1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/Optional.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Analysis/LazyCallGraph.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/InstIterator.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <iterator> 30 31 #define DEBUG_TYPE "cgscc" 32 33 using namespace llvm; 34 35 // Explicit template instantiations and specialization defininitions for core 36 // template typedefs. 37 namespace llvm { 38 39 // Explicit instantiations for the core proxy templates. 40 template class AllAnalysesOn<LazyCallGraph::SCC>; 41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 43 LazyCallGraph &, CGSCCUpdateResult &>; 44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 46 LazyCallGraph::SCC, LazyCallGraph &>; 47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 48 49 /// Explicitly specialize the pass manager run method to handle call graph 50 /// updates. 51 template <> 52 PreservedAnalyses 53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 55 CGSCCAnalysisManager &AM, 56 LazyCallGraph &G, CGSCCUpdateResult &UR) { 57 PreservedAnalyses PA = PreservedAnalyses::all(); 58 59 if (DebugLogging) 60 dbgs() << "Starting CGSCC pass manager run.\n"; 61 62 // The SCC may be refined while we are running passes over it, so set up 63 // a pointer that we can update. 64 LazyCallGraph::SCC *C = &InitialC; 65 66 for (auto &Pass : Passes) { 67 if (DebugLogging) 68 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 69 70 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 71 72 // Update the SCC if necessary. 73 C = UR.UpdatedC ? UR.UpdatedC : C; 74 75 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 76 // current SCC may simply need to be skipped if invalid. 77 if (UR.InvalidatedSCCs.count(C)) { 78 DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 79 break; 80 } 81 // Check that we didn't miss any update scenario. 82 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 83 84 // Update the analysis manager as each pass runs and potentially 85 // invalidates analyses. 86 AM.invalidate(*C, PassPA); 87 88 // Finally, we intersect the final preserved analyses to compute the 89 // aggregate preserved set for this pass manager. 90 PA.intersect(std::move(PassPA)); 91 92 // FIXME: Historically, the pass managers all called the LLVM context's 93 // yield function here. We don't have a generic way to acquire the 94 // context and it isn't yet clear what the right pattern is for yielding 95 // in the new pass manager so it is currently omitted. 96 // ...getContext().yield(); 97 } 98 99 // Invaliadtion was handled after each pass in the above loop for the current 100 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 101 // preserved. We mark this with a set so that we don't need to inspect each 102 // one individually. 103 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 104 105 if (DebugLogging) 106 dbgs() << "Finished CGSCC pass manager run.\n"; 107 108 return PA; 109 } 110 111 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 112 Module &M, const PreservedAnalyses &PA, 113 ModuleAnalysisManager::Invalidator &Inv) { 114 // If literally everything is preserved, we're done. 115 if (PA.areAllPreserved()) 116 return false; // This is still a valid proxy. 117 118 // If this proxy or the call graph is going to be invalidated, we also need 119 // to clear all the keys coming from that analysis. 120 // 121 // We also directly invalidate the FAM's module proxy if necessary, and if 122 // that proxy isn't preserved we can't preserve this proxy either. We rely on 123 // it to handle module -> function analysis invalidation in the face of 124 // structural changes and so if it's unavailable we conservatively clear the 125 // entire SCC layer as well rather than trying to do invalidation ourselves. 126 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 127 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 128 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 129 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 130 InnerAM->clear(); 131 132 // And the proxy itself should be marked as invalid so that we can observe 133 // the new call graph. This isn't strictly necessary because we cheat 134 // above, but is still useful. 135 return true; 136 } 137 138 // Directly check if the relevant set is preserved so we can short circuit 139 // invalidating SCCs below. 140 bool AreSCCAnalysesPreserved = 141 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 142 143 // Ok, we have a graph, so we can propagate the invalidation down into it. 144 G->buildRefSCCs(); 145 for (auto &RC : G->postorder_ref_sccs()) 146 for (auto &C : RC) { 147 Optional<PreservedAnalyses> InnerPA; 148 149 // Check to see whether the preserved set needs to be adjusted based on 150 // module-level analysis invalidation triggering deferred invalidation 151 // for this SCC. 152 if (auto *OuterProxy = 153 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 154 for (const auto &OuterInvalidationPair : 155 OuterProxy->getOuterInvalidations()) { 156 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 157 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 158 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 159 if (!InnerPA) 160 InnerPA = PA; 161 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 162 InnerPA->abandon(InnerAnalysisID); 163 } 164 } 165 166 // Check if we needed a custom PA set. If so we'll need to run the inner 167 // invalidation. 