1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/TimeProfiler.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 42 "abort-on-max-devirt-iterations-reached", 43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 44 "pass is reached")); 45 46 // Explicit instantiations for the core proxy templates. 47 template class AllAnalysesOn<LazyCallGraph::SCC>; 48 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 49 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 50 LazyCallGraph &, CGSCCUpdateResult &>; 51 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 52 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 53 LazyCallGraph::SCC, LazyCallGraph &>; 54 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 55 56 /// Explicitly specialize the pass manager run method to handle call graph 57 /// updates. 58 template <> 59 PreservedAnalyses 60 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 61 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 62 CGSCCAnalysisManager &AM, 63 LazyCallGraph &G, CGSCCUpdateResult &UR) { 64 // Request PassInstrumentation from analysis manager, will use it to run 65 // instrumenting callbacks for the passes later. 66 PassInstrumentation PI = 67 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 68 69 PreservedAnalyses PA = PreservedAnalyses::all(); 70 71 // The SCC may be refined while we are running passes over it, so set up 72 // a pointer that we can update. 73 LazyCallGraph::SCC *C = &InitialC; 74 75 // Get Function analysis manager from its proxy. 76 FunctionAnalysisManager &FAM = 77 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 78 79 for (auto &Pass : Passes) { 80 // Check the PassInstrumentation's BeforePass callbacks before running the 81 // pass, skip its execution completely if asked to (callback returns false). 82 if (!PI.runBeforePass(*Pass, *C)) 83 continue; 84 85 PreservedAnalyses PassPA; 86 { 87 TimeTraceScope TimeScope(Pass->name()); 88 PassPA = Pass->run(*C, AM, G, UR); 89 } 90 91 if (UR.InvalidatedSCCs.count(C)) 92 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 93 else 94 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 95 96 // Update the SCC if necessary. 97 C = UR.UpdatedC ? UR.UpdatedC : C; 98 if (UR.UpdatedC) { 99 // If C is updated, also create a proxy and update FAM inside the result. 100 auto *ResultFAMCP = 101 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 102 ResultFAMCP->updateFAM(FAM); 103 } 104 105 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 106 // current SCC may simply need to be skipped if invalid. 107 if (UR.InvalidatedSCCs.count(C)) { 108 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 109 break; 110 } 111 // Check that we didn't miss any update scenario. 112 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 113 114 // Update the analysis manager as each pass runs and potentially 115 // invalidates analyses. 116 AM.invalidate(*C, PassPA); 117 118 // Finally, we intersect the final preserved analyses to compute the 119 // aggregate preserved set for this pass manager. 120 PA.intersect(std::move(PassPA)); 121 } 122 123 // Before we mark all of *this* SCC's analyses as preserved below, intersect 124 // this with the cross-SCC preserved analysis set. This is used to allow 125 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 126 // for them. 127 UR.CrossSCCPA.intersect(PA); 128 129 // Invalidation was handled after each pass in the above loop for the current 130 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 131 // preserved. We mark this with a set so that we don't need to inspect each 132 // one individually. 133 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 134 135 return PA; 136 } 137 138 PreservedAnalyses 139 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { 140 // Setup the CGSCC analysis manager from its proxy. 141 CGSCCAnalysisManager &CGAM = 142 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); 143 144 // Get the call graph for this module. 145 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); 146 147 // Get Function analysis manager from its proxy. 148 FunctionAnalysisManager &FAM = 149 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); 150 151 // We keep worklists to allow us to push more work onto the pass manager as 152 // the passes are run. 153 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; 154 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; 155 156 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when 157 // iterating off the worklists. 158 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; 159 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; 160 161 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> 162 InlinedInternalEdges; 163 164 CGSCCUpdateResult UR = { 165 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, 166 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, 167 {}}; 168 169 // Request PassInstrumentation from analysis manager, will use it to run 170 // instrumenting callbacks for the passes later. 171 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); 172 173 PreservedAnalyses PA = PreservedAnalyses::all(); 174 CG.buildRefSCCs(); 175 for (auto RCI = CG.postorder_ref_scc_begin(), 176 RCE = CG.postorder_ref_scc_end(); 177 RCI != RCE;) { 178 assert(RCWorklist.empty() && 179 "Should always start with an empty RefSCC worklist"); 180 // The postorder_ref_sccs range we are walking is lazily constructed, so 181 // we only push the first one onto the worklist. The worklist allows us 182 // to capture *new* RefSCCs created during transformations. 183 // 184 // We really want to form RefSCCs lazily because that makes them cheaper 185 // to update as the program is simplified and allows us to have greater 186 // cache locality as forming a RefSCC touches all the parts of all the 187 // functions within that RefSCC. 