1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/InstIterator.h" 13 14 using namespace llvm; 15 16 // Explicit template instantiations and specialization defininitions for core 17 // template typedefs. 18 namespace llvm { 19 20 // Explicit instantiations for the core proxy templates. 21 template class AllAnalysesOn<LazyCallGraph::SCC>; 22 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 23 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 24 LazyCallGraph &, CGSCCUpdateResult &>; 25 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 26 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 27 LazyCallGraph::SCC, LazyCallGraph &>; 28 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 29 30 /// Explicitly specialize the pass manager run method to handle call graph 31 /// updates. 32 template <> 33 PreservedAnalyses 34 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 35 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 36 CGSCCAnalysisManager &AM, 37 LazyCallGraph &G, CGSCCUpdateResult &UR) { 38 PreservedAnalyses PA = PreservedAnalyses::all(); 39 40 if (DebugLogging) 41 dbgs() << "Starting CGSCC pass manager run.\n"; 42 43 // The SCC may be refined while we are running passes over it, so set up 44 // a pointer that we can update. 45 LazyCallGraph::SCC *C = &InitialC; 46 47 for (auto &Pass : Passes) { 48 if (DebugLogging) 49 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 50 51 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 52 53 // Update the SCC if necessary. 54 C = UR.UpdatedC ? UR.UpdatedC : C; 55 56 // Check that we didn't miss any update scenario. 57 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); 58 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 59 60 // Update the analysis manager as each pass runs and potentially 61 // invalidates analyses. 62 AM.invalidate(*C, PassPA); 63 64 // Finally, we intersect the final preserved analyses to compute the 65 // aggregate preserved set for this pass manager. 66 PA.intersect(std::move(PassPA)); 67 68 // FIXME: Historically, the pass managers all called the LLVM context's 69 // yield function here. We don't have a generic way to acquire the 70 // context and it isn't yet clear what the right pattern is for yielding 71 // in the new pass manager so it is currently omitted. 72 // ...getContext().yield(); 73 } 74 75 // Invaliadtion was handled after each pass in the above loop for the current 76 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 77 // preserved. We mark this with a set so that we don't need to inspect each 78 // one individually. 79 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 80 81 if (DebugLogging) 82 dbgs() << "Finished CGSCC pass manager run.\n"; 83 84 return PA; 85 } 86 87 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 88 Module &M, const PreservedAnalyses &PA, 89 ModuleAnalysisManager::Invalidator &Inv) { 90 // If literally everything is preserved, we're done. 91 if (PA.areAllPreserved()) 92 return false; // This is still a valid proxy. 93 94 // If this proxy or the call graph is going to be invalidated, we also need 95 // to clear all the keys coming from that analysis. 96 // 97 // We also directly invalidate the FAM's module proxy if necessary, and if 98 // that proxy isn't preserved we can't preserve this proxy either. We rely on 99 // it to handle module -> function analysis invalidation in the face of 100 // structural changes and so if it's unavailable we conservatively clear the 101 // entire SCC layer as well rather than trying to do invalidation ourselves. 102 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 103 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 104 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 105 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 106 InnerAM->clear(); 107 108 // And the proxy itself should be marked as invalid so that we can observe 109 // the new call graph. This isn't strictly necessary because we cheat 110 // above, but is still useful. 111 return true; 112 } 113 114 // Directly check if the relevant set is preserved so we can short circuit 115 // invalidating SCCs below. 116 bool AreSCCAnalysesPreserved = 117 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 118 119 // Ok, we have a graph, so we can propagate the invalidation down into it. 120 G->buildRefSCCs(); 121 for (auto &RC : G->postorder_ref_sccs()) 122 for (auto &C : RC) { 123 Optional<PreservedAnalyses> InnerPA; 124 125 // Check to see whether the preserved set needs to be adjusted based on 126 // module-level analysis invalidation triggering deferred invalidation 127 // for this SCC. 128 if (auto *OuterProxy = 129 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 130 for (const auto &OuterInvalidationPair : 131 OuterProxy->getOuterInvalidations()) { 132 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 133 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 134 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 135 if (!InnerPA) 136 InnerPA = PA; 137 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 138 InnerPA->abandon(InnerAnalysisID); 139 } 140 } 141 142 // Check if we needed a custom PA set. If so we'll need to run the inner 143 // invalidation. 