1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/CallSite.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/IR/PassManagerImpl.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <iterator> 30 31 #define DEBUG_TYPE "cgscc" 32 33 using namespace llvm; 34 35 // Explicit template instantiations and specialization definitions for core 36 // template typedefs. 37 namespace llvm { 38 39 // Explicit instantiations for the core proxy templates. 40 template class AllAnalysesOn<LazyCallGraph::SCC>; 41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 43 LazyCallGraph &, CGSCCUpdateResult &>; 44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 46 LazyCallGraph::SCC, LazyCallGraph &>; 47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 48 49 /// Explicitly specialize the pass manager run method to handle call graph 50 /// updates. 51 template <> 52 PreservedAnalyses 53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 55 CGSCCAnalysisManager &AM, 56 LazyCallGraph &G, CGSCCUpdateResult &UR) { 57 // Request PassInstrumentation from analysis manager, will use it to run 58 // instrumenting callbacks for the passes later. 59 PassInstrumentation PI = 60 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 61 62 PreservedAnalyses PA = PreservedAnalyses::all(); 63 64 if (DebugLogging) 65 dbgs() << "Starting CGSCC pass manager run.\n"; 66 67 // The SCC may be refined while we are running passes over it, so set up 68 // a pointer that we can update. 69 LazyCallGraph::SCC *C = &InitialC; 70 71 for (auto &Pass : Passes) { 72 if (DebugLogging) 73 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 74 75 // Check the PassInstrumentation's BeforePass callbacks before running the 76 // pass, skip its execution completely if asked to (callback returns false). 77 if (!PI.runBeforePass(*Pass, *C)) 78 continue; 79 80 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 81 82 if (UR.InvalidatedSCCs.count(C)) 83 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); 84 else 85 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); 86 87 // Update the SCC if necessary. 88 C = UR.UpdatedC ? UR.UpdatedC : C; 89 90 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 91 // current SCC may simply need to be skipped if invalid. 92 if (UR.InvalidatedSCCs.count(C)) { 93 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 94 break; 95 } 96 // Check that we didn't miss any update scenario. 97 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 98 99 // Update the analysis manager as each pass runs and potentially 100 // invalidates analyses. 101 AM.invalidate(*C, PassPA); 102 103 // Finally, we intersect the final preserved analyses to compute the 104 // aggregate preserved set for this pass manager. 105 PA.intersect(std::move(PassPA)); 106 107 // FIXME: Historically, the pass managers all called the LLVM context's 108 // yield function here. We don't have a generic way to acquire the 109 // context and it isn't yet clear what the right pattern is for yielding 110 // in the new pass manager so it is currently omitted. 111 // ...getContext().yield(); 112 } 113 114 // Before we mark all of *this* SCC's analyses as preserved below, intersect 115 // this with the cross-SCC preserved analysis set. This is used to allow 116 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 117 // for them. 118 UR.CrossSCCPA.intersect(PA); 119 120 // Invalidation was handled after each pass in the above loop for the current 121 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 122 // preserved. We mark this with a set so that we don't need to inspect each 123 // one individually. 124 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 125 126 if (DebugLogging) 127 dbgs() << "Finished CGSCC pass manager run.\n"; 128 129 return PA; 130 } 131 132 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 133 Module &M, const PreservedAnalyses &PA, 134 ModuleAnalysisManager::Invalidator &Inv) { 135 // If literally everything is preserved, we're done. 136 if (PA.areAllPreserved()) 137 return false; // This is still a valid proxy. 138 139 // If this proxy or the call graph is going to be invalidated, we also need 140 // to clear all the keys coming from that analysis. 141 // 142 // We also directly invalidate the FAM's module proxy if necessary, and if 143 // that proxy isn't preserved we can't preserve this proxy either. We rely on 144 // it to handle module -> function analysis invalidation in the face of 145 // structural changes and so if it's unavailable we conservatively clear the 146 // entire SCC layer as well rather than trying to do invalidation ourselves. 