1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/PriorityWorklist.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/Analysis/LazyCallGraph.h"
19 #include "llvm/IR/Constant.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/IR/PassManagerImpl.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/TimeProfiler.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include <cassert>
32 #include <iterator>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
42     "abort-on-max-devirt-iterations-reached",
43     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
44              "pass is reached"));
45 
46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key;
47 
48 // Explicit instantiations for the core proxy templates.
49 template class AllAnalysesOn<LazyCallGraph::SCC>;
50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
52                            LazyCallGraph &, CGSCCUpdateResult &>;
53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
55                                          LazyCallGraph::SCC, LazyCallGraph &>;
56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
57 
58 /// Explicitly specialize the pass manager run method to handle call graph
59 /// updates.
60 template <>
61 PreservedAnalyses
62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
63             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
64                                       CGSCCAnalysisManager &AM,
65                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
66   // Request PassInstrumentation from analysis manager, will use it to run
67   // instrumenting callbacks for the passes later.
68   PassInstrumentation PI =
69       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
70 
71   PreservedAnalyses PA = PreservedAnalyses::all();
72 
73   // The SCC may be refined while we are running passes over it, so set up
74   // a pointer that we can update.
75   LazyCallGraph::SCC *C = &InitialC;
76 
77   // Get Function analysis manager from its proxy.
78   FunctionAnalysisManager &FAM =
79       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
80 
81   for (auto &Pass : Passes) {
82     // Check the PassInstrumentation's BeforePass callbacks before running the
83     // pass, skip its execution completely if asked to (callback returns false).
84     if (!PI.runBeforePass(*Pass, *C))
85       continue;
86 
87     PreservedAnalyses PassPA;
88     {
89       TimeTraceScope TimeScope(Pass->name());
90       NewPassManagerPrettyStackEntry StackEntry(Pass->name(), C->getName());
91       PassPA = Pass->run(*C, AM, G, UR);
92     }
93 
94     if (UR.InvalidatedSCCs.count(C))
95       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
96     else
97       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
98 
99     // Update the SCC if necessary.
100     C = UR.UpdatedC ? UR.UpdatedC : C;
101     if (UR.UpdatedC) {
102       // If C is updated, also create a proxy and update FAM inside the result.
103       auto *ResultFAMCP =
104           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
105       ResultFAMCP->updateFAM(FAM);
106     }
107 
108     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
109     // current SCC may simply need to be skipped if invalid.
110     if (UR.InvalidatedSCCs.count(C)) {
111       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
112       break;
113     }
114     // Check that we didn't miss any update scenario.
115     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
116 
117     // Update the analysis manager as each pass runs and potentially
118     // invalidates analyses.
119     AM.invalidate(*C, PassPA);
120 
121     // Finally, we intersect the final preserved analyses to compute the
122     // aggregate preserved set for this pass manager.
123     PA.intersect(std::move(PassPA));
124   }
125 
126   // Before we mark all of *this* SCC's analyses as preserved below, intersect
127   // this with the cross-SCC preserved analysis set. This is used to allow
128   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
129   // for them.
130   UR.CrossSCCPA.intersect(PA);
131 
132   // Invalidation was handled after each pass in the above loop for the current
133   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
134   // preserved. We mark this with a set so that we don't need to inspect each
135   // one individually.
136   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
137 
138   return PA;
139 }
140 
141 PreservedAnalyses
142 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
143   // Setup the CGSCC analysis manager from its proxy.
144   CGSCCAnalysisManager &CGAM =
145       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
146 
147   // Get the call graph for this module.
148   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
149 
150   // Get Function analysis manager from its proxy.
151   FunctionAnalysisManager &FAM =
152       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
153 
154   // We keep worklists to allow us to push more work onto the pass manager as
155   // the passes are run.
156   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
157   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
158 
159   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
160   // iterating off the worklists.
161   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
162   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
163 
164   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
165       InlinedInternalEdges;
166 
167   CGSCCUpdateResult UR = {
168       RCWorklist, CWorklist, InvalidRefSCCSet,         InvalidSCCSet,
169       nullptr,    nullptr,   PreservedAnalyses::all(), InlinedInternalEdges,
170       {}};
171 
172   // Request PassInstrumentation from analysis manager, will use it to run
173   // instrumenting callbacks for the passes later.
174   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
175 
176   PreservedAnalyses PA = PreservedAnalyses::all();
177   CG.buildRefSCCs();
178   for (auto RCI = CG.postorder_ref_scc_begin(),
179             RCE = CG.postorder_ref_scc_end();
180        RCI != RCE;) {
181     assert(RCWorklist.empty() &&
182            "Should always start with an empty RefSCC worklist");
183     // The postorder_ref_sccs range we are walking is lazily constructed, so
184     // we only push the first one onto the worklist. The worklist allows us
185     // to capture *new* RefSCCs created during transformations.
186     //
187     // We really want to form RefSCCs lazily because that makes them cheaper
188     // to update as the program is simplified and allows us to have greater
189     // cache locality as forming a RefSCC touches all the parts of all the
190     // functions within that RefSCC.
191     //
192     // We also eagerly increment the iterator to the next position because
193     // the CGSCC passes below may delete the current RefSCC.
