1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Support/TimeProfiler.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <iterator> 30 31 #define DEBUG_TYPE "cgscc" 32 33 using namespace llvm; 34 35 // Explicit template instantiations and specialization definitions for core 36 // template typedefs. 37 namespace llvm { 38 39 // Explicit instantiations for the core proxy templates. 40 template class AllAnalysesOn<LazyCallGraph::SCC>; 41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 43 LazyCallGraph &, CGSCCUpdateResult &>; 44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 46 LazyCallGraph::SCC, LazyCallGraph &>; 47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 48 49 /// Explicitly specialize the pass manager run method to handle call graph 50 /// updates. 51 template <> 52 PreservedAnalyses 53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 55 CGSCCAnalysisManager &AM, 56 LazyCallGraph &G, CGSCCUpdateResult &UR) { 57 // Request PassInstrumentation from analysis manager, will use it to run 58 // instrumenting callbacks for the passes later. 59 PassInstrumentation PI = 60 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 61 62 PreservedAnalyses PA = PreservedAnalyses::all(); 63 64 if (DebugLogging) 65 dbgs() << "Starting CGSCC pass manager run.\n"; 66 67 // The SCC may be refined while we are running passes over it, so set up 68 // a pointer that we can update. 69 LazyCallGraph::SCC *C = &InitialC; 70 71 for (auto &Pass : Passes) { 72 if (DebugLogging) 73 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 74 75 // Check the PassInstrumentation's BeforePass callbacks before running the 76 // pass, skip its execution completely if asked to (callback returns false). 77 if (!PI.runBeforePass(*Pass, *C)) 78 continue; 79 80 PreservedAnalyses PassPA; 81 { 82 TimeTraceScope TimeScope(Pass->name()); 83 PassPA = Pass->run(*C, AM, G, UR); 84 } 85 86 if (UR.InvalidatedSCCs.count(C)) 87 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); 88 else 89 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); 90 91 // Update the SCC if necessary. 92 C = UR.UpdatedC ? UR.UpdatedC : C; 93 94 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 95 // current SCC may simply need to be skipped if invalid. 96 if (UR.InvalidatedSCCs.count(C)) { 97 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 98 break; 99 } 100 // Check that we didn't miss any update scenario. 101 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 102 103 // Update the analysis manager as each pass runs and potentially 104 // invalidates analyses. 105 AM.invalidate(*C, PassPA); 106 107 // Finally, we intersect the final preserved analyses to compute the 108 // aggregate preserved set for this pass manager. 109 PA.intersect(std::move(PassPA)); 110 111 // FIXME: Historically, the pass managers all called the LLVM context's 112 // yield function here. We don't have a generic way to acquire the 113 // context and it isn't yet clear what the right pattern is for yielding 114 // in the new pass manager so it is currently omitted. 115 // ...getContext().yield(); 116 } 117 118 // Before we mark all of *this* SCC's analyses as preserved below, intersect 119 // this with the cross-SCC preserved analysis set. This is used to allow 120 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 121 // for them. 122 UR.CrossSCCPA.intersect(PA); 123 124 // Invalidation was handled after each pass in the above loop for the current 125 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 126 // preserved. We mark this with a set so that we don't need to inspect each 127 // one individually. 128 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 129 130 if (DebugLogging) 131 dbgs() << "Finished CGSCC pass manager run.\n"; 132 133 return PA; 134 } 135 136 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 137 Module &M, const PreservedAnalyses &PA, 138 ModuleAnalysisManager::Invalidator &Inv) { 139 // If literally everything is preserved, we're done. 140 if (PA.areAllPreserved()) 141 return false; // This is still a valid proxy. 142 143 // If this proxy or the call graph is going to be invalidated, we also need 144 // to clear all the keys coming from that analysis. 145 // 146 // We also directly invalidate the FAM's module proxy if necessary, and if 147 // that proxy isn't preserved we can't preserve this proxy either. We rely on 148 // it to handle module -> function analysis invalidation in the face of 149 // structural changes and so if it's unavailable we conservatively clear the 150 // entire SCC layer as well rather than trying to do invalidation ourselves. 