1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/IR/CallSite.h" 12 #include "llvm/IR/InstIterator.h" 13 14 using namespace llvm; 15 16 // Explicit template instantiations and specialization defininitions for core 17 // template typedefs. 18 namespace llvm { 19 20 // Explicit instantiations for the core proxy templates. 21 template class AllAnalysesOn<LazyCallGraph::SCC>; 22 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 23 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 24 LazyCallGraph &, CGSCCUpdateResult &>; 25 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 26 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 27 LazyCallGraph::SCC, LazyCallGraph &>; 28 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 29 30 /// Explicitly specialize the pass manager run method to handle call graph 31 /// updates. 32 template <> 33 PreservedAnalyses 34 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 35 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 36 CGSCCAnalysisManager &AM, 37 LazyCallGraph &G, CGSCCUpdateResult &UR) { 38 PreservedAnalyses PA = PreservedAnalyses::all(); 39 40 if (DebugLogging) 41 dbgs() << "Starting CGSCC pass manager run.\n"; 42 43 // The SCC may be refined while we are running passes over it, so set up 44 // a pointer that we can update. 45 LazyCallGraph::SCC *C = &InitialC; 46 47 for (auto &Pass : Passes) { 48 if (DebugLogging) 49 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 50 51 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 52 53 // Update the SCC if necessary. 54 C = UR.UpdatedC ? UR.UpdatedC : C; 55 56 // Check that we didn't miss any update scenario. 57 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); 58 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 59 60 // Update the analysis manager as each pass runs and potentially 61 // invalidates analyses. 62 AM.invalidate(*C, PassPA); 63 64 // Finally, we intersect the final preserved analyses to compute the 65 // aggregate preserved set for this pass manager. 66 PA.intersect(std::move(PassPA)); 67 68 // FIXME: Historically, the pass managers all called the LLVM context's 69 // yield function here. We don't have a generic way to acquire the 70 // context and it isn't yet clear what the right pattern is for yielding 71 // in the new pass manager so it is currently omitted. 72 // ...getContext().yield(); 73 } 74 75 // Invaliadtion was handled after each pass in the above loop for the current 76 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 77 // preserved. We mark this with a set so that we don't need to inspect each 78 // one individually. 79 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 80 81 if (DebugLogging) 82 dbgs() << "Finished CGSCC pass manager run.\n"; 83 84 return PA; 85 } 86 87 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 88 Module &M, const PreservedAnalyses &PA, 89 ModuleAnalysisManager::Invalidator &Inv) { 90 // If literally everything is preserved, we're done. 91 if (PA.areAllPreserved()) 92 return false; // This is still a valid proxy. 93 94 // If this proxy or the call graph is going to be invalidated, we also need 95 // to clear all the keys coming from that analysis. 96 // 97 // We also directly invalidate the FAM's module proxy if necessary, and if 98 // that proxy isn't preserved we can't preserve this proxy either. We rely on 99 // it to handle module -> function analysis invalidation in the face of 100 // structural changes and so if it's unavailable we conservatively clear the 101 // entire SCC layer as well rather than trying to do invalidation ourselves. 102 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 103 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 104 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 105 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 106 InnerAM->clear(); 107 108 // And the proxy itself should be marked as invalid so that we can observe 109 // the new call graph. This isn't strictly necessary because we cheat 110 // above, but is still useful. 111 return true; 112 } 113 114 // Directly check if the relevant set is preserved so we can short circuit 115 // invalidating SCCs below. 116 bool AreSCCAnalysesPreserved = 117 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 118 119 // Ok, we have a graph, so we can propagate the invalidation down into it. 120 for (auto &RC : G->postorder_ref_sccs()) 121 for (auto &C : RC) { 122 Optional<PreservedAnalyses> InnerPA; 123 124 // Check to see whether the preserved set needs to be adjusted based on 125 // module-level analysis invalidation triggering deferred invalidation 126 // for this SCC. 127 if (auto *OuterProxy = 128 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 129 for (const auto &OuterInvalidationPair : 130 OuterProxy->getOuterInvalidations()) { 131 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 132 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 133 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 134 if (!InnerPA) 135 InnerPA = PA; 136 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 137 InnerPA->abandon(InnerAnalysisID); 138 } 139 } 140 141 // Check if we needed a custom PA set. If so we'll need to run the inner 142 // invalidation. 