194     RCWorklist.insert(&*RCI++);
195 
196     do {
197       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
198       if (InvalidRefSCCSet.count(RC)) {
199         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
200         continue;
201       }
202 
203       assert(CWorklist.empty() &&
204              "Should always start with an empty SCC worklist");
205 
206       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
207                         << "\n");
208 
209       // The top of the worklist may *also* be the same SCC we just ran over
210       // (and invalidated for). Keep track of that last SCC we processed due
211       // to SCC update to avoid redundant processing when an SCC is both just
212       // updated itself and at the top of the worklist.
213       LazyCallGraph::SCC *LastUpdatedC = nullptr;
214 
215       // Push the initial SCCs in reverse post-order as we'll pop off the
216       // back and so see this in post-order.
217       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
218         CWorklist.insert(&C);
219 
220       do {
221         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
222         // Due to call graph mutations, we may have invalid SCCs or SCCs from
223         // other RefSCCs in the worklist. The invalid ones are dead and the
224         // other RefSCCs should be queued above, so we just need to skip both
225         // scenarios here.
226         if (InvalidSCCSet.count(C)) {
227           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
228           continue;
229         }
230         if (LastUpdatedC == C) {
231           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
232           continue;
233         }
234         if (&C->getOuterRefSCC() != RC) {
235           LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
236                                "RefSCC...\n");
237           continue;
238         }
239 
240         // Ensure we can proxy analysis updates from the CGSCC analysis manager
241         // into the the Function analysis manager by getting a proxy here.
242         // This also needs to update the FunctionAnalysisManager, as this may be
243         // the first time we see this SCC.
244         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
245             FAM);
246 
247         // Each time we visit a new SCC pulled off the worklist,
248         // a transformation of a child SCC may have also modified this parent
249         // and invalidated analyses. So we invalidate using the update record's
250         // cross-SCC preserved set. This preserved set is intersected by any
251         // CGSCC pass that handles invalidation (primarily pass managers) prior
252         // to marking its SCC as preserved. That lets us track everything that
253         // might need invalidation across SCCs without excessive invalidations
254         // on a single SCC.
255         //
256         // This essentially allows SCC passes to freely invalidate analyses
257         // of any ancestor SCC. If this becomes detrimental to successfully
258         // caching analyses, we could force each SCC pass to manually
259         // invalidate the analyses for any SCCs other than themselves which
260         // are mutated. However, that seems to lose the robustness of the
261         // pass-manager driven invalidation scheme.
262         CGAM.invalidate(*C, UR.CrossSCCPA);
263 
264         do {
265           // Check that we didn't miss any update scenario.
266           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
267           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
268           assert(&C->getOuterRefSCC() == RC &&
269                  "Processing an SCC in a different RefSCC!");
270 
271           LastUpdatedC = UR.UpdatedC;
272           UR.UpdatedRC = nullptr;
273           UR.UpdatedC = nullptr;
274 
275           // Check the PassInstrumentation's BeforePass callbacks before
276           // running the pass, skip its execution completely if asked to
277           // (callback returns false).
278           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
279             continue;
280 
281           PreservedAnalyses PassPA;
282           {
283             TimeTraceScope TimeScope(Pass->name());
284             PassPA = Pass->run(*C, CGAM, CG, UR);
285           }
286 
287           if (UR.InvalidatedSCCs.count(C))
288             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
289           else
290             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
291 
292           // Update the SCC and RefSCC if necessary.
293           C = UR.UpdatedC ? UR.UpdatedC : C;
294           RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
295 
296           if (UR.UpdatedC) {
297             // If we're updating the SCC, also update the FAM inside the proxy's
298             // result.
299             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
300                 FAM);
301           }
302 
303           // If the CGSCC pass wasn't able to provide a valid updated SCC,
304           // the current SCC may simply need to be skipped if invalid.
305           if (UR.InvalidatedSCCs.count(C)) {
306             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
307             break;
308           }
309           // Check that we didn't miss any update scenario.
310           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
311 
312           // We handle invalidating the CGSCC analysis manager's information
313           // for the (potentially updated) SCC here. Note that any other SCCs
314           // whose structure has changed should have been invalidated by
315           // whatever was updating the call graph. This SCC gets invalidated
316           // late as it contains the nodes that were actively being
317           // processed.
318           CGAM.invalidate(*C, PassPA);
319 
320           // Then intersect the preserved set so that invalidation of module
321           // analyses will eventually occur when the module pass completes.
322           // Also intersect with the cross-SCC preserved set to capture any
323           // cross-SCC invalidation.
324           UR.CrossSCCPA.intersect(PassPA);
325           PA.intersect(std::move(PassPA));
326 
327           // The pass may have restructured the call graph and refined the
328           // current SCC and/or RefSCC. We need to update our current SCC and
329           // RefSCC pointers to follow these. Also, when the current SCC is
330           // refined, re-run the SCC pass over the newly refined SCC in order
331           // to observe the most precise SCC model available. This inherently
332           // cannot cycle excessively as it only happens when we split SCCs
333           // apart, at most converging on a DAG of single nodes.
334           // FIXME: If we ever start having RefSCC passes, we'll want to
335           // iterate there too.
