1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Support/TimeProfiler.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <iterator> 30 31 #define DEBUG_TYPE "cgscc" 32 33 using namespace llvm; 34 35 // Explicit template instantiations and specialization definitions for core 36 // template typedefs. 37 namespace llvm { 38 39 // Explicit instantiations for the core proxy templates. 40 template class AllAnalysesOn<LazyCallGraph::SCC>; 41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 43 LazyCallGraph &, CGSCCUpdateResult &>; 44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 46 LazyCallGraph::SCC, LazyCallGraph &>; 47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 48 49 /// Explicitly specialize the pass manager run method to handle call graph 50 /// updates. 51 template <> 52 PreservedAnalyses 53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 55 CGSCCAnalysisManager &AM, 56 LazyCallGraph &G, CGSCCUpdateResult &UR) { 57 // Request PassInstrumentation from analysis manager, will use it to run 58 // instrumenting callbacks for the passes later. 59 PassInstrumentation PI = 60 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 61 62 PreservedAnalyses PA = PreservedAnalyses::all(); 63 64 if (DebugLogging) 65 dbgs() << "Starting CGSCC pass manager run.\n"; 66 67 // The SCC may be refined while we are running passes over it, so set up 68 // a pointer that we can update. 69 LazyCallGraph::SCC *C = &InitialC; 70 71 // Get Function analysis manager from its proxy. 72 FunctionAnalysisManager &FAM = 73 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 74 75 for (auto &Pass : Passes) { 76 // Check the PassInstrumentation's BeforePass callbacks before running the 77 // pass, skip its execution completely if asked to (callback returns false). 78 if (!PI.runBeforePass(*Pass, *C)) 79 continue; 80 81 PreservedAnalyses PassPA; 82 { 83 TimeTraceScope TimeScope(Pass->name()); 84 PassPA = Pass->run(*C, AM, G, UR); 85 } 86 87 if (UR.InvalidatedSCCs.count(C)) 88 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 89 else 90 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 91 92 // Update the SCC if necessary. 93 C = UR.UpdatedC ? UR.UpdatedC : C; 94 if (UR.UpdatedC) { 95 // If C is updated, also create a proxy and update FAM inside the result. 96 auto *ResultFAMCP = 97 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 98 ResultFAMCP->updateFAM(FAM); 99 } 100 101 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 102 // current SCC may simply need to be skipped if invalid. 103 if (UR.InvalidatedSCCs.count(C)) { 104 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 105 break; 106 } 107 // Check that we didn't miss any update scenario. 108 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 109 110 // Update the analysis manager as each pass runs and potentially 111 // invalidates analyses. 112 AM.invalidate(*C, PassPA); 113 114 // Finally, we intersect the final preserved analyses to compute the 115 // aggregate preserved set for this pass manager. 116 PA.intersect(std::move(PassPA)); 117 118 // FIXME: Historically, the pass managers all called the LLVM context's 119 // yield function here. We don't have a generic way to acquire the 120 // context and it isn't yet clear what the right pattern is for yielding 121 // in the new pass manager so it is currently omitted. 122 // ...getContext().yield(); 123 } 124 125 // Before we mark all of *this* SCC's analyses as preserved below, intersect 126 // this with the cross-SCC preserved analysis set. This is used to allow 127 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 128 // for them. 129 UR.CrossSCCPA.intersect(PA); 130 131 // Invalidation was handled after each pass in the above loop for the current 132 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 133 // preserved. We mark this with a set so that we don't need to inspect each 134 // one individually. 135 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 136 137 if (DebugLogging) 138 dbgs() << "Finished CGSCC pass manager run.\n"; 139 140 return PA; 141 } 142 143 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 144 Module &M, const PreservedAnalyses &PA, 145 ModuleAnalysisManager::Invalidator &Inv) { 146 // If literally everything is preserved, we're done. 147 if (PA.areAllPreserved()) 148 return false; // This is still a valid proxy. 149 150 // If this proxy or the call graph is going to be invalidated, we also need 151 // to clear all the keys coming from that analysis. 152 // 153 // We also directly invalidate the FAM's module proxy if necessary, and if 154 // that proxy isn't preserved we can't preserve this proxy either. We rely on 155 // it to handle module -> function analysis invalidation in the face of 156 // structural changes and so if it's unavailable we conservatively clear the 157 // entire SCC layer as well rather than trying to do invalidation ourselves. 