1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/PriorityWorklist.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Analysis/LazyCallGraph.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/IR/PassManagerImpl.h" 24 #include "llvm/IR/ValueHandle.h" 25 #include "llvm/Support/Casting.h" 26 #include "llvm/Support/CommandLine.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/TimeProfiler.h" 30 #include "llvm/Support/raw_ostream.h" 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 42 "abort-on-max-devirt-iterations-reached", 43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 44 "pass is reached")); 45 46 AnalysisKey ShouldNotRunFunctionPassesAnalysis::Key; 47 48 // Explicit instantiations for the core proxy templates. 49 template class AllAnalysesOn<LazyCallGraph::SCC>; 50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 52 LazyCallGraph &, CGSCCUpdateResult &>; 53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 55 LazyCallGraph::SCC, LazyCallGraph &>; 56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 57 58 /// Explicitly specialize the pass manager run method to handle call graph 59 /// updates. 60 template <> 61 PreservedAnalyses 62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 63 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 64 CGSCCAnalysisManager &AM, 65 LazyCallGraph &G, CGSCCUpdateResult &UR) { 66 // Request PassInstrumentation from analysis manager, will use it to run 67 // instrumenting callbacks for the passes later. 68 PassInstrumentation PI = 69 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 70 71 PreservedAnalyses PA = PreservedAnalyses::all(); 72 73 // The SCC may be refined while we are running passes over it, so set up 74 // a pointer that we can update. 75 LazyCallGraph::SCC *C = &InitialC; 76 77 // Get Function analysis manager from its proxy. 78 FunctionAnalysisManager &FAM = 79 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 80 81 for (auto &Pass : Passes) { 82 // Check the PassInstrumentation's BeforePass callbacks before running the 83 // pass, skip its execution completely if asked to (callback returns false). 84 if (!PI.runBeforePass(*Pass, *C)) 85 continue; 86 87 PreservedAnalyses PassPA; 88 { 89 TimeTraceScope TimeScope(Pass->name()); 90 NewPassManagerPrettyStackEntry StackEntry(Pass->name(), C->getName()); 91 PassPA = Pass->run(*C, AM, G, UR); 92 } 93 94 if (UR.InvalidatedSCCs.count(C)) 95 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 96 else 97 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 98 99 // Update the SCC if necessary. 100 C = UR.UpdatedC ? UR.UpdatedC : C; 101 if (UR.UpdatedC) { 102 // If C is updated, also create a proxy and update FAM inside the result. 103 auto *ResultFAMCP = 104 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 105 ResultFAMCP->updateFAM(FAM); 106 } 107 108 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 109 // current SCC may simply need to be skipped if invalid. 110 if (UR.InvalidatedSCCs.count(C)) { 111 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 112 break; 113 } 114 // Check that we didn't miss any update scenario. 115 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 116 117 // Update the analysis manager as each pass runs and potentially 118 // invalidates analyses. 119 AM.invalidate(*C, PassPA); 120 121 // Finally, we intersect the final preserved analyses to compute the 122 // aggregate preserved set for this pass manager. 123 PA.intersect(std::move(PassPA)); 124 } 125 126 // Before we mark all of *this* SCC's analyses as preserved below, intersect 127 // this with the cross-SCC preserved analysis set. This is used to allow 128 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 129 // for them. 130 UR.CrossSCCPA.intersect(PA); 131 132 // Invalidation was handled after each pass in the above loop for the current 133 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 134 // preserved. We mark this with a set so that we don't need to inspect each 135 // one individually. 136 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 137 138 return PA; 139 } 140 141 PreservedAnalyses 142 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { 143 // Setup the CGSCC analysis manager from its proxy. 144 CGSCCAnalysisManager &CGAM = 145 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); 146 147 // Get the call graph for this module. 148 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); 149 150 // Get Function analysis manager from its proxy. 151 FunctionAnalysisManager &FAM = 152 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); 153 154 // We keep worklists to allow us to push more work onto the pass manager as 155 // the passes are run. 156 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; 157 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; 158 159 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when 160 // iterating off the worklists. 161 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; 162 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; 163 164 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> 165 InlinedInternalEdges; 166 167 CGSCCUpdateResult UR = { 168 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, 169 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, 170 {}}; 171 172 // Request PassInstrumentation from analysis manager, will use it to run 173 // instrumenting callbacks for the passes later. 174 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); 175 176 PreservedAnalyses PA = PreservedAnalyses::all(); 177 CG.buildRefSCCs(); 178 for (auto RCI = CG.postorder_ref_scc_begin(), 179 RCE = CG.postorder_ref_scc_end(); 180 RCI != RCE;) { 181 assert(RCWorklist.empty() && 182 "Should always start with an empty RefSCC worklist"); 183 // The postorder_ref_sccs range we are walking is lazily constructed, so 184 // we only push the first one onto the worklist. The worklist allows us 185 // to capture *new* RefSCCs created during transformations. 