151 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 152 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 153 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 154 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 155 InnerAM->clear(); 156 157 // And the proxy itself should be marked as invalid so that we can observe 158 // the new call graph. This isn't strictly necessary because we cheat 159 // above, but is still useful. 160 return true; 161 } 162 163 // Directly check if the relevant set is preserved so we can short circuit 164 // invalidating SCCs below. 165 bool AreSCCAnalysesPreserved = 166 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 167 168 // Ok, we have a graph, so we can propagate the invalidation down into it. 169 G->buildRefSCCs(); 170 for (auto &RC : G->postorder_ref_sccs()) 171 for (auto &C : RC) { 172 Optional<PreservedAnalyses> InnerPA; 173 174 // Check to see whether the preserved set needs to be adjusted based on 175 // module-level analysis invalidation triggering deferred invalidation 176 // for this SCC. 177 if (auto *OuterProxy = 178 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 179 for (const auto &OuterInvalidationPair : 180 OuterProxy->getOuterInvalidations()) { 181 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 182 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 183 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 184 if (!InnerPA) 185 InnerPA = PA; 186 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 187 InnerPA->abandon(InnerAnalysisID); 188 } 189 } 190 191 // Check if we needed a custom PA set. If so we'll need to run the inner 192 // invalidation. 193 if (InnerPA) { 194 InnerAM->invalidate(C, *InnerPA); 195 continue; 196 } 197 198 // Otherwise we only need to do invalidation if the original PA set didn't 199 // preserve all SCC analyses. 200 if (!AreSCCAnalysesPreserved) 201 InnerAM->invalidate(C, PA); 202 } 203 204 // Return false to indicate that this result is still a valid proxy. 205 return false; 206 } 207 208 template <> 209 CGSCCAnalysisManagerModuleProxy::Result 210 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 211 // Force the Function analysis manager to also be available so that it can 212 // be accessed in an SCC analysis and proxied onward to function passes. 213 // FIXME: It is pretty awkward to just drop the result here and assert that 214 // we can find it again later. 215 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 216 217 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 218 } 219 220 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 221 222 FunctionAnalysisManagerCGSCCProxy::Result 223 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 224 CGSCCAnalysisManager &AM, 225 LazyCallGraph &CG) { 226 // Collect the FunctionAnalysisManager from the Module layer and use that to 227 // build the proxy result. 228 // 229 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 230 // invalidate the function analyses. 231 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 232 Module &M = *C.begin()->getFunction().getParent(); 233 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 234 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 235 "proxy is run on the module prior to entering the CGSCC " 236 "walk."); 237 238 // Note that we special-case invalidation handling of this proxy in the CGSCC 239 // analysis manager's Module proxy. This avoids the need to do anything 240 // special here to recompute all of this if ever the FAM's module proxy goes 241 // away. 242 return Result(FAMProxy->getManager()); 243 } 244 245 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 246 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 247 CGSCCAnalysisManager::Invalidator &Inv) { 248 // If literally everything is preserved, we're done. 249 if (PA.areAllPreserved()) 250 return false; // This is still a valid proxy. 251 252 // If this proxy isn't marked as preserved, then even if the result remains 253 // valid, the key itself may no longer be valid, so we clear everything. 254 // 255 // Note that in order to preserve this proxy, a module pass must ensure that 256 // the FAM has been completely updated to handle the deletion of functions. 257 // Specifically, any FAM-cached results for those functions need to have been 258 // forcibly cleared. When preserved, this proxy will only invalidate results 259 // cached on functions *still in the module* at the end of the module pass. 260 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 261 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 262 for (LazyCallGraph::Node &N : C) 263 FAM->clear(N.getFunction(), N.getFunction().getName()); 264 265 return true; 266 } 267 268 // Directly check if the relevant set is preserved. 