1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/InstIterator.h" 13 14 using namespace llvm; 15 16 // Explicit template instantiations and specialization defininitions for core 17 // template typedefs. 18 namespace llvm { 19 20 // Explicit instantiations for the core proxy templates. 21 template class AllAnalysesOn<LazyCallGraph::SCC>; 22 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 23 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 24 LazyCallGraph &, CGSCCUpdateResult &>; 25 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 26 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 27 LazyCallGraph::SCC, LazyCallGraph &>; 28 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 29 30 /// Explicitly specialize the pass manager run method to handle call graph 31 /// updates. 32 template <> 33 PreservedAnalyses 34 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 35 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 36 CGSCCAnalysisManager &AM, 37 LazyCallGraph &G, CGSCCUpdateResult &UR) { 38 PreservedAnalyses PA = PreservedAnalyses::all(); 39 40 if (DebugLogging) 41 dbgs() << "Starting CGSCC pass manager run.\n"; 42 43 // The SCC may be refined while we are running passes over it, so set up 44 // a pointer that we can update. 45 LazyCallGraph::SCC *C = &InitialC; 46 47 for (auto &Pass : Passes) { 48 if (DebugLogging) 49 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 50 51 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 52 53 // Update the SCC if necessary. 54 C = UR.UpdatedC ? UR.UpdatedC : C; 55 56 // Check that we didn't miss any update scenario. 57 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); 58 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 59 60 // Update the analysis manager as each pass runs and potentially 61 // invalidates analyses. 62 AM.invalidate(*C, PassPA); 63 64 // Finally, we intersect the final preserved analyses to compute the 65 // aggregate preserved set for this pass manager. 66 PA.intersect(std::move(PassPA)); 67 68 // FIXME: Historically, the pass managers all called the LLVM context's 69 // yield function here. We don't have a generic way to acquire the 70 // context and it isn't yet clear what the right pattern is for yielding 71 // in the new pass manager so it is currently omitted. 72 // ...getContext().yield(); 73 } 74 75 // Invaliadtion was handled after each pass in the above loop for the current 76 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 77 // preserved. We mark this with a set so that we don't need to inspect each 78 // one individually. 79 PA.preserve<AllAnalysesOn<LazyCallGraph::SCC>>(); 80 81 if (DebugLogging) 82 dbgs() << "Finished CGSCC pass manager run.\n"; 83 84 return PA; 85 } 86 87 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 88 Module &M, const PreservedAnalyses &PA, 89 ModuleAnalysisManager::Invalidator &Inv) { 90 // If this proxy or the call graph is going to be invalidated, we also need 91 // to clear all the keys coming from that analysis. 92 // 93 // We also directly invalidate the FAM's module proxy if necessary, and if 94 // that proxy isn't preserved we can't preserve this proxy either. We rely on 95 // it to handle module -> function analysis invalidation in the face of 96 // structural changes and so if it's unavailable we conservatively clear the 97 // entire SCC layer as well rather than trying to do invaliadtion ourselves. 98 if (!PA.preserved<CGSCCAnalysisManagerModuleProxy>() || 99 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 100 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 101 InnerAM->clear(); 102 103 // And the proxy itself should be marked as invalid so that we can observe 104 // the new call graph. This isn't strictly necessary because we cheat 105 // above, but is still useful. 106 return true; 107 } 108 109 // Ok, we have a graph, so we can propagate the invalidation down into it. 110 for (auto &RC : G->postorder_ref_sccs()) 111 for (auto &C : RC) 112 InnerAM->invalidate(C, PA); 113 114 // Return false to indicate that this result is still a valid proxy. 115 return false; 116 } 117 118 template <> 119 CGSCCAnalysisManagerModuleProxy::Result 120 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 121 // Force the Function analysis manager to also be available so that it can 122 // be accessed in an SCC analysis and proxied onward to function passes. 