158 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 159 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 160 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 161 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 162 InnerAM->clear(); 163 164 // And the proxy itself should be marked as invalid so that we can observe 165 // the new call graph. This isn't strictly necessary because we cheat 166 // above, but is still useful. 167 return true; 168 } 169 170 // Directly check if the relevant set is preserved so we can short circuit 171 // invalidating SCCs below. 172 bool AreSCCAnalysesPreserved = 173 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 174 175 // Ok, we have a graph, so we can propagate the invalidation down into it. 176 G->buildRefSCCs(); 177 for (auto &RC : G->postorder_ref_sccs()) 178 for (auto &C : RC) { 179 Optional<PreservedAnalyses> InnerPA; 180 181 // Check to see whether the preserved set needs to be adjusted based on 182 // module-level analysis invalidation triggering deferred invalidation 183 // for this SCC. 184 if (auto *OuterProxy = 185 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 186 for (const auto &OuterInvalidationPair : 187 OuterProxy->getOuterInvalidations()) { 188 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 189 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 190 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 191 if (!InnerPA) 192 InnerPA = PA; 193 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 194 InnerPA->abandon(InnerAnalysisID); 195 } 196 } 197 198 // Check if we needed a custom PA set. If so we'll need to run the inner 199 // invalidation. 200 if (InnerPA) { 201 InnerAM->invalidate(C, *InnerPA); 202 continue; 203 } 204 205 // Otherwise we only need to do invalidation if the original PA set didn't 206 // preserve all SCC analyses. 207 if (!AreSCCAnalysesPreserved) 208 InnerAM->invalidate(C, PA); 209 } 210 211 // Return false to indicate that this result is still a valid proxy. 212 return false; 213 } 214 215 template <> 216 CGSCCAnalysisManagerModuleProxy::Result 217 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 218 // Force the Function analysis manager to also be available so that it can 219 // be accessed in an SCC analysis and proxied onward to function passes. 220 // FIXME: It is pretty awkward to just drop the result here and assert that 221 // we can find it again later. 222 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 223 224 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 225 } 226 227 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 228 229 FunctionAnalysisManagerCGSCCProxy::Result 230 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 231 CGSCCAnalysisManager &AM, 232 LazyCallGraph &CG) { 233 // Note: unconditionally getting checking that the proxy exists may get it at 234 // this point. There are cases when this is being run unnecessarily, but 235 // it is cheap and having the assertion in place is more valuable. 236 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 237 Module &M = *C.begin()->getFunction().getParent(); 238 bool ProxyExists = 239 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 240 assert(ProxyExists && 241 "The CGSCC pass manager requires that the FAM module proxy is run " 242 "on the module prior to entering the CGSCC walk"); 243 (void)ProxyExists; 244 245 // We just return an empty result. The caller will use the updateFAM interface 246 // to correctly register the relevant FunctionAnalysisManager based on the 247 // context in which this proxy is run. 248 return Result(); 249 } 250 251 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 252 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 253 CGSCCAnalysisManager::Invalidator &Inv) { 254 // If literally everything is preserved, we're done. 255 if (PA.areAllPreserved()) 256 return false; // This is still a valid proxy. 257 258 // All updates to preserve valid results are done below, so we don't need to 259 // invalidate this proxy. 260 // 261 // Note that in order to preserve this proxy, a module pass must ensure that 262 // the FAM has been completely updated to handle the deletion of functions. 263 // Specifically, any FAM-cached results for those functions need to have been 264 // forcibly cleared. When preserved, this proxy will only invalidate results 265 // cached on functions *still in the module* at the end of the module pass. 266 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 267 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 268 for (LazyCallGraph::Node &N : C) 269 FAM->clear(N.getFunction(), N.getFunction().getName()); 270 271 return false; 272 } 273 274 // Directly check if the relevant set is preserved. 