1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/TimeProfiler.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 43 "abort-on-max-devirt-iterations-reached", 44 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 45 "pass is reached")); 46 47 // Explicit instantiations for the core proxy templates. 48 template class AllAnalysesOn<LazyCallGraph::SCC>; 49 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 50 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 51 LazyCallGraph &, CGSCCUpdateResult &>; 52 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 53 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 54 LazyCallGraph::SCC, LazyCallGraph &>; 55 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 56 57 /// Explicitly specialize the pass manager run method to handle call graph 58 /// updates. 59 template <> 60 PreservedAnalyses 61 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 62 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 63 CGSCCAnalysisManager &AM, 64 LazyCallGraph &G, CGSCCUpdateResult &UR) { 65 // Request PassInstrumentation from analysis manager, will use it to run 66 // instrumenting callbacks for the passes later. 67 PassInstrumentation PI = 68 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 69 70 PreservedAnalyses PA = PreservedAnalyses::all(); 71 72 if (DebugLogging) 73 dbgs() << "Starting CGSCC pass manager run.\n"; 74 75 // The SCC may be refined while we are running passes over it, so set up 76 // a pointer that we can update. 77 LazyCallGraph::SCC *C = &InitialC; 78 79 // Get Function analysis manager from its proxy. 80 FunctionAnalysisManager &FAM = 81 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 82 83 for (auto &Pass : Passes) { 84 // Check the PassInstrumentation's BeforePass callbacks before running the 85 // pass, skip its execution completely if asked to (callback returns false). 86 if (!PI.runBeforePass(*Pass, *C)) 87 continue; 88 89 PreservedAnalyses PassPA; 90 { 91 TimeTraceScope TimeScope(Pass->name()); 92 PassPA = Pass->run(*C, AM, G, UR); 93 } 94 95 if (UR.InvalidatedSCCs.count(C)) 96 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 97 else 98 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 99 100 // Update the SCC if necessary. 101 C = UR.UpdatedC ? UR.UpdatedC : C; 102 if (UR.UpdatedC) { 103 // If C is updated, also create a proxy and update FAM inside the result. 104 auto *ResultFAMCP = 105 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 106 ResultFAMCP->updateFAM(FAM); 107 } 108 109 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 110 // current SCC may simply need to be skipped if invalid. 111 if (UR.InvalidatedSCCs.count(C)) { 112 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 113 break; 114 } 115 // Check that we didn't miss any update scenario. 116 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 117 118 // Update the analysis manager as each pass runs and potentially 119 // invalidates analyses. 120 AM.invalidate(*C, PassPA); 121 122 // Finally, we intersect the final preserved analyses to compute the 123 // aggregate preserved set for this pass manager. 124 PA.intersect(std::move(PassPA)); 125 126 // FIXME: Historically, the pass managers all called the LLVM context's 127 // yield function here. We don't have a generic way to acquire the 128 // context and it isn't yet clear what the right pattern is for yielding 129 // in the new pass manager so it is currently omitted. 130 // ...getContext().yield(); 131 } 132 133 // Before we mark all of *this* SCC's analyses as preserved below, intersect 134 // this with the cross-SCC preserved analysis set. This is used to allow 135 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 136 // for them. 137 UR.CrossSCCPA.intersect(PA); 138 139 // Invalidation was handled after each pass in the above loop for the current 140 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 141 // preserved. We mark this with a set so that we don't need to inspect each 142 // one individually. 143 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 144 145 if (DebugLogging) 146 dbgs() << "Finished CGSCC pass manager run.\n"; 147 148 return PA; 149 } 150 151 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 152 Module &M, const PreservedAnalyses &PA, 153 ModuleAnalysisManager::Invalidator &Inv) { 154 // If literally everything is preserved, we're done. 155 if (PA.areAllPreserved()) 156 return false; // This is still a valid proxy. 157 158 // If this proxy or the call graph is going to be invalidated, we also need 159 // to clear all the keys coming from that analysis. 160 // 161 // We also directly invalidate the FAM's module proxy if necessary, and if 162 // that proxy isn't preserved we can't preserve this proxy either. We rely on 163 // it to handle module -> function analysis invalidation in the face of 164 // structural changes and so if it's unavailable we conservatively clear the 165 // entire SCC layer as well rather than trying to do invalidation ourselves. 