1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Analysis/CGSCCPassManager.h"
11 #include "llvm/IR/CallSite.h"
12 #include "llvm/IR/InstIterator.h"
13 
14 #define DEBUG_TYPE "cgscc"
15 
16 using namespace llvm;
17 
18 // Explicit template instantiations and specialization defininitions for core
19 // template typedefs.
20 namespace llvm {
21 
22 // Explicit instantiations for the core proxy templates.
23 template class AllAnalysesOn<LazyCallGraph::SCC>;
24 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
25 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
26                            LazyCallGraph &, CGSCCUpdateResult &>;
27 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
28 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
29                                          LazyCallGraph::SCC, LazyCallGraph &>;
30 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
31 
32 /// Explicitly specialize the pass manager run method to handle call graph
33 /// updates.
34 template <>
35 PreservedAnalyses
36 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
37             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
38                                       CGSCCAnalysisManager &AM,
39                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
40   PreservedAnalyses PA = PreservedAnalyses::all();
41 
42   if (DebugLogging)
43     dbgs() << "Starting CGSCC pass manager run.\n";
44 
45   // The SCC may be refined while we are running passes over it, so set up
46   // a pointer that we can update.
47   LazyCallGraph::SCC *C = &InitialC;
48 
49   for (auto &Pass : Passes) {
50     if (DebugLogging)
51       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
52 
53     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
54 
55     // Update the SCC if necessary.
56     C = UR.UpdatedC ? UR.UpdatedC : C;
57 
58     // Check that we didn't miss any update scenario.
59     assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
60     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
61 
62     // Update the analysis manager as each pass runs and potentially
63     // invalidates analyses.
64     AM.invalidate(*C, PassPA);
65 
66     // Finally, we intersect the final preserved analyses to compute the
67     // aggregate preserved set for this pass manager.
68     PA.intersect(std::move(PassPA));
69 
70     // FIXME: Historically, the pass managers all called the LLVM context's
71     // yield function here. We don't have a generic way to acquire the
72     // context and it isn't yet clear what the right pattern is for yielding
73     // in the new pass manager so it is currently omitted.
74     // ...getContext().yield();
75   }
76 
77   // Invaliadtion was handled after each pass in the above loop for the current
78   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
79   // preserved. We mark this with a set so that we don't need to inspect each
80   // one individually.
81   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
82 
83   if (DebugLogging)
84     dbgs() << "Finished CGSCC pass manager run.\n";
85 
86   return PA;
87 }
88 
89 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
90     Module &M, const PreservedAnalyses &PA,
91     ModuleAnalysisManager::Invalidator &Inv) {
92   // If literally everything is preserved, we're done.
93   if (PA.areAllPreserved())
94     return false; // This is still a valid proxy.
95 
96   // If this proxy or the call graph is going to be invalidated, we also need
97   // to clear all the keys coming from that analysis.
98   //
99   // We also directly invalidate the FAM's module proxy if necessary, and if
100   // that proxy isn't preserved we can't preserve this proxy either. We rely on
101   // it to handle module -> function analysis invalidation in the face of
102   // structural changes and so if it's unavailable we conservatively clear the
103   // entire SCC layer as well rather than trying to do invalidation ourselves.
104   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
105   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
106       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
107       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
108     InnerAM->clear();
109 
110     // And the proxy itself should be marked as invalid so that we can observe
111     // the new call graph. This isn't strictly necessary because we cheat
112     // above, but is still useful.
113     return true;
114   }
115 
116   // Directly check if the relevant set is preserved so we can short circuit
117   // invalidating SCCs below.
118   bool AreSCCAnalysesPreserved =
119       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
120 
121   // Ok, we have a graph, so we can propagate the invalidation down into it.
122   G->buildRefSCCs();
123   for (auto &RC : G->postorder_ref_sccs())
124     for (auto &C : RC) {
125       Optional<PreservedAnalyses> InnerPA;
126 
127       // Check to see whether the preserved set needs to be adjusted based on
128       // module-level analysis invalidation triggering deferred invalidation
129       // for this SCC.