123 // FIXME: It is pretty awkward to just drop the result here and assert that 124 // we can find it again later. 125 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 126 127 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 128 } 129 130 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 131 132 FunctionAnalysisManagerCGSCCProxy::Result 133 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 134 CGSCCAnalysisManager &AM, 135 LazyCallGraph &CG) { 136 // Collect the FunctionAnalysisManager from the Module layer and use that to 137 // build the proxy result. 138 // 139 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 140 // invalidate the function analyses. 141 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 142 Module &M = *C.begin()->getFunction().getParent(); 143 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 144 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 145 "proxy is run on the module prior to entering the CGSCC " 146 "walk."); 147 148 // Note that we special-case invalidation handling of this proxy in the CGSCC 149 // analysis manager's Module proxy. This avoids the need to do anything 150 // special here to recompute all of this if ever the FAM's module proxy goes 151 // away. 152 return Result(FAMProxy->getManager()); 153 } 154 155 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 156 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 157 CGSCCAnalysisManager::Invalidator &Inv) { 158 for (LazyCallGraph::Node &N : C) 159 FAM->invalidate(N.getFunction(), PA); 160 161 // This proxy doesn't need to handle invalidation itself. Instead, the 162 // module-level CGSCC proxy handles it above by ensuring that if the 163 // module-level FAM proxy becomes invalid the entire SCC layer, which 164 // includes this proxy, is cleared. 165 return false; 166 } 167 168 } // End llvm namespace 169 170 namespace { 171 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 172 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 173 /// added SCCs. 174 /// 175 /// The range of new SCCs must be in postorder already. The SCC they were split 176 /// out of must be provided as \p C. The current node being mutated and 177 /// triggering updates must be passed as \p N. 178 /// 179 /// This function returns the SCC containing \p N. This will be either \p C if 180 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 181 template <typename SCCRangeT> 182 LazyCallGraph::SCC * 183 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 184 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 185 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 186 bool DebugLogging = false) { 187 typedef LazyCallGraph::SCC SCC; 188 189 if (NewSCCRange.begin() == NewSCCRange.end()) 190 return C; 191 192 // Invalidate the analyses of the current SCC and add it to the worklist since 193 // it has changed its shape. 194 AM.invalidate(*C, PreservedAnalyses::none()); 195 UR.CWorklist.insert(C); 196 if (DebugLogging) 197 dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; 198 199 SCC *OldC = C; 200 (void)OldC; 201 202 // Update the current SCC. Note that if we have new SCCs, this must actually 203 // change the SCC. 204 assert(C != &*NewSCCRange.begin() && 205 "Cannot insert new SCCs without changing current SCC!"); 206 C = &*NewSCCRange.begin(); 207 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 208 209 for (SCC &NewC : 210 reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { 211 assert(C != &NewC && "No need to re-visit the current SCC!"); 212 assert(OldC != &NewC && "Already handled the original SCC!"); 213 UR.CWorklist.insert(&NewC); 214 if (DebugLogging) 215 dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; 216 } 217 return C; 218 } 219 } 220 221 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 222 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 223 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { 224 typedef LazyCallGraph::Node Node; 225 typedef LazyCallGraph::Edge Edge; 226 typedef LazyCallGraph::SCC SCC; 227 typedef LazyCallGraph::RefSCC RefSCC; 228 229 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 230 SCC *C = &InitialC; 231 RefSCC *RC = &InitialRC; 232 Function &F = N.getFunction(); 233 234 // Walk the function body and build up the set of retained, promoted, and 235 // demoted edges. 