186 // 187 // We really want to form RefSCCs lazily because that makes them cheaper 188 // to update as the program is simplified and allows us to have greater 189 // cache locality as forming a RefSCC touches all the parts of all the 190 // functions within that RefSCC. 191 // 192 // We also eagerly increment the iterator to the next position because 193 // the CGSCC passes below may delete the current RefSCC. 194 RCWorklist.insert(&*RCI++); 195 196 do { 197 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); 198 if (InvalidRefSCCSet.count(RC)) { 199 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); 200 continue; 201 } 202 203 assert(CWorklist.empty() && 204 "Should always start with an empty SCC worklist"); 205 206 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC 207 << "\n"); 208 209 // The top of the worklist may *also* be the same SCC we just ran over 210 // (and invalidated for). Keep track of that last SCC we processed due 211 // to SCC update to avoid redundant processing when an SCC is both just 212 // updated itself and at the top of the worklist. 213 LazyCallGraph::SCC *LastUpdatedC = nullptr; 214 215 // Push the initial SCCs in reverse post-order as we'll pop off the 216 // back and so see this in post-order. 217 for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) 218 CWorklist.insert(&C); 219 220 do { 221 LazyCallGraph::SCC *C = CWorklist.pop_back_val(); 222 // Due to call graph mutations, we may have invalid SCCs or SCCs from 223 // other RefSCCs in the worklist. The invalid ones are dead and the 224 // other RefSCCs should be queued above, so we just need to skip both 225 // scenarios here. 226 if (InvalidSCCSet.count(C)) { 227 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); 228 continue; 229 } 230 if (LastUpdatedC == C) { 231 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); 232 continue; 233 } 234 if (&C->getOuterRefSCC() != RC) { 235 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " 236 "RefSCC...\n"); 237 continue; 238 } 239 240 // Ensure we can proxy analysis updates from the CGSCC analysis manager 241 // into the the Function analysis manager by getting a proxy here. 242 // This also needs to update the FunctionAnalysisManager, as this may be 243 // the first time we see this SCC. 244 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 245 FAM); 246 247 // Each time we visit a new SCC pulled off the worklist, 248 // a transformation of a child SCC may have also modified this parent 249 // and invalidated analyses. So we invalidate using the update record's 250 // cross-SCC preserved set. This preserved set is intersected by any 251 // CGSCC pass that handles invalidation (primarily pass managers) prior 252 // to marking its SCC as preserved. That lets us track everything that 253 // might need invalidation across SCCs without excessive invalidations 254 // on a single SCC. 255 // 256 // This essentially allows SCC passes to freely invalidate analyses 257 // of any ancestor SCC. If this becomes detrimental to successfully 258 // caching analyses, we could force each SCC pass to manually 259 // invalidate the analyses for any SCCs other than themselves which 260 // are mutated. However, that seems to lose the robustness of the 261 // pass-manager driven invalidation scheme. 262 CGAM.invalidate(*C, UR.CrossSCCPA); 263 264 do { 265 // Check that we didn't miss any update scenario. 266 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); 267 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 268 assert(&C->getOuterRefSCC() == RC && 269 "Processing an SCC in a different RefSCC!"); 270 271 LastUpdatedC = UR.UpdatedC; 272 UR.UpdatedRC = nullptr; 273 UR.UpdatedC = nullptr; 274 275 // Check the PassInstrumentation's BeforePass callbacks before 276 // running the pass, skip its execution completely if asked to 277 // (callback returns false). 278 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 279 continue; 280 281 PreservedAnalyses PassPA; 282 { 283 TimeTraceScope TimeScope(Pass->name()); 284 PassPA = Pass->run(*C, CGAM, CG, UR); 285 } 286 287 if (UR.InvalidatedSCCs.count(C)) 288 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 289 else 290 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 291 292 // Update the SCC and RefSCC if necessary. 293 C = UR.UpdatedC ? UR.UpdatedC : C; 294 RC = UR.UpdatedRC ? UR.UpdatedRC : RC; 295 296 if (UR.UpdatedC) { 297 // If we're updating the SCC, also update the FAM inside the proxy's 298 // result. 299 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 300 FAM); 301 } 302 303 // If the CGSCC pass wasn't able to provide a valid updated SCC, 304 // the current SCC may simply need to be skipped if invalid. 305 if (UR.InvalidatedSCCs.count(C)) { 306 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 307 break; 308 } 309 // Check that we didn't miss any update scenario. 310 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 311 312 // We handle invalidating the CGSCC analysis manager's information 313 // for the (potentially updated) SCC here. Note that any other SCCs 314 // whose structure has changed should have been invalidated by 315 // whatever was updating the call graph. This SCC gets invalidated 316 // late as it contains the nodes that were actively being 317 // processed. 318 CGAM.invalidate(*C, PassPA); 319 320 // Then intersect the preserved set so that invalidation of module 321 // analyses will eventually occur when the module pass completes. 322 // Also intersect with the cross-SCC preserved set to capture any 323 // cross-SCC invalidation. 324 UR.CrossSCCPA.intersect(PassPA); 325 PA.intersect(std::move(PassPA)); 326 327 // The pass may have restructured the call graph and refined the 328 // current SCC and/or RefSCC. We need to update our current SCC and 329 // RefSCC pointers to follow these. Also, when the current SCC is 330 // refined, re-run the SCC pass over the newly refined SCC in order 331 // to observe the most precise SCC model available. This inherently 332 // cannot cycle excessively as it only happens when we split SCCs 333 // apart, at most converging on a DAG of single nodes. 