168 if (InnerPA) { 169 InnerAM->invalidate(C, *InnerPA); 170 continue; 171 } 172 173 // Otherwise we only need to do invalidation if the original PA set didn't 174 // preserve all SCC analyses. 175 if (!AreSCCAnalysesPreserved) 176 InnerAM->invalidate(C, PA); 177 } 178 179 // Return false to indicate that this result is still a valid proxy. 180 return false; 181 } 182 183 template <> 184 CGSCCAnalysisManagerModuleProxy::Result 185 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 186 // Force the Function analysis manager to also be available so that it can 187 // be accessed in an SCC analysis and proxied onward to function passes. 188 // FIXME: It is pretty awkward to just drop the result here and assert that 189 // we can find it again later. 190 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 191 192 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 193 } 194 195 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 196 197 FunctionAnalysisManagerCGSCCProxy::Result 198 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 199 CGSCCAnalysisManager &AM, 200 LazyCallGraph &CG) { 201 // Collect the FunctionAnalysisManager from the Module layer and use that to 202 // build the proxy result. 203 // 204 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 205 // invalidate the function analyses. 206 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 207 Module &M = *C.begin()->getFunction().getParent(); 208 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 209 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 210 "proxy is run on the module prior to entering the CGSCC " 211 "walk."); 212 213 // Note that we special-case invalidation handling of this proxy in the CGSCC 214 // analysis manager's Module proxy. This avoids the need to do anything 215 // special here to recompute all of this if ever the FAM's module proxy goes 216 // away. 217 return Result(FAMProxy->getManager()); 218 } 219 220 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 221 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 222 CGSCCAnalysisManager::Invalidator &Inv) { 223 // If literally everything is preserved, we're done. 224 if (PA.areAllPreserved()) 225 return false; // This is still a valid proxy. 226 227 // If this proxy isn't marked as preserved, then even if the result remains 228 // valid, the key itself may no longer be valid, so we clear everything. 229 // 230 // Note that in order to preserve this proxy, a module pass must ensure that 231 // the FAM has been completely updated to handle the deletion of functions. 232 // Specifically, any FAM-cached results for those functions need to have been 233 // forcibly cleared. When preserved, this proxy will only invalidate results 234 // cached on functions *still in the module* at the end of the module pass. 235 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 236 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 237 for (LazyCallGraph::Node &N : C) 238 FAM->clear(N.getFunction()); 239 240 return true; 241 } 242 243 // Directly check if the relevant set is preserved. 244 bool AreFunctionAnalysesPreserved = 245 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 246 247 // Now walk all the functions to see if any inner analysis invalidation is 248 // necessary. 249 for (LazyCallGraph::Node &N : C) { 250 Function &F = N.getFunction(); 251 Optional<PreservedAnalyses> FunctionPA; 252 253 // Check to see whether the preserved set needs to be pruned based on 254 // SCC-level analysis invalidation that triggers deferred invalidation 255 // registered with the outer analysis manager proxy for this function. 256 if (auto *OuterProxy = 257 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 258 for (const auto &OuterInvalidationPair : 259 OuterProxy->getOuterInvalidations()) { 260 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 261 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 262 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 263 if (!FunctionPA) 264 FunctionPA = PA; 265 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 266 FunctionPA->abandon(InnerAnalysisID); 267 } 268 } 269 270 // Check if we needed a custom PA set, and if so we'll need to run the 271 // inner invalidation. 272 if (FunctionPA) { 273 FAM->invalidate(F, *FunctionPA); 274 continue; 275 } 276 277 // Otherwise we only need to do invalidation if the original PA set didn't 278 // preserve all function analyses. 279 if (!AreFunctionAnalysesPreserved) 280 FAM->invalidate(F, PA); 281 } 282 283 // Return false to indicate that this result is still a valid proxy. 284 return false; 285 } 286 287 } // end namespace llvm 288 289 /// When a new SCC is created for the graph and there might be function 290 /// analysis results cached for the functions now in that SCC two forms of 291 /// updates are required. 