236 SmallVector<Constant *, 16> Worklist; 237 SmallPtrSet<Constant *, 16> Visited; 238 SmallPtrSet<Function *, 16> RetainedEdges; 239 SmallSetVector<Function *, 4> PromotedRefTargets; 240 SmallSetVector<Function *, 4> DemotedCallTargets; 241 242 // First walk the function and handle all called functions. We do this first 243 // because if there is a single call edge, whether there are ref edges is 244 // irrelevant. 245 for (Instruction &I : instructions(F)) 246 if (auto CS = CallSite(&I)) 247 if (Function *Callee = CS.getCalledFunction()) 248 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 249 const Edge *E = N.lookup(*Callee); 250 // FIXME: We should really handle adding new calls. While it will 251 // make downstream usage more complex, there is no fundamental 252 // limitation and it will allow passes within the CGSCC to be a bit 253 // more flexible in what transforms they can do. Until then, we 254 // verify that new calls haven't been introduced. 255 assert(E && "No function transformations should introduce *new* " 256 "call edges! Any new calls should be modeled as " 257 "promoted existing ref edges!"); 258 RetainedEdges.insert(Callee); 259 if (!E->isCall()) 260 PromotedRefTargets.insert(Callee); 261 } 262 263 // Now walk all references. 264 for (Instruction &I : instructions(F)) 265 for (Value *Op : I.operand_values()) 266 if (Constant *C = dyn_cast<Constant>(Op)) 267 if (Visited.insert(C).second) 268 Worklist.push_back(C); 269 270 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { 271 const Edge *E = N.lookup(Referee); 272 // FIXME: Similarly to new calls, we also currently preclude 273 // introducing new references. See above for details. 274 assert(E && "No function transformations should introduce *new* ref " 275 "edges! Any new ref edges would require IPO which " 276 "function passes aren't allowed to do!"); 277 RetainedEdges.insert(&Referee); 278 if (E->isCall()) 279 DemotedCallTargets.insert(&Referee); 280 }); 281 282 // First remove all of the edges that are no longer present in this function. 283 // We have to build a list of dead targets first and then remove them as the 284 // data structures will all be invalidated by removing them. 285 SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; 286 for (Edge &E : N) 287 if (!RetainedEdges.count(&E.getFunction())) 288 DeadTargets.push_back({E.getNode(), E.getKind()}); 289 for (auto DeadTarget : DeadTargets) { 290 Node &TargetN = *DeadTarget.getPointer(); 291 bool IsCall = DeadTarget.getInt() == Edge::Call; 292 SCC &TargetC = *G.lookupSCC(TargetN); 293 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 294 295 if (&TargetRC != RC) { 296 RC->removeOutgoingEdge(N, TargetN); 297 if (DebugLogging) 298 dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN 299 << "'\n"; 300 continue; 301 } 302 if (DebugLogging) 303 dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") 304 << " edge from '" << N << "' to '" << TargetN << "'\n"; 305 306 if (IsCall) 307 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, 308 C, AM, UR, DebugLogging); 309 310 auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); 311 if (!NewRefSCCs.empty()) { 312 // Note that we don't bother to invalidate analyses as ref-edge 313 // connectivity is not really observable in any way and is intended 314 // exclusively to be used for ordering of transforms rather than for 315 // analysis conclusions. 316 317 // The RC worklist is in reverse postorder, so we first enqueue the 318 // current RefSCC as it will remain the parent of all split RefSCCs, then 319 // we enqueue the new ones in RPO except for the one which contains the 320 // source node as that is the "bottom" we will continue processing in the 321 // bottom-up walk. 322 UR.RCWorklist.insert(RC); 323 if (DebugLogging) 324 dbgs() << "Enqueuing the existing RefSCC in the update worklist: " 325 << *RC << "\n"; 326 // Update the RC to the "bottom". 327 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 328 RC = &C->getOuterRefSCC(); 329 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 330 assert(NewRefSCCs.front() == RC && 331 "New current RefSCC not first in the returned list!"); 332 for (RefSCC *NewRC : reverse( 333 make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) { 334 assert(NewRC != RC && "Should not encounter the current RefSCC further " 335 "in the postorder list of new RefSCCs."); 336 UR.RCWorklist.insert(NewRC); 337 if (DebugLogging) 338 dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC 339 << "\n"; 340 } 341 } 342 } 343 344 // Next demote all the call edges that are now ref edges. This helps make 345 // the SCCs small which should minimize the work below as we don't want to 346 // form cycles that this would break. 