B->getOperand(1) == Op) 3320 return SimplifyBinOp(B->getOpcode(), B->getOperand(0), RepOp, Q, 3321 MaxRecurse - 1); 3322 } 3323 } 3324 3325 // Same for CmpInsts. 3326 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 3327 if (MaxRecurse) { 3328 if (C->getOperand(0) == Op) 3329 return SimplifyCmpInst(C->getPredicate(), RepOp, C->getOperand(1), Q, 3330 MaxRecurse - 1); 3331 if (C->getOperand(1) == Op) 3332 return SimplifyCmpInst(C->getPredicate(), C->getOperand(0), RepOp, Q, 3333 MaxRecurse - 1); 3334 } 3335 } 3336 3337 // TODO: We could hand off more cases to instsimplify here. 3338 3339 // If all operands are constant after substituting Op for RepOp then we can 3340 // constant fold the instruction. 3341 if (Constant *CRepOp = dyn_cast<Constant>(RepOp)) { 3342 // Build a list of all constant operands. 3343 SmallVector<Constant *, 8> ConstOps; 3344 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 3345 if (I->getOperand(i) == Op) 3346 ConstOps.push_back(CRepOp); 3347 else if (Constant *COp = dyn_cast<Constant>(I->getOperand(i))) 3348 ConstOps.push_back(COp); 3349 else 3350 break; 3351 } 3352 3353 // All operands were constants, fold it. 3354 if (ConstOps.size() == I->getNumOperands()) { 3355 if (CmpInst *C = dyn_cast<CmpInst>(I)) 3356 return ConstantFoldCompareInstOperands(C->getPredicate(), ConstOps[0], 3357 ConstOps[1], Q.DL, Q.TLI); 3358 3359 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 3360 if (!LI->isVolatile()) 3361 return ConstantFoldLoadFromConstPtr(ConstOps[0], LI->getType(), Q.DL); 3362 3363 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 3364 } 3365 } 3366 3367 return nullptr; 3368 } 3369 3370 /// Given operands for a SelectInst, see if we can fold the result. 3371 /// If not, this returns null. 3372 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 3373 Value *FalseVal, const Query &Q, 3374 unsigned MaxRecurse) { 3375 // select true, X, Y -> X 3376 // select false, X, Y -> Y 3377 if (Constant *CB = dyn_cast<Constant>(CondVal)) { 3378 if (CB->isAllOnesValue()) 3379 return TrueVal; 3380 if (CB->isNullValue()) 3381 return FalseVal; 3382 } 3383 3384 // select C, X, X -> X 3385 if (TrueVal == FalseVal) 3386 return TrueVal; 3387 3388 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 3389 if (isa<Constant>(TrueVal)) 3390 return TrueVal; 3391 return FalseVal; 3392 } 3393 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 3394 return FalseVal; 3395 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 3396 return TrueVal; 3397 3398 if (const auto *ICI = dyn_cast<ICmpInst>(CondVal)) { 3399 unsigned BitWidth = Q.DL.getTypeSizeInBits(TrueVal->getType()); 3400 ICmpInst::Predicate Pred = ICI->getPredicate(); 3401 Value *CmpLHS = ICI->getOperand(0); 3402 Value *CmpRHS = ICI->getOperand(1); 3403 APInt MinSignedValue = APInt::getSignBit(BitWidth); 3404 Value *X; 3405 const APInt *Y; 3406 bool TrueWhenUnset; 3407 bool IsBitTest = false; 3408 if (ICmpInst::isEquality(Pred) && 3409 match(CmpLHS, m_And(m_Value(X), m_APInt(Y))) && 3410 match(CmpRHS, m_Zero())) { 3411 IsBitTest = true; 3412 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 3413 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 3414 X = CmpLHS; 3415 Y = &MinSignedValue; 3416 IsBitTest = true; 3417 TrueWhenUnset = false; 3418 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 3419 X = CmpLHS; 3420 Y = &MinSignedValue; 3421 IsBitTest = true; 3422 TrueWhenUnset = true; 3423 } 3424 if (IsBitTest) { 3425 const APInt *C; 3426 // (X & Y) == 0 ? X & ~Y : X --> X 3427 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 3428 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 3429 *Y == ~*C) 3430 return TrueWhenUnset ? FalseVal : TrueVal; 3431 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 3432 // (X & Y) != 0 ? X : X & ~Y --> X 3433 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 3434 *Y == ~*C) 3435 return TrueWhenUnset ? FalseVal : TrueVal; 3436 3437 if (Y->isPowerOf2()) { 3438 // (X & Y) == 0 ? X | Y : X --> X | Y 3439 // (X & Y) != 0 ? X | Y : X --> X 3440 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 3441 *Y == *C) 3442 return TrueWhenUnset ? TrueVal : FalseVal; 3443 // (X & Y) == 0 ? X : X | Y --> X 3444 // (X & Y) != 0 ? X : X | Y --> X | Y 3445 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 3446 *Y == *C) 3447 return TrueWhenUnset ? TrueVal : FalseVal; 3448 } 3449 } 3450 if (ICI->hasOneUse()) { 3451 const APInt *C; 3452 if (match(CmpRHS, m_APInt(C))) { 3453 // X < MIN ? T : F --> F 3454 if (Pred == ICmpInst::ICMP_SLT && C->isMinSignedValue()) 3455 return FalseVal; 3456 // X < MIN ? T : F --> F 3457 if (Pred == ICmpInst::ICMP_ULT && C->isMinValue()) 3458 return FalseVal; 3459 // X > MAX ? T : F --> F 3460 if (Pred == ICmpInst::ICMP_SGT && C->isMaxSignedValue()) 3461 return FalseVal; 3462 // X > MAX ? T : F --> F 3463 if (Pred == ICmpInst::ICMP_UGT && C->isMaxValue()) 3464 return FalseVal; 3465 } 3466 } 3467 3468 // If we have an equality comparison then we know the value in one of the 3469 // arms of the select. See if substituting this value into the arm and 3470 // simplifying the result yields the same value as the other arm. 3471 if (Pred == ICmpInst::ICMP_EQ) { 3472 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3473 TrueVal || 3474 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3475 TrueVal) 3476 return FalseVal; 3477 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3478 FalseVal || 3479 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3480 FalseVal) 3481 return FalseVal; 3482 } else if (Pred == ICmpInst::ICMP_NE) { 3483 if (SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3484 FalseVal || 3485 SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3486 FalseVal) 3487 return TrueVal; 3488 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, MaxRecurse) == 3489 TrueVal || 3490 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q, MaxRecurse) == 3491 TrueVal) 3492 return TrueVal; 3493 } 3494 } 3495 3496 return nullptr; 3497 } 3498 3499 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 3500 const DataLayout &DL, 3501 const TargetLibraryInfo *TLI, 3502 const DominatorTree *DT, AssumptionCache *AC, 3503 const Instruction *CxtI) { 3504 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, 3505 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3506 } 3507 3508 /// Given operands for an GetElementPtrInst, see if we can fold the result. 3509 /// If not, this returns null. 3510 static Value *SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3511 const Query &Q, unsigned) { 3512 // The type of the GEP pointer operand. 3513 unsigned AS = 3514 cast<PointerType>(Ops[0]->getType()->getScalarType())->getAddressSpace(); 3515 3516 // getelementptr P -> P. 3517 if (Ops.size() == 1) 3518 return Ops[0]; 3519 3520 // Compute the (pointer) type returned by the GEP instruction. 3521 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Ops.slice(1)); 3522 Type *GEPTy = PointerType::get(LastType, AS); 3523 if (VectorType *VT = dyn_cast<VectorType>(Ops[0]->getType())) 3524 GEPTy = VectorType::get(GEPTy, VT->getNumElements()); 3525 3526 if (isa<UndefValue>(Ops[0])) 3527 return UndefValue::get(GEPTy); 3528 3529 if (Ops.size() == 2) { 3530 // getelementptr P, 0 -> P. 3531 if (match(Ops[1], m_Zero())) 3532 return Ops[0]; 3533 3534 Type *Ty = SrcTy; 3535 if (Ty->isSized()) { 3536 Value *P; 3537 uint64_t C; 3538 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 3539 // getelementptr P, N -> P if P points to a type of zero size. 3540 if (TyAllocSize == 0) 3541 return Ops[0]; 3542 3543 // The following transforms are only safe if the ptrtoint cast 3544 // doesn't truncate the pointers. 3545 if (Ops[1]->getType()->getScalarSizeInBits() == 3546 Q.DL.getPointerSizeInBits(AS)) { 3547 auto PtrToIntOrZero = [GEPTy](Value *P) -> Value * { 3548 if (match(P, m_Zero())) 3549 return Constant::getNullValue(GEPTy); 3550 Value *Temp; 3551 if (match(P, m_PtrToInt(m_Value(Temp)))) 3552 if (Temp->getType() == GEPTy) 3553 return Temp; 3554 return nullptr; 3555 }; 3556 3557 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 3558 if (TyAllocSize == 1 && 3559 match(Ops[1], m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))))) 3560 if (Value *R = PtrToIntOrZero(P)) 3561 return R; 3562 3563 // getelementptr V, (ashr (sub P, V), C) -> Q 3564 // if P points to a type of size 1 << C. 3565 if (match(Ops[1], 3566 m_AShr(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3567 m_ConstantInt(C))) && 3568 TyAllocSize == 1ULL << C) 3569 if (Value *R = PtrToIntOrZero(P)) 3570 return R; 3571 3572 // getelementptr V, (sdiv (sub P, V), C) -> Q 3573 // if P points to a type of size C. 3574 if (match(Ops[1], 3575 m_SDiv(m_Sub(m_Value(P), m_PtrToInt(m_Specific(Ops[0]))), 3576 m_SpecificInt(TyAllocSize)))) 3577 if (Value *R = PtrToIntOrZero(P)) 3578 return R; 3579 } 3580 } 3581 } 3582 3583 // Check to see if this is constant foldable. 