334 // FIXME: If we ever start having RefSCC passes, we'll want to 335 // iterate there too. 336 if (UR.UpdatedC) 337 LLVM_DEBUG(dbgs() 338 << "Re-running SCC passes after a refinement of the " 339 "current SCC: " 340 << *UR.UpdatedC << "\n"); 341 342 // Note that both `C` and `RC` may at this point refer to deleted, 343 // invalid SCC and RefSCCs respectively. But we will short circuit 344 // the processing when we check them in the loop above. 345 } while (UR.UpdatedC); 346 } while (!CWorklist.empty()); 347 348 // We only need to keep internal inlined edge information within 349 // a RefSCC, clear it to save on space and let the next time we visit 350 // any of these functions have a fresh start. 351 InlinedInternalEdges.clear(); 352 } while (!RCWorklist.empty()); 353 } 354 355 // By definition we preserve the call garph, all SCC analyses, and the 356 // analysis proxies by handling them above and in any nested pass managers. 357 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 358 PA.preserve<LazyCallGraphAnalysis>(); 359 PA.preserve<CGSCCAnalysisManagerModuleProxy>(); 360 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 361 return PA; 362 } 363 364 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, 365 CGSCCAnalysisManager &AM, 366 LazyCallGraph &CG, 367 CGSCCUpdateResult &UR) { 368 PreservedAnalyses PA = PreservedAnalyses::all(); 369 PassInstrumentation PI = 370 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); 371 372 // The SCC may be refined while we are running passes over it, so set up 373 // a pointer that we can update. 374 LazyCallGraph::SCC *C = &InitialC; 375 376 // Struct to track the counts of direct and indirect calls in each function 377 // of the SCC. 378 struct CallCount { 379 int Direct; 380 int Indirect; 381 }; 382 383 // Put value handles on all of the indirect calls and return the number of 384 // direct calls for each function in the SCC. 385 auto ScanSCC = [](LazyCallGraph::SCC &C, 386 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { 387 assert(CallHandles.empty() && "Must start with a clear set of handles."); 388 389 SmallDenseMap<Function *, CallCount> CallCounts; 390 CallCount CountLocal = {0, 0}; 391 for (LazyCallGraph::Node &N : C) { 392 CallCount &Count = 393 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) 394 .first->second; 395 for (Instruction &I : instructions(N.getFunction())) 396 if (auto *CB = dyn_cast<CallBase>(&I)) { 397 if (CB->getCalledFunction()) { 398 ++Count.Direct; 399 } else { 400 ++Count.Indirect; 401 CallHandles.insert({CB, WeakTrackingVH(CB)}); 402 } 403 } 404 } 405 406 return CallCounts; 407 }; 408 409 UR.IndirectVHs.clear(); 410 // Populate the initial call handles and get the initial call counts. 411 auto CallCounts = ScanSCC(*C, UR.IndirectVHs); 412 413 for (int Iteration = 0;; ++Iteration) { 414 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 415 continue; 416 417 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); 418 419 if (UR.InvalidatedSCCs.count(C)) 420 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 421 else 422 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 423 424 // If the SCC structure has changed, bail immediately and let the outer 425 // CGSCC layer handle any iteration to reflect the refined structure. 426 if (UR.UpdatedC && UR.UpdatedC != C) { 427 PA.intersect(std::move(PassPA)); 428 break; 429 } 430 431 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 432 // current SCC may simply need to be skipped if invalid. 433 if (UR.InvalidatedSCCs.count(C)) { 434 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 435 break; 436 } 437 438 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 439 440 // Check whether any of the handles were devirtualized. 441 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { 442 if (P.second) { 443 if (CallBase *CB = dyn_cast<CallBase>(P.second)) { 444 if (CB->getCalledFunction()) { 445 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); 446 return true; 447 } 448 } 449 } 450 return false; 451 }); 452 453 // Rescan to build up a new set of handles and count how many direct 454 // calls remain. If we decide to iterate, this also sets up the input to 455 // the next iteration. 456 UR.IndirectVHs.clear(); 457 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); 458 459 // If we haven't found an explicit devirtualization already see if we 460 // have decreased the number of indirect calls and increased the number 461 // of direct calls for any function in the SCC. This can be fooled by all 462 // manner of transformations such as DCE and other things, but seems to 463 // work well in practice. 464 if (!Devirt) 465 // Iterate over the keys in NewCallCounts, if Function also exists in 466 // CallCounts, make the check below. 467 for (auto &Pair : NewCallCounts) { 468 auto &CallCountNew = Pair.second; 469 auto CountIt = CallCounts.find(Pair.first); 470 if (CountIt != CallCounts.end()) { 471 const auto &CallCountOld = CountIt->second; 472 if (CallCountOld.Indirect > CallCountNew.Indirect && 473 CallCountOld.Direct < CallCountNew.Direct) { 474 Devirt = true; 475 break; 476 } 477 } 478 } 479 480 if (!Devirt) { 481 PA.intersect(std::move(PassPA)); 482 break; 483 } 484 485 // Otherwise, if we've already hit our max, we're done. 486 if (Iteration >= MaxIterations) { 487 if (AbortOnMaxDevirtIterationsReached) 488 report_fatal_error("Max devirtualization iterations reached"); 489 LLVM_DEBUG( 490 dbgs() << "Found another devirtualization after hitting the max " 491 "number of repetitions (" 492 << MaxIterations << ") on SCC: " << *C << "\n"); 493 PA.intersect(std::move(PassPA)); 494 break; 495 } 496 497 LLVM_DEBUG( 498 dbgs() << "Repeating an SCC pass after finding a devirtualization in: " 499 << *C << "\n"); 500 501 // Move over the new call counts in preparation for iterating. 