1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Analysis/CGSCCPassManager.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/Optional.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/Analysis/LazyCallGraph.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/InstIterator.h"
20 #include "llvm/IR/Instruction.h"
21 #include "llvm/IR/PassManager.h"
22 #include "llvm/IR/PassManagerImpl.h"
23 #include "llvm/IR/ValueHandle.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/TimeProfiler.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <iterator>
33 
34 #define DEBUG_TYPE "cgscc"
35 
36 using namespace llvm;
37 
38 // Explicit template instantiations and specialization definitions for core
39 // template typedefs.
40 namespace llvm {
41 
42 static cl::opt<bool> AbortOnMaxDevirtIterationsReached(
43     "abort-on-max-devirt-iterations-reached",
44     cl::desc("Abort when the max iterations for devirtualization CGSCC repeat "
45              "pass is reached"));
46 
47 AnalysisKey FunctionStatusAnalysis::Key;
48 
49 // Explicit instantiations for the core proxy templates.
50 template class AllAnalysesOn<LazyCallGraph::SCC>;
51 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
52 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
53                            LazyCallGraph &, CGSCCUpdateResult &>;
54 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
55 template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
56                                          LazyCallGraph::SCC, LazyCallGraph &>;
57 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
58 
59 /// Explicitly specialize the pass manager run method to handle call graph
60 /// updates.
61 template <>
62 PreservedAnalyses
63 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
64             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
65                                       CGSCCAnalysisManager &AM,
66                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
67   // Request PassInstrumentation from analysis manager, will use it to run
68   // instrumenting callbacks for the passes later.
69   PassInstrumentation PI =
70       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
71 
72   PreservedAnalyses PA = PreservedAnalyses::all();
73 
74   if (DebugLogging)
75     dbgs() << "Starting CGSCC pass manager run.\n";
76 
77   // The SCC may be refined while we are running passes over it, so set up
78   // a pointer that we can update.
79   LazyCallGraph::SCC *C = &InitialC;
80 
81   // Get Function analysis manager from its proxy.
82   FunctionAnalysisManager &FAM =
83       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager();
84 
85   for (auto &Pass : Passes) {
86     // Check the PassInstrumentation's BeforePass callbacks before running the
87     // pass, skip its execution completely if asked to (callback returns false).
88     if (!PI.runBeforePass(*Pass, *C))
89       continue;
90 
91     PreservedAnalyses PassPA;
92     {
93       TimeTraceScope TimeScope(Pass->name());
94       PassPA = Pass->run(*C, AM, G, UR);
95     }
96 
97     if (UR.InvalidatedSCCs.count(C))
98       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
99     else
100       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
101 
102     // Update the SCC if necessary.
103     C = UR.UpdatedC ? UR.UpdatedC : C;
104     if (UR.UpdatedC) {
105       // If C is updated, also create a proxy and update FAM inside the result.
106       auto *ResultFAMCP =
107           &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
108       ResultFAMCP->updateFAM(FAM);
109     }
110 
111     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
112     // current SCC may simply need to be skipped if invalid.
113     if (UR.InvalidatedSCCs.count(C)) {
114       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
115       break;
116     }
117     // Check that we didn't miss any update scenario.
118     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
119 
120     // Update the analysis manager as each pass runs and potentially
121     // invalidates analyses.
122     AM.invalidate(*C, PassPA);
123 
124     // Finally, we intersect the final preserved analyses to compute the
125     // aggregate preserved set for this pass manager.
126     PA.intersect(std::move(PassPA));
127 
128     // FIXME: Historically, the pass managers all called the LLVM context's
129     // yield function here. We don't have a generic way to acquire the
130     // context and it isn't yet clear what the right pattern is for yielding
131     // in the new pass manager so it is currently omitted.
132     // ...getContext().yield();
133   }
134 
135   // Before we mark all of *this* SCC's analyses as preserved below, intersect
136   // this with the cross-SCC preserved analysis set. This is used to allow
137   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
138   // for them.
139   UR.CrossSCCPA.intersect(PA);
140 
141   // Invalidation was handled after each pass in the above loop for the current
142   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
143   // preserved. We mark this with a set so that we don't need to inspect each
144   // one individually.
145   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
146 
147   if (DebugLogging)
148     dbgs() << "Finished CGSCC pass manager run.\n";
149 
150   return PA;
151 }
152 
153 PreservedAnalyses
154 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) {
155   // Setup the CGSCC analysis manager from its proxy.
156   CGSCCAnalysisManager &CGAM =
157       AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager();
158 
159   // Get the call graph for this module.
160   LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M);
161 
162   // Get Function analysis manager from its proxy.
163   FunctionAnalysisManager &FAM =
164       AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager();
165 
166   // We keep worklists to allow us to push more work onto the pass manager as
167   // the passes are run.
168   SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist;
169   SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist;
170 
171   // Keep sets for invalidated SCCs and RefSCCs that should be skipped when
172   // iterating off the worklists.
173   SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet;
174   SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet;
175 
176   SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4>
177       InlinedInternalEdges;
178 
179   CGSCCUpdateResult UR = {
180       RCWorklist, CWorklist, InvalidRefSCCSet,         InvalidSCCSet,
181       nullptr,    nullptr,   PreservedAnalyses::all(), InlinedInternalEdges,
182       {}};
183 
184   // Request PassInstrumentation from analysis manager, will use it to run
185   // instrumenting callbacks for the passes later.