3584 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3585 if (!isa<Constant>(Ops[i])) 3586 return nullptr; 3587 3588 return ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ops[0]), 3589 Ops.slice(1)); 3590 } 3591 3592 Value *llvm::SimplifyGEPInst(Type *SrcTy, ArrayRef<Value *> Ops, 3593 const DataLayout &DL, 3594 const TargetLibraryInfo *TLI, 3595 const DominatorTree *DT, AssumptionCache *AC, 3596 const Instruction *CxtI) { 3597 return ::SimplifyGEPInst(SrcTy, Ops, 3598 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 3599 } 3600 3601 /// Given operands for an InsertValueInst, see if we can fold the result. 3602 /// If not, this returns null. 3603 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 3604 ArrayRef<unsigned> Idxs, const Query &Q, 3605 unsigned) { 3606 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 3607 if (Constant *CVal = dyn_cast<Constant>(Val)) 3608 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 3609 3610 // insertvalue x, undef, n -> x 3611 if (match(Val, m_Undef())) 3612 return Agg; 3613 3614 // insertvalue x, (extractvalue y, n), n 3615 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 3616 if (EV->getAggregateOperand()->getType() == Agg->getType() && 3617 EV->getIndices() == Idxs) { 3618 // insertvalue undef, (extractvalue y, n), n -> y 3619 if (match(Agg, m_Undef())) 3620 return EV->getAggregateOperand(); 3621 3622 // insertvalue y, (extractvalue y, n), n -> y 3623 if (Agg == EV->getAggregateOperand()) 3624 return Agg; 3625 } 3626 3627 return nullptr; 3628 } 3629 3630 Value *llvm::SimplifyInsertValueInst( 3631 Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, const DataLayout &DL, 3632 const TargetLibraryInfo *TLI, const DominatorTree *DT, AssumptionCache *AC, 3633 const Instruction *CxtI) { 3634 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query(DL, TLI, DT, AC, CxtI), 3635 RecursionLimit); 3636 } 3637 3638 /// Given operands for an ExtractValueInst, see if we can fold the result. 3639 /// If not, this returns null. 3640 static Value *SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3641 const Query &, unsigned) { 3642 if (auto *CAgg = dyn_cast<Constant>(Agg)) 3643 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 3644 3645 // extractvalue x, (insertvalue y, elt, n), n -> elt 3646 unsigned NumIdxs = Idxs.size(); 3647 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 3648 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 3649 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 3650 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 3651 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 3652 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 3653 Idxs.slice(0, NumCommonIdxs)) { 3654 if (NumIdxs == NumInsertValueIdxs) 3655 return IVI->getInsertedValueOperand(); 3656 break; 3657 } 3658 } 3659 3660 return nullptr; 3661 } 3662 3663 Value *llvm::SimplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 3664 const DataLayout &DL, 3665 const TargetLibraryInfo *TLI, 3666 const DominatorTree *DT, 3667 AssumptionCache *AC, 3668 const Instruction *CxtI) { 3669 return ::SimplifyExtractValueInst(Agg, Idxs, Query(DL, TLI, DT, AC, CxtI), 3670 RecursionLimit); 3671 } 3672 3673 /// Given operands for an ExtractElementInst, see if we can fold the result. 3674 /// If not, this returns null. 3675 static Value *SimplifyExtractElementInst(Value *Vec, Value *Idx, const Query &, 3676 unsigned) { 3677 if (auto *CVec = dyn_cast<Constant>(Vec)) { 3678 if (auto *CIdx = dyn_cast<Constant>(Idx)) 3679 return ConstantFoldExtractElementInstruction(CVec, CIdx); 3680 3681 // The index is not relevant if our vector is a splat. 3682 if (auto *Splat = CVec->getSplatValue()) 3683 return Splat; 3684 3685 if (isa<UndefValue>(Vec)) 3686 return UndefValue::get(Vec->getType()->getVectorElementType()); 3687 } 3688 3689 // If extracting a specified index from the vector, see if we can recursively 3690 // find a previously computed scalar that was inserted into the vector. 