1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/IR/ValueHandle.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/Debug.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/TimeProfiler.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <iterator> 33 34 #define DEBUG_TYPE "cgscc" 35 36 using namespace llvm; 37 38 // Explicit template instantiations and specialization definitions for core 39 // template typedefs. 40 namespace llvm { 41 extern cl::opt<bool> EagerlyInvalidateAnalyses; 42 43 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 44 "abort-on-max-devirt-iterations-reached", 45 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 46 "pass is reached")); 47 48 // Explicit instantiations for the core proxy templates. 49 template class AllAnalysesOn<LazyCallGraph::SCC>; 50 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 51 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 52 LazyCallGraph &, CGSCCUpdateResult &>; 53 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 54 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 55 LazyCallGraph::SCC, LazyCallGraph &>; 56 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 57 58 /// Explicitly specialize the pass manager run method to handle call graph 59 /// updates. 60 template <> 61 PreservedAnalyses 62 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 63 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 64 CGSCCAnalysisManager &AM, 65 LazyCallGraph &G, CGSCCUpdateResult &UR) { 66 // Request PassInstrumentation from analysis manager, will use it to run 67 // instrumenting callbacks for the passes later. 68 PassInstrumentation PI = 69 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 70 71 PreservedAnalyses PA = PreservedAnalyses::all(); 72 73 // The SCC may be refined while we are running passes over it, so set up 74 // a pointer that we can update. 75 LazyCallGraph::SCC *C = &InitialC; 76 77 // Get Function analysis manager from its proxy. 78 FunctionAnalysisManager &FAM = 79 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 80 81 for (auto &Pass : Passes) { 82 // Check the PassInstrumentation's BeforePass callbacks before running the 83 // pass, skip its execution completely if asked to (callback returns false). 84 if (!PI.runBeforePass(*Pass, *C)) 85 continue; 86 87 PreservedAnalyses PassPA; 88 { 89 TimeTraceScope TimeScope(Pass->name()); 90 PassPA = Pass->run(*C, AM, G, UR); 91 } 92 93 if (UR.InvalidatedSCCs.count(C)) 94 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 95 else 96 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 97 98 // Update the SCC if necessary. 99 C = UR.UpdatedC ? UR.UpdatedC : C; 100 if (UR.UpdatedC) { 101 // If C is updated, also create a proxy and update FAM inside the result. 102 auto *ResultFAMCP = 103 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 104 ResultFAMCP->updateFAM(FAM); 105 } 106 107 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 108 // current SCC may simply need to be skipped if invalid. 109 if (UR.InvalidatedSCCs.count(C)) { 110 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 111 break; 112 } 113 // Check that we didn't miss any update scenario. 114 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 115 116 // Update the analysis manager as each pass runs and potentially 117 // invalidates analyses. 118 AM.invalidate(*C, PassPA); 119 120 // Finally, we intersect the final preserved analyses to compute the 121 // aggregate preserved set for this pass manager. 122 PA.intersect(std::move(PassPA)); 123 } 124 125 // Before we mark all of *this* SCC's analyses as preserved below, intersect 126 // this with the cross-SCC preserved analysis set. This is used to allow 127 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 128 // for them. 129 UR.CrossSCCPA.intersect(PA); 130 131 // Invalidation was handled after each pass in the above loop for the current 132 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 133 // preserved. We mark this with a set so that we don't need to inspect each 134 // one individually. 135 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 136 137 return PA; 138 } 139 140 PreservedAnalyses 141 ModuleToPostOrderCGSCCPassAdaptor::run(Module &M, ModuleAnalysisManager &AM) { 142 // Setup the CGSCC analysis manager from its proxy. 