147 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 148 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 149 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 150 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 151 InnerAM->clear(); 152 153 // And the proxy itself should be marked as invalid so that we can observe 154 // the new call graph. This isn't strictly necessary because we cheat 155 // above, but is still useful. 156 return true; 157 } 158 159 // Directly check if the relevant set is preserved so we can short circuit 160 // invalidating SCCs below. 161 bool AreSCCAnalysesPreserved = 162 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 163 164 // Ok, we have a graph, so we can propagate the invalidation down into it. 165 G->buildRefSCCs(); 166 for (auto &RC : G->postorder_ref_sccs()) 167 for (auto &C : RC) { 168 Optional<PreservedAnalyses> InnerPA; 169 170 // Check to see whether the preserved set needs to be adjusted based on 171 // module-level analysis invalidation triggering deferred invalidation 172 // for this SCC. 173 if (auto *OuterProxy = 174 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 175 for (const auto &OuterInvalidationPair : 176 OuterProxy->getOuterInvalidations()) { 177 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 178 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 179 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 180 if (!InnerPA) 181 InnerPA = PA; 182 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 183 InnerPA->abandon(InnerAnalysisID); 184 } 185 } 186 187 // Check if we needed a custom PA set. If so we'll need to run the inner 188 // invalidation. 189 if (InnerPA) { 190 InnerAM->invalidate(C, *InnerPA); 191 continue; 192 } 193 194 // Otherwise we only need to do invalidation if the original PA set didn't 195 // preserve all SCC analyses. 196 if (!AreSCCAnalysesPreserved) 197 InnerAM->invalidate(C, PA); 198 } 199 200 // Return false to indicate that this result is still a valid proxy. 201 return false; 202 } 203 204 template <> 205 CGSCCAnalysisManagerModuleProxy::Result 206 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 207 // Force the Function analysis manager to also be available so that it can 208 // be accessed in an SCC analysis and proxied onward to function passes. 209 // FIXME: It is pretty awkward to just drop the result here and assert that 210 // we can find it again later. 211 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 212 213 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 214 } 215 216 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 217 218 FunctionAnalysisManagerCGSCCProxy::Result 219 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 220 CGSCCAnalysisManager &AM, 221 LazyCallGraph &CG) { 222 // Collect the FunctionAnalysisManager from the Module layer and use that to 223 // build the proxy result. 224 // 225 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 226 // invalidate the function analyses. 227 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 228 Module &M = *C.begin()->getFunction().getParent(); 229 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 230 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 231 "proxy is run on the module prior to entering the CGSCC " 232 "walk."); 233 234 // Note that we special-case invalidation handling of this proxy in the CGSCC 235 // analysis manager's Module proxy. This avoids the need to do anything 236 // special here to recompute all of this if ever the FAM's module proxy goes 237 // away. 238 return Result(FAMProxy->getManager()); 239 } 240 241 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 242 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 243 CGSCCAnalysisManager::Invalidator &Inv) { 244 // If literally everything is preserved, we're done. 245 if (PA.areAllPreserved()) 246 return false; // This is still a valid proxy. 247 248 // If this proxy isn't marked as preserved, then even if the result remains 249 // valid, the key itself may no longer be valid, so we clear everything. 250 // 251 // Note that in order to preserve this proxy, a module pass must ensure that 252 // the FAM has been completely updated to handle the deletion of functions. 253 // Specifically, any FAM-cached results for those functions need to have been 254 // forcibly cleared. When preserved, this proxy will only invalidate results 255 // cached on functions *still in the module* at the end of the module pass. 256 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 257 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 258 for (LazyCallGraph::Node &N : C) 259 FAM->clear(N.getFunction(), N.getFunction().getName()); 260 261 return true; 262 } 263 264 // Directly check if the relevant set is preserved. 