3691 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) 3692 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 3693 return Elt; 3694 3695 return nullptr; 3696 } 3697 3698 Value *llvm::SimplifyExtractElementInst( 3699 Value *Vec, Value *Idx, const DataLayout &DL, const TargetLibraryInfo *TLI, 3700 const DominatorTree *DT, AssumptionCache *AC, const Instruction *CxtI) { 3701 return ::SimplifyExtractElementInst(Vec, Idx, Query(DL, TLI, DT, AC, CxtI), 3702 RecursionLimit); 3703 } 3704 3705 /// See if we can fold the given phi. If not, returns null. 3706 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 3707 // If all of the PHI's incoming values are the same then replace the PHI node 3708 // with the common value. 3709 Value *CommonValue = nullptr; 3710 bool HasUndefInput = false; 3711 for (Value *Incoming : PN->incoming_values()) { 3712 // If the incoming value is the phi node itself, it can safely be skipped. 3713 if (Incoming == PN) continue; 3714 if (isa<UndefValue>(Incoming)) { 3715 // Remember that we saw an undef value, but otherwise ignore them. 3716 HasUndefInput = true; 3717 continue; 3718 } 3719 if (CommonValue && Incoming != CommonValue) 3720 return nullptr; // Not the same, bail out. 3721 CommonValue = Incoming; 3722 } 3723 3724 // If CommonValue is null then all of the incoming values were either undef or 3725 // equal to the phi node itself. 3726 if (!CommonValue) 3727 return UndefValue::get(PN->getType()); 3728 3729 // If we have a PHI node like phi(X, undef, X), where X is defined by some 3730 // instruction, we cannot return X as the result of the PHI node unless it 3731 // dominates the PHI block. 3732 if (HasUndefInput) 3733 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 3734 3735 return CommonValue; 3736 } 3737 3738 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 3739 if (Constant *C = dyn_cast<Constant>(Op)) 3740 return ConstantFoldCastOperand(Instruction::Trunc, C, Ty, Q.DL); 3741 3742 return nullptr; 3743 } 3744 3745 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout &DL, 3746 const TargetLibraryInfo *TLI, 3747 const DominatorTree *DT, AssumptionCache *AC, 3748 const Instruction *CxtI) { 3749 return ::SimplifyTruncInst(Op, Ty, Query(DL, TLI, DT, AC, CxtI), 3750 RecursionLimit); 3751 } 3752 3753 //=== Helper functions for higher up the class hierarchy. 3754 3755 /// Given operands for a BinaryOperator, see if we can fold the result. 3756 /// If not, this returns null. 3757 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3758 const Query &Q, unsigned MaxRecurse) { 3759 switch (Opcode) { 3760 case Instruction::Add: 3761 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3762 Q, MaxRecurse); 3763 case Instruction::FAdd: 3764 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3765 3766 case Instruction::Sub: 3767 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3768 Q, MaxRecurse); 3769 case Instruction::FSub: 3770 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3771 3772 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 3773 case Instruction::FMul: 3774 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3775 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 3776 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 3777 case Instruction::FDiv: 3778 return SimplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3779 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 3780 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 3781 case Instruction::FRem: 3782 return SimplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3783 case Instruction::Shl: 3784 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 3785 Q, MaxRecurse); 3786 case Instruction::LShr: 3787 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3788 case Instruction::AShr: 3789 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 3790 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 3791 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 3792 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 3793 default: 3794 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 3795 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3796 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 3797 3798 // If the operation is associative, try some generic simplifications. 3799 if (Instruction::isAssociative(Opcode)) 3800 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 3801 return V; 3802 3803 // If the operation is with the result of a select instruction check whether 3804 // operating on either branch of the select always yields the same value. 