188 // 189 // We also eagerly increment the iterator to the next position because 190 // the CGSCC passes below may delete the current RefSCC. 191 RCWorklist.insert(&*RCI++); 192 193 do { 194 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); 195 if (InvalidRefSCCSet.count(RC)) { 196 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); 197 continue; 198 } 199 200 assert(CWorklist.empty() && 201 "Should always start with an empty SCC worklist"); 202 203 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC 204 << "\n"); 205 206 // The top of the worklist may *also* be the same SCC we just ran over 207 // (and invalidated for). Keep track of that last SCC we processed due 208 // to SCC update to avoid redundant processing when an SCC is both just 209 // updated itself and at the top of the worklist. 210 LazyCallGraph::SCC *LastUpdatedC = nullptr; 211 212 // Push the initial SCCs in reverse post-order as we'll pop off the 213 // back and so see this in post-order. 214 for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) 215 CWorklist.insert(&C); 216 217 do { 218 LazyCallGraph::SCC *C = CWorklist.pop_back_val(); 219 // Due to call graph mutations, we may have invalid SCCs or SCCs from 220 // other RefSCCs in the worklist. The invalid ones are dead and the 221 // other RefSCCs should be queued above, so we just need to skip both 222 // scenarios here. 223 if (InvalidSCCSet.count(C)) { 224 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); 225 continue; 226 } 227 if (LastUpdatedC == C) { 228 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); 229 continue; 230 } 231 if (&C->getOuterRefSCC() != RC) { 232 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " 233 "RefSCC...\n"); 234 continue; 235 } 236 237 // Ensure we can proxy analysis updates from the CGSCC analysis manager 238 // into the the Function analysis manager by getting a proxy here. 239 // This also needs to update the FunctionAnalysisManager, as this may be 240 // the first time we see this SCC. 241 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 242 FAM); 243 244 // Each time we visit a new SCC pulled off the worklist, 245 // a transformation of a child SCC may have also modified this parent 246 // and invalidated analyses. So we invalidate using the update record's 247 // cross-SCC preserved set. This preserved set is intersected by any 248 // CGSCC pass that handles invalidation (primarily pass managers) prior 249 // to marking its SCC as preserved. That lets us track everything that 250 // might need invalidation across SCCs without excessive invalidations 251 // on a single SCC. 252 // 253 // This essentially allows SCC passes to freely invalidate analyses 254 // of any ancestor SCC. If this becomes detrimental to successfully 255 // caching analyses, we could force each SCC pass to manually 256 // invalidate the analyses for any SCCs other than themselves which 257 // are mutated. However, that seems to lose the robustness of the 258 // pass-manager driven invalidation scheme. 259 CGAM.invalidate(*C, UR.CrossSCCPA); 260 261 do { 262 // Check that we didn't miss any update scenario. 263 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); 264 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 265 assert(&C->getOuterRefSCC() == RC && 266 "Processing an SCC in a different RefSCC!"); 267 268 LastUpdatedC = UR.UpdatedC; 269 UR.UpdatedRC = nullptr; 270 UR.UpdatedC = nullptr; 271 272 // Check the PassInstrumentation's BeforePass callbacks before 273 // running the pass, skip its execution completely if asked to 274 // (callback returns false). 275 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 276 continue; 277 278 PreservedAnalyses PassPA; 279 { 280 TimeTraceScope TimeScope(Pass->name()); 281 PassPA = Pass->run(*C, CGAM, CG, UR); 282 } 283 284 if (UR.InvalidatedSCCs.count(C)) 285 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 286 else 287 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 288 289 // Update the SCC and RefSCC if necessary. 290 C = UR.UpdatedC ? UR.UpdatedC : C; 291 RC = UR.UpdatedRC ? UR.UpdatedRC : RC; 292 293 if (UR.UpdatedC) { 294 // If we're updating the SCC, also update the FAM inside the proxy's 295 // result. 296 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 297 FAM); 298 } 299 300 // If the CGSCC pass wasn't able to provide a valid updated SCC, 301 // the current SCC may simply need to be skipped if invalid. 302 if (UR.InvalidatedSCCs.count(C)) { 303 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 304 break; 305 } 306 // Check that we didn't miss any update scenario. 307 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 308 309 // We handle invalidating the CGSCC analysis manager's information 310 // for the (potentially updated) SCC here. Note that any other SCCs 311 // whose structure has changed should have been invalidated by 312 // whatever was updating the call graph. This SCC gets invalidated 313 // late as it contains the nodes that were actively being 314 // processed. 315 CGAM.invalidate(*C, PassPA); 316 317 // Then intersect the preserved set so that invalidation of module 318 // analyses will eventually occur when the module pass completes. 319 // Also intersect with the cross-SCC preserved set to capture any 320 // cross-SCC invalidation. 321 UR.CrossSCCPA.intersect(PassPA); 322 PA.intersect(std::move(PassPA)); 323 324 // The pass may have restructured the call graph and refined the 325 // current SCC and/or RefSCC. We need to update our current SCC and 326 // RefSCC pointers to follow these. Also, when the current SCC is 327 // refined, re-run the SCC pass over the newly refined SCC in order 328 // to observe the most precise SCC model available. This inherently 329 // cannot cycle excessively as it only happens when we split SCCs 330 // apart, at most converging on a DAG of single nodes. 