347 for (Function *RefTarget : DemotedCallTargets) { 348 Node &TargetN = *G.lookup(*RefTarget); 349 SCC &TargetC = *G.lookupSCC(TargetN); 350 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 351 352 // The easy case is when the target RefSCC is not this RefSCC. This is 353 // only supported when the target RefSCC is a child of this RefSCC. 354 if (&TargetRC != RC) { 355 assert(RC->isAncestorOf(TargetRC) && 356 "Cannot potentially form RefSCC cycles here!"); 357 RC->switchOutgoingEdgeToRef(N, TargetN); 358 if (DebugLogging) 359 dbgs() << "Switch outgoing call edge to a ref edge from '" << N 360 << "' to '" << TargetN << "'\n"; 361 continue; 362 } 363 364 // Otherwise we are switching an internal call edge to a ref edge. This 365 // may split up some SCCs. 366 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, 367 AM, UR, DebugLogging); 368 } 369 370 // Now promote ref edges into call edges. 371 for (Function *CallTarget : PromotedRefTargets) { 372 Node &TargetN = *G.lookup(*CallTarget); 373 SCC &TargetC = *G.lookupSCC(TargetN); 374 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 375 376 // The easy case is when the target RefSCC is not this RefSCC. This is 377 // only supported when the target RefSCC is a child of this RefSCC. 378 if (&TargetRC != RC) { 379 assert(RC->isAncestorOf(TargetRC) && 380 "Cannot potentially form RefSCC cycles here!"); 381 RC->switchOutgoingEdgeToCall(N, TargetN); 382 if (DebugLogging) 383 dbgs() << "Switch outgoing ref edge to a call edge from '" << N 384 << "' to '" << TargetN << "'\n"; 385 continue; 386 } 387 if (DebugLogging) 388 dbgs() << "Switch an internal ref edge to a call edge from '" << N 389 << "' to '" << TargetN << "'\n"; 390 391 // Otherwise we are switching an internal ref edge to a call edge. This 392 // may merge away some SCCs, and we add those to the UpdateResult. We also 393 // need to make sure to update the worklist in the event SCCs have moved 394 // before the current one in the post-order sequence. 395 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 396 auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); 397 if (!InvalidatedSCCs.empty()) { 398 C = &TargetC; 399 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 400 401 // Any analyses cached for this SCC are no longer precise as the shape 402 // has changed by introducing this cycle. 403 AM.invalidate(*C, PreservedAnalyses::none()); 404 405 for (SCC *InvalidatedC : InvalidatedSCCs) { 406 assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); 407 UR.InvalidatedSCCs.insert(InvalidatedC); 408 409 // Also clear any cached analyses for the SCCs that are dead. This 410 // isn't really necessary for correctness but can release memory. 411 AM.clear(*InvalidatedC); 412 } 413 } 414 auto NewSCCIndex = RC->find(*C) - RC->begin(); 415 if (InitialSCCIndex < NewSCCIndex) { 416 // Put our current SCC back onto the worklist as we'll visit other SCCs 417 // that are now definitively ordered prior to the current one in the 418 // post-order sequence, and may end up observing more precise context to 419 // optimize the current SCC. 420 UR.CWorklist.insert(C); 421 if (DebugLogging) 422 dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; 423 // Enqueue in reverse order as we pop off the back of the worklist. 424 for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, 425 RC->begin() + NewSCCIndex))) { 426 UR.CWorklist.insert(&MovedC); 427 if (DebugLogging) 428 dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC 429 << "\n"; 430 } 431 } 432 } 433 434 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 435 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 436 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 437 438 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 439 // manager now that all the updates have been applied. 440 if (RC != &InitialRC) 441 UR.UpdatedRC = RC; 442 if (C != &InitialC) 443 UR.UpdatedC = C; 444 445 return *C; 446 } 447