292 /// 293 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 294 /// created so that any subsequent invalidation events to the SCC are 295 /// propagated to the function analysis results cached for functions within it. 296 /// 297 /// Second, if any of the functions within the SCC have analysis results with 298 /// outer analysis dependencies, then those dependencies would point to the 299 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 300 /// function analyses so that they don't retain stale handles. 301 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 302 LazyCallGraph &G, 303 CGSCCAnalysisManager &AM) { 304 // Get the relevant function analysis manager. 305 auto &FAM = 306 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 307 308 // Now walk the functions in this SCC and invalidate any function analysis 309 // results that might have outer dependencies on an SCC analysis. 310 for (LazyCallGraph::Node &N : C) { 311 Function &F = N.getFunction(); 312 313 auto *OuterProxy = 314 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 315 if (!OuterProxy) 316 // No outer analyses were queried, nothing to do. 317 continue; 318 319 // Forcibly abandon all the inner analyses with dependencies, but 320 // invalidate nothing else. 321 auto PA = PreservedAnalyses::all(); 322 for (const auto &OuterInvalidationPair : 323 OuterProxy->getOuterInvalidations()) { 324 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 325 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 326 PA.abandon(InnerAnalysisID); 327 } 328 329 // Now invalidate anything we found. 330 FAM.invalidate(F, PA); 331 } 332 } 333 334 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 335 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 336 /// added SCCs. 337 /// 338 /// The range of new SCCs must be in postorder already. The SCC they were split 339 /// out of must be provided as \p C. The current node being mutated and 340 /// triggering updates must be passed as \p N. 341 /// 342 /// This function returns the SCC containing \p N. This will be either \p C if 343 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 344 template <typename SCCRangeT> 345 static LazyCallGraph::SCC * 346 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 347 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 348 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 349 using SCC = LazyCallGraph::SCC; 350 351 if (NewSCCRange.begin() == NewSCCRange.end()) 352 return C; 353 354 // Add the current SCC to the worklist as its shape has changed. 355 UR.CWorklist.insert(C); 356 DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"); 357 358 SCC *OldC = C; 359 360 // Update the current SCC. Note that if we have new SCCs, this must actually 361 // change the SCC. 362 assert(C != &*NewSCCRange.begin() && 363 "Cannot insert new SCCs without changing current SCC!"); 364 C = &*NewSCCRange.begin(); 365 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 366 367 // If we had a cached FAM proxy originally, we will want to create more of 368 // them for each SCC that was split off. 369 bool NeedFAMProxy = 370 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 371 372 // We need to propagate an invalidation call to all but the newly current SCC 373 // because the outer pass manager won't do that for us after splitting them. 374 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 375 // there are preserved ananalyses we can avoid invalidating them here for 376 // split-off SCCs. 377 // We know however that this will preserve any FAM proxy so go ahead and mark 378 // that. 379 PreservedAnalyses PA; 380 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 381 AM.invalidate(*OldC, PA); 382 383 // Ensure the now-current SCC's function analyses are updated. 384 if (NeedFAMProxy) 385 updateNewSCCFunctionAnalyses(*C, G, AM); 386 387 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 388 NewSCCRange.end()))) { 389 assert(C != &NewC && "No need to re-visit the current SCC!"); 390 assert(OldC != &NewC && "Already handled the original SCC!"); 391 UR.CWorklist.insert(&NewC); 392 DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 393 394 // Ensure new SCCs' function analyses are updated. 395 if (NeedFAMProxy) 396 updateNewSCCFunctionAnalyses(NewC, G, AM); 397 398 // Also propagate a normal invalidation to the new SCC as only the current 399 // will get one from the pass manager infrastructure. 400 AM.invalidate(NewC, PA); 401 } 402 return C; 403 } 404 405 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 406 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 407 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 408 using Node = LazyCallGraph::Node; 409 using Edge = LazyCallGraph::Edge; 410 using SCC = LazyCallGraph::SCC; 411 using RefSCC = LazyCallGraph::RefSCC; 412 413 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 414 SCC *C = &InitialC; 415 RefSCC *RC = &InitialRC; 416 Function &F = N.getFunction(); 417 418 // Walk the function body and build up the set of retained, promoted, and 419 // demoted edges. 420 SmallVector<Constant *, 16> Worklist; 421 SmallPtrSet<Constant *, 16> Visited; 422 SmallPtrSet<Node *, 16> RetainedEdges; 423 SmallSetVector<Node *, 4> PromotedRefTargets; 424 SmallSetVector<Node *, 4> DemotedCallTargets; 425 426 // First walk the function and handle all called functions. We do this first 427 // because if there is a single call edge, whether there are ref edges is 428 // irrelevant. 