336           if (UR.UpdatedC)
337             LLVM_DEBUG(dbgs()
338                        << "Re-running SCC passes after a refinement of the "
339                           "current SCC: "
340                        << *UR.UpdatedC << "\n");
341 
342           // Note that both `C` and `RC` may at this point refer to deleted,
343           // invalid SCC and RefSCCs respectively. But we will short circuit
344           // the processing when we check them in the loop above.
345         } while (UR.UpdatedC);
346       } while (!CWorklist.empty());
347 
348       // We only need to keep internal inlined edge information within
349       // a RefSCC, clear it to save on space and let the next time we visit
350       // any of these functions have a fresh start.
351       InlinedInternalEdges.clear();
352     } while (!RCWorklist.empty());
353   }
354 
355   // By definition we preserve the call garph, all SCC analyses, and the
356   // analysis proxies by handling them above and in any nested pass managers.
357   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
358   PA.preserve<LazyCallGraphAnalysis>();
359   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
360   PA.preserve<FunctionAnalysisManagerModuleProxy>();
361   return PA;
362 }
363 
364 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
365                                              CGSCCAnalysisManager &AM,
366                                              LazyCallGraph &CG,
367                                              CGSCCUpdateResult &UR) {
368   PreservedAnalyses PA = PreservedAnalyses::all();
369   PassInstrumentation PI =
370       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
371 
372   // The SCC may be refined while we are running passes over it, so set up
373   // a pointer that we can update.
374   LazyCallGraph::SCC *C = &InitialC;
375 
376   // Struct to track the counts of direct and indirect calls in each function
377   // of the SCC.
378   struct CallCount {
379     int Direct;
380     int Indirect;
381   };
382 
383   // Put value handles on all of the indirect calls and return the number of
384   // direct calls for each function in the SCC.
385   auto ScanSCC = [](LazyCallGraph::SCC &C,
386                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
387     assert(CallHandles.empty() && "Must start with a clear set of handles.");
388 
389     SmallDenseMap<Function *, CallCount> CallCounts;
390     CallCount CountLocal = {0, 0};
391     for (LazyCallGraph::Node &N : C) {
392       CallCount &Count =
393           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
394               .first->second;
395       for (Instruction &I : instructions(N.getFunction()))
396         if (auto *CB = dyn_cast<CallBase>(&I)) {
397           if (CB->getCalledFunction()) {
398             ++Count.Direct;
399           } else {
400             ++Count.Indirect;
401             CallHandles.insert({CB, WeakTrackingVH(CB)});
402           }
403         }
404     }
405 
406     return CallCounts;
407   };
408 
409   UR.IndirectVHs.clear();
410   // Populate the initial call handles and get the initial call counts.
411   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
412 
413   for (int Iteration = 0;; ++Iteration) {
414     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
415       continue;
416 
417     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
418 
419     if (UR.InvalidatedSCCs.count(C))
420       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
421     else
422       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
423 
424     // If the SCC structure has changed, bail immediately and let the outer
425     // CGSCC layer handle any iteration to reflect the refined structure.
426     if (UR.UpdatedC && UR.UpdatedC != C) {
427       PA.intersect(std::move(PassPA));
428       break;
429     }
430 
431     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
432     // current SCC may simply need to be skipped if invalid.
433     if (UR.InvalidatedSCCs.count(C)) {
434       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
435       break;
436     }
437 
438     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
439 
440     // Check whether any of the handles were devirtualized.
441     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
442       if (P.second) {
443         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
444           if (CB->getCalledFunction()) {
445             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
446             return true;
447           }
448         }
449       }
450       return false;
451     });
452 
453     // Rescan to build up a new set of handles and count how many direct
454     // calls remain. If we decide to iterate, this also sets up the input to
455     // the next iteration.
456     UR.IndirectVHs.clear();
457     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
458 
459     // If we haven't found an explicit devirtualization already see if we
460     // have decreased the number of indirect calls and increased the number
461     // of direct calls for any function in the SCC. This can be fooled by all
462     // manner of transformations such as DCE and other things, but seems to
463     // work well in practice.
464     if (!Devirt)
465       // Iterate over the keys in NewCallCounts, if Function also exists in
466       // CallCounts, make the check below.
467       for (auto &Pair : NewCallCounts) {
468         auto &CallCountNew = Pair.second;
469         auto CountIt = CallCounts.find(Pair.first);
470         if (CountIt != CallCounts.end()) {
471           const auto &CallCountOld = CountIt->second;
472           if (CallCountOld.Indirect > CallCountNew.Indirect &&
473               CallCountOld.Direct < CallCountNew.Direct) {
474             Devirt = true;
475             break;
476           }
477         }
478       }
479 
480     if (!Devirt) {
481       PA.intersect(std::move(PassPA));
482       break;
483     }
484 
485     // Otherwise, if we've already hit our max, we're done.
486     if (Iteration >= MaxIterations) {
487       if (AbortOnMaxDevirtIterationsReached)
488         report_fatal_error("Max devirtualization iterations reached");
489       LLVM_DEBUG(
490           dbgs() << "Found another devirtualization after hitting the max "
491                     "number of repetitions ("
492                  << MaxIterations << ") on SCC: " << *C << "\n");
493       PA.intersect(std::move(PassPA));
494       break;
495     }
496 
497     LLVM_DEBUG(
498         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
499                << *C << "\n");
500 
501     // Move over the new call counts in preparation for iterating.