275 bool AreFunctionAnalysesPreserved = 276 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 277 278 // Now walk all the functions to see if any inner analysis invalidation is 279 // necessary. 280 for (LazyCallGraph::Node &N : C) { 281 Function &F = N.getFunction(); 282 Optional<PreservedAnalyses> FunctionPA; 283 284 // Check to see whether the preserved set needs to be pruned based on 285 // SCC-level analysis invalidation that triggers deferred invalidation 286 // registered with the outer analysis manager proxy for this function. 287 if (auto *OuterProxy = 288 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 289 for (const auto &OuterInvalidationPair : 290 OuterProxy->getOuterInvalidations()) { 291 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 292 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 293 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 294 if (!FunctionPA) 295 FunctionPA = PA; 296 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 297 FunctionPA->abandon(InnerAnalysisID); 298 } 299 } 300 301 // Check if we needed a custom PA set, and if so we'll need to run the 302 // inner invalidation. 303 if (FunctionPA) { 304 FAM->invalidate(F, *FunctionPA); 305 continue; 306 } 307 308 // Otherwise we only need to do invalidation if the original PA set didn't 309 // preserve all function analyses. 310 if (!AreFunctionAnalysesPreserved) 311 FAM->invalidate(F, PA); 312 } 313 314 // Return false to indicate that this result is still a valid proxy. 315 return false; 316 } 317 318 } // end namespace llvm 319 320 /// When a new SCC is created for the graph we first update the 321 /// FunctionAnalysisManager in the Proxy's result. 322 /// As there might be function analysis results cached for the functions now in 323 /// that SCC, two forms of updates are required. 324 /// 325 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 326 /// created so that any subsequent invalidation events to the SCC are 327 /// propagated to the function analysis results cached for functions within it. 328 /// 329 /// Second, if any of the functions within the SCC have analysis results with 330 /// outer analysis dependencies, then those dependencies would point to the 331 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 332 /// function analyses so that they don't retain stale handles. 333 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 334 LazyCallGraph &G, 335 CGSCCAnalysisManager &AM, 336 FunctionAnalysisManager &FAM) { 337 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 338 339 // Now walk the functions in this SCC and invalidate any function analysis 340 // results that might have outer dependencies on an SCC analysis. 341 for (LazyCallGraph::Node &N : C) { 342 Function &F = N.getFunction(); 343 344 auto *OuterProxy = 345 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 346 if (!OuterProxy) 347 // No outer analyses were queried, nothing to do. 348 continue; 349 350 // Forcibly abandon all the inner analyses with dependencies, but 351 // invalidate nothing else. 352 auto PA = PreservedAnalyses::all(); 353 for (const auto &OuterInvalidationPair : 354 OuterProxy->getOuterInvalidations()) { 355 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 356 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 357 PA.abandon(InnerAnalysisID); 358 } 359 360 // Now invalidate anything we found. 361 FAM.invalidate(F, PA); 362 } 363 } 364 365 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 366 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 367 /// added SCCs. 368 /// 369 /// The range of new SCCs must be in postorder already. The SCC they were split 370 /// out of must be provided as \p C. The current node being mutated and 371 /// triggering updates must be passed as \p N. 372 /// 373 /// This function returns the SCC containing \p N. This will be either \p C if 374 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 375 template <typename SCCRangeT> 376 static LazyCallGraph::SCC * 377 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 378 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 379 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 380 using SCC = LazyCallGraph::SCC; 381 382 if (NewSCCRange.begin() == NewSCCRange.end()) 383 return C; 384 385 // Add the current SCC to the worklist as its shape has changed. 