331 // FIXME: If we ever start having RefSCC passes, we'll want to 332 // iterate there too. 333 if (UR.UpdatedC) 334 LLVM_DEBUG(dbgs() 335 << "Re-running SCC passes after a refinement of the " 336 "current SCC: " 337 << *UR.UpdatedC << "\n"); 338 339 // Note that both `C` and `RC` may at this point refer to deleted, 340 // invalid SCC and RefSCCs respectively. But we will short circuit 341 // the processing when we check them in the loop above. 342 } while (UR.UpdatedC); 343 } while (!CWorklist.empty()); 344 345 // We only need to keep internal inlined edge information within 346 // a RefSCC, clear it to save on space and let the next time we visit 347 // any of these functions have a fresh start. 348 InlinedInternalEdges.clear(); 349 } while (!RCWorklist.empty()); 350 } 351 352 // By definition we preserve the call garph, all SCC analyses, and the 353 // analysis proxies by handling them above and in any nested pass managers. 354 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 355 PA.preserve<LazyCallGraphAnalysis>(); 356 PA.preserve<CGSCCAnalysisManagerModuleProxy>(); 357 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 358 return PA; 359 } 360 361 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, 362 CGSCCAnalysisManager &AM, 363 LazyCallGraph &CG, 364 CGSCCUpdateResult &UR) { 365 PreservedAnalyses PA = PreservedAnalyses::all(); 366 PassInstrumentation PI = 367 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); 368 369 // The SCC may be refined while we are running passes over it, so set up 370 // a pointer that we can update. 371 LazyCallGraph::SCC *C = &InitialC; 372 373 // Struct to track the counts of direct and indirect calls in each function 374 // of the SCC. 375 struct CallCount { 376 int Direct; 377 int Indirect; 378 }; 379 380 // Put value handles on all of the indirect calls and return the number of 381 // direct calls for each function in the SCC. 382 auto ScanSCC = [](LazyCallGraph::SCC &C, 383 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { 384 assert(CallHandles.empty() && "Must start with a clear set of handles."); 385 386 SmallDenseMap<Function *, CallCount> CallCounts; 387 CallCount CountLocal = {0, 0}; 388 for (LazyCallGraph::Node &N : C) { 389 CallCount &Count = 390 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) 391 .first->second; 392 for (Instruction &I : instructions(N.getFunction())) 393 if (auto *CB = dyn_cast<CallBase>(&I)) { 394 if (CB->getCalledFunction()) { 395 ++Count.Direct; 396 } else { 397 ++Count.Indirect; 398 CallHandles.insert({CB, WeakTrackingVH(CB)}); 399 } 400 } 401 } 402 403 return CallCounts; 404 }; 405 406 UR.IndirectVHs.clear(); 407 // Populate the initial call handles and get the initial call counts. 408 auto CallCounts = ScanSCC(*C, UR.IndirectVHs); 409 410 for (int Iteration = 0;; ++Iteration) { 411 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 412 continue; 413 414 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); 415 416 if (UR.InvalidatedSCCs.count(C)) 417 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 418 else 419 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 420 421 // If the SCC structure has changed, bail immediately and let the outer 422 // CGSCC layer handle any iteration to reflect the refined structure. 423 if (UR.UpdatedC && UR.UpdatedC != C) { 424 PA.intersect(std::move(PassPA)); 425 break; 426 } 427 428 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 429 // current SCC may simply need to be skipped if invalid. 430 if (UR.InvalidatedSCCs.count(C)) { 431 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 432 break; 433 } 434 435 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 436 437 // Check whether any of the handles were devirtualized. 438 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { 439 if (P.second) { 440 if (CallBase *CB = dyn_cast<CallBase>(P.second)) { 441 if (CB->getCalledFunction()) { 442 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); 443 return true; 444 } 445 } 446 } 447 return false; 448 }); 449 450 // Rescan to build up a new set of handles and count how many direct 451 // calls remain. If we decide to iterate, this also sets up the input to 452 // the next iteration. 453 UR.IndirectVHs.clear(); 454 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); 455 456 // If we haven't found an explicit devirtualization already see if we 457 // have decreased the number of indirect calls and increased the number 458 // of direct calls for any function in the SCC. This can be fooled by all 459 // manner of transformations such as DCE and other things, but seems to 460 // work well in practice. 461 if (!Devirt) 462 // Iterate over the keys in NewCallCounts, if Function also exists in 463 // CallCounts, make the check below. 464 for (auto &Pair : NewCallCounts) { 465 auto &CallCountNew = Pair.second; 466 auto CountIt = CallCounts.find(Pair.first); 467 if (CountIt != CallCounts.end()) { 468 const auto &CallCountOld = CountIt->second; 469 if (CallCountOld.Indirect > CallCountNew.Indirect && 470 CallCountOld.Direct < CallCountNew.Direct) { 471 Devirt = true; 472 break; 473 } 474 } 475 } 476 477 if (!Devirt) { 478 PA.intersect(std::move(PassPA)); 479 break; 480 } 481 482 // Otherwise, if we've already hit our max, we're done. 483 if (Iteration >= MaxIterations) { 484 if (AbortOnMaxDevirtIterationsReached) 485 report_fatal_error("Max devirtualization iterations reached"); 486 LLVM_DEBUG( 487 dbgs() << "Found another devirtualization after hitting the max " 488 "number of repetitions (" 489 << MaxIterations << ") on SCC: " << *C << "\n"); 490 PA.intersect(std::move(PassPA)); 491 break; 492 } 493 494 LLVM_DEBUG( 495 dbgs() << "Repeating an SCC pass after finding a devirtualization in: " 496 << *C << "\n"); 497 498 // Move over the new call counts in preparation for iterating. 