130       if (auto *OuterProxy =
131               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
132         for (const auto &OuterInvalidationPair :
133              OuterProxy->getOuterInvalidations()) {
134           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
135           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
136           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
137             if (!InnerPA)
138               InnerPA = PA;
139             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
140               InnerPA->abandon(InnerAnalysisID);
141           }
142         }
143 
144       // Check if we needed a custom PA set. If so we'll need to run the inner
145       // invalidation.
146       if (InnerPA) {
147         InnerAM->invalidate(C, *InnerPA);
148         continue;
149       }
150 
151       // Otherwise we only need to do invalidation if the original PA set didn't
152       // preserve all SCC analyses.
153       if (!AreSCCAnalysesPreserved)
154         InnerAM->invalidate(C, PA);
155     }
156 
157   // Return false to indicate that this result is still a valid proxy.
158   return false;
159 }
160 
161 template <>
162 CGSCCAnalysisManagerModuleProxy::Result
163 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
164   // Force the Function analysis manager to also be available so that it can
165   // be accessed in an SCC analysis and proxied onward to function passes.
166   // FIXME: It is pretty awkward to just drop the result here and assert that
167   // we can find it again later.
168   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
169 
170   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
171 }
172 
173 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
174 
175 FunctionAnalysisManagerCGSCCProxy::Result
176 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
177                                        CGSCCAnalysisManager &AM,
178                                        LazyCallGraph &CG) {
179   // Collect the FunctionAnalysisManager from the Module layer and use that to
180   // build the proxy result.
181   //
182   // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
183   // invalidate the function analyses.
184   auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
185   Module &M = *C.begin()->getFunction().getParent();
186   auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
187   assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
188                      "proxy is run on the module prior to entering the CGSCC "
189                      "walk.");
190 
191   // Note that we special-case invalidation handling of this proxy in the CGSCC
192   // analysis manager's Module proxy. This avoids the need to do anything
193   // special here to recompute all of this if ever the FAM's module proxy goes
194   // away.
195   return Result(FAMProxy->getManager());
196 }
197 
198 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
199     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
200     CGSCCAnalysisManager::Invalidator &Inv) {
201   // If literally everything is preserved, we're done.
202   if (PA.areAllPreserved())
203     return false; // This is still a valid proxy.
204 
205   // If this proxy isn't marked as preserved, then even if the result remains
206   // valid, the key itself may no longer be valid, so we clear everything.
207   //
208   // Note that in order to preserve this proxy, a module pass must ensure that
209   // the FAM has been completely updated to handle the deletion of functions.
210   // Specifically, any FAM-cached results for those functions need to have been
211   // forcibly cleared. When preserved, this proxy will only invalidate results
212   // cached on functions *still in the module* at the end of the module pass.
213   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
214   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
215     for (LazyCallGraph::Node &N : C)
216       FAM->clear(N.getFunction());
217 
218     return true;
219   }
220 
221   // Directly check if the relevant set is preserved.
222   bool AreFunctionAnalysesPreserved =
223       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
224 
225   // Now walk all the functions to see if any inner analysis invalidation is
226   // necessary.
227   for (LazyCallGraph::Node &N : C) {
228     Function &F = N.getFunction();
229     Optional<PreservedAnalyses> FunctionPA;
230 
231     // Check to see whether the preserved set needs to be pruned based on
232     // SCC-level analysis invalidation that triggers deferred invalidation
233     // registered with the outer analysis manager proxy for this function.
234     if (auto *OuterProxy =
235             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
236       for (const auto &OuterInvalidationPair :
237            OuterProxy->getOuterInvalidations()) {
238         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
239         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
240         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
241           if (!FunctionPA)
242             FunctionPA = PA;
243           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
244             FunctionPA->abandon(InnerAnalysisID);
245         }
246       }
247 
248     // Check if we needed a custom PA set, and if so we'll need to run the
249     // inner invalidation.