502     CallCounts = std::move(NewCallCounts);
503 
504     // Update the analysis manager with each run and intersect the total set
505     // of preserved analyses so we're ready to iterate.
506     AM.invalidate(*C, PassPA);
507 
508     PA.intersect(std::move(PassPA));
509   }
510 
511   // Note that we don't add any preserved entries here unlike a more normal
512   // "pass manager" because we only handle invalidation *between* iterations,
513   // not after the last iteration.
514   return PA;
515 }
516 
517 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
518                                                   CGSCCAnalysisManager &AM,
519                                                   LazyCallGraph &CG,
520                                                   CGSCCUpdateResult &UR) {
521   // Setup the function analysis manager from its proxy.
522   FunctionAnalysisManager &FAM =
523       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
524 
525   SmallVector<LazyCallGraph::Node *, 4> Nodes;
526   for (LazyCallGraph::Node &N : C)
527     Nodes.push_back(&N);
528 
529   // The SCC may get split while we are optimizing functions due to deleting
530   // edges. If this happens, the current SCC can shift, so keep track of
531   // a pointer we can overwrite.
532   LazyCallGraph::SCC *CurrentC = &C;
533 
534   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
535 
536   PreservedAnalyses PA = PreservedAnalyses::all();
537   for (LazyCallGraph::Node *N : Nodes) {
538     // Skip nodes from other SCCs. These may have been split out during
539     // processing. We'll eventually visit those SCCs and pick up the nodes
540     // there.
541     if (CG.lookupSCC(*N) != CurrentC)
542       continue;
543 
544     Function &F = N->getFunction();
545 
546     if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F))
547       continue;
548 
549     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
550     if (!PI.runBeforePass<Function>(*Pass, F))
551       continue;
552 
553     PreservedAnalyses PassPA;
554     {
555       TimeTraceScope TimeScope(Pass->name());
556       PassPA = Pass->run(F, FAM);
557     }
558 
559     PI.runAfterPass<Function>(*Pass, F, PassPA);
560 
561     // We know that the function pass couldn't have invalidated any other
562     // function's analyses (that's the contract of a function pass), so
563     // directly handle the function analysis manager's invalidation here.
564     FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA);
565     if (NoRerun)
566       (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F);
567 
568     // Then intersect the preserved set so that invalidation of module
569     // analyses will eventually occur when the module pass completes.
570     PA.intersect(std::move(PassPA));
571 
572     // If the call graph hasn't been preserved, update it based on this
573     // function pass. This may also update the current SCC to point to
574     // a smaller, more refined SCC.
575     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
576     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
577       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
578                                                             AM, UR, FAM);
579       assert(CG.lookupSCC(*N) == CurrentC &&
580              "Current SCC not updated to the SCC containing the current node!");
581     }
582   }
583 
584   // By definition we preserve the proxy. And we preserve all analyses on
585   // Functions. This precludes *any* invalidation of function analyses by the
586   // proxy, but that's OK because we've taken care to invalidate analyses in
587   // the function analysis manager incrementally above.
588   PA.preserveSet<AllAnalysesOn<Function>>();
589   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
590 
591   // We've also ensured that we updated the call graph along the way.
592   PA.preserve<LazyCallGraphAnalysis>();
593 
594   return PA;
595 }
596 
597 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
598     Module &M, const PreservedAnalyses &PA,
599     ModuleAnalysisManager::Invalidator &Inv) {
600   // If literally everything is preserved, we're done.
601   if (PA.areAllPreserved())
602     return false; // This is still a valid proxy.
603 
604   // If this proxy or the call graph is going to be invalidated, we also need
605   // to clear all the keys coming from that analysis.
606   //
607   // We also directly invalidate the FAM's module proxy if necessary, and if
608   // that proxy isn't preserved we can't preserve this proxy either. We rely on
609   // it to handle module -> function analysis invalidation in the face of
610   // structural changes and so if it's unavailable we conservatively clear the
611   // entire SCC layer as well rather than trying to do invalidation ourselves.
612   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
613   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
614       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
615       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
616     InnerAM->clear();
617 
618     // And the proxy itself should be marked as invalid so that we can observe
619     // the new call graph. This isn't strictly necessary because we cheat
620     // above, but is still useful.
621     return true;
622   }
623 
624   // Directly check if the relevant set is preserved so we can short circuit
625   // invalidating SCCs below.
626   bool AreSCCAnalysesPreserved =
627       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
628 
629   // Ok, we have a graph, so we can propagate the invalidation down into it.
630   G->buildRefSCCs();
631   for (auto &RC : G->postorder_ref_sccs())
632     for (auto &C : RC) {
633       Optional<PreservedAnalyses> InnerPA;
634 
635       // Check to see whether the preserved set needs to be adjusted based on
636       // module-level analysis invalidation triggering deferred invalidation
637       // for this SCC.
638       if (auto *OuterProxy =
639               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
640         for (const auto &OuterInvalidationPair :
641              OuterProxy->getOuterInvalidations()) {
642           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
643           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
644           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
645             if (!InnerPA)
646               InnerPA = PA;
647             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
648               InnerPA->abandon(InnerAnalysisID);
649           }
650         }
651 
652       // Check if we needed a custom PA set. If so we'll need to run the inner
653       // invalidation.