144 if (InnerPA) { 145 InnerAM->invalidate(C, *InnerPA); 146 continue; 147 } 148 149 // Otherwise we only need to do invalidation if the original PA set didn't 150 // preserve all SCC analyses. 151 if (!AreSCCAnalysesPreserved) 152 InnerAM->invalidate(C, PA); 153 } 154 155 // Return false to indicate that this result is still a valid proxy. 156 return false; 157 } 158 159 template <> 160 CGSCCAnalysisManagerModuleProxy::Result 161 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 162 // Force the Function analysis manager to also be available so that it can 163 // be accessed in an SCC analysis and proxied onward to function passes. 164 // FIXME: It is pretty awkward to just drop the result here and assert that 165 // we can find it again later. 166 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 167 168 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 169 } 170 171 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 172 173 FunctionAnalysisManagerCGSCCProxy::Result 174 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 175 CGSCCAnalysisManager &AM, 176 LazyCallGraph &CG) { 177 // Collect the FunctionAnalysisManager from the Module layer and use that to 178 // build the proxy result. 179 // 180 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 181 // invalidate the function analyses. 182 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 183 Module &M = *C.begin()->getFunction().getParent(); 184 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 185 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 186 "proxy is run on the module prior to entering the CGSCC " 187 "walk."); 188 189 // Note that we special-case invalidation handling of this proxy in the CGSCC 190 // analysis manager's Module proxy. This avoids the need to do anything 191 // special here to recompute all of this if ever the FAM's module proxy goes 192 // away. 193 return Result(FAMProxy->getManager()); 194 } 195 196 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 197 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 198 CGSCCAnalysisManager::Invalidator &Inv) { 199 // If literally everything is preserved, we're done. 200 if (PA.areAllPreserved()) 201 return false; // This is still a valid proxy. 202 203 // If this proxy isn't marked as preserved, then even if the result remains 204 // valid, the key itself may no longer be valid, so we clear everything. 205 // 206 // Note that in order to preserve this proxy, a module pass must ensure that 207 // the FAM has been completely updated to handle the deletion of functions. 208 // Specifically, any FAM-cached results for those functions need to have been 209 // forcibly cleared. When preserved, this proxy will only invalidate results 210 // cached on functions *still in the module* at the end of the module pass. 211 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 212 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 213 for (LazyCallGraph::Node &N : C) 214 FAM->clear(N.getFunction()); 215 216 return true; 217 } 218 219 // Directly check if the relevant set is preserved. 220 bool AreFunctionAnalysesPreserved = 221 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 222 223 // Now walk all the functions to see if any inner analysis invalidation is 224 // necessary. 225 for (LazyCallGraph::Node &N : C) { 226 Function &F = N.getFunction(); 227 Optional<PreservedAnalyses> FunctionPA; 228 229 // Check to see whether the preserved set needs to be pruned based on 230 // SCC-level analysis invalidation that triggers deferred invalidation 231 // registered with the outer analysis manager proxy for this function. 232 if (auto *OuterProxy = 233 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 234 for (const auto &OuterInvalidationPair : 235 OuterProxy->getOuterInvalidations()) { 236 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 237 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 238 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 239 if (!FunctionPA) 240 FunctionPA = PA; 241 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 242 FunctionPA->abandon(InnerAnalysisID); 243 } 244 } 245 246 // Check if we needed a custom PA set, and if so we'll need to run the 247 // inner invalidation. 248 if (FunctionPA) { 249 FAM->invalidate(F, *FunctionPA); 250 continue; 251 } 252 253 // Otherwise we only need to do invalidation if the original PA set didn't 254 // preserve all function analyses. 255 if (!AreFunctionAnalysesPreserved) 256 FAM->invalidate(F, PA); 257 } 258 259 // Return false to indicate that this result is still a valid proxy. 260 return false; 261 } 262 263 } // End llvm namespace 264 265 /// When a new SCC is created for the graph and there might be function 266 /// analysis results cached for the functions now in that SCC two forms of 267 /// updates are required. 