269 bool AreFunctionAnalysesPreserved = 270 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 271 272 // Now walk all the functions to see if any inner analysis invalidation is 273 // necessary. 274 for (LazyCallGraph::Node &N : C) { 275 Function &F = N.getFunction(); 276 Optional<PreservedAnalyses> FunctionPA; 277 278 // Check to see whether the preserved set needs to be pruned based on 279 // SCC-level analysis invalidation that triggers deferred invalidation 280 // registered with the outer analysis manager proxy for this function. 281 if (auto *OuterProxy = 282 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 283 for (const auto &OuterInvalidationPair : 284 OuterProxy->getOuterInvalidations()) { 285 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 286 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 287 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 288 if (!FunctionPA) 289 FunctionPA = PA; 290 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 291 FunctionPA->abandon(InnerAnalysisID); 292 } 293 } 294 295 // Check if we needed a custom PA set, and if so we'll need to run the 296 // inner invalidation. 297 if (FunctionPA) { 298 FAM->invalidate(F, *FunctionPA); 299 continue; 300 } 301 302 // Otherwise we only need to do invalidation if the original PA set didn't 303 // preserve all function analyses. 304 if (!AreFunctionAnalysesPreserved) 305 FAM->invalidate(F, PA); 306 } 307 308 // Return false to indicate that this result is still a valid proxy. 309 return false; 310 } 311 312 } // end namespace llvm 313 314 /// When a new SCC is created for the graph and there might be function 315 /// analysis results cached for the functions now in that SCC two forms of 316 /// updates are required. 317 /// 318 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 319 /// created so that any subsequent invalidation events to the SCC are 320 /// propagated to the function analysis results cached for functions within it. 321 /// 322 /// Second, if any of the functions within the SCC have analysis results with 323 /// outer analysis dependencies, then those dependencies would point to the 324 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 325 /// function analyses so that they don't retain stale handles. 326 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 327 LazyCallGraph &G, 328 CGSCCAnalysisManager &AM) { 329 // Get the relevant function analysis manager. 330 auto &FAM = 331 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 332 333 // Now walk the functions in this SCC and invalidate any function analysis 334 // results that might have outer dependencies on an SCC analysis. 335 for (LazyCallGraph::Node &N : C) { 336 Function &F = N.getFunction(); 337 338 auto *OuterProxy = 339 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 340 if (!OuterProxy) 341 // No outer analyses were queried, nothing to do. 342 continue; 343 344 // Forcibly abandon all the inner analyses with dependencies, but 345 // invalidate nothing else. 346 auto PA = PreservedAnalyses::all(); 347 for (const auto &OuterInvalidationPair : 348 OuterProxy->getOuterInvalidations()) { 349 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 350 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 351 PA.abandon(InnerAnalysisID); 352 } 353 354 // Now invalidate anything we found. 355 FAM.invalidate(F, PA); 356 } 357 } 358 359 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 360 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 361 /// added SCCs. 362 /// 363 /// The range of new SCCs must be in postorder already. The SCC they were split 364 /// out of must be provided as \p C. The current node being mutated and 365 /// triggering updates must be passed as \p N. 366 /// 367 /// This function returns the SCC containing \p N. This will be either \p C if 368 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 369 template <typename SCCRangeT> 370 static LazyCallGraph::SCC * 371 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 372 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 373 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 374 using SCC = LazyCallGraph::SCC; 375 376 if (NewSCCRange.begin() == NewSCCRange.end()) 377 return C; 378 379 // Add the current SCC to the worklist as its shape has changed. 