3805 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 3806 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 3807 return V; 3808 3809 // If the operation is with the result of a phi instruction, check whether 3810 // operating on all incoming values of the phi always yields the same value. 3811 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 3812 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 3813 return V; 3814 3815 return nullptr; 3816 } 3817 } 3818 3819 /// Given operands for a BinaryOperator, see if we can fold the result. 3820 /// If not, this returns null. 3821 /// In contrast to SimplifyBinOp, try to use FastMathFlag when folding the 3822 /// result. In case we don't need FastMathFlags, simply fall to SimplifyBinOp. 3823 static Value *SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3824 const FastMathFlags &FMF, const Query &Q, 3825 unsigned MaxRecurse) { 3826 switch (Opcode) { 3827 case Instruction::FAdd: 3828 return SimplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 3829 case Instruction::FSub: 3830 return SimplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 3831 case Instruction::FMul: 3832 return SimplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 3833 default: 3834 return SimplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 3835 } 3836 } 3837 3838 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3839 const DataLayout &DL, const TargetLibraryInfo *TLI, 3840 const DominatorTree *DT, AssumptionCache *AC, 3841 const Instruction *CxtI) { 3842 return ::SimplifyBinOp(Opcode, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3843 RecursionLimit); 3844 } 3845 3846 Value *llvm::SimplifyFPBinOp(unsigned Opcode, Value *LHS, Value *RHS, 3847 const FastMathFlags &FMF, const DataLayout &DL, 3848 const TargetLibraryInfo *TLI, 3849 const DominatorTree *DT, AssumptionCache *AC, 3850 const Instruction *CxtI) { 3851 return ::SimplifyFPBinOp(Opcode, LHS, RHS, FMF, Query(DL, TLI, DT, AC, CxtI), 3852 RecursionLimit); 3853 } 3854 3855 /// Given operands for a CmpInst, see if we can fold the result. 3856 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3857 const Query &Q, unsigned MaxRecurse) { 3858 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 3859 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 3860 return SimplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 3861 } 3862 3863 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3864 const DataLayout &DL, const TargetLibraryInfo *TLI, 3865 const DominatorTree *DT, AssumptionCache *AC, 3866 const Instruction *CxtI) { 3867 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query(DL, TLI, DT, AC, CxtI), 3868 RecursionLimit); 3869 } 3870 3871 static bool IsIdempotent(Intrinsic::ID ID) { 3872 switch (ID) { 3873 default: return false; 3874 3875 // Unary idempotent: f(f(x)) = f(x) 3876 case Intrinsic::fabs: 3877 case Intrinsic::floor: 3878 case Intrinsic::ceil: 3879 case Intrinsic::trunc: 3880 case Intrinsic::rint: 3881 case Intrinsic::nearbyint: 3882 case Intrinsic::round: 3883 return true; 3884 } 3885 } 3886 3887 static Value *SimplifyRelativeLoad(Constant *Ptr, Constant *Offset, 3888 const DataLayout &DL) { 3889 GlobalValue *PtrSym; 3890 APInt PtrOffset; 3891 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 3892 return nullptr; 3893 3894 Type *Int8PtrTy = Type::getInt8PtrTy(Ptr->getContext()); 3895 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 3896 Type *Int32PtrTy = Int32Ty->getPointerTo(); 3897 Type *Int64Ty = Type::getInt64Ty(Ptr->getContext()); 3898 3899 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 3900 if (!OffsetConstInt || OffsetConstInt->getType()->getBitWidth() > 64) 3901 return nullptr; 3902 3903 uint64_t OffsetInt = OffsetConstInt->getSExtValue(); 3904 if (OffsetInt % 4 != 0) 3905 return nullptr; 3906 3907 Constant *C = ConstantExpr::getGetElementPtr( 3908 Int32Ty, ConstantExpr::getBitCast(Ptr, Int32PtrTy), 3909 ConstantInt::get(Int64Ty, OffsetInt / 4)); 3910 Constant *Loaded = ConstantFoldLoadFromConstPtr(C, Int32Ty, DL); 3911 if (!Loaded) 3912 return nullptr; 3913 3914 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 3915 if (!LoadedCE) 3916 return nullptr; 3917 3918 if (LoadedCE->getOpcode() == Instruction::Trunc) { 