268 /// 269 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 270 /// created so that any subsequent invalidation events to the SCC are 271 /// propagated to the function analysis results cached for functions within it. 272 /// 273 /// Second, if any of the functions within the SCC have analysis results with 274 /// outer analysis dependencies, then those dependencies would point to the 275 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 276 /// function analyses so that they don't retain stale handles. 277 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 278 LazyCallGraph &G, 279 CGSCCAnalysisManager &AM) { 280 // Get the relevant function analysis manager. 281 auto &FAM = 282 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 283 284 // Now walk the functions in this SCC and invalidate any function analysis 285 // results that might have outer dependencies on an SCC analysis. 286 for (LazyCallGraph::Node &N : C) { 287 Function &F = N.getFunction(); 288 289 auto *OuterProxy = 290 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 291 if (!OuterProxy) 292 // No outer analyses were queried, nothing to do. 293 continue; 294 295 // Forcibly abandon all the inner analyses with dependencies, but 296 // invalidate nothing else. 297 auto PA = PreservedAnalyses::all(); 298 for (const auto &OuterInvalidationPair : 299 OuterProxy->getOuterInvalidations()) { 300 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 301 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 302 PA.abandon(InnerAnalysisID); 303 } 304 305 // Now invalidate anything we found. 306 FAM.invalidate(F, PA); 307 } 308 } 309 310 namespace { 311 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 312 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 313 /// added SCCs. 314 /// 315 /// The range of new SCCs must be in postorder already. The SCC they were split 316 /// out of must be provided as \p C. The current node being mutated and 317 /// triggering updates must be passed as \p N. 318 /// 319 /// This function returns the SCC containing \p N. This will be either \p C if 320 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 321 template <typename SCCRangeT> 322 LazyCallGraph::SCC * 323 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 324 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 325 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 326 bool DebugLogging = false) { 327 typedef LazyCallGraph::SCC SCC; 328 329 if (NewSCCRange.begin() == NewSCCRange.end()) 330 return C; 331 332 // Add the current SCC to the worklist as its shape has changed. 333 UR.CWorklist.insert(C); 334 if (DebugLogging) 335 dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; 336 337 SCC *OldC = C; 338 339 // Update the current SCC. Note that if we have new SCCs, this must actually 340 // change the SCC. 341 assert(C != &*NewSCCRange.begin() && 342 "Cannot insert new SCCs without changing current SCC!"); 343 C = &*NewSCCRange.begin(); 344 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 345 346 // If we had a cached FAM proxy originally, we will want to create more of 347 // them for each SCC that was split off. 348 bool NeedFAMProxy = 349 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 350 351 // We need to propagate an invalidation call to all but the newly current SCC 352 // because the outer pass manager won't do that for us after splitting them. 353 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 354 // there are preserved ananalyses we can avoid invalidating them here for 355 // split-off SCCs. 356 // We know however that this will preserve any FAM proxy so go ahead and mark 357 // that. 358 PreservedAnalyses PA; 359 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 360 AM.invalidate(*OldC, PA); 361 362 // Ensure the now-current SCC's function analyses are updated. 363 if (NeedFAMProxy) 364 updateNewSCCFunctionAnalyses(*C, G, AM); 365 366 for (SCC &NewC : 367 reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { 368 assert(C != &NewC && "No need to re-visit the current SCC!"); 369 assert(OldC != &NewC && "Already handled the original SCC!"); 370 UR.CWorklist.insert(&NewC); 371 if (DebugLogging) 372 dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; 373 374 // Ensure new SCCs' function analyses are updated. 375 if (NeedFAMProxy) 376 updateNewSCCFunctionAnalyses(NewC, G, AM); 377 378 // Also propagate a normal invalidation to the new SCC as only the current 379 // will get one from the pass manager infrastructure. 380 AM.invalidate(NewC, PA); 381 } 382 return C; 383 } 384 } 385 386 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 387 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 388 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { 389 typedef LazyCallGraph::Node Node; 390 typedef LazyCallGraph::Edge Edge; 391 typedef LazyCallGraph::SCC SCC; 392 typedef LazyCallGraph::RefSCC RefSCC; 393 394 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 395 SCC *C = &InitialC; 396 RefSCC *RC = &InitialRC; 397 Function &F = N.getFunction(); 398 399 // Walk the function body and build up the set of retained, promoted, and 400 // demoted edges. 