429 for (Instruction &I : instructions(F)) 430 if (auto CS = CallSite(&I)) 431 if (Function *Callee = CS.getCalledFunction()) 432 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 433 Node &CalleeN = *G.lookup(*Callee); 434 Edge *E = N->lookup(CalleeN); 435 // FIXME: We should really handle adding new calls. While it will 436 // make downstream usage more complex, there is no fundamental 437 // limitation and it will allow passes within the CGSCC to be a bit 438 // more flexible in what transforms they can do. Until then, we 439 // verify that new calls haven't been introduced. 440 assert(E && "No function transformations should introduce *new* " 441 "call edges! Any new calls should be modeled as " 442 "promoted existing ref edges!"); 443 bool Inserted = RetainedEdges.insert(&CalleeN).second; 444 (void)Inserted; 445 assert(Inserted && "We should never visit a function twice."); 446 if (!E->isCall()) 447 PromotedRefTargets.insert(&CalleeN); 448 } 449 450 // Now walk all references. 451 for (Instruction &I : instructions(F)) 452 for (Value *Op : I.operand_values()) 453 if (auto *C = dyn_cast<Constant>(Op)) 454 if (Visited.insert(C).second) 455 Worklist.push_back(C); 456 457 auto VisitRef = [&](Function &Referee) { 458 Node &RefereeN = *G.lookup(Referee); 459 Edge *E = N->lookup(RefereeN); 460 // FIXME: Similarly to new calls, we also currently preclude 461 // introducing new references. See above for details. 462 assert(E && "No function transformations should introduce *new* ref " 463 "edges! Any new ref edges would require IPO which " 464 "function passes aren't allowed to do!"); 465 bool Inserted = RetainedEdges.insert(&RefereeN).second; 466 (void)Inserted; 467 assert(Inserted && "We should never visit a function twice."); 468 if (E->isCall()) 469 DemotedCallTargets.insert(&RefereeN); 470 }; 471 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 472 473 // Include synthetic reference edges to known, defined lib functions. 474 for (auto *F : G.getLibFunctions()) 475 // While the list of lib functions doesn't have repeats, don't re-visit 476 // anything handled above. 477 if (!Visited.count(F)) 478 VisitRef(*F); 479 480 // First remove all of the edges that are no longer present in this function. 481 // The first step makes these edges uniformly ref edges and accumulates them 482 // into a separate data structure so removal doesn't invalidate anything. 483 SmallVector<Node *, 4> DeadTargets; 484 for (Edge &E : *N) { 485 if (RetainedEdges.count(&E.getNode())) 486 continue; 487 488 SCC &TargetC = *G.lookupSCC(E.getNode()); 489 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 490 if (&TargetRC == RC && E.isCall()) { 491 if (C != &TargetC) { 492 // For separate SCCs this is trivial. 493 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 494 } else { 495 // Now update the call graph. 496 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 497 G, N, C, AM, UR); 498 } 499 } 500 501 // Now that this is ready for actual removal, put it into our list. 502 DeadTargets.push_back(&E.getNode()); 503 } 504 // Remove the easy cases quickly and actually pull them out of our list. 505 DeadTargets.erase( 506 llvm::remove_if(DeadTargets, 507 [&](Node *TargetN) { 508 SCC &TargetC = *G.lookupSCC(*TargetN); 509 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 510 511 // We can't trivially remove internal targets, so skip 512 // those. 513 if (&TargetRC == RC) 514 return false; 515 516 RC->removeOutgoingEdge(N, *TargetN); 517 DEBUG(dbgs() << "Deleting outgoing edge from '" << N 518 << "' to '" << TargetN << "'\n"); 519 return true; 520 }), 521 DeadTargets.end()); 522 523 // Now do a batch removal of the internal ref edges left. 524 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 525 if (!NewRefSCCs.empty()) { 526 // The old RefSCC is dead, mark it as such. 527 UR.InvalidatedRefSCCs.insert(RC); 528 529 // Note that we don't bother to invalidate analyses as ref-edge 530 // connectivity is not really observable in any way and is intended 531 // exclusively to be used for ordering of transforms rather than for 532 // analysis conclusions. 533 534 // Update RC to the "bottom". 535 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 536 RC = &C->getOuterRefSCC(); 537 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 538 539 // The RC worklist is in reverse postorder, so we enqueue the new ones in 540 // RPO except for the one which contains the source node as that is the 541 // "bottom" we will continue processing in the bottom-up walk. 542 assert(NewRefSCCs.front() == RC && 543 "New current RefSCC not first in the returned list!"); 544 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 545 NewRefSCCs.end()))) { 546 assert(NewRC != RC && "Should not encounter the current RefSCC further " 547 "in the postorder list of new RefSCCs."); 548 UR.RCWorklist.insert(NewRC); 549 DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 550 << *NewRC << "\n"); 551 } 552 } 553 554 // Next demote all the call edges that are now ref edges. This helps make 555 // the SCCs small which should minimize the work below as we don't want to 556 // form cycles that this would break. 