166 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 167 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 168 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 169 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 170 InnerAM->clear(); 171 172 // And the proxy itself should be marked as invalid so that we can observe 173 // the new call graph. This isn't strictly necessary because we cheat 174 // above, but is still useful. 175 return true; 176 } 177 178 // Directly check if the relevant set is preserved so we can short circuit 179 // invalidating SCCs below. 180 bool AreSCCAnalysesPreserved = 181 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 182 183 // Ok, we have a graph, so we can propagate the invalidation down into it. 184 G->buildRefSCCs(); 185 for (auto &RC : G->postorder_ref_sccs()) 186 for (auto &C : RC) { 187 Optional<PreservedAnalyses> InnerPA; 188 189 // Check to see whether the preserved set needs to be adjusted based on 190 // module-level analysis invalidation triggering deferred invalidation 191 // for this SCC. 192 if (auto *OuterProxy = 193 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 194 for (const auto &OuterInvalidationPair : 195 OuterProxy->getOuterInvalidations()) { 196 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 197 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 198 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 199 if (!InnerPA) 200 InnerPA = PA; 201 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 202 InnerPA->abandon(InnerAnalysisID); 203 } 204 } 205 206 // Check if we needed a custom PA set. If so we'll need to run the inner 207 // invalidation. 208 if (InnerPA) { 209 InnerAM->invalidate(C, *InnerPA); 210 continue; 211 } 212 213 // Otherwise we only need to do invalidation if the original PA set didn't 214 // preserve all SCC analyses. 215 if (!AreSCCAnalysesPreserved) 216 InnerAM->invalidate(C, PA); 217 } 218 219 // Return false to indicate that this result is still a valid proxy. 220 return false; 221 } 222 223 template <> 224 CGSCCAnalysisManagerModuleProxy::Result 225 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 226 // Force the Function analysis manager to also be available so that it can 227 // be accessed in an SCC analysis and proxied onward to function passes. 228 // FIXME: It is pretty awkward to just drop the result here and assert that 229 // we can find it again later. 230 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 231 232 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 233 } 234 235 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 236 237 FunctionAnalysisManagerCGSCCProxy::Result 238 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 239 CGSCCAnalysisManager &AM, 240 LazyCallGraph &CG) { 241 // Note: unconditionally getting checking that the proxy exists may get it at 242 // this point. There are cases when this is being run unnecessarily, but 243 // it is cheap and having the assertion in place is more valuable. 244 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 245 Module &M = *C.begin()->getFunction().getParent(); 246 bool ProxyExists = 247 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 248 assert(ProxyExists && 249 "The CGSCC pass manager requires that the FAM module proxy is run " 250 "on the module prior to entering the CGSCC walk"); 251 (void)ProxyExists; 252 253 // We just return an empty result. The caller will use the updateFAM interface 254 // to correctly register the relevant FunctionAnalysisManager based on the 255 // context in which this proxy is run. 256 return Result(); 257 } 258 259 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 260 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 261 CGSCCAnalysisManager::Invalidator &Inv) { 262 // If literally everything is preserved, we're done. 263 if (PA.areAllPreserved()) 264 return false; // This is still a valid proxy. 265 266 // All updates to preserve valid results are done below, so we don't need to 267 // invalidate this proxy. 268 // 269 // Note that in order to preserve this proxy, a module pass must ensure that 270 // the FAM has been completely updated to handle the deletion of functions. 271 // Specifically, any FAM-cached results for those functions need to have been 272 // forcibly cleared. When preserved, this proxy will only invalidate results 273 // cached on functions *still in the module* at the end of the module pass. 274 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 275 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 276 for (LazyCallGraph::Node &N : C) 277 FAM->clear(N.getFunction(), N.getFunction().getName()); 278 279 return false; 280 } 281 282 // Directly check if the relevant set is preserved. 283 bool AreFunctionAnalysesPreserved = 284 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 285 286 // Now walk all the functions to see if any inner analysis invalidation is 287 // necessary. 