143 CGSCCAnalysisManager &CGAM = 144 AM.getResult<CGSCCAnalysisManagerModuleProxy>(M).getManager(); 145 146 // Get the call graph for this module. 147 LazyCallGraph &CG = AM.getResult<LazyCallGraphAnalysis>(M); 148 149 // Get Function analysis manager from its proxy. 150 FunctionAnalysisManager &FAM = 151 AM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M)->getManager(); 152 153 // We keep worklists to allow us to push more work onto the pass manager as 154 // the passes are run. 155 SmallPriorityWorklist<LazyCallGraph::RefSCC *, 1> RCWorklist; 156 SmallPriorityWorklist<LazyCallGraph::SCC *, 1> CWorklist; 157 158 // Keep sets for invalidated SCCs and RefSCCs that should be skipped when 159 // iterating off the worklists. 160 SmallPtrSet<LazyCallGraph::RefSCC *, 4> InvalidRefSCCSet; 161 SmallPtrSet<LazyCallGraph::SCC *, 4> InvalidSCCSet; 162 163 SmallDenseSet<std::pair<LazyCallGraph::Node *, LazyCallGraph::SCC *>, 4> 164 InlinedInternalEdges; 165 166 CGSCCUpdateResult UR = { 167 RCWorklist, CWorklist, InvalidRefSCCSet, InvalidSCCSet, 168 nullptr, nullptr, PreservedAnalyses::all(), InlinedInternalEdges, 169 {}}; 170 171 // Request PassInstrumentation from analysis manager, will use it to run 172 // instrumenting callbacks for the passes later. 173 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M); 174 175 PreservedAnalyses PA = PreservedAnalyses::all(); 176 CG.buildRefSCCs(); 177 for (auto RCI = CG.postorder_ref_scc_begin(), 178 RCE = CG.postorder_ref_scc_end(); 179 RCI != RCE;) { 180 assert(RCWorklist.empty() && 181 "Should always start with an empty RefSCC worklist"); 182 // The postorder_ref_sccs range we are walking is lazily constructed, so 183 // we only push the first one onto the worklist. The worklist allows us 184 // to capture *new* RefSCCs created during transformations. 185 // 186 // We really want to form RefSCCs lazily because that makes them cheaper 187 // to update as the program is simplified and allows us to have greater 188 // cache locality as forming a RefSCC touches all the parts of all the 189 // functions within that RefSCC. 190 // 191 // We also eagerly increment the iterator to the next position because 192 // the CGSCC passes below may delete the current RefSCC. 193 RCWorklist.insert(&*RCI++); 194 195 do { 196 LazyCallGraph::RefSCC *RC = RCWorklist.pop_back_val(); 197 if (InvalidRefSCCSet.count(RC)) { 198 LLVM_DEBUG(dbgs() << "Skipping an invalid RefSCC...\n"); 199 continue; 200 } 201 202 assert(CWorklist.empty() && 203 "Should always start with an empty SCC worklist"); 204 205 LLVM_DEBUG(dbgs() << "Running an SCC pass across the RefSCC: " << *RC 206 << "\n"); 207 208 // The top of the worklist may *also* be the same SCC we just ran over 209 // (and invalidated for). Keep track of that last SCC we processed due 210 // to SCC update to avoid redundant processing when an SCC is both just 211 // updated itself and at the top of the worklist. 212 LazyCallGraph::SCC *LastUpdatedC = nullptr; 213 214 // Push the initial SCCs in reverse post-order as we'll pop off the 215 // back and so see this in post-order. 216 for (LazyCallGraph::SCC &C : llvm::reverse(*RC)) 217 CWorklist.insert(&C); 218 219 do { 220 LazyCallGraph::SCC *C = CWorklist.pop_back_val(); 221 // Due to call graph mutations, we may have invalid SCCs or SCCs from 222 // other RefSCCs in the worklist. The invalid ones are dead and the 223 // other RefSCCs should be queued above, so we just need to skip both 224 // scenarios here. 225 if (InvalidSCCSet.count(C)) { 226 LLVM_DEBUG(dbgs() << "Skipping an invalid SCC...\n"); 227 continue; 228 } 229 if (LastUpdatedC == C) { 230 LLVM_DEBUG(dbgs() << "Skipping redundant run on SCC: " << *C << "\n"); 231 continue; 232 } 233 if (&C->getOuterRefSCC() != RC) { 234 LLVM_DEBUG(dbgs() << "Skipping an SCC that is now part of some other " 235 "RefSCC...