401 SmallVector<Constant *, 16> Worklist; 402 SmallPtrSet<Constant *, 16> Visited; 403 SmallPtrSet<Node *, 16> RetainedEdges; 404 SmallSetVector<Node *, 4> PromotedRefTargets; 405 SmallSetVector<Node *, 4> DemotedCallTargets; 406 407 // First walk the function and handle all called functions. We do this first 408 // because if there is a single call edge, whether there are ref edges is 409 // irrelevant. 410 for (Instruction &I : instructions(F)) 411 if (auto CS = CallSite(&I)) 412 if (Function *Callee = CS.getCalledFunction()) 413 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 414 Node &CalleeN = *G.lookup(*Callee); 415 Edge *E = N->lookup(CalleeN); 416 // FIXME: We should really handle adding new calls. While it will 417 // make downstream usage more complex, there is no fundamental 418 // limitation and it will allow passes within the CGSCC to be a bit 419 // more flexible in what transforms they can do. Until then, we 420 // verify that new calls haven't been introduced. 421 assert(E && "No function transformations should introduce *new* " 422 "call edges! Any new calls should be modeled as " 423 "promoted existing ref edges!"); 424 RetainedEdges.insert(&CalleeN); 425 if (!E->isCall()) 426 PromotedRefTargets.insert(&CalleeN); 427 } 428 429 // Now walk all references. 430 for (Instruction &I : instructions(F)) 431 for (Value *Op : I.operand_values()) 432 if (Constant *C = dyn_cast<Constant>(Op)) 433 if (Visited.insert(C).second) 434 Worklist.push_back(C); 435 436 auto VisitRef = [&](Function &Referee) { 437 Node &RefereeN = *G.lookup(Referee); 438 Edge *E = N->lookup(RefereeN); 439 // FIXME: Similarly to new calls, we also currently preclude 440 // introducing new references. See above for details. 441 assert(E && "No function transformations should introduce *new* ref " 442 "edges! Any new ref edges would require IPO which " 443 "function passes aren't allowed to do!"); 444 RetainedEdges.insert(&RefereeN); 445 if (E->isCall()) 446 DemotedCallTargets.insert(&RefereeN); 447 }; 448 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 449 450 // Include synthetic reference edges to known, defined lib functions. 451 for (auto *F : G.getLibFunctions()) 452 VisitRef(*F); 453 454 // First remove all of the edges that are no longer present in this function. 455 // We have to build a list of dead targets first and then remove them as the 456 // data structures will all be invalidated by removing them. 457 SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; 458 for (Edge &E : *N) 459 if (!RetainedEdges.count(&E.getNode())) 460 DeadTargets.push_back({&E.getNode(), E.getKind()}); 461 for (auto DeadTarget : DeadTargets) { 462 Node &TargetN = *DeadTarget.getPointer(); 463 bool IsCall = DeadTarget.getInt() == Edge::Call; 464 SCC &TargetC = *G.lookupSCC(TargetN); 465 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 466 467 if (&TargetRC != RC) { 468 RC->removeOutgoingEdge(N, TargetN); 469 if (DebugLogging) 470 dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN 471 << "'\n"; 472 continue; 473 } 474 if (DebugLogging) 475 dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") 476 << " edge from '" << N << "' to '" << TargetN << "'\n"; 477 478 if (IsCall) { 479 if (C != &TargetC) { 480 // For separate SCCs this is trivial. 481 RC->switchTrivialInternalEdgeToRef(N, TargetN); 482 } else { 483 // Now update the call graph. 484 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, 485 N, C, AM, UR, DebugLogging); 486 } 487 } 488 489 auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); 490 if (!NewRefSCCs.empty()) { 491 // Note that we don't bother to invalidate analyses as ref-edge 492 // connectivity is not really observable in any way and is intended 493 // exclusively to be used for ordering of transforms rather than for 494 // analysis conclusions. 495 496 // The RC worklist is in reverse postorder, so we first enqueue the 497 // current RefSCC as it will remain the parent of all split RefSCCs, then 498 // we enqueue the new ones in RPO except for the one which contains the 499 // source node as that is the "bottom" we will continue processing in the 500 // bottom-up walk. 501 UR.RCWorklist.insert(RC); 502 if (DebugLogging) 503 dbgs() << "Enqueuing the existing RefSCC in the update worklist: " 504 << *RC << "\n"; 505 // Update the RC to the "bottom". 506 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 507 RC = &C->getOuterRefSCC(); 508 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 509 assert(NewRefSCCs.front() == RC && 510 "New current RefSCC not first in the returned list!"); 511 for (RefSCC *NewRC : reverse( 512 make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) { 513 assert(NewRC != RC && "Should not encounter the current RefSCC further " 514 "in the postorder list of new RefSCCs."); 515 UR.RCWorklist.insert(NewRC); 516 if (DebugLogging) 517 dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC 518 << "\n"; 519 } 520 } 521 } 522 523 // Next demote all the call edges that are now ref edges. This helps make 524 // the SCCs small which should minimize the work below as we don't want to 525 // form cycles that this would break. 