288 for (LazyCallGraph::Node &N : C) { 289 Function &F = N.getFunction(); 290 Optional<PreservedAnalyses> FunctionPA; 291 292 // Check to see whether the preserved set needs to be pruned based on 293 // SCC-level analysis invalidation that triggers deferred invalidation 294 // registered with the outer analysis manager proxy for this function. 295 if (auto *OuterProxy = 296 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 297 for (const auto &OuterInvalidationPair : 298 OuterProxy->getOuterInvalidations()) { 299 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 300 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 301 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 302 if (!FunctionPA) 303 FunctionPA = PA; 304 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 305 FunctionPA->abandon(InnerAnalysisID); 306 } 307 } 308 309 // Check if we needed a custom PA set, and if so we'll need to run the 310 // inner invalidation. 311 if (FunctionPA) { 312 FAM->invalidate(F, *FunctionPA); 313 continue; 314 } 315 316 // Otherwise we only need to do invalidation if the original PA set didn't 317 // preserve all function analyses. 318 if (!AreFunctionAnalysesPreserved) 319 FAM->invalidate(F, PA); 320 } 321 322 // Return false to indicate that this result is still a valid proxy. 323 return false; 324 } 325 326 } // end namespace llvm 327 328 /// When a new SCC is created for the graph we first update the 329 /// FunctionAnalysisManager in the Proxy's result. 330 /// As there might be function analysis results cached for the functions now in 331 /// that SCC, two forms of updates are required. 332 /// 333 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 334 /// created so that any subsequent invalidation events to the SCC are 335 /// propagated to the function analysis results cached for functions within it. 336 /// 337 /// Second, if any of the functions within the SCC have analysis results with 338 /// outer analysis dependencies, then those dependencies would point to the 339 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 340 /// function analyses so that they don't retain stale handles. 341 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 342 LazyCallGraph &G, 343 CGSCCAnalysisManager &AM, 344 FunctionAnalysisManager &FAM) { 345 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 346 347 // Now walk the functions in this SCC and invalidate any function analysis 348 // results that might have outer dependencies on an SCC analysis. 349 for (LazyCallGraph::Node &N : C) { 350 Function &F = N.getFunction(); 351 352 auto *OuterProxy = 353 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 354 if (!OuterProxy) 355 // No outer analyses were queried, nothing to do. 356 continue; 357 358 // Forcibly abandon all the inner analyses with dependencies, but 359 // invalidate nothing else. 360 auto PA = PreservedAnalyses::all(); 361 for (const auto &OuterInvalidationPair : 362 OuterProxy->getOuterInvalidations()) { 363 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 364 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 365 PA.abandon(InnerAnalysisID); 366 } 367 368 // Now invalidate anything we found. 369 FAM.invalidate(F, PA); 370 } 371 } 372 373 void llvm::maxDevirtIterationsReached() { 374 if (AbortOnMaxDevirtIterationsReached) 375 report_fatal_error("Max devirtualization iterations reached"); 376 } 377 378 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 379 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 380 /// added SCCs. 381 /// 382 /// The range of new SCCs must be in postorder already. The SCC they were split 383 /// out of must be provided as \p C. The current node being mutated and 384 /// triggering updates must be passed as \p N. 385 /// 386 /// This function returns the SCC containing \p N. This will be either \p C if 387 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 388 template <typename SCCRangeT> 389 static LazyCallGraph::SCC * 390 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 391 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 392 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 393 using SCC = LazyCallGraph::SCC; 394 395 if (NewSCCRange.begin() == NewSCCRange.end()) 396 return C; 397 398 // Add the current SCC to the worklist as its shape has changed. 399 UR.CWorklist.insert(C); 400 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 401 << "\n"); 402 403 SCC *OldC = C; 404 405 // Update the current SCC. Note that if we have new SCCs, this must actually 406 // change the SCC. 407 assert(C != &*NewSCCRange.begin() && 408 "Cannot insert new SCCs without changing current SCC!"); 409 C = &*NewSCCRange.begin(); 410 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 411 412 // If we had a cached FAM proxy originally, we will want to create more of 413 // them for each SCC that was split off. 414 FunctionAnalysisManager *FAM = nullptr; 415 if (auto *FAMProxy = 416 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 417 FAM = &FAMProxy->getManager(); 418 419 // We need to propagate an invalidation call to all but the newly current SCC 420 // because the outer pass manager won't do that for us after splitting them. 421 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 422 // there are preserved analysis we can avoid invalidating them here for 423 // split-off SCCs. 424 // We know however that this will preserve any FAM proxy so go ahead and mark 425 // that. 426 PreservedAnalyses PA; 427 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 428 AM.invalidate(*OldC, PA); 429 430 // Ensure the now-current SCC's function analyses are updated. 