654       if (InnerPA) {
655         InnerAM->invalidate(C, *InnerPA);
656         continue;
657       }
658 
659       // Otherwise we only need to do invalidation if the original PA set didn't
660       // preserve all SCC analyses.
661       if (!AreSCCAnalysesPreserved)
662         InnerAM->invalidate(C, PA);
663     }
664 
665   // Return false to indicate that this result is still a valid proxy.
666   return false;
667 }
668 
669 template <>
670 CGSCCAnalysisManagerModuleProxy::Result
671 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
672   // Force the Function analysis manager to also be available so that it can
673   // be accessed in an SCC analysis and proxied onward to function passes.
674   // FIXME: It is pretty awkward to just drop the result here and assert that
675   // we can find it again later.
676   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
677 
678   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
679 }
680 
681 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
682 
683 FunctionAnalysisManagerCGSCCProxy::Result
684 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
685                                        CGSCCAnalysisManager &AM,
686                                        LazyCallGraph &CG) {
687   // Note: unconditionally getting checking that the proxy exists may get it at
688   // this point. There are cases when this is being run unnecessarily, but
689   // it is cheap and having the assertion in place is more valuable.
690   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
691   Module &M = *C.begin()->getFunction().getParent();
692   bool ProxyExists =
693       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
694   assert(ProxyExists &&
695          "The CGSCC pass manager requires that the FAM module proxy is run "
696          "on the module prior to entering the CGSCC walk");
697   (void)ProxyExists;
698 
699   // We just return an empty result. The caller will use the updateFAM interface
700   // to correctly register the relevant FunctionAnalysisManager based on the
701   // context in which this proxy is run.
702   return Result();
703 }
704 
705 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
706     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
707     CGSCCAnalysisManager::Invalidator &Inv) {
708   // If literally everything is preserved, we're done.
709   if (PA.areAllPreserved())
710     return false; // This is still a valid proxy.
711 
712   // All updates to preserve valid results are done below, so we don't need to
713   // invalidate this proxy.
714   //
715   // Note that in order to preserve this proxy, a module pass must ensure that
716   // the FAM has been completely updated to handle the deletion of functions.
717   // Specifically, any FAM-cached results for those functions need to have been
718   // forcibly cleared. When preserved, this proxy will only invalidate results
719   // cached on functions *still in the module* at the end of the module pass.
720   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
721   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
722     for (LazyCallGraph::Node &N : C)
723       FAM->invalidate(N.getFunction(), PA);
724 
725     return false;
726   }
727 
728   // Directly check if the relevant set is preserved.
729   bool AreFunctionAnalysesPreserved =
730       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
731 
732   // Now walk all the functions to see if any inner analysis invalidation is
733   // necessary.
734   for (LazyCallGraph::Node &N : C) {
735     Function &F = N.getFunction();
736     Optional<PreservedAnalyses> FunctionPA;
737 
738     // Check to see whether the preserved set needs to be pruned based on
739     // SCC-level analysis invalidation that triggers deferred invalidation
740     // registered with the outer analysis manager proxy for this function.
741     if (auto *OuterProxy =
742             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
743       for (const auto &OuterInvalidationPair :
744            OuterProxy->getOuterInvalidations()) {
745         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
746         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
747         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
748           if (!FunctionPA)
749             FunctionPA = PA;
750           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
751             FunctionPA->abandon(InnerAnalysisID);
752         }
753       }
754 
755     // Check if we needed a custom PA set, and if so we'll need to run the
756     // inner invalidation.
757     if (FunctionPA) {
758       FAM->invalidate(F, *FunctionPA);
759       continue;
760     }
761 
762     // Otherwise we only need to do invalidation if the original PA set didn't
763     // preserve all function analyses.
764     if (!AreFunctionAnalysesPreserved)
765       FAM->invalidate(F, PA);
766   }
767 
768   // Return false to indicate that this result is still a valid proxy.
769   return false;
770 }
771 
772 } // end namespace llvm
773 
774 /// When a new SCC is created for the graph we first update the
775 /// FunctionAnalysisManager in the Proxy's result.
776 /// As there might be function analysis results cached for the functions now in
777 /// that SCC, two forms of  updates are required.
778 ///
779 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
780 /// created so that any subsequent invalidation events to the SCC are
781 /// propagated to the function analysis results cached for functions within it.
782 ///
783 /// Second, if any of the functions within the SCC have analysis results with
784 /// outer analysis dependencies, then those dependencies would point to the
785 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
786 /// function analyses so that they don't retain stale handles.
787 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
788                                          LazyCallGraph &G,
789                                          CGSCCAnalysisManager &AM,
790                                          FunctionAnalysisManager &FAM) {
791   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
792 
793   // Now walk the functions in this SCC and invalidate any function analysis
794   // results that might have outer dependencies on an SCC analysis.
795   for (LazyCallGraph::Node &N : C) {
796     Function &F = N.getFunction();
797 
798     auto *OuterProxy =
799         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
800     if (!OuterProxy)
801       // No outer analyses were queried, nothing to do.
802       continue;
803 
804     // Forcibly abandon all the inner analyses with dependencies, but
805     // invalidate nothing else.