380 UR.CWorklist.insert(C); 381 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 382 << "\n"); 383 384 SCC *OldC = C; 385 386 // Update the current SCC. Note that if we have new SCCs, this must actually 387 // change the SCC. 388 assert(C != &*NewSCCRange.begin() && 389 "Cannot insert new SCCs without changing current SCC!"); 390 C = &*NewSCCRange.begin(); 391 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 392 393 // If we had a cached FAM proxy originally, we will want to create more of 394 // them for each SCC that was split off. 395 bool NeedFAMProxy = 396 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 397 398 // We need to propagate an invalidation call to all but the newly current SCC 399 // because the outer pass manager won't do that for us after splitting them. 400 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 401 // there are preserved analysis we can avoid invalidating them here for 402 // split-off SCCs. 403 // We know however that this will preserve any FAM proxy so go ahead and mark 404 // that. 405 PreservedAnalyses PA; 406 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 407 AM.invalidate(*OldC, PA); 408 409 // Ensure the now-current SCC's function analyses are updated. 410 if (NeedFAMProxy) 411 updateNewSCCFunctionAnalyses(*C, G, AM); 412 413 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 414 NewSCCRange.end()))) { 415 assert(C != &NewC && "No need to re-visit the current SCC!"); 416 assert(OldC != &NewC && "Already handled the original SCC!"); 417 UR.CWorklist.insert(&NewC); 418 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 419 420 // Ensure new SCCs' function analyses are updated. 421 if (NeedFAMProxy) 422 updateNewSCCFunctionAnalyses(NewC, G, AM); 423 424 // Also propagate a normal invalidation to the new SCC as only the current 425 // will get one from the pass manager infrastructure. 426 AM.invalidate(NewC, PA); 427 } 428 return C; 429 } 430 431 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 432 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 433 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool FunctionPass) { 434 using Node = LazyCallGraph::Node; 435 using Edge = LazyCallGraph::Edge; 436 using SCC = LazyCallGraph::SCC; 437 using RefSCC = LazyCallGraph::RefSCC; 438 439 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 440 SCC *C = &InitialC; 441 RefSCC *RC = &InitialRC; 442 Function &F = N.getFunction(); 443 444 // Walk the function body and build up the set of retained, promoted, and 445 // demoted edges. 446 SmallVector<Constant *, 16> Worklist; 447 SmallPtrSet<Constant *, 16> Visited; 448 SmallPtrSet<Node *, 16> RetainedEdges; 449 SmallSetVector<Node *, 4> PromotedRefTargets; 450 SmallSetVector<Node *, 4> DemotedCallTargets; 451 SmallSetVector<Node *, 4> NewCallEdges; 452 SmallSetVector<Node *, 4> NewRefEdges; 453 454 // First walk the function and handle all called functions. We do this first 455 // because if there is a single call edge, whether there are ref edges is 456 // irrelevant. 457 for (Instruction &I : instructions(F)) 458 if (auto *CB = dyn_cast<CallBase>(&I)) 459 if (Function *Callee = CB->getCalledFunction()) 460 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 461 Node &CalleeN = *G.lookup(*Callee); 462 Edge *E = N->lookup(CalleeN); 463 assert((E || !FunctionPass) && 464 "No function transformations should introduce *new* " 465 "call edges! Any new calls should be modeled as " 466 "promoted existing ref edges!"); 467 bool Inserted = RetainedEdges.insert(&CalleeN).second; 468 (void)Inserted; 469 assert(Inserted && "We should never visit a function twice."); 470 if (!E) 471 NewCallEdges.insert(&CalleeN); 472 else if (!E->isCall()) 473 PromotedRefTargets.insert(&CalleeN); 474 } 475 476 // Now walk all references. 477 for (Instruction &I : instructions(F)) 478 for (Value *Op : I.operand_values()) 479 if (auto *C = dyn_cast<Constant>(Op)) 480 if (Visited.insert(C).second) 481 Worklist.push_back(C); 482 483 auto VisitRef = [&](Function &Referee) { 484 Node &RefereeN = *G.lookup(Referee); 485 Edge *E = N->lookup(RefereeN); 486 assert((E || !FunctionPass) && 487 "No function transformations should introduce *new* ref " 488 "edges! Any new ref edges would require IPO which " 489 "function passes aren't allowed to do!"); 490 bool Inserted = RetainedEdges.insert(&RefereeN).second; 491 (void)Inserted; 492 assert(Inserted && "We should never visit a function twice."); 493 if (!E) 494 NewRefEdges.insert(&RefereeN); 495 else if (E->isCall()) 496 DemotedCallTargets.insert(&RefereeN); 497 }; 498 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 499 500 // Handle new ref edges. 501 for (Node *RefTarget : NewRefEdges) { 502 SCC &TargetC = *G.lookupSCC(*RefTarget); 503 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 504 (void)TargetRC; 505 // TODO: This only allows trivial edges to be added for now. 506 assert((RC == &TargetRC || 507 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 508 RC->insertTrivialRefEdge(N, *RefTarget); 509 } 510 511 // Handle new call edges. 