265 bool AreFunctionAnalysesPreserved = 266 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 267 268 // Now walk all the functions to see if any inner analysis invalidation is 269 // necessary. 270 for (LazyCallGraph::Node &N : C) { 271 Function &F = N.getFunction(); 272 Optional<PreservedAnalyses> FunctionPA; 273 274 // Check to see whether the preserved set needs to be pruned based on 275 // SCC-level analysis invalidation that triggers deferred invalidation 276 // registered with the outer analysis manager proxy for this function. 277 if (auto *OuterProxy = 278 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 279 for (const auto &OuterInvalidationPair : 280 OuterProxy->getOuterInvalidations()) { 281 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 282 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 283 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 284 if (!FunctionPA) 285 FunctionPA = PA; 286 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 287 FunctionPA->abandon(InnerAnalysisID); 288 } 289 } 290 291 // Check if we needed a custom PA set, and if so we'll need to run the 292 // inner invalidation. 293 if (FunctionPA) { 294 FAM->invalidate(F, *FunctionPA); 295 continue; 296 } 297 298 // Otherwise we only need to do invalidation if the original PA set didn't 299 // preserve all function analyses. 300 if (!AreFunctionAnalysesPreserved) 301 FAM->invalidate(F, PA); 302 } 303 304 // Return false to indicate that this result is still a valid proxy. 305 return false; 306 } 307 308 } // end namespace llvm 309 310 /// When a new SCC is created for the graph and there might be function 311 /// analysis results cached for the functions now in that SCC two forms of 312 /// updates are required. 313 /// 314 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 315 /// created so that any subsequent invalidation events to the SCC are 316 /// propagated to the function analysis results cached for functions within it. 317 /// 318 /// Second, if any of the functions within the SCC have analysis results with 319 /// outer analysis dependencies, then those dependencies would point to the 320 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 321 /// function analyses so that they don't retain stale handles. 322 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 323 LazyCallGraph &G, 324 CGSCCAnalysisManager &AM) { 325 // Get the relevant function analysis manager. 326 auto &FAM = 327 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 328 329 // Now walk the functions in this SCC and invalidate any function analysis 330 // results that might have outer dependencies on an SCC analysis. 331 for (LazyCallGraph::Node &N : C) { 332 Function &F = N.getFunction(); 333 334 auto *OuterProxy = 335 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 336 if (!OuterProxy) 337 // No outer analyses were queried, nothing to do. 338 continue; 339 340 // Forcibly abandon all the inner analyses with dependencies, but 341 // invalidate nothing else. 342 auto PA = PreservedAnalyses::all(); 343 for (const auto &OuterInvalidationPair : 344 OuterProxy->getOuterInvalidations()) { 345 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 346 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 347 PA.abandon(InnerAnalysisID); 348 } 349 350 // Now invalidate anything we found. 351 FAM.invalidate(F, PA); 352 } 353 } 354 355 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 356 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 357 /// added SCCs. 358 /// 359 /// The range of new SCCs must be in postorder already. The SCC they were split 360 /// out of must be provided as \p C. The current node being mutated and 361 /// triggering updates must be passed as \p N. 362 /// 363 /// This function returns the SCC containing \p N. This will be either \p C if 364 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 365 template <typename SCCRangeT> 366 static LazyCallGraph::SCC * 367 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 368 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 369 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 370 using SCC = LazyCallGraph::SCC; 371 372 if (NewSCCRange.begin() == NewSCCRange.end()) 373 return C; 374 375 // Add the current SCC to the worklist as its shape has changed. 