806     auto PA = PreservedAnalyses::all();
807     for (const auto &OuterInvalidationPair :
808          OuterProxy->getOuterInvalidations()) {
809       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
810       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
811         PA.abandon(InnerAnalysisID);
812     }
813 
814     // Now invalidate anything we found.
815     FAM.invalidate(F, PA);
816   }
817 }
818 
819 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
820 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
821 /// added SCCs.
822 ///
823 /// The range of new SCCs must be in postorder already. The SCC they were split
824 /// out of must be provided as \p C. The current node being mutated and
825 /// triggering updates must be passed as \p N.
826 ///
827 /// This function returns the SCC containing \p N. This will be either \p C if
828 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
829 template <typename SCCRangeT>
830 static LazyCallGraph::SCC *
831 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
832                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
833                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
834   using SCC = LazyCallGraph::SCC;
835 
836   if (NewSCCRange.empty())
837     return C;
838 
839   // Add the current SCC to the worklist as its shape has changed.
840   UR.CWorklist.insert(C);
841   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
842                     << "\n");
843 
844   SCC *OldC = C;
845 
846   // Update the current SCC. Note that if we have new SCCs, this must actually
847   // change the SCC.
848   assert(C != &*NewSCCRange.begin() &&
849          "Cannot insert new SCCs without changing current SCC!");
850   C = &*NewSCCRange.begin();
851   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
852 
853   // If we had a cached FAM proxy originally, we will want to create more of
854   // them for each SCC that was split off.
855   FunctionAnalysisManager *FAM = nullptr;
856   if (auto *FAMProxy =
857           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
858     FAM = &FAMProxy->getManager();
859 
860   // We need to propagate an invalidation call to all but the newly current SCC
861   // because the outer pass manager won't do that for us after splitting them.
862   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
863   // there are preserved analysis we can avoid invalidating them here for
864   // split-off SCCs.
865   // We know however that this will preserve any FAM proxy so go ahead and mark
866   // that.
867   auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
868   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
869   AM.invalidate(*OldC, PA);
870 
871   // Ensure the now-current SCC's function analyses are updated.
872   if (FAM)
873     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
874 
875   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
876     assert(C != &NewC && "No need to re-visit the current SCC!");
877     assert(OldC != &NewC && "Already handled the original SCC!");
878     UR.CWorklist.insert(&NewC);
879     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
880 
881     // Ensure new SCCs' function analyses are updated.
882     if (FAM)
883       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
884 
885     // Also propagate a normal invalidation to the new SCC as only the current
886     // will get one from the pass manager infrastructure.
887     AM.invalidate(NewC, PA);
888   }
889   return C;
890 }
891 
892 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
893     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
894     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
895     FunctionAnalysisManager &FAM, bool FunctionPass) {
896   using Node = LazyCallGraph::Node;
897   using Edge = LazyCallGraph::Edge;
898   using SCC = LazyCallGraph::SCC;
899   using RefSCC = LazyCallGraph::RefSCC;
900 
901   RefSCC &InitialRC = InitialC.getOuterRefSCC();
902   SCC *C = &InitialC;
903   RefSCC *RC = &InitialRC;
904   Function &F = N.getFunction();
905 
906   // Walk the function body and build up the set of retained, promoted, and
907   // demoted edges.
908   SmallVector<Constant *, 16> Worklist;
909   SmallPtrSet<Constant *, 16> Visited;
910   SmallPtrSet<Node *, 16> RetainedEdges;
911   SmallSetVector<Node *, 4> PromotedRefTargets;
912   SmallSetVector<Node *, 4> DemotedCallTargets;
913   SmallSetVector<Node *, 4> NewCallEdges;
914   SmallSetVector<Node *, 4> NewRefEdges;
915 
916   // First walk the function and handle all called functions. We do this first
917   // because if there is a single call edge, whether there are ref edges is
918   // irrelevant.
919   for (Instruction &I : instructions(F)) {
920     if (auto *CB = dyn_cast<CallBase>(&I)) {
921       if (Function *Callee = CB->getCalledFunction()) {
922         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
923           Node *CalleeN = G.lookup(*Callee);
924           assert(CalleeN &&
925                  "Visited function should already have an associated node");
926           Edge *E = N->lookup(*CalleeN);
927           assert((E || !FunctionPass) &&
928                  "No function transformations should introduce *new* "
929                  "call edges! Any new calls should be modeled as "
930                  "promoted existing ref edges!");
931           bool Inserted = RetainedEdges.insert(CalleeN).second;
932           (void)Inserted;
933           assert(Inserted && "We should never visit a function twice.");
934           if (!E)
935             NewCallEdges.insert(CalleeN);
936           else if (!E->isCall())
937             PromotedRefTargets.insert(CalleeN);
938         }
939       } else {
940         // We can miss devirtualization if an indirect call is created then
941         // promoted before updateCGAndAnalysisManagerForPass runs.
942         auto *Entry = UR.IndirectVHs.find(CB);
943         if (Entry == UR.IndirectVHs.end())
944           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
945         else if (!Entry->second)
946           Entry->second = WeakTrackingVH(CB);
947       }
948     }
949   }
950 
951   // Now walk all references.