502 CallCounts = std::move(NewCallCounts); 503 504 // Update the analysis manager with each run and intersect the total set 505 // of preserved analyses so we're ready to iterate. 506 AM.invalidate(*C, PassPA); 507 508 PA.intersect(std::move(PassPA)); 509 } 510 511 // Note that we don't add any preserved entries here unlike a more normal 512 // "pass manager" because we only handle invalidation *between* iterations, 513 // not after the last iteration. 514 return PA; 515 } 516 517 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, 518 CGSCCAnalysisManager &AM, 519 LazyCallGraph &CG, 520 CGSCCUpdateResult &UR) { 521 // Setup the function analysis manager from its proxy. 522 FunctionAnalysisManager &FAM = 523 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 524 525 SmallVector<LazyCallGraph::Node *, 4> Nodes; 526 for (LazyCallGraph::Node &N : C) 527 Nodes.push_back(&N); 528 529 // The SCC may get split while we are optimizing functions due to deleting 530 // edges. If this happens, the current SCC can shift, so keep track of 531 // a pointer we can overwrite. 532 LazyCallGraph::SCC *CurrentC = &C; 533 534 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); 535 536 PreservedAnalyses PA = PreservedAnalyses::all(); 537 for (LazyCallGraph::Node *N : Nodes) { 538 // Skip nodes from other SCCs. These may have been split out during 539 // processing. We'll eventually visit those SCCs and pick up the nodes 540 // there. 541 if (CG.lookupSCC(*N) != CurrentC) 542 continue; 543 544 Function &F = N->getFunction(); 545 546 if (NoRerun && FAM.getCachedResult<ShouldNotRunFunctionPassesAnalysis>(F)) 547 continue; 548 549 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); 550 if (!PI.runBeforePass<Function>(*Pass, F)) 551 continue; 552 553 PreservedAnalyses PassPA; 554 { 555 TimeTraceScope TimeScope(Pass->name()); 556 PassPA = Pass->run(F, FAM); 557 } 558 559 PI.runAfterPass<Function>(*Pass, F, PassPA); 560 561 // We know that the function pass couldn't have invalidated any other 562 // function's analyses (that's the contract of a function pass), so 563 // directly handle the function analysis manager's invalidation here. 564 FAM.invalidate(F, EagerlyInvalidate ? PreservedAnalyses::none() : PassPA); 565 if (NoRerun) 566 (void)FAM.getResult<ShouldNotRunFunctionPassesAnalysis>(F); 567 568 // Then intersect the preserved set so that invalidation of module 569 // analyses will eventually occur when the module pass completes. 570 PA.intersect(std::move(PassPA)); 571 572 // If the call graph hasn't been preserved, update it based on this 573 // function pass. This may also update the current SCC to point to 574 // a smaller, more refined SCC. 575 auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); 576 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { 577 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, 578 AM, UR, FAM); 579 assert(CG.lookupSCC(*N) == CurrentC && 580 "Current SCC not updated to the SCC containing the current node!"); 581 } 582 } 583 584 // By definition we preserve the proxy. And we preserve all analyses on 585 // Functions. This precludes *any* invalidation of function analyses by the 586 // proxy, but that's OK because we've taken care to invalidate analyses in 587 // the function analysis manager incrementally above. 588 PA.preserveSet<AllAnalysesOn<Function>>(); 589 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 590 591 // We've also ensured that we updated the call graph along the way. 592 PA.preserve<LazyCallGraphAnalysis>(); 593 594 return PA; 595 } 596 597 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 598 Module &M, const PreservedAnalyses &PA, 599 ModuleAnalysisManager::Invalidator &Inv) { 600 // If literally everything is preserved, we're done. 601 if (PA.areAllPreserved()) 602 return false; // This is still a valid proxy. 603 604 // If this proxy or the call graph is going to be invalidated, we also need 605 // to clear all the keys coming from that analysis. 606 // 607 // We also directly invalidate the FAM's module proxy if necessary, and if 608 // that proxy isn't preserved we can't preserve this proxy either. We rely on 609 // it to handle module -> function analysis invalidation in the face of 610 // structural changes and so if it's unavailable we conservatively clear the 611 // entire SCC layer as well rather than trying to do invalidation ourselves. 612 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 613 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 614 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 615 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 616 InnerAM->clear(); 617 618 // And the proxy itself should be marked as invalid so that we can observe 619 // the new call graph. This isn't strictly necessary because we cheat 620 // above, but is still useful. 621 return true; 622 } 623 624 // Directly check if the relevant set is preserved so we can short circuit 625 // invalidating SCCs below. 626 bool AreSCCAnalysesPreserved = 627 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 628 629 // Ok, we have a graph, so we can propagate the invalidation down into it. 630 G->buildRefSCCs(); 631 for (auto &RC : G->postorder_ref_sccs()) 632 for (auto &C : RC) { 633 Optional<PreservedAnalyses> InnerPA; 634 635 // Check to see whether the preserved set needs to be adjusted based on 636 // module-level analysis invalidation triggering deferred invalidation 637 // for this SCC. 638 if (auto *OuterProxy = 639 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 640 for (const auto &OuterInvalidationPair : 641 OuterProxy->getOuterInvalidations()) { 642 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 643 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 644 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 645 if (!InnerPA) 646 InnerPA = PA; 647 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 648 InnerPA->abandon(InnerAnalysisID); 649 } 650 } 651 652 // Check if we needed a custom PA set. If so we'll need to run the inner 653 // invalidation. 