250     if (FunctionPA) {
251       FAM->invalidate(F, *FunctionPA);
252       continue;
253     }
254 
255     // Otherwise we only need to do invalidation if the original PA set didn't
256     // preserve all function analyses.
257     if (!AreFunctionAnalysesPreserved)
258       FAM->invalidate(F, PA);
259   }
260 
261   // Return false to indicate that this result is still a valid proxy.
262   return false;
263 }
264 
265 } // End llvm namespace
266 
267 /// When a new SCC is created for the graph and there might be function
268 /// analysis results cached for the functions now in that SCC two forms of
269 /// updates are required.
270 ///
271 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
272 /// created so that any subsequent invalidation events to the SCC are
273 /// propagated to the function analysis results cached for functions within it.
274 ///
275 /// Second, if any of the functions within the SCC have analysis results with
276 /// outer analysis dependencies, then those dependencies would point to the
277 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
278 /// function analyses so that they don't retain stale handles.
279 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
280                                          LazyCallGraph &G,
281                                          CGSCCAnalysisManager &AM) {
282   // Get the relevant function analysis manager.
283   auto &FAM =
284       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
285 
286   // Now walk the functions in this SCC and invalidate any function analysis
287   // results that might have outer dependencies on an SCC analysis.
288   for (LazyCallGraph::Node &N : C) {
289     Function &F = N.getFunction();
290 
291     auto *OuterProxy =
292         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
293     if (!OuterProxy)
294       // No outer analyses were queried, nothing to do.
295       continue;
296 
297     // Forcibly abandon all the inner analyses with dependencies, but
298     // invalidate nothing else.
299     auto PA = PreservedAnalyses::all();
300     for (const auto &OuterInvalidationPair :
301          OuterProxy->getOuterInvalidations()) {
302       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
303       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
304         PA.abandon(InnerAnalysisID);
305     }
306 
307     // Now invalidate anything we found.
308     FAM.invalidate(F, PA);
309   }
310 }
311 
312 namespace {
313 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
314 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
315 /// added SCCs.
316 ///
317 /// The range of new SCCs must be in postorder already. The SCC they were split
318 /// out of must be provided as \p C. The current node being mutated and
319 /// triggering updates must be passed as \p N.
320 ///
321 /// This function returns the SCC containing \p N. This will be either \p C if
322 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
323 template <typename SCCRangeT>
324 LazyCallGraph::SCC *
325 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
326                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
327                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
328   typedef LazyCallGraph::SCC SCC;
329 
330   if (NewSCCRange.begin() == NewSCCRange.end())
331     return C;
332 
333   // Add the current SCC to the worklist as its shape has changed.
334   UR.CWorklist.insert(C);
335   DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n");
336 
337   SCC *OldC = C;
338 
339   // Update the current SCC. Note that if we have new SCCs, this must actually
340   // change the SCC.
341   assert(C != &*NewSCCRange.begin() &&
342          "Cannot insert new SCCs without changing current SCC!");
343   C = &*NewSCCRange.begin();
344   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
345 
346   // If we had a cached FAM proxy originally, we will want to create more of
347   // them for each SCC that was split off.
348   bool NeedFAMProxy =
349       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
350 
351   // We need to propagate an invalidation call to all but the newly current SCC
352   // because the outer pass manager won't do that for us after splitting them.
353   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
354   // there are preserved ananalyses we can avoid invalidating them here for
355   // split-off SCCs.
356   // We know however that this will preserve any FAM proxy so go ahead and mark
357   // that.
358   PreservedAnalyses PA;
359   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
360   AM.invalidate(*OldC, PA);
361 
362   // Ensure the now-current SCC's function analyses are updated.