526 for (Node *RefTarget : DemotedCallTargets) { 527 SCC &TargetC = *G.lookupSCC(*RefTarget); 528 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 529 530 // The easy case is when the target RefSCC is not this RefSCC. This is 531 // only supported when the target RefSCC is a child of this RefSCC. 532 if (&TargetRC != RC) { 533 assert(RC->isAncestorOf(TargetRC) && 534 "Cannot potentially form RefSCC cycles here!"); 535 RC->switchOutgoingEdgeToRef(N, *RefTarget); 536 if (DebugLogging) 537 dbgs() << "Switch outgoing call edge to a ref edge from '" << N 538 << "' to '" << *RefTarget << "'\n"; 539 continue; 540 } 541 542 // We are switching an internal call edge to a ref edge. This may split up 543 // some SCCs. 544 if (C != &TargetC) { 545 // For separate SCCs this is trivial. 546 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 547 continue; 548 } 549 550 // Now update the call graph. 551 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 552 C, AM, UR, DebugLogging); 553 } 554 555 // Now promote ref edges into call edges. 556 for (Node *CallTarget : PromotedRefTargets) { 557 SCC &TargetC = *G.lookupSCC(*CallTarget); 558 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 559 560 // The easy case is when the target RefSCC is not this RefSCC. This is 561 // only supported when the target RefSCC is a child of this RefSCC. 562 if (&TargetRC != RC) { 563 assert(RC->isAncestorOf(TargetRC) && 564 "Cannot potentially form RefSCC cycles here!"); 565 RC->switchOutgoingEdgeToCall(N, *CallTarget); 566 if (DebugLogging) 567 dbgs() << "Switch outgoing ref edge to a call edge from '" << N 568 << "' to '" << *CallTarget << "'\n"; 569 continue; 570 } 571 if (DebugLogging) 572 dbgs() << "Switch an internal ref edge to a call edge from '" << N 573 << "' to '" << *CallTarget << "'\n"; 574 575 // Otherwise we are switching an internal ref edge to a call edge. This 576 // may merge away some SCCs, and we add those to the UpdateResult. We also 577 // need to make sure to update the worklist in the event SCCs have moved 578 // before the current one in the post-order sequence 579 bool HasFunctionAnalysisProxy = false; 580 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 581 bool FormedCycle = RC->switchInternalEdgeToCall( 582 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 583 for (SCC *MergedC : MergedSCCs) { 584 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 585 586 HasFunctionAnalysisProxy |= 587 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 588 *MergedC) != nullptr; 589 590 // Mark that this SCC will no longer be valid. 591 UR.InvalidatedSCCs.insert(MergedC); 592 593 // FIXME: We should really do a 'clear' here to forcibly release 594 // memory, but we don't have a good way of doing that and 595 // preserving the function analyses. 596 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 597 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 598 AM.invalidate(*MergedC, PA); 599 } 600 }); 601 602 // If we formed a cycle by creating this call, we need to update more data 603 // structures. 604 if (FormedCycle) { 605 C = &TargetC; 606 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 607 608 // If one of the invalidated SCCs had a cached proxy to a function 609 // analysis manager, we need to create a proxy in the new current SCC as 610 // the invaliadted SCCs had their functions moved. 611 if (HasFunctionAnalysisProxy) 612 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 613 614 // Any analyses cached for this SCC are no longer precise as the shape 615 // has changed by introducing this cycle. However, we have taken care to 616 // update the proxies so it remains valide. 617 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 618 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 619 AM.invalidate(*C, PA); 620 } 621 auto NewSCCIndex = RC->find(*C) - RC->begin(); 622 if (InitialSCCIndex < NewSCCIndex) { 623 // Put our current SCC back onto the worklist as we'll visit other SCCs 624 // that are now definitively ordered prior to the current one in the 625 // post-order sequence, and may end up observing more precise context to 626 // optimize the current SCC. 627 UR.CWorklist.insert(C); 628 if (DebugLogging) 629 dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; 630 // Enqueue in reverse order as we pop off the back of the worklist. 631 for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, 632 RC->begin() + NewSCCIndex))) { 633 UR.CWorklist.insert(&MovedC); 634 if (DebugLogging) 635 dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC 636 << "\n"; 637 } 638 } 639 } 640 641 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 642 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 643 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 644 645 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 646 // manager now that all the updates have been applied. 647 if (RC != &InitialRC) 648 UR.UpdatedRC = RC; 649 if (C != &InitialC) 650 UR.UpdatedC = C; 651 652 return *C; 653 } 654