386 UR.CWorklist.insert(C); 387 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 388 << "\n"); 389 390 SCC *OldC = C; 391 392 // Update the current SCC. Note that if we have new SCCs, this must actually 393 // change the SCC. 394 assert(C != &*NewSCCRange.begin() && 395 "Cannot insert new SCCs without changing current SCC!"); 396 C = &*NewSCCRange.begin(); 397 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 398 399 // If we had a cached FAM proxy originally, we will want to create more of 400 // them for each SCC that was split off. 401 FunctionAnalysisManager *FAM = nullptr; 402 if (auto *FAMProxy = 403 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 404 FAM = &FAMProxy->getManager(); 405 406 // We need to propagate an invalidation call to all but the newly current SCC 407 // because the outer pass manager won't do that for us after splitting them. 408 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 409 // there are preserved analysis we can avoid invalidating them here for 410 // split-off SCCs. 411 // We know however that this will preserve any FAM proxy so go ahead and mark 412 // that. 413 PreservedAnalyses PA; 414 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 415 AM.invalidate(*OldC, PA); 416 417 // Ensure the now-current SCC's function analyses are updated. 418 if (FAM) 419 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 420 421 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 422 NewSCCRange.end()))) { 423 assert(C != &NewC && "No need to re-visit the current SCC!"); 424 assert(OldC != &NewC && "Already handled the original SCC!"); 425 UR.CWorklist.insert(&NewC); 426 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 427 428 // Ensure new SCCs' function analyses are updated. 429 if (FAM) 430 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 431 432 // Also propagate a normal invalidation to the new SCC as only the current 433 // will get one from the pass manager infrastructure. 434 AM.invalidate(NewC, PA); 435 } 436 return C; 437 } 438 439 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 440 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 441 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 442 FunctionAnalysisManager &FAM, bool FunctionPass) { 443 using Node = LazyCallGraph::Node; 444 using Edge = LazyCallGraph::Edge; 445 using SCC = LazyCallGraph::SCC; 446 using RefSCC = LazyCallGraph::RefSCC; 447 448 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 449 SCC *C = &InitialC; 450 RefSCC *RC = &InitialRC; 451 Function &F = N.getFunction(); 452 453 // Walk the function body and build up the set of retained, promoted, and 454 // demoted edges. 455 SmallVector<Constant *, 16> Worklist; 456 SmallPtrSet<Constant *, 16> Visited; 457 SmallPtrSet<Node *, 16> RetainedEdges; 458 SmallSetVector<Node *, 4> PromotedRefTargets; 459 SmallSetVector<Node *, 4> DemotedCallTargets; 460 SmallSetVector<Node *, 4> NewCallEdges; 461 SmallSetVector<Node *, 4> NewRefEdges; 462 463 // First walk the function and handle all called functions. We do this first 464 // because if there is a single call edge, whether there are ref edges is 465 // irrelevant. 466 for (Instruction &I : instructions(F)) 467 if (auto *CB = dyn_cast<CallBase>(&I)) 468 if (Function *Callee = CB->getCalledFunction()) 469 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 470 Node &CalleeN = *G.lookup(*Callee); 471 Edge *E = N->lookup(CalleeN); 472 assert((E || !FunctionPass) && 473 "No function transformations should introduce *new* " 474 "call edges! Any new calls should be modeled as " 475 "promoted existing ref edges!"); 476 bool Inserted = RetainedEdges.insert(&CalleeN).second; 477 (void)Inserted; 478 assert(Inserted && "We should never visit a function twice."); 479 if (!E) 480 NewCallEdges.insert(&CalleeN); 481 else if (!E->isCall()) 482 PromotedRefTargets.insert(&CalleeN); 483 } 484 485 // Now walk all references. 486 for (Instruction &I : instructions(F)) 487 for (Value *Op : I.operand_values()) 488 if (auto *C = dyn_cast<Constant>(Op)) 489 if (Visited.insert(C).second) 490 Worklist.push_back(C); 491 492 auto VisitRef = [&](Function &Referee) { 493 Node &RefereeN = *G.lookup(Referee); 494 Edge *E = N->lookup(RefereeN); 495 assert((E || !FunctionPass) && 496 "No function transformations should introduce *new* ref " 497 "edges! Any new ref edges would require IPO which " 498 "function passes aren't allowed to do!"); 499 bool Inserted = RetainedEdges.insert(&RefereeN).second; 500 (void)Inserted; 501 assert(Inserted && "We should never visit a function twice."); 502 if (!E) 503 NewRefEdges.insert(&RefereeN); 504 else if (E->isCall()) 505 DemotedCallTargets.insert(&RefereeN); 506 }; 507 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 508 509 // Handle new ref edges. 510 for (Node *RefTarget : NewRefEdges) { 511 SCC &TargetC = *G.lookupSCC(*RefTarget); 512 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 513 (void)TargetRC; 514 // TODO: This only allows trivial edges to be added for now. 515 assert((RC == &TargetRC || 516 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 517 RC->insertTrivialRefEdge(N, *RefTarget); 518 } 519 520 // Handle new call edges. 