143 if (InnerPA) { 144 InnerAM->invalidate(C, *InnerPA); 145 continue; 146 } 147 148 // Otherwise we only need to do invalidation if the original PA set didn't 149 // preserve all SCC analyses. 150 if (!AreSCCAnalysesPreserved) 151 InnerAM->invalidate(C, PA); 152 } 153 154 // Return false to indicate that this result is still a valid proxy. 155 return false; 156 } 157 158 template <> 159 CGSCCAnalysisManagerModuleProxy::Result 160 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 161 // Force the Function analysis manager to also be available so that it can 162 // be accessed in an SCC analysis and proxied onward to function passes. 163 // FIXME: It is pretty awkward to just drop the result here and assert that 164 // we can find it again later. 165 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 166 167 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 168 } 169 170 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 171 172 FunctionAnalysisManagerCGSCCProxy::Result 173 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 174 CGSCCAnalysisManager &AM, 175 LazyCallGraph &CG) { 176 // Collect the FunctionAnalysisManager from the Module layer and use that to 177 // build the proxy result. 178 // 179 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 180 // invalidate the function analyses. 181 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 182 Module &M = *C.begin()->getFunction().getParent(); 183 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 184 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 185 "proxy is run on the module prior to entering the CGSCC " 186 "walk."); 187 188 // Note that we special-case invalidation handling of this proxy in the CGSCC 189 // analysis manager's Module proxy. This avoids the need to do anything 190 // special here to recompute all of this if ever the FAM's module proxy goes 191 // away. 192 return Result(FAMProxy->getManager()); 193 } 194 195 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 196 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 197 CGSCCAnalysisManager::Invalidator &Inv) { 198 for (LazyCallGraph::Node &N : C) 199 FAM->invalidate(N.getFunction(), PA); 200 201 // This proxy doesn't need to handle invalidation itself. Instead, the 202 // module-level CGSCC proxy handles it above by ensuring that if the 203 // module-level FAM proxy becomes invalid the entire SCC layer, which 204 // includes this proxy, is cleared. 205 return false; 206 } 207 208 } // End llvm namespace 209 210 namespace { 211 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 212 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 213 /// added SCCs. 214 /// 215 /// The range of new SCCs must be in postorder already. The SCC they were split 216 /// out of must be provided as \p C. The current node being mutated and 217 /// triggering updates must be passed as \p N. 218 /// 219 /// This function returns the SCC containing \p N. This will be either \p C if 220 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 221 template <typename SCCRangeT> 222 LazyCallGraph::SCC * 223 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 224 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 225 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 226 bool DebugLogging = false) { 227 typedef LazyCallGraph::SCC SCC; 228 229 if (NewSCCRange.begin() == NewSCCRange.end()) 230 return C; 231 232 // Add the current SCC to the worklist as its shape has changed. 233 UR.CWorklist.insert(C); 234 if (DebugLogging) 235 dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; 236 237 SCC *OldC = C; 238 (void)OldC; 239 240 // Update the current SCC. Note that if we have new SCCs, this must actually 241 // change the SCC. 242 assert(C != &*NewSCCRange.begin() && 243 "Cannot insert new SCCs without changing current SCC!"); 244 C = &*NewSCCRange.begin(); 245 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 246 247 for (SCC &NewC : 248 reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { 249 assert(C != &NewC && "No need to re-visit the current SCC!"); 250 assert(OldC != &NewC && "Already handled the original SCC!"); 251 UR.CWorklist.insert(&NewC); 252 if (DebugLogging) 253 dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; 254 } 255 return C; 256 } 257 } 258 259 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 260 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 261 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { 262 typedef LazyCallGraph::Node Node; 263 typedef LazyCallGraph::Edge Edge; 264 typedef LazyCallGraph::SCC SCC; 265 typedef LazyCallGraph::RefSCC RefSCC; 266 267 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 268 SCC *C = &InitialC; 269 RefSCC *RC = &InitialRC; 270 Function &F = N.getFunction(); 271 272 // Walk the function body and build up the set of retained, promoted, and 273 // demoted edges. 