186   PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
187 
188   PreservedAnalyses PA = PreservedAnalyses::all();
189   CG.buildRefSCCs();
190   for (auto RCI = CG.postorder_ref_scc_begin(),
191             RCE = CG.postorder_ref_scc_end();
192        RCI != RCE;) {
193     assert(RCWorklist.empty() &&
194            "Should always start with an empty RefSCC worklist");
195     // The postorder_ref_sccs range we are walking is lazily constructed, so
196     // we only push the first one onto the worklist. The worklist allows us
197     // to capture *new* RefSCCs created during transformations.
198     //
199     // We really want to form RefSCCs lazily because that makes them cheaper
200     // to update as the program is simplified and allows us to have greater
201     // cache locality as forming a RefSCC touches all the parts of all the
202     // functions within that RefSCC.
203     //
204     // We also eagerly increment the iterator to the next position because
205     // the CGSCC passes below may delete the current RefSCC.
206     RCWorklist.insert(&*RCI++);
207 
208     do {
209       LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val();
210       if (InvalidRefSCCSet.count(RC)) {
211         LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n");
212         continue;
213       }
214 
215       assert(CWorklist.empty() &&
216              "Should always start with an empty SCC worklist");
217 
218       LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC
219                         << "\n");
220 
221       // The top of the worklist may *also* be the same SCC we just ran over
222       // (and invalidated for). Keep track of that last SCC we processed due
223       // to SCC update to avoid redundant processing when an SCC is both just
224       // updated itself and at the top of the worklist.
225       LazyCallGraph::SCC *LastUpdatedC = nullptr;
226 
227       // Push the initial SCCs in reverse post-order as we'll pop off the
228       // back and so see this in post-order.
229       for (LazyCallGraph::SCC &C : llvm::reverse(*RC))
230         CWorklist.insert(&C);
231 
232       do {
233         LazyCallGraph::SCC *C = CWorklist.pop_back_val();
234         // Due to call graph mutations, we may have invalid SCCs or SCCs from
235         // other RefSCCs in the worklist. The invalid ones are dead and the
236         // other RefSCCs should be queued above, so we just need to skip both
237         // scenarios here.
238         if (InvalidSCCSet.count(C)) {
239           LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n");
240           continue;
241         }
242         if (LastUpdatedC == C) {
243           LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n");
244           continue;
245         }
246         if (&C->getOuterRefSCC() != RC) {
247           LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other "
248                                "RefSCC...\n");
249           continue;
250         }
251 
252         // Ensure we can proxy analysis updates from the CGSCC analysis manager
253         // into the the Function analysis manager by getting a proxy here.
254         // This also needs to update the FunctionAnalysisManager, as this may be
255         // the first time we see this SCC.
256         CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
257             FAM);
258 
259         // Each time we visit a new SCC pulled off the worklist,
260         // a transformation of a child SCC may have also modified this parent
261         // and invalidated analyses. So we invalidate using the update record's
262         // cross-SCC preserved set. This preserved set is intersected by any
263         // CGSCC pass that handles invalidation (primarily pass managers) prior
264         // to marking its SCC as preserved. That lets us track everything that
265         // might need invalidation across SCCs without excessive invalidations
266         // on a single SCC.
267         //
268         // This essentially allows SCC passes to freely invalidate analyses
269         // of any ancestor SCC. If this becomes detrimental to successfully
270         // caching analyses, we could force each SCC pass to manually
271         // invalidate the analyses for any SCCs other than themselves which
272         // are mutated. However, that seems to lose the robustness of the
273         // pass-manager driven invalidation scheme.
274         CGAM.invalidate(*C, UR.CrossSCCPA);
275 
276         do {
277           // Check that we didn't miss any update scenario.
278           assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!");
279           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
280           assert(&C->getOuterRefSCC() == RC &&
281                  "Processing an SCC in a different RefSCC!");
282 
283           LastUpdatedC = UR.UpdatedC;
284           UR.UpdatedRC = nullptr;
285           UR.UpdatedC = nullptr;
286 
287           // Check the PassInstrumentation's BeforePass callbacks before
288           // running the pass, skip its execution completely if asked to
289           // (callback returns false).
290           if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
291             continue;
292 
293           PreservedAnalyses PassPA;
294           {
295             TimeTraceScope TimeScope(Pass->name());
296             PassPA = Pass->run(*C, CGAM, CG, UR);
297           }
298 
299           if (UR.InvalidatedSCCs.count(C))
300             PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
301           else
302             PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
303 
304           // Update the SCC and RefSCC if necessary.
305           C = UR.UpdatedC ? UR.UpdatedC : C;
306           RC = UR.UpdatedRC ? UR.UpdatedRC : RC;
307 
308           if (UR.UpdatedC) {
309             // If we're updating the SCC, also update the FAM inside the proxy's
310             // result.
311             CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM(
312                 FAM);
313           }
314 
315           // If the CGSCC pass wasn't able to provide a valid updated SCC,
316           // the current SCC may simply need to be skipped if invalid.
317           if (UR.InvalidatedSCCs.count(C)) {
318             LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
319             break;
320           }
321           // Check that we didn't miss any update scenario.
322           assert(C->begin() != C->end() && "Cannot have an empty SCC!");
323 
324           // We handle invalidating the CGSCC analysis manager's information
325           // for the (potentially updated) SCC here. Note that any other SCCs
326           // whose structure has changed should have been invalidated by
327           // whatever was updating the call graph. This SCC gets invalidated
328           // late as it contains the nodes that were actively being
329           // processed.
330           CGAM.invalidate(*C, PassPA);
331 
332           // Then intersect the preserved set so that invalidation of module
333           // analyses will eventually occur when the module pass completes.
334           // Also intersect with the cross-SCC preserved set to capture any
335           // cross-SCC invalidation.