654 if (InnerPA) { 655 InnerAM->invalidate(C, *InnerPA); 656 continue; 657 } 658 659 // Otherwise we only need to do invalidation if the original PA set didn't 660 // preserve all SCC analyses. 661 if (!AreSCCAnalysesPreserved) 662 InnerAM->invalidate(C, PA); 663 } 664 665 // Return false to indicate that this result is still a valid proxy. 666 return false; 667 } 668 669 template <> 670 CGSCCAnalysisManagerModuleProxy::Result 671 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 672 // Force the Function analysis manager to also be available so that it can 673 // be accessed in an SCC analysis and proxied onward to function passes. 674 // FIXME: It is pretty awkward to just drop the result here and assert that 675 // we can find it again later. 676 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 677 678 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 679 } 680 681 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 682 683 FunctionAnalysisManagerCGSCCProxy::Result 684 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 685 CGSCCAnalysisManager &AM, 686 LazyCallGraph &CG) { 687 // Note: unconditionally getting checking that the proxy exists may get it at 688 // this point. There are cases when this is being run unnecessarily, but 689 // it is cheap and having the assertion in place is more valuable. 690 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 691 Module &M = *C.begin()->getFunction().getParent(); 692 bool ProxyExists = 693 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 694 assert(ProxyExists && 695 "The CGSCC pass manager requires that the FAM module proxy is run " 696 "on the module prior to entering the CGSCC walk"); 697 (void)ProxyExists; 698 699 // We just return an empty result. The caller will use the updateFAM interface 700 // to correctly register the relevant FunctionAnalysisManager based on the 701 // context in which this proxy is run. 702 return Result(); 703 } 704 705 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 706 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 707 CGSCCAnalysisManager::Invalidator &Inv) { 708 // If literally everything is preserved, we're done. 709 if (PA.areAllPreserved()) 710 return false; // This is still a valid proxy. 711 712 // All updates to preserve valid results are done below, so we don't need to 713 // invalidate this proxy. 714 // 715 // Note that in order to preserve this proxy, a module pass must ensure that 716 // the FAM has been completely updated to handle the deletion of functions. 717 // Specifically, any FAM-cached results for those functions need to have been 718 // forcibly cleared. When preserved, this proxy will only invalidate results 719 // cached on functions *still in the module* at the end of the module pass. 720 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 721 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 722 for (LazyCallGraph::Node &N : C) 723 FAM->invalidate(N.getFunction(), PA); 724 725 return false; 726 } 727 728 // Directly check if the relevant set is preserved. 729 bool AreFunctionAnalysesPreserved = 730 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 731 732 // Now walk all the functions to see if any inner analysis invalidation is 733 // necessary. 734 for (LazyCallGraph::Node &N : C) { 735 Function &F = N.getFunction(); 736 Optional<PreservedAnalyses> FunctionPA; 737 738 // Check to see whether the preserved set needs to be pruned based on 739 // SCC-level analysis invalidation that triggers deferred invalidation 740 // registered with the outer analysis manager proxy for this function. 741 if (auto *OuterProxy = 742 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 743 for (const auto &OuterInvalidationPair : 744 OuterProxy->getOuterInvalidations()) { 745 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 746 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 747 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 748 if (!FunctionPA) 749 FunctionPA = PA; 750 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 751 FunctionPA->abandon(InnerAnalysisID); 752 } 753 } 754 755 // Check if we needed a custom PA set, and if so we'll need to run the 756 // inner invalidation. 757 if (FunctionPA) { 758 FAM->invalidate(F, *FunctionPA); 759 continue; 760 } 761 762 // Otherwise we only need to do invalidation if the original PA set didn't 763 // preserve all function analyses. 764 if (!AreFunctionAnalysesPreserved) 765 FAM->invalidate(F, PA); 766 } 767 768 // Return false to indicate that this result is still a valid proxy. 769 return false; 770 } 771 772 } // end namespace llvm 773 774 /// When a new SCC is created for the graph we first update the 775 /// FunctionAnalysisManager in the Proxy's result. 776 /// As there might be function analysis results cached for the functions now in 777 /// that SCC, two forms of updates are required. 778 /// 779 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 780 /// created so that any subsequent invalidation events to the SCC are 781 /// propagated to the function analysis results cached for functions within it. 782 /// 783 /// Second, if any of the functions within the SCC have analysis results with 784 /// outer analysis dependencies, then those dependencies would point to the 785 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 786 /// function analyses so that they don't retain stale handles. 