499 CallCounts = std::move(NewCallCounts); 500 501 // Update the analysis manager with each run and intersect the total set 502 // of preserved analyses so we're ready to iterate. 503 AM.invalidate(*C, PassPA); 504 505 PA.intersect(std::move(PassPA)); 506 } 507 508 // Note that we don't add any preserved entries here unlike a more normal 509 // "pass manager" because we only handle invalidation *between* iterations, 510 // not after the last iteration. 511 return PA; 512 } 513 514 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, 515 CGSCCAnalysisManager &AM, 516 LazyCallGraph &CG, 517 CGSCCUpdateResult &UR) { 518 // Setup the function analysis manager from its proxy. 519 FunctionAnalysisManager &FAM = 520 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 521 522 SmallVector<LazyCallGraph::Node *, 4> Nodes; 523 for (LazyCallGraph::Node &N : C) 524 Nodes.push_back(&N); 525 526 // The SCC may get split while we are optimizing functions due to deleting 527 // edges. If this happens, the current SCC can shift, so keep track of 528 // a pointer we can overwrite. 529 LazyCallGraph::SCC *CurrentC = &C; 530 531 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); 532 533 PreservedAnalyses PA = PreservedAnalyses::all(); 534 for (LazyCallGraph::Node *N : Nodes) { 535 // Skip nodes from other SCCs. These may have been split out during 536 // processing. We'll eventually visit those SCCs and pick up the nodes 537 // there. 538 if (CG.lookupSCC(*N) != CurrentC) 539 continue; 540 541 Function &F = N->getFunction(); 542 543 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); 544 if (!PI.runBeforePass<Function>(*Pass, F)) 545 continue; 546 547 PreservedAnalyses PassPA; 548 { 549 TimeTraceScope TimeScope(Pass->name()); 550 PassPA = Pass->run(F, FAM); 551 } 552 553 PI.runAfterPass<Function>(*Pass, F, PassPA); 554 555 // We know that the function pass couldn't have invalidated any other 556 // function's analyses (that's the contract of a function pass), so 557 // directly handle the function analysis manager's invalidation here. 558 FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA); 559 560 // Then intersect the preserved set so that invalidation of module 561 // analyses will eventually occur when the module pass completes. 562 PA.intersect(std::move(PassPA)); 563 564 // If the call graph hasn't been preserved, update it based on this 565 // function pass. This may also update the current SCC to point to 566 // a smaller, more refined SCC. 567 auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); 568 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { 569 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, 570 AM, UR, FAM); 571 assert(CG.lookupSCC(*N) == CurrentC && 572 "Current SCC not updated to the SCC containing the current node!"); 573 } 574 } 575 576 // By definition we preserve the proxy. And we preserve all analyses on 577 // Functions. This precludes *any* invalidation of function analyses by the 578 // proxy, but that's OK because we've taken care to invalidate analyses in 579 // the function analysis manager incrementally above. 580 PA.preserveSet<AllAnalysesOn<Function>>(); 581 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 582 583 // We've also ensured that we updated the call graph along the way. 584 PA.preserve<LazyCallGraphAnalysis>(); 585 586 return PA; 587 } 588 589 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 590 Module &M, const PreservedAnalyses &PA, 591 ModuleAnalysisManager::Invalidator &Inv) { 592 // If literally everything is preserved, we're done. 593 if (PA.areAllPreserved()) 594 return false; // This is still a valid proxy. 595 596 // If this proxy or the call graph is going to be invalidated, we also need 597 // to clear all the keys coming from that analysis. 598 // 599 // We also directly invalidate the FAM's module proxy if necessary, and if 600 // that proxy isn't preserved we can't preserve this proxy either. We rely on 601 // it to handle module -> function analysis invalidation in the face of 602 // structural changes and so if it's unavailable we conservatively clear the 603 // entire SCC layer as well rather than trying to do invalidation ourselves. 604 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 605 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 606 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 607 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 608 InnerAM->clear(); 609 610 // And the proxy itself should be marked as invalid so that we can observe 611 // the new call graph. This isn't strictly necessary because we cheat 612 // above, but is still useful. 613 return true; 614 } 615 616 // Directly check if the relevant set is preserved so we can short circuit 617 // invalidating SCCs below. 618 bool AreSCCAnalysesPreserved = 619 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 620 621 // Ok, we have a graph, so we can propagate the invalidation down into it. 622 G->buildRefSCCs(); 623 for (auto &RC : G->postorder_ref_sccs()) 624 for (auto &C : RC) { 625 Optional<PreservedAnalyses> InnerPA; 626 627 // Check to see whether the preserved set needs to be adjusted based on 628 // module-level analysis invalidation triggering deferred invalidation 629 // for this SCC. 630 if (auto *OuterProxy = 631 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 632 for (const auto &OuterInvalidationPair : 633 OuterProxy->getOuterInvalidations()) { 634 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 635 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 636 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 637 if (!InnerPA) 638 InnerPA = PA; 639 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 640 InnerPA->abandon(InnerAnalysisID); 641 } 642 } 643 644 // Check if we needed a custom PA set. If so we'll need to run the inner 645 // invalidation. 