3919 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 3920 if (!LoadedCE) 3921 return nullptr; 3922 } 3923 3924 if (LoadedCE->getOpcode() != Instruction::Sub) 3925 return nullptr; 3926 3927 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 3928 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 3929 return nullptr; 3930 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 3931 3932 Constant *LoadedRHS = LoadedCE->getOperand(1); 3933 GlobalValue *LoadedRHSSym; 3934 APInt LoadedRHSOffset; 3935 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 3936 DL) || 3937 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 3938 return nullptr; 3939 3940 return ConstantExpr::getBitCast(LoadedLHSPtr, Int8PtrTy); 3941 } 3942 3943 template <typename IterTy> 3944 static Value *SimplifyIntrinsic(Function *F, IterTy ArgBegin, IterTy ArgEnd, 3945 const Query &Q, unsigned MaxRecurse) { 3946 Intrinsic::ID IID = F->getIntrinsicID(); 3947 unsigned NumOperands = std::distance(ArgBegin, ArgEnd); 3948 Type *ReturnType = F->getReturnType(); 3949 3950 // Binary Ops 3951 if (NumOperands == 2) { 3952 Value *LHS = *ArgBegin; 3953 Value *RHS = *(ArgBegin + 1); 3954 if (IID == Intrinsic::usub_with_overflow || 3955 IID == Intrinsic::ssub_with_overflow) { 3956 // X - X -> { 0, false } 3957 if (LHS == RHS) 3958 return Constant::getNullValue(ReturnType); 3959 3960 // X - undef -> undef 3961 // undef - X -> undef 3962 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS)) 3963 return UndefValue::get(ReturnType); 3964 } 3965 3966 if (IID == Intrinsic::uadd_with_overflow || 3967 IID == Intrinsic::sadd_with_overflow) { 3968 // X + undef -> undef 3969 if (isa<UndefValue>(RHS)) 3970 return UndefValue::get(ReturnType); 3971 } 3972 3973 if (IID == Intrinsic::umul_with_overflow || 3974 IID == Intrinsic::smul_with_overflow) { 3975 // X * 0 -> { 0, false } 3976 if (match(RHS, m_Zero())) 3977 return Constant::getNullValue(ReturnType); 3978 3979 // X * undef -> { 0, false } 3980 if (match(RHS, m_Undef())) 3981 return Constant::getNullValue(ReturnType); 3982 } 3983 3984 if (IID == Intrinsic::load_relative && isa<Constant>(LHS) && 3985 isa<Constant>(RHS)) 3986 return SimplifyRelativeLoad(cast<Constant>(LHS), cast<Constant>(RHS), 3987 Q.DL); 3988 } 3989 3990 // Perform idempotent optimizations 3991 if (!IsIdempotent(IID)) 3992 return nullptr; 3993 3994 // Unary Ops 3995 if (NumOperands == 1) 3996 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 3997 if (II->getIntrinsicID() == IID) 3998 return II; 3999 4000 return nullptr; 4001 } 4002 4003 template <typename IterTy> 4004 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 4005 const Query &Q, unsigned MaxRecurse) { 4006 Type *Ty = V->getType(); 4007 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 4008 Ty = PTy->getElementType(); 4009 FunctionType *FTy = cast<FunctionType>(Ty); 4010 4011 // call undef -> undef 4012 if (isa<UndefValue>(V)) 4013 return UndefValue::get(FTy->getReturnType()); 4014 4015 Function *F = dyn_cast<Function>(V); 4016 if (!F) 4017 return nullptr; 4018 4019 if (F->isIntrinsic()) 4020 if (Value *Ret = SimplifyIntrinsic(F, ArgBegin, ArgEnd, Q, MaxRecurse)) 4021 return Ret; 4022 4023 if (!canConstantFoldCallTo(F)) 4024 return nullptr; 4025 4026 SmallVector<Constant *, 4> ConstantArgs; 4027 ConstantArgs.reserve(ArgEnd - ArgBegin); 4028 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 4029 Constant *C = dyn_cast<Constant>(*I); 4030 if (!C) 4031 return nullptr; 4032 ConstantArgs.push_back(C); 4033 } 4034 4035 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 4036 } 4037 4038 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 4039 User::op_iterator ArgEnd, const DataLayout &DL, 4040 const TargetLibraryInfo *TLI, const DominatorTree *DT, 4041 AssumptionCache *AC, const Instruction *CxtI) { 4042 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(DL, TLI, DT, AC, CxtI), 4043 RecursionLimit); 4044 } 4045 4046 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 4047 const DataLayout &DL, const TargetLibraryInfo *TLI, 4048 const DominatorTree *DT, AssumptionCache *AC, 4049 const Instruction *CxtI) { 4050 return ::SimplifyCall(V, Args.begin(), Args.end(), 4051 Query(DL, TLI, DT, AC, CxtI), RecursionLimit); 4052 } 4053 4054 /// See if we can compute a simplified version of this instruction. 