336           UR.CrossSCCPA.intersect(PassPA);
337           PA.intersect(std::move(PassPA));
338 
339           // The pass may have restructured the call graph and refined the
340           // current SCC and/or RefSCC. We need to update our current SCC and
341           // RefSCC pointers to follow these. Also, when the current SCC is
342           // refined, re-run the SCC pass over the newly refined SCC in order
343           // to observe the most precise SCC model available. This inherently
344           // cannot cycle excessively as it only happens when we split SCCs
345           // apart, at most converging on a DAG of single nodes.
346           // FIXME: If we ever start having RefSCC passes, we'll want to
347           // iterate there too.
348           if (UR.UpdatedC)
349             LLVM_DEBUG(dbgs()
350                        << "Re-running SCC passes after a refinement of the "
351                           "current SCC: "
352                        << *UR.UpdatedC << "\n");
353 
354           // Note that both `C` and `RC` may at this point refer to deleted,
355           // invalid SCC and RefSCCs respectively. But we will short circuit
356           // the processing when we check them in the loop above.
357         } while (UR.UpdatedC);
358       } while (!CWorklist.empty());
359 
360       // We only need to keep internal inlined edge information within
361       // a RefSCC, clear it to save on space and let the next time we visit
362       // any of these functions have a fresh start.
363       InlinedInternalEdges.clear();
364     } while (!RCWorklist.empty());
365   }
366 
367   // By definition we preserve the call garph, all SCC analyses, and the
368   // analysis proxies by handling them above and in any nested pass managers.
369   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
370   PA.preserve<LazyCallGraphAnalysis>();
371   PA.preserve<CGSCCAnalysisManagerModuleProxy>();
372   PA.preserve<FunctionAnalysisManagerModuleProxy>();
373   return PA;
374 }
375 
376 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC,
377                                              CGSCCAnalysisManager &AM,
378                                              LazyCallGraph &CG,
379                                              CGSCCUpdateResult &UR) {
380   PreservedAnalyses PA = PreservedAnalyses::all();
381   PassInstrumentation PI =
382       AM.getResult<PassInstrumentationAnalysis>(InitialC, CG);
383 
384   // The SCC may be refined while we are running passes over it, so set up
385   // a pointer that we can update.
386   LazyCallGraph::SCC *C = &InitialC;
387 
388   // Struct to track the counts of direct and indirect calls in each function
389   // of the SCC.
390   struct CallCount {
391     int Direct;
392     int Indirect;
393   };
394 
395   // Put value handles on all of the indirect calls and return the number of
396   // direct calls for each function in the SCC.
397   auto ScanSCC = [](LazyCallGraph::SCC &C,
398                     SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) {
399     assert(CallHandles.empty() && "Must start with a clear set of handles.");
400 
401     SmallDenseMap<Function *, CallCount> CallCounts;
402     CallCount CountLocal = {0, 0};
403     for (LazyCallGraph::Node &N : C) {
404       CallCount &Count =
405           CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal))
406               .first->second;
407       for (Instruction &I : instructions(N.getFunction()))
408         if (auto *CB = dyn_cast<CallBase>(&I)) {
409           if (CB->getCalledFunction()) {
410             ++Count.Direct;
411           } else {
412             ++Count.Indirect;
413             CallHandles.insert({CB, WeakTrackingVH(CB)});
414           }
415         }
416     }
417 
418     return CallCounts;
419   };
420 
421   UR.IndirectVHs.clear();
422   // Populate the initial call handles and get the initial call counts.
423   auto CallCounts = ScanSCC(*C, UR.IndirectVHs);
424 
425   for (int Iteration = 0;; ++Iteration) {
426     if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C))
427       continue;
428 
429     PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR);
430 
431     if (UR.InvalidatedSCCs.count(C))
432       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA);
433     else
434       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA);
435 
436     // If the SCC structure has changed, bail immediately and let the outer
437     // CGSCC layer handle any iteration to reflect the refined structure.
438     if (UR.UpdatedC && UR.UpdatedC != C) {
439       PA.intersect(std::move(PassPA));
440       break;
441     }
442 
443     // Check that we didn't miss any update scenario.
444     assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!");
445     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
446 
447     // Check whether any of the handles were devirtualized.
448     bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool {
449       if (P.second) {
450         if (CallBase *CB = dyn_cast<CallBase>(P.second)) {
451           if (CB->getCalledFunction()) {
452             LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n");
453             return true;
454           }
455         }
456       }
457       return false;
458     });
459 
460     // Rescan to build up a new set of handles and count how many direct
461     // calls remain. If we decide to iterate, this also sets up the input to
462     // the next iteration.
463     UR.IndirectVHs.clear();
464     auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs);
465 
466     // If we haven't found an explicit devirtualization already see if we
467     // have decreased the number of indirect calls and increased the number
468     // of direct calls for any function in the SCC. This can be fooled by all
469     // manner of transformations such as DCE and other things, but seems to
470     // work well in practice.
471     if (!Devirt)
472       // Iterate over the keys in NewCallCounts, if Function also exists in
473       // CallCounts, make the check below.
474       for (auto &Pair : NewCallCounts) {
475         auto &CallCountNew = Pair.second;
476         auto CountIt = CallCounts.find(Pair.first);
477         if (CountIt != CallCounts.end()) {
478           const auto &CallCountOld = CountIt->second;
479           if (CallCountOld.Indirect > CallCountNew.Indirect &&
480               CallCountOld.Direct < CallCountNew.Direct) {
481             Devirt = true;
482             break;
483           }
484         }
485       }
486 
487     if (!Devirt) {
488       PA.intersect(std::move(PassPA));
489       break;
490     }
491 
492     // Otherwise, if we've already hit our max, we're done.