376 UR.CWorklist.insert(C); 377 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 378 << "\n"); 379 380 SCC *OldC = C; 381 382 // Update the current SCC. Note that if we have new SCCs, this must actually 383 // change the SCC. 384 assert(C != &*NewSCCRange.begin() && 385 "Cannot insert new SCCs without changing current SCC!"); 386 C = &*NewSCCRange.begin(); 387 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 388 389 // If we had a cached FAM proxy originally, we will want to create more of 390 // them for each SCC that was split off. 391 bool NeedFAMProxy = 392 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 393 394 // We need to propagate an invalidation call to all but the newly current SCC 395 // because the outer pass manager won't do that for us after splitting them. 396 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 397 // there are preserved analysis we can avoid invalidating them here for 398 // split-off SCCs. 399 // We know however that this will preserve any FAM proxy so go ahead and mark 400 // that. 401 PreservedAnalyses PA; 402 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 403 AM.invalidate(*OldC, PA); 404 405 // Ensure the now-current SCC's function analyses are updated. 406 if (NeedFAMProxy) 407 updateNewSCCFunctionAnalyses(*C, G, AM); 408 409 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 410 NewSCCRange.end()))) { 411 assert(C != &NewC && "No need to re-visit the current SCC!"); 412 assert(OldC != &NewC && "Already handled the original SCC!"); 413 UR.CWorklist.insert(&NewC); 414 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 415 416 // Ensure new SCCs' function analyses are updated. 417 if (NeedFAMProxy) 418 updateNewSCCFunctionAnalyses(NewC, G, AM); 419 420 // Also propagate a normal invalidation to the new SCC as only the current 421 // will get one from the pass manager infrastructure. 422 AM.invalidate(NewC, PA); 423 } 424 return C; 425 } 426 427 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 428 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 429 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool FunctionPass) { 430 using Node = LazyCallGraph::Node; 431 using Edge = LazyCallGraph::Edge; 432 using SCC = LazyCallGraph::SCC; 433 using RefSCC = LazyCallGraph::RefSCC; 434 435 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 436 SCC *C = &InitialC; 437 RefSCC *RC = &InitialRC; 438 Function &F = N.getFunction(); 439 440 // Walk the function body and build up the set of retained, promoted, and 441 // demoted edges. 442 SmallVector<Constant *, 16> Worklist; 443 SmallPtrSet<Constant *, 16> Visited; 444 SmallPtrSet<Node *, 16> RetainedEdges; 445 SmallSetVector<Node *, 4> PromotedRefTargets; 446 SmallSetVector<Node *, 4> DemotedCallTargets; 447 SmallSetVector<Node *, 4> NewCallEdges; 448 SmallSetVector<Node *, 4> NewRefEdges; 449 450 // First walk the function and handle all called functions. We do this first 451 // because if there is a single call edge, whether there are ref edges is 452 // irrelevant. 453 for (Instruction &I : instructions(F)) 454 if (auto CS = CallSite(&I)) 455 if (Function *Callee = CS.getCalledFunction()) 456 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 457 Node &CalleeN = *G.lookup(*Callee); 458 Edge *E = N->lookup(CalleeN); 459 assert((E || !FunctionPass) && 460 "No function transformations should introduce *new* " 461 "call edges! Any new calls should be modeled as " 462 "promoted existing ref edges!"); 463 bool Inserted = RetainedEdges.insert(&CalleeN).second; 464 (void)Inserted; 465 assert(Inserted && "We should never visit a function twice."); 466 if (!E) 467 NewCallEdges.insert(&CalleeN); 468 else if (!E->isCall()) 469 PromotedRefTargets.insert(&CalleeN); 470 } 471 472 // Now walk all references. 473 for (Instruction &I : instructions(F)) 474 for (Value *Op : I.operand_values()) 475 if (auto *C = dyn_cast<Constant>(Op)) 476 if (Visited.insert(C).second) 477 Worklist.push_back(C); 478 479 auto VisitRef = [&](Function &Referee) { 480 Node &RefereeN = *G.lookup(Referee); 481 Edge *E = N->lookup(RefereeN); 482 assert((E || !FunctionPass) && 483 "No function transformations should introduce *new* ref " 484 "edges! Any new ref edges would require IPO which " 485 "function passes aren't allowed to do!"); 486 bool Inserted = RetainedEdges.insert(&RefereeN).second; 487 (void)Inserted; 488 assert(Inserted && "We should never visit a function twice."); 489 if (!E) 490 NewRefEdges.insert(&RefereeN); 491 else if (E->isCall()) 492 DemotedCallTargets.insert(&RefereeN); 493 }; 494 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 495 496 // Handle new ref edges. 497 for (Node *RefTarget : NewRefEdges) { 498 SCC &TargetC = *G.lookupSCC(*RefTarget); 499 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 500 (void)TargetRC; 501 // TODO: This only allows trivial edges to be added for now. 502 assert((RC == &TargetRC || 503 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 504 RC->insertTrivialRefEdge(N, *RefTarget); 505 } 506 507 // Handle new call edges. 