363   if (NeedFAMProxy)
364     updateNewSCCFunctionAnalyses(*C, G, AM);
365 
366   for (SCC &NewC :
367        reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) {
368     assert(C != &NewC && "No need to re-visit the current SCC!");
369     assert(OldC != &NewC && "Already handled the original SCC!");
370     UR.CWorklist.insert(&NewC);
371     DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
372 
373     // Ensure new SCCs' function analyses are updated.
374     if (NeedFAMProxy)
375       updateNewSCCFunctionAnalyses(NewC, G, AM);
376 
377     // Also propagate a normal invalidation to the new SCC as only the current
378     // will get one from the pass manager infrastructure.
379     AM.invalidate(NewC, PA);
380   }
381   return C;
382 }
383 }
384 
385 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
386     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
387     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
388   typedef LazyCallGraph::Node Node;
389   typedef LazyCallGraph::Edge Edge;
390   typedef LazyCallGraph::SCC SCC;
391   typedef LazyCallGraph::RefSCC RefSCC;
392 
393   RefSCC &InitialRC = InitialC.getOuterRefSCC();
394   SCC *C = &InitialC;
395   RefSCC *RC = &InitialRC;
396   Function &F = N.getFunction();
397 
398   // Walk the function body and build up the set of retained, promoted, and
399   // demoted edges.
400   SmallVector<Constant *, 16> Worklist;
401   SmallPtrSet<Constant *, 16> Visited;
402   SmallPtrSet<Node *, 16> RetainedEdges;
403   SmallSetVector<Node *, 4> PromotedRefTargets;
404   SmallSetVector<Node *, 4> DemotedCallTargets;
405 
406   // First walk the function and handle all called functions. We do this first
407   // because if there is a single call edge, whether there are ref edges is
408   // irrelevant.
409   for (Instruction &I : instructions(F))
410     if (auto CS = CallSite(&I))
411       if (Function *Callee = CS.getCalledFunction())
412         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
413           Node &CalleeN = *G.lookup(*Callee);
414           Edge *E = N->lookup(CalleeN);
415           // FIXME: We should really handle adding new calls. While it will
416           // make downstream usage more complex, there is no fundamental
417           // limitation and it will allow passes within the CGSCC to be a bit
418           // more flexible in what transforms they can do. Until then, we
419           // verify that new calls haven't been introduced.
420           assert(E && "No function transformations should introduce *new* "
421                       "call edges! Any new calls should be modeled as "
422                       "promoted existing ref edges!");
423           bool Inserted = RetainedEdges.insert(&CalleeN).second;
424           (void)Inserted;
425           assert(Inserted && "We should never visit a function twice.");
426           if (!E->isCall())
427             PromotedRefTargets.insert(&CalleeN);
428         }
429 
430   // Now walk all references.
431   for (Instruction &I : instructions(F))
432     for (Value *Op : I.operand_values())
433       if (Constant *C = dyn_cast<Constant>(Op))
434         if (Visited.insert(C).second)
435           Worklist.push_back(C);
436 
437   auto VisitRef = [&](Function &Referee) {
438     Node &RefereeN = *G.lookup(Referee);
439     Edge *E = N->lookup(RefereeN);
440     // FIXME: Similarly to new calls, we also currently preclude
441     // introducing new references. See above for details.
442     assert(E && "No function transformations should introduce *new* ref "
443                 "edges! Any new ref edges would require IPO which "
444                 "function passes aren't allowed to do!");
445     bool Inserted = RetainedEdges.insert(&RefereeN).second;
446     (void)Inserted;
447     assert(Inserted && "We should never visit a function twice.");
448     if (E->isCall())
449       DemotedCallTargets.insert(&RefereeN);
450   };
451   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
452 
453   // Include synthetic reference edges to known, defined lib functions.
454   for (auto *F : G.getLibFunctions())
455     // While the list of lib functions doesn't have repeats, don't re-visit
456     // anything handled above.