493     if (Iteration >= MaxIterations) {
494       if (AbortOnMaxDevirtIterationsReached)
495         report_fatal_error("Max devirtualization iterations reached");
496       LLVM_DEBUG(
497           dbgs() << "Found another devirtualization after hitting the max "
498                     "number of repetitions ("
499                  << MaxIterations << ") on SCC: " << *C << "\n");
500       PA.intersect(std::move(PassPA));
501       break;
502     }
503 
504     LLVM_DEBUG(
505         dbgs() << "Repeating an SCC pass after finding a devirtualization in: "
506                << *C << "\n");
507 
508     // Move over the new call counts in preparation for iterating.
509     CallCounts = std::move(NewCallCounts);
510 
511     // Update the analysis manager with each run and intersect the total set
512     // of preserved analyses so we're ready to iterate.
513     AM.invalidate(*C, PassPA);
514 
515     PA.intersect(std::move(PassPA));
516   }
517 
518   // Note that we don't add any preserved entries here unlike a more normal
519   // "pass manager" because we only handle invalidation *between* iterations,
520   // not after the last iteration.
521   return PA;
522 }
523 
524 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C,
525                                                   CGSCCAnalysisManager &AM,
526                                                   LazyCallGraph &CG,
527                                                   CGSCCUpdateResult &UR) {
528   // Setup the function analysis manager from its proxy.
529   FunctionAnalysisManager &FAM =
530       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
531 
532   SmallVector<LazyCallGraph::Node *, 4> Nodes;
533   for (LazyCallGraph::Node &N : C)
534     Nodes.push_back(&N);
535 
536   // The SCC may get split while we are optimizing functions due to deleting
537   // edges. If this happens, the current SCC can shift, so keep track of
538   // a pointer we can overwrite.
539   LazyCallGraph::SCC *CurrentC = &C;
540 
541   LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n");
542 
543   PreservedAnalyses PA = PreservedAnalyses::all();
544   for (LazyCallGraph::Node *N : Nodes) {
545     // Skip nodes from other SCCs. These may have been split out during
546     // processing. We'll eventually visit those SCCs and pick up the nodes
547     // there.
548     if (CG.lookupSCC(*N) != CurrentC)
549       continue;
550 
551     Function &F = N->getFunction();
552     // The expectation here is that FunctionStatusAnalysis was required at the
553     // end of the function passes pipeline managed by this adaptor. Then, if any
554     // CGSCC passes were re-run because CGSCCs changed (or devirtualization),
555     // and none changed F, then FunctionStatusAnalysis would still be cached
556     // here and we don't need to rerun the passes managed by this adaptor.
557     if (FAM.getCachedResult<FunctionStatusAnalysis>(F))
558       continue;
559 
560     PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
561     if (!PI.runBeforePass<Function>(*Pass, F))
562       continue;
563 
564     PreservedAnalyses PassPA;
565     {
566       TimeTraceScope TimeScope(Pass->name());
567       PassPA = Pass->run(F, FAM);
568     }
569 
570     PI.runAfterPass<Function>(*Pass, F, PassPA);
571 
572     // We know that the function pass couldn't have invalidated any other
573     // function's analyses (that's the contract of a function pass), so
574     // directly handle the function analysis manager's invalidation here.
575     FAM.invalidate(F, PassPA);
576 
577     // Then intersect the preserved set so that invalidation of module
578     // analyses will eventually occur when the module pass completes.
579     PA.intersect(std::move(PassPA));
580 
581     // If the call graph hasn't been preserved, update it based on this
582     // function pass. This may also update the current SCC to point to
583     // a smaller, more refined SCC.
584     auto PAC = PA.getChecker<LazyCallGraphAnalysis>();
585     if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) {
586       CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N,
587                                                             AM, UR, FAM);
588       assert(CG.lookupSCC(*N) == CurrentC &&
589              "Current SCC not updated to the SCC containing the current node!");
590     }
591   }
592 
593   // By definition we preserve the proxy. And we preserve all analyses on
594   // Functions. This precludes *any* invalidation of function analyses by the
595   // proxy, but that's OK because we've taken care to invalidate analyses in
596   // the function analysis manager incrementally above.
597   PA.preserveSet<AllAnalysesOn<Function>>();
598   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
599 
600   // We've also ensured that we updated the call graph along the way.
601   PA.preserve<LazyCallGraphAnalysis>();
602 
603   return PA;
604 }
605 
606 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
607     Module &M, const PreservedAnalyses &PA,
608     ModuleAnalysisManager::Invalidator &Inv) {
609   // If literally everything is preserved, we're done.
610   if (PA.areAllPreserved())
611     return false; // This is still a valid proxy.
612 
613   // If this proxy or the call graph is going to be invalidated, we also need
614   // to clear all the keys coming from that analysis.
615   //
616   // We also directly invalidate the FAM's module proxy if necessary, and if
617   // that proxy isn't preserved we can't preserve this proxy either. We rely on
618   // it to handle module -> function analysis invalidation in the face of
619   // structural changes and so if it's unavailable we conservatively clear the
620   // entire SCC layer as well rather than trying to do invalidation ourselves.
621   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
622   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
623       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
624       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
625     InnerAM->clear();
626 
627     // And the proxy itself should be marked as invalid so that we can observe
628     // the new call graph. This isn't strictly necessary because we cheat
629     // above, but is still useful.
630     return true;
631   }
632 
633   // Directly check if the relevant set is preserved so we can short circuit
634   // invalidating SCCs below.