508 for (Node *CallTarget : NewCallEdges) { 509 SCC &TargetC = *G.lookupSCC(*CallTarget); 510 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 511 (void)TargetRC; 512 // TODO: This only allows trivial edges to be added for now. 513 assert((RC == &TargetRC || 514 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 515 RC->insertTrivialCallEdge(N, *CallTarget); 516 } 517 518 // Include synthetic reference edges to known, defined lib functions. 519 for (auto *F : G.getLibFunctions()) 520 // While the list of lib functions doesn't have repeats, don't re-visit 521 // anything handled above. 522 if (!Visited.count(F)) 523 VisitRef(*F); 524 525 // First remove all of the edges that are no longer present in this function. 526 // The first step makes these edges uniformly ref edges and accumulates them 527 // into a separate data structure so removal doesn't invalidate anything. 528 SmallVector<Node *, 4> DeadTargets; 529 for (Edge &E : *N) { 530 if (RetainedEdges.count(&E.getNode())) 531 continue; 532 533 SCC &TargetC = *G.lookupSCC(E.getNode()); 534 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 535 if (&TargetRC == RC && E.isCall()) { 536 if (C != &TargetC) { 537 // For separate SCCs this is trivial. 538 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 539 } else { 540 // Now update the call graph. 541 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 542 G, N, C, AM, UR); 543 } 544 } 545 546 // Now that this is ready for actual removal, put it into our list. 547 DeadTargets.push_back(&E.getNode()); 548 } 549 // Remove the easy cases quickly and actually pull them out of our list. 550 DeadTargets.erase( 551 llvm::remove_if(DeadTargets, 552 [&](Node *TargetN) { 553 SCC &TargetC = *G.lookupSCC(*TargetN); 554 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 555 556 // We can't trivially remove internal targets, so skip 557 // those. 558 if (&TargetRC == RC) 559 return false; 560 561 RC->removeOutgoingEdge(N, *TargetN); 562 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 563 << N << "' to '" << TargetN << "'\n"); 564 return true; 565 }), 566 DeadTargets.end()); 567 568 // Now do a batch removal of the internal ref edges left. 569 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 570 if (!NewRefSCCs.empty()) { 571 // The old RefSCC is dead, mark it as such. 572 UR.InvalidatedRefSCCs.insert(RC); 573 574 // Note that we don't bother to invalidate analyses as ref-edge 575 // connectivity is not really observable in any way and is intended 576 // exclusively to be used for ordering of transforms rather than for 577 // analysis conclusions. 578 579 // Update RC to the "bottom". 580 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 581 RC = &C->getOuterRefSCC(); 582 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 583 584 // The RC worklist is in reverse postorder, so we enqueue the new ones in 585 // RPO except for the one which contains the source node as that is the 586 // "bottom" we will continue processing in the bottom-up walk. 587 assert(NewRefSCCs.front() == RC && 588 "New current RefSCC not first in the returned list!"); 589 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 590 NewRefSCCs.end()))) { 591 assert(NewRC != RC && "Should not encounter the current RefSCC further " 592 "in the postorder list of new RefSCCs."); 593 UR.RCWorklist.insert(NewRC); 594 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 595 << *NewRC << "\n"); 596 } 597 } 598 599 // Next demote all the call edges that are now ref edges. This helps make 600 // the SCCs small which should minimize the work below as we don't want to 601 // form cycles that this would break. 602 for (Node *RefTarget : DemotedCallTargets) { 603 SCC &TargetC = *G.lookupSCC(*RefTarget); 604 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 605 606 // The easy case is when the target RefSCC is not this RefSCC. This is 607 // only supported when the target RefSCC is a child of this RefSCC. 608 if (&TargetRC != RC) { 609 assert(RC->isAncestorOf(TargetRC) && 610 "Cannot potentially form RefSCC cycles here!"); 611 RC->switchOutgoingEdgeToRef(N, *RefTarget); 612 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 613 << "' to '" << *RefTarget << "'\n"); 614 continue; 615 } 616 617 // We are switching an internal call edge to a ref edge. This may split up 618 // some SCCs. 619 if (C != &TargetC) { 620 // For separate SCCs this is trivial. 621 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 622 continue; 623 } 624 625 // Now update the call graph. 626 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 627 C, AM, UR); 628 } 629 630 // Now promote ref edges into call edges. 