431 if (FAM) 432 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 433 434 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 435 NewSCCRange.end()))) { 436 assert(C != &NewC && "No need to re-visit the current SCC!"); 437 assert(OldC != &NewC && "Already handled the original SCC!"); 438 UR.CWorklist.insert(&NewC); 439 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 440 441 // Ensure new SCCs' function analyses are updated. 442 if (FAM) 443 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 444 445 // Also propagate a normal invalidation to the new SCC as only the current 446 // will get one from the pass manager infrastructure. 447 AM.invalidate(NewC, PA); 448 } 449 return C; 450 } 451 452 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 453 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 454 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 455 FunctionAnalysisManager &FAM, bool FunctionPass) { 456 using Node = LazyCallGraph::Node; 457 using Edge = LazyCallGraph::Edge; 458 using SCC = LazyCallGraph::SCC; 459 using RefSCC = LazyCallGraph::RefSCC; 460 461 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 462 SCC *C = &InitialC; 463 RefSCC *RC = &InitialRC; 464 Function &F = N.getFunction(); 465 466 // Walk the function body and build up the set of retained, promoted, and 467 // demoted edges. 468 SmallVector<Constant *, 16> Worklist; 469 SmallPtrSet<Constant *, 16> Visited; 470 SmallPtrSet<Node *, 16> RetainedEdges; 471 SmallSetVector<Node *, 4> PromotedRefTargets; 472 SmallSetVector<Node *, 4> DemotedCallTargets; 473 SmallSetVector<Node *, 4> NewCallEdges; 474 SmallSetVector<Node *, 4> NewRefEdges; 475 SmallSetVector<Node *, 4> NewNodes; 476 477 // First walk the function and handle all called functions. We do this first 478 // because if there is a single call edge, whether there are ref edges is 479 // irrelevant. 480 for (Instruction &I : instructions(F)) { 481 if (auto *CB = dyn_cast<CallBase>(&I)) { 482 if (Function *Callee = CB->getCalledFunction()) { 483 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 484 Node *CalleeN = G.lookup(*Callee); 485 if (!CalleeN) { 486 CalleeN = &G.get(*Callee); 487 NewNodes.insert(CalleeN); 488 } 489 Edge *E = N->lookup(*CalleeN); 490 assert((E || !FunctionPass) && 491 "No function transformations should introduce *new* " 492 "call edges! Any new calls should be modeled as " 493 "promoted existing ref edges!"); 494 bool Inserted = RetainedEdges.insert(CalleeN).second; 495 (void)Inserted; 496 assert(Inserted && "We should never visit a function twice."); 497 if (!E) 498 NewCallEdges.insert(CalleeN); 499 else if (!E->isCall()) 500 PromotedRefTargets.insert(CalleeN); 501 } 502 } else { 503 // We can miss devirtualization if an indirect call is created then 504 // promoted before updateCGAndAnalysisManagerForPass runs. 505 auto *Entry = UR.IndirectVHs.find(CB); 506 if (Entry == UR.IndirectVHs.end()) 507 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 508 else if (!Entry->second) 509 Entry->second = WeakTrackingVH(CB); 510 } 511 } 512 } 513 514 // Now walk all references. 515 for (Instruction &I : instructions(F)) 516 for (Value *Op : I.operand_values()) 517 if (auto *OpC = dyn_cast<Constant>(Op)) 518 if (Visited.insert(OpC).second) 519 Worklist.push_back(OpC); 520 521 auto VisitRef = [&](Function &Referee) { 522 Node *RefereeN = G.lookup(Referee); 523 if (!RefereeN) { 524 RefereeN = &G.get(Referee); 525 NewNodes.insert(RefereeN); 526 } 527 Edge *E = N->lookup(*RefereeN); 528 assert((E || !FunctionPass) && 529 "No function transformations should introduce *new* ref " 530 "edges! Any new ref edges would require IPO which " 531 "function passes aren't allowed to do!"); 532 bool Inserted = RetainedEdges.insert(RefereeN).second; 533 (void)Inserted; 534 assert(Inserted && "We should never visit a function twice."); 535 if (!E) 536 NewRefEdges.insert(RefereeN); 537 else if (E->isCall()) 538 DemotedCallTargets.insert(RefereeN); 539 }; 540 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 541 542 for (Node *NewNode : NewNodes) 543 G.initNode(*NewNode, *C); 544 545 // Handle new ref edges. 546 for (Node *RefTarget : NewRefEdges) { 547 SCC &TargetC = *G.lookupSCC(*RefTarget); 548 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 549 (void)TargetRC; 550 // TODO: This only allows trivial edges to be added for now. 551 assert((RC == &TargetRC || 552 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 553 RC->insertTrivialRefEdge(N, *RefTarget); 554 } 555 556 // Handle new call edges. 