787 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 788 LazyCallGraph &G, 789 CGSCCAnalysisManager &AM, 790 FunctionAnalysisManager &FAM) { 791 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 792 793 // Now walk the functions in this SCC and invalidate any function analysis 794 // results that might have outer dependencies on an SCC analysis. 795 for (LazyCallGraph::Node &N : C) { 796 Function &F = N.getFunction(); 797 798 auto *OuterProxy = 799 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 800 if (!OuterProxy) 801 // No outer analyses were queried, nothing to do. 802 continue; 803 804 // Forcibly abandon all the inner analyses with dependencies, but 805 // invalidate nothing else. 806 auto PA = PreservedAnalyses::all(); 807 for (const auto &OuterInvalidationPair : 808 OuterProxy->getOuterInvalidations()) { 809 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 810 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 811 PA.abandon(InnerAnalysisID); 812 } 813 814 // Now invalidate anything we found. 815 FAM.invalidate(F, PA); 816 } 817 } 818 819 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 820 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 821 /// added SCCs. 822 /// 823 /// The range of new SCCs must be in postorder already. The SCC they were split 824 /// out of must be provided as \p C. The current node being mutated and 825 /// triggering updates must be passed as \p N. 826 /// 827 /// This function returns the SCC containing \p N. This will be either \p C if 828 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 829 template <typename SCCRangeT> 830 static LazyCallGraph::SCC * 831 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 832 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 833 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 834 using SCC = LazyCallGraph::SCC; 835 836 if (NewSCCRange.empty()) 837 return C; 838 839 // Add the current SCC to the worklist as its shape has changed. 840 UR.CWorklist.insert(C); 841 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 842 << "\n"); 843 844 SCC *OldC = C; 845 846 // Update the current SCC. Note that if we have new SCCs, this must actually 847 // change the SCC. 848 assert(C != &*NewSCCRange.begin() && 849 "Cannot insert new SCCs without changing current SCC!"); 850 C = &*NewSCCRange.begin(); 851 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 852 853 // If we had a cached FAM proxy originally, we will want to create more of 854 // them for each SCC that was split off. 855 FunctionAnalysisManager *FAM = nullptr; 856 if (auto *FAMProxy = 857 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 858 FAM = &FAMProxy->getManager(); 859 860 // We need to propagate an invalidation call to all but the newly current SCC 861 // because the outer pass manager won't do that for us after splitting them. 862 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 863 // there are preserved analysis we can avoid invalidating them here for 864 // split-off SCCs. 865 // We know however that this will preserve any FAM proxy so go ahead and mark 866 // that. 867 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 868 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 869 AM.invalidate(*OldC, PA); 870 871 // Ensure the now-current SCC's function analyses are updated. 872 if (FAM) 873 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 874 875 for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { 876 assert(C != &NewC && "No need to re-visit the current SCC!"); 877 assert(OldC != &NewC && "Already handled the original SCC!"); 878 UR.CWorklist.insert(&NewC); 879 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 880 881 // Ensure new SCCs' function analyses are updated. 882 if (FAM) 883 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 884 885 // Also propagate a normal invalidation to the new SCC as only the current 886 // will get one from the pass manager infrastructure. 887 AM.invalidate(NewC, PA); 888 } 889 return C; 890 } 891 892 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 893 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 894 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 895 FunctionAnalysisManager &FAM, bool FunctionPass) { 896 using Node = LazyCallGraph::Node; 897 using Edge = LazyCallGraph::Edge; 898 using SCC = LazyCallGraph::SCC; 899 using RefSCC = LazyCallGraph::RefSCC; 900 901 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 902 SCC *C = &InitialC; 903 RefSCC *RC = &InitialRC; 904 Function &F = N.getFunction(); 905 906 // Walk the function body and build up the set of retained, promoted, and 907 // demoted edges. 908 SmallVector<Constant *, 16> Worklist; 909 SmallPtrSet<Constant *, 16> Visited; 910 SmallPtrSet<Node *, 16> RetainedEdges; 911 SmallSetVector<Node *, 4> PromotedRefTargets; 912 SmallSetVector<Node *, 4> DemotedCallTargets; 913 SmallSetVector<Node *, 4> NewCallEdges; 914 SmallSetVector<Node *, 4> NewRefEdges; 915 916 // First walk the function and handle all called functions. We do this first 917 // because if there is a single call edge, whether there are ref edges is 918 // irrelevant. 919 for (Instruction &I : instructions(F)) { 920 if (auto *CB = dyn_cast<CallBase>(&I)) { 921 if (Function *Callee = CB->getCalledFunction()) { 922 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 923 Node *CalleeN = G.lookup(*Callee); 924 assert(CalleeN && 925 "Visited function should already have an associated node"); 926 Edge *E = N->lookup(*CalleeN); 927 assert((E || !FunctionPass) && 928 "No function transformations should introduce *new* " 929 "call edges! Any new calls should be modeled as " 930 "promoted existing ref edges!"); 931 bool Inserted = RetainedEdges.insert(CalleeN).second; 932 (void)Inserted; 933 assert(Inserted && "We should never visit a function twice."); 934 if (!E) 935 NewCallEdges.insert(CalleeN); 936 else if (!E->isCall()) 937 PromotedRefTargets.insert(CalleeN); 938 } 939 } else { 940 // We can miss devirtualization if an indirect call is created then 941 // promoted before updateCGAndAnalysisManagerForPass runs. 942 auto *Entry = UR.IndirectVHs.find(CB); 943 if (Entry == UR.IndirectVHs.end()) 944 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 945 else if (!Entry->second) 946 Entry->second = WeakTrackingVH(CB); 947 } 948 } 949 } 950 951 // Now walk all references. 