457     if (!Visited.count(F))
458       VisitRef(*F);
459 
460   // First remove all of the edges that are no longer present in this function.
461   // The first step makes these edges uniformly ref edges and accumulates them
462   // into a separate data structure so removal doesn't invalidate anything.
463   SmallVector<Node *, 4> DeadTargets;
464   for (Edge &E : *N) {
465     if (RetainedEdges.count(&E.getNode()))
466       continue;
467 
468     SCC &TargetC = *G.lookupSCC(E.getNode());
469     RefSCC &TargetRC = TargetC.getOuterRefSCC();
470     if (&TargetRC == RC && E.isCall()) {
471       if (C != &TargetC) {
472         // For separate SCCs this is trivial.
473         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
474       } else {
475         // Now update the call graph.
476         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
477                                    G, N, C, AM, UR);
478       }
479     }
480 
481     // Now that this is ready for actual removal, put it into our list.
482     DeadTargets.push_back(&E.getNode());
483   }
484   // Remove the easy cases quickly and actually pull them out of our list.
485   DeadTargets.erase(
486       llvm::remove_if(DeadTargets,
487                       [&](Node *TargetN) {
488                         SCC &TargetC = *G.lookupSCC(*TargetN);
489                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
490 
491                         // We can't trivially remove internal targets, so skip
492                         // those.
493                         if (&TargetRC == RC)
494                           return false;
495 
496                         RC->removeOutgoingEdge(N, *TargetN);
497                         DEBUG(dbgs() << "Deleting outgoing edge from '" << N
498                                      << "' to '" << TargetN << "'\n");
499                         return true;
500                       }),
501       DeadTargets.end());
502 
503   // Now do a batch removal of the internal ref edges left.
504   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
505   if (!NewRefSCCs.empty()) {
506     // The old RefSCC is dead, mark it as such.
507     UR.InvalidatedRefSCCs.insert(RC);
508 
509     // Note that we don't bother to invalidate analyses as ref-edge
510     // connectivity is not really observable in any way and is intended
511     // exclusively to be used for ordering of transforms rather than for
512     // analysis conclusions.
513 
514     // Update RC to the "bottom".
515     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
516     RC = &C->getOuterRefSCC();
517     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
518 
519     // The RC worklist is in reverse postorder, so we enqueue the new ones in
520     // RPO except for the one which contains the source node as that is the
521     // "bottom" we will continue processing in the bottom-up walk.
522     assert(NewRefSCCs.front() == RC &&
523            "New current RefSCC not first in the returned list!");
524     for (RefSCC *NewRC :
525          reverse(make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) {
526       assert(NewRC != RC && "Should not encounter the current RefSCC further "
527                             "in the postorder list of new RefSCCs.");
528       UR.RCWorklist.insert(NewRC);
529       DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
530                    << *NewRC << "\n");
531     }
532   }
533 
534   // Next demote all the call edges that are now ref edges. This helps make
535   // the SCCs small which should minimize the work below as we don't want to
536   // form cycles that this would break.
537   for (Node *RefTarget : DemotedCallTargets) {
538     SCC &TargetC = *G.lookupSCC(*RefTarget);
539     RefSCC &TargetRC = TargetC.getOuterRefSCC();
540 
541     // The easy case is when the target RefSCC is not this RefSCC. This is
542     // only supported when the target RefSCC is a child of this RefSCC.
543     if (&TargetRC != RC) {
544       assert(RC->isAncestorOf(TargetRC) &&
545              "Cannot potentially form RefSCC cycles here!");
546       RC->switchOutgoingEdgeToRef(N, *RefTarget);
547       DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
548                    << "' to '" << *RefTarget << "'\n");
549       continue;
550     }
551 
552     // We are switching an internal call edge to a ref edge. This may split up
553     // some SCCs.
554     if (C != &TargetC) {
555       // For separate SCCs this is trivial.
556       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
557       continue;
558     }
559 
560     // Now update the call graph.