646 if (InnerPA) { 647 InnerAM->invalidate(C, *InnerPA); 648 continue; 649 } 650 651 // Otherwise we only need to do invalidation if the original PA set didn't 652 // preserve all SCC analyses. 653 if (!AreSCCAnalysesPreserved) 654 InnerAM->invalidate(C, PA); 655 } 656 657 // Return false to indicate that this result is still a valid proxy. 658 return false; 659 } 660 661 template <> 662 CGSCCAnalysisManagerModuleProxy::Result 663 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 664 // Force the Function analysis manager to also be available so that it can 665 // be accessed in an SCC analysis and proxied onward to function passes. 666 // FIXME: It is pretty awkward to just drop the result here and assert that 667 // we can find it again later. 668 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 669 670 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 671 } 672 673 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 674 675 FunctionAnalysisManagerCGSCCProxy::Result 676 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 677 CGSCCAnalysisManager &AM, 678 LazyCallGraph &CG) { 679 // Note: unconditionally getting checking that the proxy exists may get it at 680 // this point. There are cases when this is being run unnecessarily, but 681 // it is cheap and having the assertion in place is more valuable. 682 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 683 Module &M = *C.begin()->getFunction().getParent(); 684 bool ProxyExists = 685 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 686 assert(ProxyExists && 687 "The CGSCC pass manager requires that the FAM module proxy is run " 688 "on the module prior to entering the CGSCC walk"); 689 (void)ProxyExists; 690 691 // We just return an empty result. The caller will use the updateFAM interface 692 // to correctly register the relevant FunctionAnalysisManager based on the 693 // context in which this proxy is run. 694 return Result(); 695 } 696 697 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 698 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 699 CGSCCAnalysisManager::Invalidator &Inv) { 700 // If literally everything is preserved, we're done. 701 if (PA.areAllPreserved()) 702 return false; // This is still a valid proxy. 703 704 // All updates to preserve valid results are done below, so we don't need to 705 // invalidate this proxy. 706 // 707 // Note that in order to preserve this proxy, a module pass must ensure that 708 // the FAM has been completely updated to handle the deletion of functions. 709 // Specifically, any FAM-cached results for those functions need to have been 710 // forcibly cleared. When preserved, this proxy will only invalidate results 711 // cached on functions *still in the module* at the end of the module pass. 712 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 713 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 714 for (LazyCallGraph::Node &N : C) 715 FAM->invalidate(N.getFunction(), PA); 716 717 return false; 718 } 719 720 // Directly check if the relevant set is preserved. 721 bool AreFunctionAnalysesPreserved = 722 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 723 724 // Now walk all the functions to see if any inner analysis invalidation is 725 // necessary. 726 for (LazyCallGraph::Node &N : C) { 727 Function &F = N.getFunction(); 728 Optional<PreservedAnalyses> FunctionPA; 729 730 // Check to see whether the preserved set needs to be pruned based on 731 // SCC-level analysis invalidation that triggers deferred invalidation 732 // registered with the outer analysis manager proxy for this function. 733 if (auto *OuterProxy = 734 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 735 for (const auto &OuterInvalidationPair : 736 OuterProxy->getOuterInvalidations()) { 737 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 738 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 739 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 740 if (!FunctionPA) 741 FunctionPA = PA; 742 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 743 FunctionPA->abandon(InnerAnalysisID); 744 } 745 } 746 747 // Check if we needed a custom PA set, and if so we'll need to run the 748 // inner invalidation. 749 if (FunctionPA) { 750 FAM->invalidate(F, *FunctionPA); 751 continue; 752 } 753 754 // Otherwise we only need to do invalidation if the original PA set didn't 755 // preserve all function analyses. 756 if (!AreFunctionAnalysesPreserved) 757 FAM->invalidate(F, PA); 758 } 759 760 // Return false to indicate that this result is still a valid proxy. 761 return false; 762 } 763 764 } // end namespace llvm 765 766 /// When a new SCC is created for the graph we first update the 767 /// FunctionAnalysisManager in the Proxy's result. 768 /// As there might be function analysis results cached for the functions now in 769 /// that SCC, two forms of updates are required. 770 /// 771 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 772 /// created so that any subsequent invalidation events to the SCC are 773 /// propagated to the function analysis results cached for functions within it. 774 /// 775 /// Second, if any of the functions within the SCC have analysis results with 776 /// outer analysis dependencies, then those dependencies would point to the 777 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 778 /// function analyses so that they don't retain stale handles. 779 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 780 LazyCallGraph &G, 781 CGSCCAnalysisManager &AM, 782 FunctionAnalysisManager &FAM) { 783 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 784 785 // Now walk the functions in this SCC and invalidate any function analysis 786 // results that might have outer dependencies on an SCC analysis. 