512 for (Node *CallTarget : NewCallEdges) { 513 SCC &TargetC = *G.lookupSCC(*CallTarget); 514 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 515 (void)TargetRC; 516 // TODO: This only allows trivial edges to be added for now. 517 assert((RC == &TargetRC || 518 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 519 RC->insertTrivialCallEdge(N, *CallTarget); 520 } 521 522 // Include synthetic reference edges to known, defined lib functions. 523 for (auto *F : G.getLibFunctions()) 524 // While the list of lib functions doesn't have repeats, don't re-visit 525 // anything handled above. 526 if (!Visited.count(F)) 527 VisitRef(*F); 528 529 // First remove all of the edges that are no longer present in this function. 530 // The first step makes these edges uniformly ref edges and accumulates them 531 // into a separate data structure so removal doesn't invalidate anything. 532 SmallVector<Node *, 4> DeadTargets; 533 for (Edge &E : *N) { 534 if (RetainedEdges.count(&E.getNode())) 535 continue; 536 537 SCC &TargetC = *G.lookupSCC(E.getNode()); 538 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 539 if (&TargetRC == RC && E.isCall()) { 540 if (C != &TargetC) { 541 // For separate SCCs this is trivial. 542 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 543 } else { 544 // Now update the call graph. 545 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 546 G, N, C, AM, UR); 547 } 548 } 549 550 // Now that this is ready for actual removal, put it into our list. 551 DeadTargets.push_back(&E.getNode()); 552 } 553 // Remove the easy cases quickly and actually pull them out of our list. 554 DeadTargets.erase( 555 llvm::remove_if(DeadTargets, 556 [&](Node *TargetN) { 557 SCC &TargetC = *G.lookupSCC(*TargetN); 558 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 559 560 // We can't trivially remove internal targets, so skip 561 // those. 562 if (&TargetRC == RC) 563 return false; 564 565 RC->removeOutgoingEdge(N, *TargetN); 566 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 567 << N << "' to '" << TargetN << "'\n"); 568 return true; 569 }), 570 DeadTargets.end()); 571 572 // Now do a batch removal of the internal ref edges left. 573 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 574 if (!NewRefSCCs.empty()) { 575 // The old RefSCC is dead, mark it as such. 576 UR.InvalidatedRefSCCs.insert(RC); 577 578 // Note that we don't bother to invalidate analyses as ref-edge 579 // connectivity is not really observable in any way and is intended 580 // exclusively to be used for ordering of transforms rather than for 581 // analysis conclusions. 582 583 // Update RC to the "bottom". 584 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 585 RC = &C->getOuterRefSCC(); 586 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 587 588 // The RC worklist is in reverse postorder, so we enqueue the new ones in 589 // RPO except for the one which contains the source node as that is the 590 // "bottom" we will continue processing in the bottom-up walk. 591 assert(NewRefSCCs.front() == RC && 592 "New current RefSCC not first in the returned list!"); 593 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 594 NewRefSCCs.end()))) { 595 assert(NewRC != RC && "Should not encounter the current RefSCC further " 596 "in the postorder list of new RefSCCs."); 597 UR.RCWorklist.insert(NewRC); 598 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 599 << *NewRC << "\n"); 600 } 601 } 602 603 // Next demote all the call edges that are now ref edges. This helps make 604 // the SCCs small which should minimize the work below as we don't want to 605 // form cycles that this would break. 606 for (Node *RefTarget : DemotedCallTargets) { 607 SCC &TargetC = *G.lookupSCC(*RefTarget); 608 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 609 610 // The easy case is when the target RefSCC is not this RefSCC. This is 611 // only supported when the target RefSCC is a child of this RefSCC. 612 if (&TargetRC != RC) { 613 assert(RC->isAncestorOf(TargetRC) && 614 "Cannot potentially form RefSCC cycles here!"); 615 RC->switchOutgoingEdgeToRef(N, *RefTarget); 616 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 617 << "' to '" << *RefTarget << "'\n"); 618 continue; 619 } 620 621 // We are switching an internal call edge to a ref edge. This may split up 622 // some SCCs. 623 if (C != &TargetC) { 624 // For separate SCCs this is trivial. 625 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 626 continue; 627 } 628 629 // Now update the call graph. 630 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 631 C, AM, UR); 632 } 633 634 // Now promote ref edges into call edges. 