952 for (Instruction &I : instructions(F)) 953 for (Value *Op : I.operand_values()) 954 if (auto *OpC = dyn_cast<Constant>(Op)) 955 if (Visited.insert(OpC).second) 956 Worklist.push_back(OpC); 957 958 auto VisitRef = [&](Function &Referee) { 959 Node *RefereeN = G.lookup(Referee); 960 assert(RefereeN && 961 "Visited function should already have an associated node"); 962 Edge *E = N->lookup(*RefereeN); 963 assert((E || !FunctionPass) && 964 "No function transformations should introduce *new* ref " 965 "edges! Any new ref edges would require IPO which " 966 "function passes aren't allowed to do!"); 967 bool Inserted = RetainedEdges.insert(RefereeN).second; 968 (void)Inserted; 969 assert(Inserted && "We should never visit a function twice."); 970 if (!E) 971 NewRefEdges.insert(RefereeN); 972 else if (E->isCall()) 973 DemotedCallTargets.insert(RefereeN); 974 }; 975 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 976 977 // Handle new ref edges. 978 for (Node *RefTarget : NewRefEdges) { 979 SCC &TargetC = *G.lookupSCC(*RefTarget); 980 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 981 (void)TargetRC; 982 // TODO: This only allows trivial edges to be added for now. 983 #ifdef EXPENSIVE_CHECKS 984 assert((RC == &TargetRC || 985 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 986 #endif 987 RC->insertTrivialRefEdge(N, *RefTarget); 988 } 989 990 // Handle new call edges. 991 for (Node *CallTarget : NewCallEdges) { 992 SCC &TargetC = *G.lookupSCC(*CallTarget); 993 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 994 (void)TargetRC; 995 // TODO: This only allows trivial edges to be added for now. 996 #ifdef EXPENSIVE_CHECKS 997 assert((RC == &TargetRC || 998 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 999 #endif 1000 // Add a trivial ref edge to be promoted later on alongside 1001 // PromotedRefTargets. 1002 RC->insertTrivialRefEdge(N, *CallTarget); 1003 } 1004 1005 // Include synthetic reference edges to known, defined lib functions. 1006 for (auto *LibFn : G.getLibFunctions()) 1007 // While the list of lib functions doesn't have repeats, don't re-visit 1008 // anything handled above. 1009 if (!Visited.count(LibFn)) 1010 VisitRef(*LibFn); 1011 1012 // First remove all of the edges that are no longer present in this function. 1013 // The first step makes these edges uniformly ref edges and accumulates them 1014 // into a separate data structure so removal doesn't invalidate anything. 1015 SmallVector<Node *, 4> DeadTargets; 1016 for (Edge &E : *N) { 1017 if (RetainedEdges.count(&E.getNode())) 1018 continue; 1019 1020 SCC &TargetC = *G.lookupSCC(E.getNode()); 1021 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1022 if (&TargetRC == RC && E.isCall()) { 1023 if (C != &TargetC) { 1024 // For separate SCCs this is trivial. 1025 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 1026 } else { 1027 // Now update the call graph. 1028 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 1029 G, N, C, AM, UR); 1030 } 1031 } 1032 1033 // Now that this is ready for actual removal, put it into our list. 1034 DeadTargets.push_back(&E.getNode()); 1035 } 1036 // Remove the easy cases quickly and actually pull them out of our list. 1037 llvm::erase_if(DeadTargets, [&](Node *TargetN) { 1038 SCC &TargetC = *G.lookupSCC(*TargetN); 1039 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1040 1041 // We can't trivially remove internal targets, so skip 1042 // those. 1043 if (&TargetRC == RC) 1044 return false; 1045 1046 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" 1047 << *TargetN << "'\n"); 1048 RC->removeOutgoingEdge(N, *TargetN); 1049 return true; 1050 }); 1051 1052 // Now do a batch removal of the internal ref edges left. 1053 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 1054 if (!NewRefSCCs.empty()) { 1055 // The old RefSCC is dead, mark it as such. 1056 UR.InvalidatedRefSCCs.insert(RC); 1057 1058 // Note that we don't bother to invalidate analyses as ref-edge 1059 // connectivity is not really observable in any way and is intended 1060 // exclusively to be used for ordering of transforms rather than for 1061 // analysis conclusions. 1062 1063 // Update RC to the "bottom". 1064 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 1065 RC = &C->getOuterRefSCC(); 1066 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 1067 1068 // The RC worklist is in reverse postorder, so we enqueue the new ones in 1069 // RPO except for the one which contains the source node as that is the 1070 // "bottom" we will continue processing in the bottom-up walk. 1071 assert(NewRefSCCs.front() == RC && 1072 "New current RefSCC not first in the returned list!"); 1073 for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { 1074 assert(NewRC != RC && "Should not encounter the current RefSCC further " 1075 "in the postorder list of new RefSCCs."); 1076 UR.RCWorklist.insert(NewRC); 1077 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 1078 << *NewRC << "\n"); 1079 } 1080 } 1081 1082 // Next demote all the call edges that are now ref edges. This helps make 1083 // the SCCs small which should minimize the work below as we don't want to 1084 // form cycles that this would break. 1085 for (Node *RefTarget : DemotedCallTargets) { 1086 SCC &TargetC = *G.lookupSCC(*RefTarget); 1087 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1088 1089 // The easy case is when the target RefSCC is not this RefSCC. This is 1090 // only supported when the target RefSCC is a child of this RefSCC. 