4055 /// If not, this returns null. 4056 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout &DL, 4057 const TargetLibraryInfo *TLI, 4058 const DominatorTree *DT, AssumptionCache *AC) { 4059 Value *Result; 4060 4061 switch (I->getOpcode()) { 4062 default: 4063 Result = ConstantFoldInstruction(I, DL, TLI); 4064 break; 4065 case Instruction::FAdd: 4066 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 4067 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4068 break; 4069 case Instruction::Add: 4070 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 4071 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4072 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4073 TLI, DT, AC, I); 4074 break; 4075 case Instruction::FSub: 4076 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 4077 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4078 break; 4079 case Instruction::Sub: 4080 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 4081 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4082 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4083 TLI, DT, AC, I); 4084 break; 4085 case Instruction::FMul: 4086 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 4087 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4088 break; 4089 case Instruction::Mul: 4090 Result = 4091 SimplifyMulInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4092 break; 4093 case Instruction::SDiv: 4094 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4095 AC, I); 4096 break; 4097 case Instruction::UDiv: 4098 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4099 AC, I); 4100 break; 4101 case Instruction::FDiv: 4102 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), 4103 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4104 break; 4105 case Instruction::SRem: 4106 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4107 AC, I); 4108 break; 4109 case Instruction::URem: 4110 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, 4111 AC, I); 4112 break; 4113 case Instruction::FRem: 4114 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), 4115 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4116 break; 4117 case Instruction::Shl: 4118 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 4119 cast<BinaryOperator>(I)->hasNoSignedWrap(), 4120 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), DL, 4121 TLI, DT, AC, I); 4122 break; 4123 case Instruction::LShr: 4124 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 4125 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4126 AC, I); 4127 break; 4128 case Instruction::AShr: 4129 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 4130 cast<BinaryOperator>(I)->isExact(), DL, TLI, DT, 4131 AC, I); 4132 break; 4133 case Instruction::And: 4134 Result = 4135 SimplifyAndInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4136 break; 4137 case Instruction::Or: 4138 Result = 4139 SimplifyOrInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4140 break; 4141 case Instruction::Xor: 4142 Result = 4143 SimplifyXorInst(I->getOperand(0), I->getOperand(1), DL, TLI, DT, AC, I); 4144 break; 4145 case Instruction::ICmp: 4146 Result = 4147 SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), I->getOperand(0), 4148 I->getOperand(1), DL, TLI, DT, AC, I); 4149 break; 4150 case Instruction::FCmp: 4151 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 4152 I->getOperand(0), I->getOperand(1), 4153 I->getFastMathFlags(), DL, TLI, DT, AC, I); 4154 break; 4155 case Instruction::Select: 4156 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 4157 I->getOperand(2), DL, TLI, DT, AC, I); 4158 break; 4159 case Instruction::GetElementPtr: { 4160 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 4161 Result = SimplifyGEPInst(cast<GetElementPtrInst>(I)->getSourceElementType(), 4162 Ops, DL, TLI, DT, AC, I); 4163 break; 4164 } 4165 case Instruction::InsertValue: { 4166 InsertValueInst *IV = cast<InsertValueInst>(I); 4167 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 4168 IV->getInsertedValueOperand(), 4169 IV->getIndices(), DL, TLI, DT, AC, I); 4170 break; 4171 } 4172 case Instruction::ExtractValue: { 4173 auto *EVI = cast<ExtractValueInst>(I); 4174 Result = SimplifyExtractValueInst(EVI->getAggregateOperand(), 4175 EVI->getIndices(), DL, TLI, DT, AC, I); 4176 break; 4177 } 4178 case Instruction::ExtractElement: { 4179 auto *EEI = cast<ExtractElementInst>(I); 4180 Result = SimplifyExtractElementInst( 4181 EEI->getVectorOperand(), EEI->getIndexOperand(), DL, TLI, DT, AC, I); 4182 break; 4183 } 4184 case Instruction::PHI: 4185 Result = SimplifyPHINode(cast<PHINode>(I), Query(DL, TLI, DT, AC, I)); 4186 break; 4187 case Instruction::Call: { 4188 CallSite CS(cast<CallInst>(I)); 4189 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), DL, 4190 TLI, DT, AC, I); 4191 break; 4192 } 4193 case Instruction::Trunc: 4194 Result = 4195 SimplifyTruncInst(I->getOperand(0), I->getType(), DL, TLI, DT, AC, I); 4196 break; 4197 } 4198 4199 // In general, it is possible for computeKnownBits to determine all bits in a 4200 // value even when the operands are not all constants. 4201 if (!Result && I->getType()->isIntegerTy()) { 4202 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 4203 APInt KnownZero(BitWidth, 0); 4204 APInt KnownOne(BitWidth, 0); 4205 computeKnownBits(I, KnownZero, KnownOne, DL, /*Depth*/0, AC, I, DT); 4206 if ((KnownZero | KnownOne).isAllOnesValue()) 4207 Result = ConstantInt::get(I->getContext(), KnownOne); 4208 } 4209 4210 /// If called on unreachable code, the above logic may report that the 4211 /// instruction simplified to itself. Make life easier for users by 4212 /// detecting that case here, returning a safe value instead. 4213 return Result == I ? UndefValue::get(I->getType()) : Result; 4214 } 4215 4216 /// \brief Implementation of recursive simplification through an instruction's 4217 /// uses. 4218 /// 4219 /// This is the common implementation of the recursive simplification routines. 4220 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 4221 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 4222 /// instructions to process and attempt to simplify it using 4223 /// InstructionSimplify. 4224 /// 4225 /// This routine returns 'true' only when *it* simplifies something. The passed 4226 /// in simplified value does not count toward this. 4227 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 4228 const TargetLibraryInfo *TLI, 4229 const DominatorTree *DT, 4230 AssumptionCache *AC) { 4231 bool Simplified = false; 4232 SmallSetVector<Instruction *, 8> Worklist; 4233 const DataLayout &DL = I->getModule()->getDataLayout(); 4234 4235 // If we have an explicit value to collapse to, do that round of the 4236 // simplification loop by hand initially. 4237 if (SimpleV) { 4238 for (User *U : I->users()) 4239 if (U != I) 4240 Worklist.insert(cast<Instruction>(U)); 4241 4242 // Replace the instruction with its simplified value. 4243 I->replaceAllUsesWith(SimpleV); 4244 4245 // Gracefully handle edge cases where the instruction is not wired into any 4246 // parent block. 4247 if (I->getParent()) 4248 I->eraseFromParent(); 4249 } else { 4250 Worklist.insert(I); 4251 } 4252 4253 // Note that we must test the size on each iteration, the worklist can grow. 4254 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 4255 I = Worklist[Idx]; 4256 4257 // See if this instruction simplifies. 4258 SimpleV = SimplifyInstruction(I, DL, TLI, DT, AC); 4259 if (!SimpleV) 4260 continue; 4261 4262 Simplified = true; 4263 4264 // Stash away all the uses of the old instruction so we can check them for 4265 // recursive simplifications after a RAUW. This is cheaper than checking all 4266 // uses of To on the recursive step in most cases. 4267 for (User *U : I->users()) 4268 Worklist.insert(cast<Instruction>(U)); 4269 4270 // Replace the instruction with its simplified value. 4271 I->replaceAllUsesWith(SimpleV); 4272 4273 // Gracefully handle edge cases where the instruction is not wired into any 4274 // parent block. 4275 if (I->getParent()) 4276 I->eraseFromParent(); 4277 } 4278 return Simplified; 4279 } 4280 4281 bool llvm::recursivelySimplifyInstruction(Instruction *I, 4282 const TargetLibraryInfo *TLI, 4283 const DominatorTree *DT, 4284 AssumptionCache *AC) { 4285 return replaceAndRecursivelySimplifyImpl(I, nullptr, TLI, DT, AC); 4286 } 4287 4288 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 4289 const TargetLibraryInfo *TLI, 4290 const DominatorTree *DT, 4291 AssumptionCache *AC) { 4292 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 4293 assert(SimpleV && "Must provide a simplified value."); 4294 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC); 4295 } 4296