635 for (Node *CallTarget : PromotedRefTargets) { 636 SCC &TargetC = *G.lookupSCC(*CallTarget); 637 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 638 639 // The easy case is when the target RefSCC is not this RefSCC. This is 640 // only supported when the target RefSCC is a child of this RefSCC. 641 if (&TargetRC != RC) { 642 assert(RC->isAncestorOf(TargetRC) && 643 "Cannot potentially form RefSCC cycles here!"); 644 RC->switchOutgoingEdgeToCall(N, *CallTarget); 645 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 646 << "' to '" << *CallTarget << "'\n"); 647 continue; 648 } 649 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 650 << N << "' to '" << *CallTarget << "'\n"); 651 652 // Otherwise we are switching an internal ref edge to a call edge. This 653 // may merge away some SCCs, and we add those to the UpdateResult. We also 654 // need to make sure to update the worklist in the event SCCs have moved 655 // before the current one in the post-order sequence 656 bool HasFunctionAnalysisProxy = false; 657 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 658 bool FormedCycle = RC->switchInternalEdgeToCall( 659 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 660 for (SCC *MergedC : MergedSCCs) { 661 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 662 663 HasFunctionAnalysisProxy |= 664 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 665 *MergedC) != nullptr; 666 667 // Mark that this SCC will no longer be valid. 668 UR.InvalidatedSCCs.insert(MergedC); 669 670 // FIXME: We should really do a 'clear' here to forcibly release 671 // memory, but we don't have a good way of doing that and 672 // preserving the function analyses. 673 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 674 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 675 AM.invalidate(*MergedC, PA); 676 } 677 }); 678 679 // If we formed a cycle by creating this call, we need to update more data 680 // structures. 681 if (FormedCycle) { 682 C = &TargetC; 683 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 684 685 // If one of the invalidated SCCs had a cached proxy to a function 686 // analysis manager, we need to create a proxy in the new current SCC as 687 // the invalidated SCCs had their functions moved. 688 if (HasFunctionAnalysisProxy) 689 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 690 691 // Any analyses cached for this SCC are no longer precise as the shape 692 // has changed by introducing this cycle. However, we have taken care to 693 // update the proxies so it remains valide. 694 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 695 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 696 AM.invalidate(*C, PA); 697 } 698 auto NewSCCIndex = RC->find(*C) - RC->begin(); 699 // If we have actually moved an SCC to be topologically "below" the current 700 // one due to merging, we will need to revisit the current SCC after 701 // visiting those moved SCCs. 702 // 703 // It is critical that we *do not* revisit the current SCC unless we 704 // actually move SCCs in the process of merging because otherwise we may 705 // form a cycle where an SCC is split apart, merged, split, merged and so 706 // on infinitely. 707 if (InitialSCCIndex < NewSCCIndex) { 708 // Put our current SCC back onto the worklist as we'll visit other SCCs 709 // that are now definitively ordered prior to the current one in the 710 // post-order sequence, and may end up observing more precise context to 711 // optimize the current SCC. 712 UR.CWorklist.insert(C); 713 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 714 << "\n"); 715 // Enqueue in reverse order as we pop off the back of the worklist. 716 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 717 RC->begin() + NewSCCIndex))) { 718 UR.CWorklist.insert(&MovedC); 719 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 720 << MovedC << "\n"); 721 } 722 } 723 } 724 725 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 726 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 727 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 728 729 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 730 // manager now that all the updates have been applied. 731 if (RC != &InitialRC) 732 UR.UpdatedRC = RC; 733 if (C != &InitialC) 734 UR.UpdatedC = C; 735 736 return *C; 737 } 738 739 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 740 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 741 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 742 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 743 /* FunctionPass */ true); 744 } 745 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 746 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 747 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 748 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 749 /* FunctionPass */ false); 750 } 751