521 for (Node *CallTarget : NewCallEdges) { 522 SCC &TargetC = *G.lookupSCC(*CallTarget); 523 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 524 (void)TargetRC; 525 // TODO: This only allows trivial edges to be added for now. 526 assert((RC == &TargetRC || 527 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 528 RC->insertTrivialCallEdge(N, *CallTarget); 529 } 530 531 // Include synthetic reference edges to known, defined lib functions. 532 for (auto *F : G.getLibFunctions()) 533 // While the list of lib functions doesn't have repeats, don't re-visit 534 // anything handled above. 535 if (!Visited.count(F)) 536 VisitRef(*F); 537 538 // First remove all of the edges that are no longer present in this function. 539 // The first step makes these edges uniformly ref edges and accumulates them 540 // into a separate data structure so removal doesn't invalidate anything. 541 SmallVector<Node *, 4> DeadTargets; 542 for (Edge &E : *N) { 543 if (RetainedEdges.count(&E.getNode())) 544 continue; 545 546 SCC &TargetC = *G.lookupSCC(E.getNode()); 547 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 548 if (&TargetRC == RC && E.isCall()) { 549 if (C != &TargetC) { 550 // For separate SCCs this is trivial. 551 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 552 } else { 553 // Now update the call graph. 554 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 555 G, N, C, AM, UR); 556 } 557 } 558 559 // Now that this is ready for actual removal, put it into our list. 560 DeadTargets.push_back(&E.getNode()); 561 } 562 // Remove the easy cases quickly and actually pull them out of our list. 563 DeadTargets.erase( 564 llvm::remove_if(DeadTargets, 565 [&](Node *TargetN) { 566 SCC &TargetC = *G.lookupSCC(*TargetN); 567 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 568 569 // We can't trivially remove internal targets, so skip 570 // those. 571 if (&TargetRC == RC) 572 return false; 573 574 RC->removeOutgoingEdge(N, *TargetN); 575 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 576 << N << "' to '" << TargetN << "'\n"); 577 return true; 578 }), 579 DeadTargets.end()); 580 581 // Now do a batch removal of the internal ref edges left. 582 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 583 if (!NewRefSCCs.empty()) { 584 // The old RefSCC is dead, mark it as such. 585 UR.InvalidatedRefSCCs.insert(RC); 586 587 // Note that we don't bother to invalidate analyses as ref-edge 588 // connectivity is not really observable in any way and is intended 589 // exclusively to be used for ordering of transforms rather than for 590 // analysis conclusions. 591 592 // Update RC to the "bottom". 593 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 594 RC = &C->getOuterRefSCC(); 595 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 596 597 // The RC worklist is in reverse postorder, so we enqueue the new ones in 598 // RPO except for the one which contains the source node as that is the 599 // "bottom" we will continue processing in the bottom-up walk. 600 assert(NewRefSCCs.front() == RC && 601 "New current RefSCC not first in the returned list!"); 602 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 603 NewRefSCCs.end()))) { 604 assert(NewRC != RC && "Should not encounter the current RefSCC further " 605 "in the postorder list of new RefSCCs."); 606 UR.RCWorklist.insert(NewRC); 607 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 608 << *NewRC << "\n"); 609 } 610 } 611 612 // Next demote all the call edges that are now ref edges. This helps make 613 // the SCCs small which should minimize the work below as we don't want to 614 // form cycles that this would break. 615 for (Node *RefTarget : DemotedCallTargets) { 616 SCC &TargetC = *G.lookupSCC(*RefTarget); 617 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 618 619 // The easy case is when the target RefSCC is not this RefSCC. This is 620 // only supported when the target RefSCC is a child of this RefSCC. 621 if (&TargetRC != RC) { 622 assert(RC->isAncestorOf(TargetRC) && 623 "Cannot potentially form RefSCC cycles here!"); 624 RC->switchOutgoingEdgeToRef(N, *RefTarget); 625 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 626 << "' to '" << *RefTarget << "'\n"); 627 continue; 628 } 629 630 // We are switching an internal call edge to a ref edge. This may split up 631 // some SCCs. 632 if (C != &TargetC) { 633 // For separate SCCs this is trivial. 634 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 635 continue; 636 } 637 638 // Now update the call graph. 639 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 640 C, AM, UR); 641 } 642 643 // Now promote ref edges into call edges. 