1091 if (&TargetRC != RC) { 1092 #ifdef EXPENSIVE_CHECKS 1093 assert(RC->isAncestorOf(TargetRC) && 1094 "Cannot potentially form RefSCC cycles here!"); 1095 #endif 1096 RC->switchOutgoingEdgeToRef(N, *RefTarget); 1097 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 1098 << "' to '" << *RefTarget << "'\n"); 1099 continue; 1100 } 1101 1102 // We are switching an internal call edge to a ref edge. This may split up 1103 // some SCCs. 1104 if (C != &TargetC) { 1105 // For separate SCCs this is trivial. 1106 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 1107 continue; 1108 } 1109 1110 // Now update the call graph. 1111 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 1112 C, AM, UR); 1113 } 1114 1115 // We added a ref edge earlier for new call edges, promote those to call edges 1116 // alongside PromotedRefTargets. 1117 for (Node *E : NewCallEdges) 1118 PromotedRefTargets.insert(E); 1119 1120 // Now promote ref edges into call edges. 1121 for (Node *CallTarget : PromotedRefTargets) { 1122 SCC &TargetC = *G.lookupSCC(*CallTarget); 1123 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1124 1125 // The easy case is when the target RefSCC is not this RefSCC. This is 1126 // only supported when the target RefSCC is a child of this RefSCC. 1127 if (&TargetRC != RC) { 1128 #ifdef EXPENSIVE_CHECKS 1129 assert(RC->isAncestorOf(TargetRC) && 1130 "Cannot potentially form RefSCC cycles here!"); 1131 #endif 1132 RC->switchOutgoingEdgeToCall(N, *CallTarget); 1133 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 1134 << "' to '" << *CallTarget << "'\n"); 1135 continue; 1136 } 1137 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 1138 << N << "' to '" << *CallTarget << "'\n"); 1139 1140 // Otherwise we are switching an internal ref edge to a call edge. This 1141 // may merge away some SCCs, and we add those to the UpdateResult. We also 1142 // need to make sure to update the worklist in the event SCCs have moved 1143 // before the current one in the post-order sequence 1144 bool HasFunctionAnalysisProxy = false; 1145 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 1146 bool FormedCycle = RC->switchInternalEdgeToCall( 1147 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 1148 for (SCC *MergedC : MergedSCCs) { 1149 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 1150 1151 HasFunctionAnalysisProxy |= 1152 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 1153 *MergedC) != nullptr; 1154 1155 // Mark that this SCC will no longer be valid. 1156 UR.InvalidatedSCCs.insert(MergedC); 1157 1158 // FIXME: We should really do a 'clear' here to forcibly release 1159 // memory, but we don't have a good way of doing that and 1160 // preserving the function analyses. 1161 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1162 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1163 AM.invalidate(*MergedC, PA); 1164 } 1165 }); 1166 1167 // If we formed a cycle by creating this call, we need to update more data 1168 // structures. 1169 if (FormedCycle) { 1170 C = &TargetC; 1171 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 1172 1173 // If one of the invalidated SCCs had a cached proxy to a function 1174 // analysis manager, we need to create a proxy in the new current SCC as 1175 // the invalidated SCCs had their functions moved. 1176 if (HasFunctionAnalysisProxy) 1177 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 1178 1179 // Any analyses cached for this SCC are no longer precise as the shape 1180 // has changed by introducing this cycle. However, we have taken care to 1181 // update the proxies so it remains valide. 1182 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1183 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1184 AM.invalidate(*C, PA); 1185 } 1186 auto NewSCCIndex = RC->find(*C) - RC->begin(); 1187 // If we have actually moved an SCC to be topologically "below" the current 1188 // one due to merging, we will need to revisit the current SCC after 1189 // visiting those moved SCCs. 1190 // 1191 // It is critical that we *do not* revisit the current SCC unless we 1192 // actually move SCCs in the process of merging because otherwise we may 1193 // form a cycle where an SCC is split apart, merged, split, merged and so 1194 // on infinitely. 1195 if (InitialSCCIndex < NewSCCIndex) { 1196 // Put our current SCC back onto the worklist as we'll visit other SCCs 1197 // that are now definitively ordered prior to the current one in the 1198 // post-order sequence, and may end up observing more precise context to 1199 // optimize the current SCC. 1200 UR.CWorklist.insert(C); 1201 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 1202 << "\n"); 1203 // Enqueue in reverse order as we pop off the back of the worklist. 1204 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 1205 RC->begin() + NewSCCIndex))) { 1206 UR.CWorklist.insert(&MovedC); 1207 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 1208 << MovedC << "\n"); 1209 } 1210 } 1211 } 1212 1213 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 1214 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 1215 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 1216 1217 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 1218 // manager now that all the updates have been applied. 1219 if (RC != &InitialRC) 1220 UR.UpdatedRC = RC; 1221 if (C != &InitialC) 1222 UR.UpdatedC = C; 1223 1224 return *C; 1225 } 1226 1227 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 1228 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1229 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1230 FunctionAnalysisManager &FAM) { 1231 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1232 /* FunctionPass */ true); 1233 } 1234 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 1235 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1236 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1237 FunctionAnalysisManager &FAM) { 1238 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1239 /* FunctionPass */ false); 1240 } 1241