274 SmallVector<Constant *, 16> Worklist; 275 SmallPtrSet<Constant *, 16> Visited; 276 SmallPtrSet<Function *, 16> RetainedEdges; 277 SmallSetVector<Function *, 4> PromotedRefTargets; 278 SmallSetVector<Function *, 4> DemotedCallTargets; 279 280 // First walk the function and handle all called functions. We do this first 281 // because if there is a single call edge, whether there are ref edges is 282 // irrelevant. 283 for (Instruction &I : instructions(F)) 284 if (auto CS = CallSite(&I)) 285 if (Function *Callee = CS.getCalledFunction()) 286 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 287 const Edge *E = N.lookup(*Callee); 288 // FIXME: We should really handle adding new calls. While it will 289 // make downstream usage more complex, there is no fundamental 290 // limitation and it will allow passes within the CGSCC to be a bit 291 // more flexible in what transforms they can do. Until then, we 292 // verify that new calls haven't been introduced. 293 assert(E && "No function transformations should introduce *new* " 294 "call edges! Any new calls should be modeled as " 295 "promoted existing ref edges!"); 296 RetainedEdges.insert(Callee); 297 if (!E->isCall()) 298 PromotedRefTargets.insert(Callee); 299 } 300 301 // Now walk all references. 302 for (Instruction &I : instructions(F)) 303 for (Value *Op : I.operand_values()) 304 if (Constant *C = dyn_cast<Constant>(Op)) 305 if (Visited.insert(C).second) 306 Worklist.push_back(C); 307 308 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { 309 const Edge *E = N.lookup(Referee); 310 // FIXME: Similarly to new calls, we also currently preclude 311 // introducing new references. See above for details. 312 assert(E && "No function transformations should introduce *new* ref " 313 "edges! Any new ref edges would require IPO which " 314 "function passes aren't allowed to do!"); 315 RetainedEdges.insert(&Referee); 316 if (E->isCall()) 317 DemotedCallTargets.insert(&Referee); 318 }); 319 320 // First remove all of the edges that are no longer present in this function. 321 // We have to build a list of dead targets first and then remove them as the 322 // data structures will all be invalidated by removing them. 323 SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; 324 for (Edge &E : N) 325 if (!RetainedEdges.count(&E.getFunction())) 326 DeadTargets.push_back({E.getNode(), E.getKind()}); 327 for (auto DeadTarget : DeadTargets) { 328 Node &TargetN = *DeadTarget.getPointer(); 329 bool IsCall = DeadTarget.getInt() == Edge::Call; 330 SCC &TargetC = *G.lookupSCC(TargetN); 331 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 332 333 if (&TargetRC != RC) { 334 RC->removeOutgoingEdge(N, TargetN); 335 if (DebugLogging) 336 dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN 337 << "'\n"; 338 continue; 339 } 340 if (DebugLogging) 341 dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") 342 << " edge from '" << N << "' to '" << TargetN << "'\n"; 343 344 if (IsCall) { 345 if (C != &TargetC) { 346 // For separate SCCs this is trivial. 347 RC->switchTrivialInternalEdgeToRef(N, TargetN); 348 } else { 349 // Otherwise we may end up re-structuring the call graph. First, 350 // invalidate any SCC analyses. We have to do this before we split 351 // functions into new SCCs and lose track of where their analyses are 352 // cached. 353 // FIXME: We should accept a more precise preserved set here. For 354 // example, it might be possible to preserve some function analyses 355 // even as the SCC structure is changed. 356 AM.invalidate(*C, PreservedAnalyses::none()); 357 // Now update the call graph. 358 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, 359 N, C, AM, UR, DebugLogging); 360 } 361 } 362 363 auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); 364 if (!NewRefSCCs.empty()) { 365 // Note that we don't bother to invalidate analyses as ref-edge 366 // connectivity is not really observable in any way and is intended 367 // exclusively to be used for ordering of transforms rather than for 368 // analysis conclusions. 369 370 // The RC worklist is in reverse postorder, so we first enqueue the 371 // current RefSCC as it will remain the parent of all split RefSCCs, then 372 // we enqueue the new ones in RPO except for the one which contains the 373 // source node as that is the "bottom" we will continue processing in the 374 // bottom-up walk. 375 UR.RCWorklist.insert(RC); 376 if (DebugLogging) 377 dbgs() << "Enqueuing the existing RefSCC in the update worklist: " 378 << *RC << "\n"; 379 // Update the RC to the "bottom". 