952   for (Instruction &I : instructions(F))
953     for (Value *Op : I.operand_values())
954       if (auto *OpC = dyn_cast<Constant>(Op))
955         if (Visited.insert(OpC).second)
956           Worklist.push_back(OpC);
957 
958   auto VisitRef = [&](Function &Referee) {
959     Node *RefereeN = G.lookup(Referee);
960     assert(RefereeN &&
961            "Visited function should already have an associated node");
962     Edge *E = N->lookup(*RefereeN);
963     assert((E || !FunctionPass) &&
964            "No function transformations should introduce *new* ref "
965            "edges! Any new ref edges would require IPO which "
966            "function passes aren't allowed to do!");
967     bool Inserted = RetainedEdges.insert(RefereeN).second;
968     (void)Inserted;
969     assert(Inserted && "We should never visit a function twice.");
970     if (!E)
971       NewRefEdges.insert(RefereeN);
972     else if (E->isCall())
973       DemotedCallTargets.insert(RefereeN);
974   };
975   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
976 
977   // Handle new ref edges.
978   for (Node *RefTarget : NewRefEdges) {
979     SCC &TargetC = *G.lookupSCC(*RefTarget);
980     RefSCC &TargetRC = TargetC.getOuterRefSCC();
981     (void)TargetRC;
982     // TODO: This only allows trivial edges to be added for now.
983 #ifdef EXPENSIVE_CHECKS
984     assert((RC == &TargetRC ||
985            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
986 #endif
987     RC->insertTrivialRefEdge(N, *RefTarget);
988   }
989 
990   // Handle new call edges.
991   for (Node *CallTarget : NewCallEdges) {
992     SCC &TargetC = *G.lookupSCC(*CallTarget);
993     RefSCC &TargetRC = TargetC.getOuterRefSCC();
994     (void)TargetRC;
995     // TODO: This only allows trivial edges to be added for now.
996 #ifdef EXPENSIVE_CHECKS
997     assert((RC == &TargetRC ||
998            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
999 #endif
1000     // Add a trivial ref edge to be promoted later on alongside
1001     // PromotedRefTargets.
1002     RC->insertTrivialRefEdge(N, *CallTarget);
1003   }
1004 
1005   // Include synthetic reference edges to known, defined lib functions.
1006   for (auto *LibFn : G.getLibFunctions())
1007     // While the list of lib functions doesn't have repeats, don't re-visit
1008     // anything handled above.
1009     if (!Visited.count(LibFn))
1010       VisitRef(*LibFn);
1011 
1012   // First remove all of the edges that are no longer present in this function.
1013   // The first step makes these edges uniformly ref edges and accumulates them
1014   // into a separate data structure so removal doesn't invalidate anything.
1015   SmallVector<Node *, 4> DeadTargets;
1016   for (Edge &E : *N) {
1017     if (RetainedEdges.count(&E.getNode()))
1018       continue;
1019 
1020     SCC &TargetC = *G.lookupSCC(E.getNode());
1021     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1022     if (&TargetRC == RC && E.isCall()) {
1023       if (C != &TargetC) {
1024         // For separate SCCs this is trivial.
1025         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1026       } else {
1027         // Now update the call graph.
1028         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1029                                    G, N, C, AM, UR);
1030       }
1031     }
1032 
1033     // Now that this is ready for actual removal, put it into our list.
1034     DeadTargets.push_back(&E.getNode());
1035   }
1036   // Remove the easy cases quickly and actually pull them out of our list.
1037   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1038     SCC &TargetC = *G.lookupSCC(*TargetN);
1039     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1040 
1041     // We can't trivially remove internal targets, so skip
1042     // those.
1043     if (&TargetRC == RC)
1044       return false;
1045 
1046     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1047                       << *TargetN << "'\n");
1048     RC->removeOutgoingEdge(N, *TargetN);
1049     return true;
1050   });
1051 
1052   // Now do a batch removal of the internal ref edges left.
1053   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1054   if (!NewRefSCCs.empty()) {
1055     // The old RefSCC is dead, mark it as such.
1056     UR.InvalidatedRefSCCs.insert(RC);
1057 
1058     // Note that we don't bother to invalidate analyses as ref-edge
1059     // connectivity is not really observable in any way and is intended
1060     // exclusively to be used for ordering of transforms rather than for
1061     // analysis conclusions.
1062 
1063     // Update RC to the "bottom".
1064     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1065     RC = &C->getOuterRefSCC();
1066     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1067 
1068     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1069     // RPO except for the one which contains the source node as that is the
1070     // "bottom" we will continue processing in the bottom-up walk.
1071     assert(NewRefSCCs.front() == RC &&
1072            "New current RefSCC not first in the returned list!");
1073     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1074       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1075                             "in the postorder list of new RefSCCs.");
1076       UR.RCWorklist.insert(NewRC);
1077       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1078                         << *NewRC << "\n");
1079     }
1080   }
1081 
1082   // Next demote all the call edges that are now ref edges. This helps make
1083   // the SCCs small which should minimize the work below as we don't want to
1084   // form cycles that this would break.
1085   for (Node *RefTarget : DemotedCallTargets) {
1086     SCC &TargetC = *G.lookupSCC(*RefTarget);
1087     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1088 
1089     // The easy case is when the target RefSCC is not this RefSCC. This is
1090     // only supported when the target RefSCC is a child of this RefSCC.