561     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
562                                C, AM, UR);
563   }
564 
565   // Now promote ref edges into call edges.
566   for (Node *CallTarget : PromotedRefTargets) {
567     SCC &TargetC = *G.lookupSCC(*CallTarget);
568     RefSCC &TargetRC = TargetC.getOuterRefSCC();
569 
570     // The easy case is when the target RefSCC is not this RefSCC. This is
571     // only supported when the target RefSCC is a child of this RefSCC.
572     if (&TargetRC != RC) {
573       assert(RC->isAncestorOf(TargetRC) &&
574              "Cannot potentially form RefSCC cycles here!");
575       RC->switchOutgoingEdgeToCall(N, *CallTarget);
576       DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
577                    << "' to '" << *CallTarget << "'\n");
578       continue;
579     }
580     DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" << N
581                  << "' to '" << *CallTarget << "'\n");
582 
583     // Otherwise we are switching an internal ref edge to a call edge. This
584     // may merge away some SCCs, and we add those to the UpdateResult. We also
585     // need to make sure to update the worklist in the event SCCs have moved
586     // before the current one in the post-order sequence
587     bool HasFunctionAnalysisProxy = false;
588     auto InitialSCCIndex = RC->find(*C) - RC->begin();
589     bool FormedCycle = RC->switchInternalEdgeToCall(
590         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
591           for (SCC *MergedC : MergedSCCs) {
592             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
593 
594             HasFunctionAnalysisProxy |=
595                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
596                     *MergedC) != nullptr;
597 
598             // Mark that this SCC will no longer be valid.
599             UR.InvalidatedSCCs.insert(MergedC);
600 
601             // FIXME: We should really do a 'clear' here to forcibly release
602             // memory, but we don't have a good way of doing that and
603             // preserving the function analyses.
604             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
605             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
606             AM.invalidate(*MergedC, PA);
607           }
608         });
609 
610     // If we formed a cycle by creating this call, we need to update more data
611     // structures.
612     if (FormedCycle) {
613       C = &TargetC;
614       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
615 
616       // If one of the invalidated SCCs had a cached proxy to a function
617       // analysis manager, we need to create a proxy in the new current SCC as
618       // the invaliadted SCCs had their functions moved.
619       if (HasFunctionAnalysisProxy)
620         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
621 
622       // Any analyses cached for this SCC are no longer precise as the shape
623       // has changed by introducing this cycle. However, we have taken care to
624       // update the proxies so it remains valide.
625       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
626       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
627       AM.invalidate(*C, PA);
628     }
629     auto NewSCCIndex = RC->find(*C) - RC->begin();
630     // If we have actually moved an SCC to be topologically "below" the current
631     // one due to merging, we will need to revisit the current SCC after
632     // visiting those moved SCCs.
633     //
634     // It is critical that we *do not* revisit the current SCC unless we
635     // actually move SCCs in the process of merging because otherwise we may
636     // form a cycle where an SCC is split apart, merged, split, merged and so
637     // on infinitely.
638     if (InitialSCCIndex < NewSCCIndex) {
639       // Put our current SCC back onto the worklist as we'll visit other SCCs
640       // that are now definitively ordered prior to the current one in the
641       // post-order sequence, and may end up observing more precise context to
642       // optimize the current SCC.
643       UR.CWorklist.insert(C);
644       DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
645                    << "\n");
646       // Enqueue in reverse order as we pop off the back of the worklist.
647       for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex,
648                                             RC->begin() + NewSCCIndex))) {
649         UR.CWorklist.insert(&MovedC);
650         DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
651                      << MovedC << "\n");
652       }
653     }
654   }
655 
656   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
657   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
658   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
659 
660   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
661   // manager now that all the updates have been applied.
662   if (RC != &InitialRC)
663     UR.UpdatedRC = RC;
664   if (C != &InitialC)
665     UR.UpdatedC = C;
666 
667   return *C;
668 }
669