787 for (LazyCallGraph::Node &N : C) { 788 Function &F = N.getFunction(); 789 790 auto *OuterProxy = 791 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 792 if (!OuterProxy) 793 // No outer analyses were queried, nothing to do. 794 continue; 795 796 // Forcibly abandon all the inner analyses with dependencies, but 797 // invalidate nothing else. 798 auto PA = PreservedAnalyses::all(); 799 for (const auto &OuterInvalidationPair : 800 OuterProxy->getOuterInvalidations()) { 801 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 802 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 803 PA.abandon(InnerAnalysisID); 804 } 805 806 // Now invalidate anything we found. 807 FAM.invalidate(F, PA); 808 } 809 } 810 811 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 812 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 813 /// added SCCs. 814 /// 815 /// The range of new SCCs must be in postorder already. The SCC they were split 816 /// out of must be provided as \p C. The current node being mutated and 817 /// triggering updates must be passed as \p N. 818 /// 819 /// This function returns the SCC containing \p N. This will be either \p C if 820 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 821 template <typename SCCRangeT> 822 static LazyCallGraph::SCC * 823 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 824 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 825 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 826 using SCC = LazyCallGraph::SCC; 827 828 if (NewSCCRange.empty()) 829 return C; 830 831 // Add the current SCC to the worklist as its shape has changed. 832 UR.CWorklist.insert(C); 833 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 834 << "\n"); 835 836 SCC *OldC = C; 837 838 // Update the current SCC. Note that if we have new SCCs, this must actually 839 // change the SCC. 840 assert(C != &*NewSCCRange.begin() && 841 "Cannot insert new SCCs without changing current SCC!"); 842 C = &*NewSCCRange.begin(); 843 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 844 845 // If we had a cached FAM proxy originally, we will want to create more of 846 // them for each SCC that was split off. 847 FunctionAnalysisManager *FAM = nullptr; 848 if (auto *FAMProxy = 849 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 850 FAM = &FAMProxy->getManager(); 851 852 // We need to propagate an invalidation call to all but the newly current SCC 853 // because the outer pass manager won't do that for us after splitting them. 854 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 855 // there are preserved analysis we can avoid invalidating them here for 856 // split-off SCCs. 857 // We know however that this will preserve any FAM proxy so go ahead and mark 858 // that. 859 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 860 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 861 AM.invalidate(*OldC, PA); 862 863 // Ensure the now-current SCC's function analyses are updated. 864 if (FAM) 865 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 866 867 for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { 868 assert(C != &NewC && "No need to re-visit the current SCC!"); 869 assert(OldC != &NewC && "Already handled the original SCC!"); 870 UR.CWorklist.insert(&NewC); 871 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 872 873 // Ensure new SCCs' function analyses are updated. 874 if (FAM) 875 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 876 877 // Also propagate a normal invalidation to the new SCC as only the current 878 // will get one from the pass manager infrastructure. 879 AM.invalidate(NewC, PA); 880 } 881 return C; 882 } 883 884 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 885 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 886 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 887 FunctionAnalysisManager &FAM, bool FunctionPass) { 888 using Node = LazyCallGraph::Node; 889 using Edge = LazyCallGraph::Edge; 890 using SCC = LazyCallGraph::SCC; 891 using RefSCC = LazyCallGraph::RefSCC; 892 893 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 894 SCC *C = &InitialC; 895 RefSCC *RC = &InitialRC; 896 Function &F = N.getFunction(); 897 898 // Walk the function body and build up the set of retained, promoted, and 899 // demoted edges. 900 SmallVector<Constant *, 16> Worklist; 901 SmallPtrSet<Constant *, 16> Visited; 902 SmallPtrSet<Node *, 16> RetainedEdges; 903 SmallSetVector<Node *, 4> PromotedRefTargets; 904 SmallSetVector<Node *, 4> DemotedCallTargets; 905 SmallSetVector<Node *, 4> NewCallEdges; 906 SmallSetVector<Node *, 4> NewRefEdges; 907 908 // First walk the function and handle all called functions. We do this first 909 // because if there is a single call edge, whether there are ref edges is 910 // irrelevant. 911 for (Instruction &I : instructions(F)) { 912 if (auto *CB = dyn_cast<CallBase>(&I)) { 913 if (Function *Callee = CB->getCalledFunction()) { 914 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 915 Node *CalleeN = G.lookup(*Callee); 916 assert(CalleeN && 917 "Visited function should already have an associated node"); 918 Edge *E = N->lookup(*CalleeN); 919 assert((E || !FunctionPass) && 920 "No function transformations should introduce *new* " 921 "call edges! Any new calls should be modeled as " 922 "promoted existing ref edges!"); 923 bool Inserted = RetainedEdges.insert(CalleeN).second; 924 (void)Inserted; 925 assert(Inserted && "We should never visit a function twice."); 926 if (!E) 927 NewCallEdges.insert(CalleeN); 928 else if (!E->isCall()) 929 PromotedRefTargets.insert(CalleeN); 930 } 931 } else { 932 // We can miss devirtualization if an indirect call is created then 933 // promoted before updateCGAndAnalysisManagerForPass runs. 934 auto *Entry = UR.IndirectVHs.find(CB); 935 if (Entry == UR.IndirectVHs.end()) 936 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 937 else if (!Entry->second) 938 Entry->second = WeakTrackingVH(CB); 939 } 940 } 941 } 942 943 // Now walk all references. 