635   bool AreSCCAnalysesPreserved =
636       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
637 
638   // Ok, we have a graph, so we can propagate the invalidation down into it.
639   G->buildRefSCCs();
640   for (auto &RC : G->postorder_ref_sccs())
641     for (auto &C : RC) {
642       Optional<PreservedAnalyses> InnerPA;
643 
644       // Check to see whether the preserved set needs to be adjusted based on
645       // module-level analysis invalidation triggering deferred invalidation
646       // for this SCC.
647       if (auto *OuterProxy =
648               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
649         for (const auto &OuterInvalidationPair :
650              OuterProxy->getOuterInvalidations()) {
651           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
652           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
653           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
654             if (!InnerPA)
655               InnerPA = PA;
656             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
657               InnerPA->abandon(InnerAnalysisID);
658           }
659         }
660 
661       // Check if we needed a custom PA set. If so we'll need to run the inner
662       // invalidation.
663       if (InnerPA) {
664         InnerAM->invalidate(C, *InnerPA);
665         continue;
666       }
667 
668       // Otherwise we only need to do invalidation if the original PA set didn't
669       // preserve all SCC analyses.
670       if (!AreSCCAnalysesPreserved)
671         InnerAM->invalidate(C, PA);
672     }
673 
674   // Return false to indicate that this result is still a valid proxy.
675   return false;
676 }
677 
678 template <>
679 CGSCCAnalysisManagerModuleProxy::Result
680 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
681   // Force the Function analysis manager to also be available so that it can
682   // be accessed in an SCC analysis and proxied onward to function passes.
683   // FIXME: It is pretty awkward to just drop the result here and assert that
684   // we can find it again later.
685   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
686 
687   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
688 }
689 
690 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
691 
692 FunctionAnalysisManagerCGSCCProxy::Result
693 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
694                                        CGSCCAnalysisManager &AM,
695                                        LazyCallGraph &CG) {
696   // Note: unconditionally getting checking that the proxy exists may get it at
697   // this point. There are cases when this is being run unnecessarily, but
698   // it is cheap and having the assertion in place is more valuable.
699   auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
700   Module &M = *C.begin()->getFunction().getParent();
701   bool ProxyExists =
702       MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M);
703   assert(ProxyExists &&
704          "The CGSCC pass manager requires that the FAM module proxy is run "
705          "on the module prior to entering the CGSCC walk");
706   (void)ProxyExists;
707 
708   // We just return an empty result. The caller will use the updateFAM interface
709   // to correctly register the relevant FunctionAnalysisManager based on the
710   // context in which this proxy is run.
711   return Result();
712 }
713 
714 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
715     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
716     CGSCCAnalysisManager::Invalidator &Inv) {
717   // If literally everything is preserved, we're done.
718   if (PA.areAllPreserved())
719     return false; // This is still a valid proxy.
720 
721   // All updates to preserve valid results are done below, so we don't need to
722   // invalidate this proxy.
723   //
724   // Note that in order to preserve this proxy, a module pass must ensure that
725   // the FAM has been completely updated to handle the deletion of functions.
726   // Specifically, any FAM-cached results for those functions need to have been
727   // forcibly cleared. When preserved, this proxy will only invalidate results
728   // cached on functions *still in the module* at the end of the module pass.
729   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
730   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
731     for (LazyCallGraph::Node &N : C)
732       FAM->invalidate(N.getFunction(), PA);
733 
734     return false;
735   }
736 
737   // Directly check if the relevant set is preserved.
738   bool AreFunctionAnalysesPreserved =
739       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
740 
741   // Now walk all the functions to see if any inner analysis invalidation is
742   // necessary.
743   for (LazyCallGraph::Node &N : C) {
744     Function &F = N.getFunction();
745     Optional<PreservedAnalyses> FunctionPA;
746 
747     // Check to see whether the preserved set needs to be pruned based on
748     // SCC-level analysis invalidation that triggers deferred invalidation
749     // registered with the outer analysis manager proxy for this function.
750     if (auto *OuterProxy =
751             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
752       for (const auto &OuterInvalidationPair :
753            OuterProxy->getOuterInvalidations()) {
754         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
755         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
756         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
757           if (!FunctionPA)
758             FunctionPA = PA;
759           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
760             FunctionPA->abandon(InnerAnalysisID);
761         }
762       }
763 
764     // Check if we needed a custom PA set, and if so we'll need to run the
765     // inner invalidation.
766     if (FunctionPA) {
767       FAM->invalidate(F, *FunctionPA);
768       continue;
769     }
770 
771     // Otherwise we only need to do invalidation if the original PA set didn't
772     // preserve all function analyses.
773     if (!AreFunctionAnalysesPreserved)
774       FAM->invalidate(F, PA);
775   }
776 
777   // Return false to indicate that this result is still a valid proxy.
778   return false;
779 }
780 
781 } // end namespace llvm
782 
783 /// When a new SCC is created for the graph we first update the
784 /// FunctionAnalysisManager in the Proxy's result.
785 /// As there might be function analysis results cached for the functions now in
786 /// that SCC, two forms of  updates are required.
787 ///
788 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
789 /// created so that any subsequent invalidation events to the SCC are
790 /// propagated to the function analysis results cached for functions within it.
791 ///
792 /// Second, if any of the functions within the SCC have analysis results with
793 /// outer analysis dependencies, then those dependencies would point to the
794 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
795 /// function analyses so that they don't retain stale handles.
796 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
797                                          LazyCallGraph &G,
798                                          CGSCCAnalysisManager &AM,
799                                          FunctionAnalysisManager &FAM) {
800   AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM);
801 
802   // Now walk the functions in this SCC and invalidate any function analysis
803   // results that might have outer dependencies on an SCC analysis.