1091     if (&TargetRC != RC) {
1092 #ifdef EXPENSIVE_CHECKS
1093       assert(RC->isAncestorOf(TargetRC) &&
1094              "Cannot potentially form RefSCC cycles here!");
1095 #endif
1096       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1097       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1098                         << "' to '" << *RefTarget << "'\n");
1099       continue;
1100     }
1101 
1102     // We are switching an internal call edge to a ref edge. This may split up
1103     // some SCCs.
1104     if (C != &TargetC) {
1105       // For separate SCCs this is trivial.
1106       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1107       continue;
1108     }
1109 
1110     // Now update the call graph.
1111     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1112                                C, AM, UR);
1113   }
1114 
1115   // We added a ref edge earlier for new call edges, promote those to call edges
1116   // alongside PromotedRefTargets.
1117   for (Node *E : NewCallEdges)
1118     PromotedRefTargets.insert(E);
1119 
1120   // Now promote ref edges into call edges.
1121   for (Node *CallTarget : PromotedRefTargets) {
1122     SCC &TargetC = *G.lookupSCC(*CallTarget);
1123     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1124 
1125     // The easy case is when the target RefSCC is not this RefSCC. This is
1126     // only supported when the target RefSCC is a child of this RefSCC.
1127     if (&TargetRC != RC) {
1128 #ifdef EXPENSIVE_CHECKS
1129       assert(RC->isAncestorOf(TargetRC) &&
1130              "Cannot potentially form RefSCC cycles here!");
1131 #endif
1132       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1133       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1134                         << "' to '" << *CallTarget << "'\n");
1135       continue;
1136     }
1137     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1138                       << N << "' to '" << *CallTarget << "'\n");
1139 
1140     // Otherwise we are switching an internal ref edge to a call edge. This
1141     // may merge away some SCCs, and we add those to the UpdateResult. We also
1142     // need to make sure to update the worklist in the event SCCs have moved
1143     // before the current one in the post-order sequence
1144     bool HasFunctionAnalysisProxy = false;
1145     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1146     bool FormedCycle = RC->switchInternalEdgeToCall(
1147         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1148           for (SCC *MergedC : MergedSCCs) {
1149             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1150 
1151             HasFunctionAnalysisProxy |=
1152                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1153                     *MergedC) != nullptr;
1154 
1155             // Mark that this SCC will no longer be valid.
1156             UR.InvalidatedSCCs.insert(MergedC);
1157 
1158             // FIXME: We should really do a 'clear' here to forcibly release
1159             // memory, but we don't have a good way of doing that and
1160             // preserving the function analyses.
1161             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1162             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1163             AM.invalidate(*MergedC, PA);
1164           }
1165         });
1166 
1167     // If we formed a cycle by creating this call, we need to update more data
1168     // structures.
1169     if (FormedCycle) {
1170       C = &TargetC;
1171       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1172 
1173       // If one of the invalidated SCCs had a cached proxy to a function
1174       // analysis manager, we need to create a proxy in the new current SCC as
1175       // the invalidated SCCs had their functions moved.
1176       if (HasFunctionAnalysisProxy)
1177         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1178 
1179       // Any analyses cached for this SCC are no longer precise as the shape
1180       // has changed by introducing this cycle. However, we have taken care to
1181       // update the proxies so it remains valide.
1182       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1183       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1184       AM.invalidate(*C, PA);
1185     }
1186     auto NewSCCIndex = RC->find(*C) - RC->begin();
1187     // If we have actually moved an SCC to be topologically "below" the current
1188     // one due to merging, we will need to revisit the current SCC after
1189     // visiting those moved SCCs.
1190     //
1191     // It is critical that we *do not* revisit the current SCC unless we
1192     // actually move SCCs in the process of merging because otherwise we may
1193     // form a cycle where an SCC is split apart, merged, split, merged and so
1194     // on infinitely.
1195     if (InitialSCCIndex < NewSCCIndex) {
1196       // Put our current SCC back onto the worklist as we'll visit other SCCs
1197       // that are now definitively ordered prior to the current one in the
1198       // post-order sequence, and may end up observing more precise context to
1199       // optimize the current SCC.
1200       UR.CWorklist.insert(C);
1201       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1202                         << "\n");
1203       // Enqueue in reverse order as we pop off the back of the worklist.
1204       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1205                                                   RC->begin() + NewSCCIndex))) {
1206         UR.CWorklist.insert(&MovedC);
1207         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1208                           << MovedC << "\n");
1209       }
1210     }
1211   }
1212 
1213   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1214   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1215   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1216 
1217   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1218   // manager now that all the updates have been applied.
1219   if (RC != &InitialRC)
1220     UR.UpdatedRC = RC;
1221   if (C != &InitialC)
1222     UR.UpdatedC = C;
1223 
1224   return *C;
1225 }
1226 
1227 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1228     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1229     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1230     FunctionAnalysisManager &FAM) {
1231   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1232                                            /* FunctionPass */ true);
1233 }
1234 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1235     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1236     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1237     FunctionAnalysisManager &FAM) {
1238   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1239                                            /* FunctionPass */ false);
1240 }
1241