631 for (Node *CallTarget : PromotedRefTargets) { 632 SCC &TargetC = *G.lookupSCC(*CallTarget); 633 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 634 635 // The easy case is when the target RefSCC is not this RefSCC. This is 636 // only supported when the target RefSCC is a child of this RefSCC. 637 if (&TargetRC != RC) { 638 assert(RC->isAncestorOf(TargetRC) && 639 "Cannot potentially form RefSCC cycles here!"); 640 RC->switchOutgoingEdgeToCall(N, *CallTarget); 641 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 642 << "' to '" << *CallTarget << "'\n"); 643 continue; 644 } 645 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 646 << N << "' to '" << *CallTarget << "'\n"); 647 648 // Otherwise we are switching an internal ref edge to a call edge. This 649 // may merge away some SCCs, and we add those to the UpdateResult. We also 650 // need to make sure to update the worklist in the event SCCs have moved 651 // before the current one in the post-order sequence 652 bool HasFunctionAnalysisProxy = false; 653 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 654 bool FormedCycle = RC->switchInternalEdgeToCall( 655 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 656 for (SCC *MergedC : MergedSCCs) { 657 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 658 659 HasFunctionAnalysisProxy |= 660 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 661 *MergedC) != nullptr; 662 663 // Mark that this SCC will no longer be valid. 664 UR.InvalidatedSCCs.insert(MergedC); 665 666 // FIXME: We should really do a 'clear' here to forcibly release 667 // memory, but we don't have a good way of doing that and 668 // preserving the function analyses. 669 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 670 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 671 AM.invalidate(*MergedC, PA); 672 } 673 }); 674 675 // If we formed a cycle by creating this call, we need to update more data 676 // structures. 677 if (FormedCycle) { 678 C = &TargetC; 679 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 680 681 // If one of the invalidated SCCs had a cached proxy to a function 682 // analysis manager, we need to create a proxy in the new current SCC as 683 // the invalidated SCCs had their functions moved. 684 if (HasFunctionAnalysisProxy) 685 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 686 687 // Any analyses cached for this SCC are no longer precise as the shape 688 // has changed by introducing this cycle. However, we have taken care to 689 // update the proxies so it remains valide. 690 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 691 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 692 AM.invalidate(*C, PA); 693 } 694 auto NewSCCIndex = RC->find(*C) - RC->begin(); 695 // If we have actually moved an SCC to be topologically "below" the current 696 // one due to merging, we will need to revisit the current SCC after 697 // visiting those moved SCCs. 698 // 699 // It is critical that we *do not* revisit the current SCC unless we 700 // actually move SCCs in the process of merging because otherwise we may 701 // form a cycle where an SCC is split apart, merged, split, merged and so 702 // on infinitely. 703 if (InitialSCCIndex < NewSCCIndex) { 704 // Put our current SCC back onto the worklist as we'll visit other SCCs 705 // that are now definitively ordered prior to the current one in the 706 // post-order sequence, and may end up observing more precise context to 707 // optimize the current SCC. 708 UR.CWorklist.insert(C); 709 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 710 << "\n"); 711 // Enqueue in reverse order as we pop off the back of the worklist. 712 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 713 RC->begin() + NewSCCIndex))) { 714 UR.CWorklist.insert(&MovedC); 715 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 716 << MovedC << "\n"); 717 } 718 } 719 } 720 721 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 722 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 723 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 724 725 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 726 // manager now that all the updates have been applied. 727 if (RC != &InitialRC) 728 UR.UpdatedRC = RC; 729 if (C != &InitialC) 730 UR.UpdatedC = C; 731 732 return *C; 733 } 734 735 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 736 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 737 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 738 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 739 /* FunctionPass */ true); 740 } 741 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 742 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 743 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 744 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 745 /* FunctionPass */ false); 746 } 747