804   for (LazyCallGraph::Node &N : C) {
805     Function &F = N.getFunction();
806 
807     auto *OuterProxy =
808         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
809     if (!OuterProxy)
810       // No outer analyses were queried, nothing to do.
811       continue;
812 
813     // Forcibly abandon all the inner analyses with dependencies, but
814     // invalidate nothing else.
815     auto PA = PreservedAnalyses::all();
816     for (const auto &OuterInvalidationPair :
817          OuterProxy->getOuterInvalidations()) {
818       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
819       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
820         PA.abandon(InnerAnalysisID);
821     }
822 
823     // Now invalidate anything we found.
824     FAM.invalidate(F, PA);
825   }
826 }
827 
828 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
829 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
830 /// added SCCs.
831 ///
832 /// The range of new SCCs must be in postorder already. The SCC they were split
833 /// out of must be provided as \p C. The current node being mutated and
834 /// triggering updates must be passed as \p N.
835 ///
836 /// This function returns the SCC containing \p N. This will be either \p C if
837 /// no new SCCs have been split out, or it will be the new SCC containing \p N.
838 template <typename SCCRangeT>
839 static LazyCallGraph::SCC *
840 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
841                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
842                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
843   using SCC = LazyCallGraph::SCC;
844 
845   if (NewSCCRange.empty())
846     return C;
847 
848   // Add the current SCC to the worklist as its shape has changed.
849   UR.CWorklist.insert(C);
850   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
851                     << "\n");
852 
853   SCC *OldC = C;
854 
855   // Update the current SCC. Note that if we have new SCCs, this must actually
856   // change the SCC.
857   assert(C != &*NewSCCRange.begin() &&
858          "Cannot insert new SCCs without changing current SCC!");
859   C = &*NewSCCRange.begin();
860   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
861 
862   // If we had a cached FAM proxy originally, we will want to create more of
863   // them for each SCC that was split off.
864   FunctionAnalysisManager *FAM = nullptr;
865   if (auto *FAMProxy =
866           AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC))
867     FAM = &FAMProxy->getManager();
868 
869   // We need to propagate an invalidation call to all but the newly current SCC
870   // because the outer pass manager won't do that for us after splitting them.
871   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
872   // there are preserved analysis we can avoid invalidating them here for
873   // split-off SCCs.
874   // We know however that this will preserve any FAM proxy so go ahead and mark
875   // that.
876   auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
877   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
878   AM.invalidate(*OldC, PA);
879 
880   // Ensure the now-current SCC's function analyses are updated.
881   if (FAM)
882     updateNewSCCFunctionAnalyses(*C, G, AM, *FAM);
883 
884   for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) {
885     assert(C != &NewC && "No need to re-visit the current SCC!");
886     assert(OldC != &NewC && "Already handled the original SCC!");
887     UR.CWorklist.insert(&NewC);
888     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
889 
890     // Ensure new SCCs' function analyses are updated.
891     if (FAM)
892       updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM);
893 
894     // Also propagate a normal invalidation to the new SCC as only the current
895     // will get one from the pass manager infrastructure.
896     AM.invalidate(NewC, PA);
897   }
898   return C;
899 }
900 
901 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass(
902     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
903     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
904     FunctionAnalysisManager &FAM, bool FunctionPass) {
905   using Node = LazyCallGraph::Node;
906   using Edge = LazyCallGraph::Edge;
907   using SCC = LazyCallGraph::SCC;
908   using RefSCC = LazyCallGraph::RefSCC;
909 
910   RefSCC &InitialRC = InitialC.getOuterRefSCC();
911   SCC *C = &InitialC;
912   RefSCC *RC = &InitialRC;
913   Function &F = N.getFunction();
914 
915   // Walk the function body and build up the set of retained, promoted, and
916   // demoted edges.
917   SmallVector<Constant *, 16> Worklist;
918   SmallPtrSet<Constant *, 16> Visited;
919   SmallPtrSet<Node *, 16> RetainedEdges;
920   SmallSetVector<Node *, 4> PromotedRefTargets;
921   SmallSetVector<Node *, 4> DemotedCallTargets;
922   SmallSetVector<Node *, 4> NewCallEdges;
923   SmallSetVector<Node *, 4> NewRefEdges;
924 
925   // First walk the function and handle all called functions. We do this first
926   // because if there is a single call edge, whether there are ref edges is
927   // irrelevant.
928   for (Instruction &I : instructions(F)) {
929     if (auto *CB = dyn_cast<CallBase>(&I)) {
930       if (Function *Callee = CB->getCalledFunction()) {
931         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
932           Node *CalleeN = G.lookup(*Callee);
933           assert(CalleeN &&
934                  "Visited function should already have an associated node");
935           Edge *E = N->lookup(*CalleeN);
936           assert((E || !FunctionPass) &&
937                  "No function transformations should introduce *new* "
938                  "call edges! Any new calls should be modeled as "
939                  "promoted existing ref edges!");
940           bool Inserted = RetainedEdges.insert(CalleeN).second;
941           (void)Inserted;
942           assert(Inserted && "We should never visit a function twice.");
943           if (!E)
944             NewCallEdges.insert(CalleeN);
945           else if (!E->isCall())
946             PromotedRefTargets.insert(CalleeN);
947         }
948       } else {
949         // We can miss devirtualization if an indirect call is created then
950         // promoted before updateCGAndAnalysisManagerForPass runs.