557 for (Node *CallTarget : NewCallEdges) { 558 SCC &TargetC = *G.lookupSCC(*CallTarget); 559 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 560 (void)TargetRC; 561 // TODO: This only allows trivial edges to be added for now. 562 assert((RC == &TargetRC || 563 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 564 // Add a trivial ref edge to be promoted later on alongside 565 // PromotedRefTargets. 566 RC->insertTrivialRefEdge(N, *CallTarget); 567 } 568 569 // Include synthetic reference edges to known, defined lib functions. 570 for (auto *LibFn : G.getLibFunctions()) 571 // While the list of lib functions doesn't have repeats, don't re-visit 572 // anything handled above. 573 if (!Visited.count(LibFn)) 574 VisitRef(*LibFn); 575 576 // First remove all of the edges that are no longer present in this function. 577 // The first step makes these edges uniformly ref edges and accumulates them 578 // into a separate data structure so removal doesn't invalidate anything. 579 SmallVector<Node *, 4> DeadTargets; 580 for (Edge &E : *N) { 581 if (RetainedEdges.count(&E.getNode())) 582 continue; 583 584 SCC &TargetC = *G.lookupSCC(E.getNode()); 585 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 586 if (&TargetRC == RC && E.isCall()) { 587 if (C != &TargetC) { 588 // For separate SCCs this is trivial. 589 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 590 } else { 591 // Now update the call graph. 592 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 593 G, N, C, AM, UR); 594 } 595 } 596 597 // Now that this is ready for actual removal, put it into our list. 598 DeadTargets.push_back(&E.getNode()); 599 } 600 // Remove the easy cases quickly and actually pull them out of our list. 601 DeadTargets.erase( 602 llvm::remove_if(DeadTargets, 603 [&](Node *TargetN) { 604 SCC &TargetC = *G.lookupSCC(*TargetN); 605 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 606 607 // We can't trivially remove internal targets, so skip 608 // those. 609 if (&TargetRC == RC) 610 return false; 611 612 RC->removeOutgoingEdge(N, *TargetN); 613 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 614 << N << "' to '" << TargetN << "'\n"); 615 return true; 616 }), 617 DeadTargets.end()); 618 619 // Now do a batch removal of the internal ref edges left. 620 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 621 if (!NewRefSCCs.empty()) { 622 // The old RefSCC is dead, mark it as such. 623 UR.InvalidatedRefSCCs.insert(RC); 624 625 // Note that we don't bother to invalidate analyses as ref-edge 626 // connectivity is not really observable in any way and is intended 627 // exclusively to be used for ordering of transforms rather than for 628 // analysis conclusions. 629 630 // Update RC to the "bottom". 631 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 632 RC = &C->getOuterRefSCC(); 633 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 634 635 // The RC worklist is in reverse postorder, so we enqueue the new ones in 636 // RPO except for the one which contains the source node as that is the 637 // "bottom" we will continue processing in the bottom-up walk. 638 assert(NewRefSCCs.front() == RC && 639 "New current RefSCC not first in the returned list!"); 640 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 641 NewRefSCCs.end()))) { 642 assert(NewRC != RC && "Should not encounter the current RefSCC further " 643 "in the postorder list of new RefSCCs."); 644 UR.RCWorklist.insert(NewRC); 645 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 646 << *NewRC << "\n"); 647 } 648 } 649 650 // Next demote all the call edges that are now ref edges. This helps make 651 // the SCCs small which should minimize the work below as we don't want to 652 // form cycles that this would break. 653 for (Node *RefTarget : DemotedCallTargets) { 654 SCC &TargetC = *G.lookupSCC(*RefTarget); 655 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 656 657 // The easy case is when the target RefSCC is not this RefSCC. This is 658 // only supported when the target RefSCC is a child of this RefSCC. 659 if (&TargetRC != RC) { 660 assert(RC->isAncestorOf(TargetRC) && 661 "Cannot potentially form RefSCC cycles here!"); 662 RC->switchOutgoingEdgeToRef(N, *RefTarget); 663 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 664 << "' to '" << *RefTarget << "'\n"); 665 continue; 666 } 667 668 // We are switching an internal call edge to a ref edge. This may split up 669 // some SCCs. 670 if (C != &TargetC) { 671 // For separate SCCs this is trivial. 672 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 673 continue; 674 } 675 676 // Now update the call graph. 677 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 678 C, AM, UR); 679 } 680 681 // We added a ref edge earlier for new call edges, promote those to call edges 682 // alongside PromotedRefTargets. 