380 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 381 RC = &C->getOuterRefSCC(); 382 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 383 assert(NewRefSCCs.front() == RC && 384 "New current RefSCC not first in the returned list!"); 385 for (RefSCC *NewRC : reverse( 386 make_range(std::next(NewRefSCCs.begin()), NewRefSCCs.end()))) { 387 assert(NewRC != RC && "Should not encounter the current RefSCC further " 388 "in the postorder list of new RefSCCs."); 389 UR.RCWorklist.insert(NewRC); 390 if (DebugLogging) 391 dbgs() << "Enqueuing a new RefSCC in the update worklist: " << *NewRC 392 << "\n"; 393 } 394 } 395 } 396 397 // Next demote all the call edges that are now ref edges. This helps make 398 // the SCCs small which should minimize the work below as we don't want to 399 // form cycles that this would break. 400 for (Function *RefTarget : DemotedCallTargets) { 401 Node &TargetN = *G.lookup(*RefTarget); 402 SCC &TargetC = *G.lookupSCC(TargetN); 403 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 404 405 // The easy case is when the target RefSCC is not this RefSCC. This is 406 // only supported when the target RefSCC is a child of this RefSCC. 407 if (&TargetRC != RC) { 408 assert(RC->isAncestorOf(TargetRC) && 409 "Cannot potentially form RefSCC cycles here!"); 410 RC->switchOutgoingEdgeToRef(N, TargetN); 411 if (DebugLogging) 412 dbgs() << "Switch outgoing call edge to a ref edge from '" << N 413 << "' to '" << TargetN << "'\n"; 414 continue; 415 } 416 417 // We are switching an internal call edge to a ref edge. This may split up 418 // some SCCs. 419 if (C != &TargetC) { 420 // For separate SCCs this is trivial. 421 RC->switchTrivialInternalEdgeToRef(N, TargetN); 422 continue; 423 } 424 425 // Otherwise we may end up re-structuring the call graph. First, invalidate 426 // any SCC analyses. We have to do this before we split functions into new 427 // SCCs and lose track of where their analyses are cached. 428 // FIXME: We should accept a more precise preserved set here. For example, 429 // it might be possible to preserve some function analyses even as the SCC 430 // structure is changed. 431 AM.invalidate(*C, PreservedAnalyses::none()); 432 // Now update the call graph. 433 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, 434 N, C, AM, UR, DebugLogging); 435 } 436 437 // Now promote ref edges into call edges. 438 for (Function *CallTarget : PromotedRefTargets) { 439 Node &TargetN = *G.lookup(*CallTarget); 440 SCC &TargetC = *G.lookupSCC(TargetN); 441 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 442 443 // The easy case is when the target RefSCC is not this RefSCC. This is 444 // only supported when the target RefSCC is a child of this RefSCC. 445 if (&TargetRC != RC) { 446 assert(RC->isAncestorOf(TargetRC) && 447 "Cannot potentially form RefSCC cycles here!"); 448 RC->switchOutgoingEdgeToCall(N, TargetN); 449 if (DebugLogging) 450 dbgs() << "Switch outgoing ref edge to a call edge from '" << N 451 << "' to '" << TargetN << "'\n"; 452 continue; 453 } 454 if (DebugLogging) 455 dbgs() << "Switch an internal ref edge to a call edge from '" << N 456 << "' to '" << TargetN << "'\n"; 457 458 // Otherwise we are switching an internal ref edge to a call edge. This 459 // may merge away some SCCs, and we add those to the UpdateResult. We also 460 // need to make sure to update the worklist in the event SCCs have moved 461 // before the current one in the post-order sequence. 462 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 463 auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); 464 if (!InvalidatedSCCs.empty()) { 465 C = &TargetC; 466 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 467 468 // Any analyses cached for this SCC are no longer precise as the shape 469 // has changed by introducing this cycle. 470 AM.invalidate(*C, PreservedAnalyses::none()); 471 472 for (SCC *InvalidatedC : InvalidatedSCCs) { 473 assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); 474 UR.InvalidatedSCCs.insert(InvalidatedC); 475 476 // Also clear any cached analyses for the SCCs that are dead. This 477 // isn't really necessary for correctness but can release memory. 478 AM.clear(*InvalidatedC); 479 } 480 } 481 auto NewSCCIndex = RC->find(*C) - RC->begin(); 482 if (InitialSCCIndex < NewSCCIndex) { 483 // Put our current SCC back onto the worklist as we'll visit other SCCs 484 // that are now definitively ordered prior to the current one in the 485 // post-order sequence, and may end up observing more precise context to 486 // optimize the current SCC. 487 UR.CWorklist.insert(C); 488 if (DebugLogging) 489 dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; 490 // Enqueue in reverse order as we pop off the back of the worklist. 491 for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, 492 RC->begin() + NewSCCIndex))) { 493 UR.CWorklist.insert(&MovedC); 494 if (DebugLogging) 495 dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC 496 << "\n"; 497 } 498 } 499 } 500 501 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 502 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 503 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 504 505 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 506 // manager now that all the updates have been applied. 507 if (RC != &InitialRC) 508 UR.UpdatedRC = RC; 509 if (C != &InitialC) 510 UR.UpdatedC = C; 511 512 return *C; 513 } 514