951         auto *Entry = UR.IndirectVHs.find(CB);
952         if (Entry == UR.IndirectVHs.end())
953           UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)});
954         else if (!Entry->second)
955           Entry->second = WeakTrackingVH(CB);
956       }
957     }
958   }
959 
960   // Now walk all references.
961   for (Instruction &I : instructions(F))
962     for (Value *Op : I.operand_values())
963       if (auto *OpC = dyn_cast<Constant>(Op))
964         if (Visited.insert(OpC).second)
965           Worklist.push_back(OpC);
966 
967   auto VisitRef = [&](Function &Referee) {
968     Node *RefereeN = G.lookup(Referee);
969     assert(RefereeN &&
970            "Visited function should already have an associated node");
971     Edge *E = N->lookup(*RefereeN);
972     assert((E || !FunctionPass) &&
973            "No function transformations should introduce *new* ref "
974            "edges! Any new ref edges would require IPO which "
975            "function passes aren't allowed to do!");
976     bool Inserted = RetainedEdges.insert(RefereeN).second;
977     (void)Inserted;
978     assert(Inserted && "We should never visit a function twice.");
979     if (!E)
980       NewRefEdges.insert(RefereeN);
981     else if (E->isCall())
982       DemotedCallTargets.insert(RefereeN);
983   };
984   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
985 
986   // Handle new ref edges.
987   for (Node *RefTarget : NewRefEdges) {
988     SCC &TargetC = *G.lookupSCC(*RefTarget);
989     RefSCC &TargetRC = TargetC.getOuterRefSCC();
990     (void)TargetRC;
991     // TODO: This only allows trivial edges to be added for now.
992 #ifdef EXPENSIVE_CHECKS
993     assert((RC == &TargetRC ||
994            RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!");
995 #endif
996     RC->insertTrivialRefEdge(N, *RefTarget);
997   }
998 
999   // Handle new call edges.
1000   for (Node *CallTarget : NewCallEdges) {
1001     SCC &TargetC = *G.lookupSCC(*CallTarget);
1002     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1003     (void)TargetRC;
1004     // TODO: This only allows trivial edges to be added for now.
1005 #ifdef EXPENSIVE_CHECKS
1006     assert((RC == &TargetRC ||
1007            RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!");
1008 #endif
1009     // Add a trivial ref edge to be promoted later on alongside
1010     // PromotedRefTargets.
1011     RC->insertTrivialRefEdge(N, *CallTarget);
1012   }
1013 
1014   // Include synthetic reference edges to known, defined lib functions.
1015   for (auto *LibFn : G.getLibFunctions())
1016     // While the list of lib functions doesn't have repeats, don't re-visit
1017     // anything handled above.
1018     if (!Visited.count(LibFn))
1019       VisitRef(*LibFn);
1020 
1021   // First remove all of the edges that are no longer present in this function.
1022   // The first step makes these edges uniformly ref edges and accumulates them
1023   // into a separate data structure so removal doesn't invalidate anything.
1024   SmallVector<Node *, 4> DeadTargets;
1025   for (Edge &E : *N) {
1026     if (RetainedEdges.count(&E.getNode()))
1027       continue;
1028 
1029     SCC &TargetC = *G.lookupSCC(E.getNode());
1030     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1031     if (&TargetRC == RC && E.isCall()) {
1032       if (C != &TargetC) {
1033         // For separate SCCs this is trivial.
1034         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
1035       } else {
1036         // Now update the call graph.
1037         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
1038                                    G, N, C, AM, UR);
1039       }
1040     }
1041 
1042     // Now that this is ready for actual removal, put it into our list.
1043     DeadTargets.push_back(&E.getNode());
1044   }
1045   // Remove the easy cases quickly and actually pull them out of our list.
1046   llvm::erase_if(DeadTargets, [&](Node *TargetN) {
1047     SCC &TargetC = *G.lookupSCC(*TargetN);
1048     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1049 
1050     // We can't trivially remove internal targets, so skip
1051     // those.
1052     if (&TargetRC == RC)
1053       return false;
1054 
1055     LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '"
1056                       << *TargetN << "'\n");
1057     RC->removeOutgoingEdge(N, *TargetN);
1058     return true;
1059   });
1060 
1061   // Now do a batch removal of the internal ref edges left.
1062   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
1063   if (!NewRefSCCs.empty()) {
1064     // The old RefSCC is dead, mark it as such.
1065     UR.InvalidatedRefSCCs.insert(RC);
1066 
1067     // Note that we don't bother to invalidate analyses as ref-edge
1068     // connectivity is not really observable in any way and is intended
1069     // exclusively to be used for ordering of transforms rather than for
1070     // analysis conclusions.
1071 
1072     // Update RC to the "bottom".
1073     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
1074     RC = &C->getOuterRefSCC();
1075     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
1076 
1077     // The RC worklist is in reverse postorder, so we enqueue the new ones in
1078     // RPO except for the one which contains the source node as that is the
1079     // "bottom" we will continue processing in the bottom-up walk.
1080     assert(NewRefSCCs.front() == RC &&
1081            "New current RefSCC not first in the returned list!");
1082     for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) {
1083       assert(NewRC != RC && "Should not encounter the current RefSCC further "
1084                             "in the postorder list of new RefSCCs.");
1085       UR.RCWorklist.insert(NewRC);
1086       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
1087                         << *NewRC << "\n");
1088     }
1089   }
1090 
1091   // Next demote all the call edges that are now ref edges. This helps make
1092   // the SCCs small which should minimize the work below as we don't want to
1093   // form cycles that this would break.
1094   for (Node *RefTarget : DemotedCallTargets) {
1095     SCC &TargetC = *G.lookupSCC(*RefTarget);
1096     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1097 
1098     // The easy case is when the target RefSCC is not this RefSCC. This is
1099     // only supported when the target RefSCC is a child of this RefSCC.