683 for (Node *E : NewCallEdges) 684 PromotedRefTargets.insert(E); 685 686 // Now promote ref edges into call edges. 687 for (Node *CallTarget : PromotedRefTargets) { 688 SCC &TargetC = *G.lookupSCC(*CallTarget); 689 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 690 691 // The easy case is when the target RefSCC is not this RefSCC. This is 692 // only supported when the target RefSCC is a child of this RefSCC. 693 if (&TargetRC != RC) { 694 assert(RC->isAncestorOf(TargetRC) && 695 "Cannot potentially form RefSCC cycles here!"); 696 RC->switchOutgoingEdgeToCall(N, *CallTarget); 697 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 698 << "' to '" << *CallTarget << "'\n"); 699 continue; 700 } 701 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 702 << N << "' to '" << *CallTarget << "'\n"); 703 704 // Otherwise we are switching an internal ref edge to a call edge. This 705 // may merge away some SCCs, and we add those to the UpdateResult. We also 706 // need to make sure to update the worklist in the event SCCs have moved 707 // before the current one in the post-order sequence 708 bool HasFunctionAnalysisProxy = false; 709 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 710 bool FormedCycle = RC->switchInternalEdgeToCall( 711 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 712 for (SCC *MergedC : MergedSCCs) { 713 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 714 715 HasFunctionAnalysisProxy |= 716 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 717 *MergedC) != nullptr; 718 719 // Mark that this SCC will no longer be valid. 720 UR.InvalidatedSCCs.insert(MergedC); 721 722 // FIXME: We should really do a 'clear' here to forcibly release 723 // memory, but we don't have a good way of doing that and 724 // preserving the function analyses. 725 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 726 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 727 AM.invalidate(*MergedC, PA); 728 } 729 }); 730 731 // If we formed a cycle by creating this call, we need to update more data 732 // structures. 733 if (FormedCycle) { 734 C = &TargetC; 735 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 736 737 // If one of the invalidated SCCs had a cached proxy to a function 738 // analysis manager, we need to create a proxy in the new current SCC as 739 // the invalidated SCCs had their functions moved. 740 if (HasFunctionAnalysisProxy) 741 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 742 743 // Any analyses cached for this SCC are no longer precise as the shape 744 // has changed by introducing this cycle. However, we have taken care to 745 // update the proxies so it remains valide. 746 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 747 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 748 AM.invalidate(*C, PA); 749 } 750 auto NewSCCIndex = RC->find(*C) - RC->begin(); 751 // If we have actually moved an SCC to be topologically "below" the current 752 // one due to merging, we will need to revisit the current SCC after 753 // visiting those moved SCCs. 754 // 755 // It is critical that we *do not* revisit the current SCC unless we 756 // actually move SCCs in the process of merging because otherwise we may 757 // form a cycle where an SCC is split apart, merged, split, merged and so 758 // on infinitely. 759 if (InitialSCCIndex < NewSCCIndex) { 760 // Put our current SCC back onto the worklist as we'll visit other SCCs 761 // that are now definitively ordered prior to the current one in the 762 // post-order sequence, and may end up observing more precise context to 763 // optimize the current SCC. 764 UR.CWorklist.insert(C); 765 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 766 << "\n"); 767 // Enqueue in reverse order as we pop off the back of the worklist. 768 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 769 RC->begin() + NewSCCIndex))) { 770 UR.CWorklist.insert(&MovedC); 771 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 772 << MovedC << "\n"); 773 } 774 } 775 } 776 777 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 778 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 779 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 780 781 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 782 // manager now that all the updates have been applied. 783 if (RC != &InitialRC) 784 UR.UpdatedRC = RC; 785 if (C != &InitialC) 786 UR.UpdatedC = C; 787 788 return *C; 789 } 790 791 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 792 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 793 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 794 FunctionAnalysisManager &FAM) { 795 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 796 /* FunctionPass */ true); 797 } 798 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 799 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 800 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 801 FunctionAnalysisManager &FAM) { 802 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 803 /* FunctionPass */ false); 804 } 805