944 for (Instruction &I : instructions(F)) 945 for (Value *Op : I.operand_values()) 946 if (auto *OpC = dyn_cast<Constant>(Op)) 947 if (Visited.insert(OpC).second) 948 Worklist.push_back(OpC); 949 950 auto VisitRef = [&](Function &Referee) { 951 Node *RefereeN = G.lookup(Referee); 952 assert(RefereeN && 953 "Visited function should already have an associated node"); 954 Edge *E = N->lookup(*RefereeN); 955 assert((E || !FunctionPass) && 956 "No function transformations should introduce *new* ref " 957 "edges! Any new ref edges would require IPO which " 958 "function passes aren't allowed to do!"); 959 bool Inserted = RetainedEdges.insert(RefereeN).second; 960 (void)Inserted; 961 assert(Inserted && "We should never visit a function twice."); 962 if (!E) 963 NewRefEdges.insert(RefereeN); 964 else if (E->isCall()) 965 DemotedCallTargets.insert(RefereeN); 966 }; 967 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 968 969 // Handle new ref edges. 970 for (Node *RefTarget : NewRefEdges) { 971 SCC &TargetC = *G.lookupSCC(*RefTarget); 972 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 973 (void)TargetRC; 974 // TODO: This only allows trivial edges to be added for now. 975 #ifdef EXPENSIVE_CHECKS 976 assert((RC == &TargetRC || 977 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 978 #endif 979 RC->insertTrivialRefEdge(N, *RefTarget); 980 } 981 982 // Handle new call edges. 983 for (Node *CallTarget : NewCallEdges) { 984 SCC &TargetC = *G.lookupSCC(*CallTarget); 985 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 986 (void)TargetRC; 987 // TODO: This only allows trivial edges to be added for now. 988 #ifdef EXPENSIVE_CHECKS 989 assert((RC == &TargetRC || 990 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 991 #endif 992 // Add a trivial ref edge to be promoted later on alongside 993 // PromotedRefTargets. 994 RC->insertTrivialRefEdge(N, *CallTarget); 995 } 996 997 // Include synthetic reference edges to known, defined lib functions. 998 for (auto *LibFn : G.getLibFunctions()) 999 // While the list of lib functions doesn't have repeats, don't re-visit 1000 // anything handled above. 1001 if (!Visited.count(LibFn)) 1002 VisitRef(*LibFn); 1003 1004 // First remove all of the edges that are no longer present in this function. 1005 // The first step makes these edges uniformly ref edges and accumulates them 1006 // into a separate data structure so removal doesn't invalidate anything. 1007 SmallVector<Node *, 4> DeadTargets; 1008 for (Edge &E : *N) { 1009 if (RetainedEdges.count(&E.getNode())) 1010 continue; 1011 1012 SCC &TargetC = *G.lookupSCC(E.getNode()); 1013 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1014 if (&TargetRC == RC && E.isCall()) { 1015 if (C != &TargetC) { 1016 // For separate SCCs this is trivial. 1017 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 1018 } else { 1019 // Now update the call graph. 1020 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 1021 G, N, C, AM, UR); 1022 } 1023 } 1024 1025 // Now that this is ready for actual removal, put it into our list. 1026 DeadTargets.push_back(&E.getNode()); 1027 } 1028 // Remove the easy cases quickly and actually pull them out of our list. 1029 llvm::erase_if(DeadTargets, [&](Node *TargetN) { 1030 SCC &TargetC = *G.lookupSCC(*TargetN); 1031 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1032 1033 // We can't trivially remove internal targets, so skip 1034 // those. 1035 if (&TargetRC == RC) 1036 return false; 1037 1038 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" 1039 << *TargetN << "'\n"); 1040 RC->removeOutgoingEdge(N, *TargetN); 1041 return true; 1042 }); 1043 1044 // Now do a batch removal of the internal ref edges left. 1045 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 1046 if (!NewRefSCCs.empty()) { 1047 // The old RefSCC is dead, mark it as such. 1048 UR.InvalidatedRefSCCs.insert(RC); 1049 1050 // Note that we don't bother to invalidate analyses as ref-edge 1051 // connectivity is not really observable in any way and is intended 1052 // exclusively to be used for ordering of transforms rather than for 1053 // analysis conclusions. 1054 1055 // Update RC to the "bottom". 1056 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 1057 RC = &C->getOuterRefSCC(); 1058 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 1059 1060 // The RC worklist is in reverse postorder, so we enqueue the new ones in 1061 // RPO except for the one which contains the source node as that is the 1062 // "bottom" we will continue processing in the bottom-up walk. 1063 assert(NewRefSCCs.front() == RC && 1064 "New current RefSCC not first in the returned list!"); 1065 for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { 1066 assert(NewRC != RC && "Should not encounter the current RefSCC further " 1067 "in the postorder list of new RefSCCs."); 1068 UR.RCWorklist.insert(NewRC); 1069 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 1070 << *NewRC << "\n"); 1071 } 1072 } 1073 1074 // Next demote all the call edges that are now ref edges. This helps make 1075 // the SCCs small which should minimize the work below as we don't want to 1076 // form cycles that this would break. 1077 for (Node *RefTarget : DemotedCallTargets) { 1078 SCC &TargetC = *G.lookupSCC(*RefTarget); 1079 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1080 1081 // The easy case is when the target RefSCC is not this RefSCC. This is 1082 // only supported when the target RefSCC is a child of this RefSCC. 