1100     if (&TargetRC != RC) {
1101 #ifdef EXPENSIVE_CHECKS
1102       assert(RC->isAncestorOf(TargetRC) &&
1103              "Cannot potentially form RefSCC cycles here!");
1104 #endif
1105       RC->switchOutgoingEdgeToRef(N, *RefTarget);
1106       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
1107                         << "' to '" << *RefTarget << "'\n");
1108       continue;
1109     }
1110 
1111     // We are switching an internal call edge to a ref edge. This may split up
1112     // some SCCs.
1113     if (C != &TargetC) {
1114       // For separate SCCs this is trivial.
1115       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
1116       continue;
1117     }
1118 
1119     // Now update the call graph.
1120     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
1121                                C, AM, UR);
1122   }
1123 
1124   // We added a ref edge earlier for new call edges, promote those to call edges
1125   // alongside PromotedRefTargets.
1126   for (Node *E : NewCallEdges)
1127     PromotedRefTargets.insert(E);
1128 
1129   // Now promote ref edges into call edges.
1130   for (Node *CallTarget : PromotedRefTargets) {
1131     SCC &TargetC = *G.lookupSCC(*CallTarget);
1132     RefSCC &TargetRC = TargetC.getOuterRefSCC();
1133 
1134     // The easy case is when the target RefSCC is not this RefSCC. This is
1135     // only supported when the target RefSCC is a child of this RefSCC.
1136     if (&TargetRC != RC) {
1137 #ifdef EXPENSIVE_CHECKS
1138       assert(RC->isAncestorOf(TargetRC) &&
1139              "Cannot potentially form RefSCC cycles here!");
1140 #endif
1141       RC->switchOutgoingEdgeToCall(N, *CallTarget);
1142       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
1143                         << "' to '" << *CallTarget << "'\n");
1144       continue;
1145     }
1146     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
1147                       << N << "' to '" << *CallTarget << "'\n");
1148 
1149     // Otherwise we are switching an internal ref edge to a call edge. This
1150     // may merge away some SCCs, and we add those to the UpdateResult. We also
1151     // need to make sure to update the worklist in the event SCCs have moved
1152     // before the current one in the post-order sequence
1153     bool HasFunctionAnalysisProxy = false;
1154     auto InitialSCCIndex = RC->find(*C) - RC->begin();
1155     bool FormedCycle = RC->switchInternalEdgeToCall(
1156         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
1157           for (SCC *MergedC : MergedSCCs) {
1158             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
1159 
1160             HasFunctionAnalysisProxy |=
1161                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
1162                     *MergedC) != nullptr;
1163 
1164             // Mark that this SCC will no longer be valid.
1165             UR.InvalidatedSCCs.insert(MergedC);
1166 
1167             // FIXME: We should really do a 'clear' here to forcibly release
1168             // memory, but we don't have a good way of doing that and
1169             // preserving the function analyses.
1170             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1171             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1172             AM.invalidate(*MergedC, PA);
1173           }
1174         });
1175 
1176     // If we formed a cycle by creating this call, we need to update more data
1177     // structures.
1178     if (FormedCycle) {
1179       C = &TargetC;
1180       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
1181 
1182       // If one of the invalidated SCCs had a cached proxy to a function
1183       // analysis manager, we need to create a proxy in the new current SCC as
1184       // the invalidated SCCs had their functions moved.
1185       if (HasFunctionAnalysisProxy)
1186         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM);
1187 
1188       // Any analyses cached for this SCC are no longer precise as the shape
1189       // has changed by introducing this cycle. However, we have taken care to
1190       // update the proxies so it remains valide.
1191       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
1192       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1193       AM.invalidate(*C, PA);
1194     }
1195     auto NewSCCIndex = RC->find(*C) - RC->begin();
1196     // If we have actually moved an SCC to be topologically "below" the current
1197     // one due to merging, we will need to revisit the current SCC after
1198     // visiting those moved SCCs.
1199     //
1200     // It is critical that we *do not* revisit the current SCC unless we
1201     // actually move SCCs in the process of merging because otherwise we may
1202     // form a cycle where an SCC is split apart, merged, split, merged and so
1203     // on infinitely.
1204     if (InitialSCCIndex < NewSCCIndex) {
1205       // Put our current SCC back onto the worklist as we'll visit other SCCs
1206       // that are now definitively ordered prior to the current one in the
1207       // post-order sequence, and may end up observing more precise context to
1208       // optimize the current SCC.
1209       UR.CWorklist.insert(C);
1210       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
1211                         << "\n");
1212       // Enqueue in reverse order as we pop off the back of the worklist.
1213       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
1214                                                   RC->begin() + NewSCCIndex))) {
1215         UR.CWorklist.insert(&MovedC);
1216         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
1217                           << MovedC << "\n");
1218       }
1219     }
1220   }
1221 
1222   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
1223   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
1224   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
1225 
1226   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
1227   // manager now that all the updates have been applied.
1228   if (RC != &InitialRC)
1229     UR.UpdatedRC = RC;
1230   if (C != &InitialC)
1231     UR.UpdatedC = C;
1232 
1233   return *C;
1234 }
1235 
1236 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
1237     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1238     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1239     FunctionAnalysisManager &FAM) {
1240   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1241                                            /* FunctionPass */ true);
1242 }
1243 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass(
1244     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
1245     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR,
1246     FunctionAnalysisManager &FAM) {
1247   return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM,
1248                                            /* FunctionPass */ false);
1249 }
1250