557 for (Node *RefTarget : DemotedCallTargets) { 558 SCC &TargetC = *G.lookupSCC(*RefTarget); 559 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 560 561 // The easy case is when the target RefSCC is not this RefSCC. This is 562 // only supported when the target RefSCC is a child of this RefSCC. 563 if (&TargetRC != RC) { 564 assert(RC->isAncestorOf(TargetRC) && 565 "Cannot potentially form RefSCC cycles here!"); 566 RC->switchOutgoingEdgeToRef(N, *RefTarget); 567 DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 568 << "' to '" << *RefTarget << "'\n"); 569 continue; 570 } 571 572 // We are switching an internal call edge to a ref edge. This may split up 573 // some SCCs. 574 if (C != &TargetC) { 575 // For separate SCCs this is trivial. 576 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 577 continue; 578 } 579 580 // Now update the call graph. 581 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 582 C, AM, UR); 583 } 584 585 // Now promote ref edges into call edges. 586 for (Node *CallTarget : PromotedRefTargets) { 587 SCC &TargetC = *G.lookupSCC(*CallTarget); 588 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 589 590 // The easy case is when the target RefSCC is not this RefSCC. This is 591 // only supported when the target RefSCC is a child of this RefSCC. 592 if (&TargetRC != RC) { 593 assert(RC->isAncestorOf(TargetRC) && 594 "Cannot potentially form RefSCC cycles here!"); 595 RC->switchOutgoingEdgeToCall(N, *CallTarget); 596 DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 597 << "' to '" << *CallTarget << "'\n"); 598 continue; 599 } 600 DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" << N 601 << "' to '" << *CallTarget << "'\n"); 602 603 // Otherwise we are switching an internal ref edge to a call edge. This 604 // may merge away some SCCs, and we add those to the UpdateResult. We also 605 // need to make sure to update the worklist in the event SCCs have moved 606 // before the current one in the post-order sequence 607 bool HasFunctionAnalysisProxy = false; 608 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 609 bool FormedCycle = RC->switchInternalEdgeToCall( 610 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 611 for (SCC *MergedC : MergedSCCs) { 612 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 613 614 HasFunctionAnalysisProxy |= 615 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 616 *MergedC) != nullptr; 617 618 // Mark that this SCC will no longer be valid. 619 UR.InvalidatedSCCs.insert(MergedC); 620 621 // FIXME: We should really do a 'clear' here to forcibly release 622 // memory, but we don't have a good way of doing that and 623 // preserving the function analyses. 624 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 625 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 626 AM.invalidate(*MergedC, PA); 627 } 628 }); 629 630 // If we formed a cycle by creating this call, we need to update more data 631 // structures. 632 if (FormedCycle) { 633 C = &TargetC; 634 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 635 636 // If one of the invalidated SCCs had a cached proxy to a function 637 // analysis manager, we need to create a proxy in the new current SCC as 638 // the invaliadted SCCs had their functions moved. 639 if (HasFunctionAnalysisProxy) 640 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 641 642 // Any analyses cached for this SCC are no longer precise as the shape 643 // has changed by introducing this cycle. However, we have taken care to 644 // update the proxies so it remains valide. 645 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 646 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 647 AM.invalidate(*C, PA); 648 } 649 auto NewSCCIndex = RC->find(*C) - RC->begin(); 650 // If we have actually moved an SCC to be topologically "below" the current 651 // one due to merging, we will need to revisit the current SCC after 652 // visiting those moved SCCs. 653 // 654 // It is critical that we *do not* revisit the current SCC unless we 655 // actually move SCCs in the process of merging because otherwise we may 656 // form a cycle where an SCC is split apart, merged, split, merged and so 657 // on infinitely. 658 if (InitialSCCIndex < NewSCCIndex) { 659 // Put our current SCC back onto the worklist as we'll visit other SCCs 660 // that are now definitively ordered prior to the current one in the 661 // post-order sequence, and may end up observing more precise context to 662 // optimize the current SCC. 663 UR.CWorklist.insert(C); 664 DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 665 << "\n"); 666 // Enqueue in reverse order as we pop off the back of the worklist. 667 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 668 RC->begin() + NewSCCIndex))) { 669 UR.CWorklist.insert(&MovedC); 670 DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 671 << MovedC << "\n"); 672 } 673 } 674 } 675 676 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 677 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 678 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 679 680 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 681 // manager now that all the updates have been applied. 682 if (RC != &InitialRC) 683 UR.UpdatedRC = RC; 684 if (C != &InitialC) 685 UR.UpdatedC = C; 686 687 return *C; 688 } 689