1083 if (&TargetRC != RC) { 1084 #ifdef EXPENSIVE_CHECKS 1085 assert(RC->isAncestorOf(TargetRC) && 1086 "Cannot potentially form RefSCC cycles here!"); 1087 #endif 1088 RC->switchOutgoingEdgeToRef(N, *RefTarget); 1089 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 1090 << "' to '" << *RefTarget << "'\n"); 1091 continue; 1092 } 1093 1094 // We are switching an internal call edge to a ref edge. This may split up 1095 // some SCCs. 1096 if (C != &TargetC) { 1097 // For separate SCCs this is trivial. 1098 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 1099 continue; 1100 } 1101 1102 // Now update the call graph. 1103 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 1104 C, AM, UR); 1105 } 1106 1107 // We added a ref edge earlier for new call edges, promote those to call edges 1108 // alongside PromotedRefTargets. 1109 for (Node *E : NewCallEdges) 1110 PromotedRefTargets.insert(E); 1111 1112 // Now promote ref edges into call edges. 1113 for (Node *CallTarget : PromotedRefTargets) { 1114 SCC &TargetC = *G.lookupSCC(*CallTarget); 1115 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1116 1117 // The easy case is when the target RefSCC is not this RefSCC. This is 1118 // only supported when the target RefSCC is a child of this RefSCC. 1119 if (&TargetRC != RC) { 1120 #ifdef EXPENSIVE_CHECKS 1121 assert(RC->isAncestorOf(TargetRC) && 1122 "Cannot potentially form RefSCC cycles here!"); 1123 #endif 1124 RC->switchOutgoingEdgeToCall(N, *CallTarget); 1125 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 1126 << "' to '" << *CallTarget << "'\n"); 1127 continue; 1128 } 1129 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 1130 << N << "' to '" << *CallTarget << "'\n"); 1131 1132 // Otherwise we are switching an internal ref edge to a call edge. This 1133 // may merge away some SCCs, and we add those to the UpdateResult. We also 1134 // need to make sure to update the worklist in the event SCCs have moved 1135 // before the current one in the post-order sequence 1136 bool HasFunctionAnalysisProxy = false; 1137 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 1138 bool FormedCycle = RC->switchInternalEdgeToCall( 1139 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 1140 for (SCC *MergedC : MergedSCCs) { 1141 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 1142 1143 HasFunctionAnalysisProxy |= 1144 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 1145 *MergedC) != nullptr; 1146 1147 // Mark that this SCC will no longer be valid. 1148 UR.InvalidatedSCCs.insert(MergedC); 1149 1150 // FIXME: We should really do a 'clear' here to forcibly release 1151 // memory, but we don't have a good way of doing that and 1152 // preserving the function analyses. 1153 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1154 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1155 AM.invalidate(*MergedC, PA); 1156 } 1157 }); 1158 1159 // If we formed a cycle by creating this call, we need to update more data 1160 // structures. 1161 if (FormedCycle) { 1162 C = &TargetC; 1163 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 1164 1165 // If one of the invalidated SCCs had a cached proxy to a function 1166 // analysis manager, we need to create a proxy in the new current SCC as 1167 // the invalidated SCCs had their functions moved. 1168 if (HasFunctionAnalysisProxy) 1169 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 1170 1171 // Any analyses cached for this SCC are no longer precise as the shape 1172 // has changed by introducing this cycle. However, we have taken care to 1173 // update the proxies so it remains valide. 1174 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1175 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1176 AM.invalidate(*C, PA); 1177 } 1178 auto NewSCCIndex = RC->find(*C) - RC->begin(); 1179 // If we have actually moved an SCC to be topologically "below" the current 1180 // one due to merging, we will need to revisit the current SCC after 1181 // visiting those moved SCCs. 1182 // 1183 // It is critical that we *do not* revisit the current SCC unless we 1184 // actually move SCCs in the process of merging because otherwise we may 1185 // form a cycle where an SCC is split apart, merged, split, merged and so 1186 // on infinitely. 1187 if (InitialSCCIndex < NewSCCIndex) { 1188 // Put our current SCC back onto the worklist as we'll visit other SCCs 1189 // that are now definitively ordered prior to the current one in the 1190 // post-order sequence, and may end up observing more precise context to 1191 // optimize the current SCC. 1192 UR.CWorklist.insert(C); 1193 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 1194 << "\n"); 1195 // Enqueue in reverse order as we pop off the back of the worklist. 1196 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 1197 RC->begin() + NewSCCIndex))) { 1198 UR.CWorklist.insert(&MovedC); 1199 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 1200 << MovedC << "\n"); 1201 } 1202 } 1203 } 1204 1205 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 1206 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 1207 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 1208 1209 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 1210 // manager now that all the updates have been applied. 1211 if (RC != &InitialRC) 1212 UR.UpdatedRC = RC; 1213 if (C != &InitialC) 1214 UR.UpdatedC = C; 1215 1216 return *C; 1217 } 1218 1219 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 1220 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1221 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1222 FunctionAnalysisManager &FAM) { 1223 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1224 /* FunctionPass */ true); 1225 } 1226 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 1227 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1228 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1229 FunctionAnalysisManager &FAM) { 1230 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1231 /* FunctionPass */ false); 1232 } 1233