644 for (Node *CallTarget : PromotedRefTargets) { 645 SCC &TargetC = *G.lookupSCC(*CallTarget); 646 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 647 648 // The easy case is when the target RefSCC is not this RefSCC. This is 649 // only supported when the target RefSCC is a child of this RefSCC. 650 if (&TargetRC != RC) { 651 assert(RC->isAncestorOf(TargetRC) && 652 "Cannot potentially form RefSCC cycles here!"); 653 RC->switchOutgoingEdgeToCall(N, *CallTarget); 654 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 655 << "' to '" << *CallTarget << "'\n"); 656 continue; 657 } 658 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 659 << N << "' to '" << *CallTarget << "'\n"); 660 661 // Otherwise we are switching an internal ref edge to a call edge. This 662 // may merge away some SCCs, and we add those to the UpdateResult. We also 663 // need to make sure to update the worklist in the event SCCs have moved 664 // before the current one in the post-order sequence 665 bool HasFunctionAnalysisProxy = false; 666 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 667 bool FormedCycle = RC->switchInternalEdgeToCall( 668 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 669 for (SCC *MergedC : MergedSCCs) { 670 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 671 672 HasFunctionAnalysisProxy |= 673 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 674 *MergedC) != nullptr; 675 676 // Mark that this SCC will no longer be valid. 677 UR.InvalidatedSCCs.insert(MergedC); 678 679 // FIXME: We should really do a 'clear' here to forcibly release 680 // memory, but we don't have a good way of doing that and 681 // preserving the function analyses. 682 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 683 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 684 AM.invalidate(*MergedC, PA); 685 } 686 }); 687 688 // If we formed a cycle by creating this call, we need to update more data 689 // structures. 690 if (FormedCycle) { 691 C = &TargetC; 692 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 693 694 // If one of the invalidated SCCs had a cached proxy to a function 695 // analysis manager, we need to create a proxy in the new current SCC as 696 // the invalidated SCCs had their functions moved. 697 if (HasFunctionAnalysisProxy) 698 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 699 700 // Any analyses cached for this SCC are no longer precise as the shape 701 // has changed by introducing this cycle. However, we have taken care to 702 // update the proxies so it remains valide. 703 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 704 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 705 AM.invalidate(*C, PA); 706 } 707 auto NewSCCIndex = RC->find(*C) - RC->begin(); 708 // If we have actually moved an SCC to be topologically "below" the current 709 // one due to merging, we will need to revisit the current SCC after 710 // visiting those moved SCCs. 711 // 712 // It is critical that we *do not* revisit the current SCC unless we 713 // actually move SCCs in the process of merging because otherwise we may 714 // form a cycle where an SCC is split apart, merged, split, merged and so 715 // on infinitely. 716 if (InitialSCCIndex < NewSCCIndex) { 717 // Put our current SCC back onto the worklist as we'll visit other SCCs 718 // that are now definitively ordered prior to the current one in the 719 // post-order sequence, and may end up observing more precise context to 720 // optimize the current SCC. 721 UR.CWorklist.insert(C); 722 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 723 << "\n"); 724 // Enqueue in reverse order as we pop off the back of the worklist. 725 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 726 RC->begin() + NewSCCIndex))) { 727 UR.CWorklist.insert(&MovedC); 728 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 729 << MovedC << "\n"); 730 } 731 } 732 } 733 734 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 735 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 736 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 737 738 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 739 // manager now that all the updates have been applied. 740 if (RC != &InitialRC) 741 UR.UpdatedRC = RC; 742 if (C != &InitialC) 743 UR.UpdatedC = C; 744 745 return *C; 746 } 747 748 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 749 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 750 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 751 FunctionAnalysisManager &FAM) { 752 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 753 /* FunctionPass */ true); 754 } 755 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 756 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 757 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 758 FunctionAnalysisManager &FAM) { 759 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 760 /* FunctionPass */ false); 761 } 762