\n"); 236 continue; 237 } 238 239 // Ensure we can proxy analysis updates from the CGSCC analysis manager 240 // into the the Function analysis manager by getting a proxy here. 241 // This also needs to update the FunctionAnalysisManager, as this may be 242 // the first time we see this SCC. 243 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 244 FAM); 245 246 // Each time we visit a new SCC pulled off the worklist, 247 // a transformation of a child SCC may have also modified this parent 248 // and invalidated analyses. So we invalidate using the update record's 249 // cross-SCC preserved set. This preserved set is intersected by any 250 // CGSCC pass that handles invalidation (primarily pass managers) prior 251 // to marking its SCC as preserved. That lets us track everything that 252 // might need invalidation across SCCs without excessive invalidations 253 // on a single SCC. 254 // 255 // This essentially allows SCC passes to freely invalidate analyses 256 // of any ancestor SCC. If this becomes detrimental to successfully 257 // caching analyses, we could force each SCC pass to manually 258 // invalidate the analyses for any SCCs other than themselves which 259 // are mutated. However, that seems to lose the robustness of the 260 // pass-manager driven invalidation scheme. 261 CGAM.invalidate(*C, UR.CrossSCCPA); 262 263 do { 264 // Check that we didn't miss any update scenario. 265 assert(!InvalidSCCSet.count(C) && "Processing an invalid SCC!"); 266 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 267 assert(&C->getOuterRefSCC() == RC && 268 "Processing an SCC in a different RefSCC!"); 269 270 LastUpdatedC = UR.UpdatedC; 271 UR.UpdatedRC = nullptr; 272 UR.UpdatedC = nullptr; 273 274 // Check the PassInstrumentation's BeforePass callbacks before 275 // running the pass, skip its execution completely if asked to 276 // (callback returns false). 277 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 278 continue; 279 280 PreservedAnalyses PassPA; 281 { 282 TimeTraceScope TimeScope(Pass->name()); 283 PassPA = Pass->run(*C, CGAM, CG, UR); 284 } 285 286 if (UR.InvalidatedSCCs.count(C)) 287 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 288 else 289 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 290 291 // Update the SCC and RefSCC if necessary. 292 C = UR.UpdatedC ? UR.UpdatedC : C; 293 RC = UR.UpdatedRC ? UR.UpdatedRC : RC; 294 295 if (UR.UpdatedC) { 296 // If we're updating the SCC, also update the FAM inside the proxy's 297 // result. 298 CGAM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG).updateFAM( 299 FAM); 300 } 301 302 // If the CGSCC pass wasn't able to provide a valid updated SCC, 303 // the current SCC may simply need to be skipped if invalid. 304 if (UR.InvalidatedSCCs.count(C)) { 305 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 306 break; 307 } 308 // Check that we didn't miss any update scenario. 309 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 310 311 // We handle invalidating the CGSCC analysis manager's information 312 // for the (potentially updated) SCC here. Note that any other SCCs 313 // whose structure has changed should have been invalidated by 314 // whatever was updating the call graph. This SCC gets invalidated 315 // late as it contains the nodes that were actively being 316 // processed. 317 CGAM.invalidate(*C, PassPA); 318 319 // Then intersect the preserved set so that invalidation of module 320 // analyses will eventually occur when the module pass completes. 321 // Also intersect with the cross-SCC preserved set to capture any 322 // cross-SCC invalidation. 323 UR.CrossSCCPA.intersect(PassPA); 324 PA.intersect(std::move(PassPA)); 325 326 // The pass may have restructured the call graph and refined the 327 // current SCC and/or RefSCC. We need to update our current SCC and 328 // RefSCC pointers to follow these. Also, when the current SCC is 329 // refined, re-run the SCC pass over the newly refined SCC in order 330 // to observe the most precise SCC model available. This inherently 331 // cannot cycle excessively as it only happens when we split SCCs 332 // apart, at most converging on a DAG of single nodes. 333 // FIXME: If we ever start having RefSCC passes, we'll want to 334 // iterate there too. 335 if (UR.UpdatedC) 336 LLVM_DEBUG(dbgs() 337 << "Re-running SCC passes after a refinement of the " 338 "current SCC: " 339 << *UR.UpdatedC << "\n"); 340 341 // Note that both `C` and `RC` may at this point refer to deleted, 342 // invalid SCC and RefSCCs respectively. But we will short circuit 343 // the processing when we check them in the loop above. 344 } while (UR.UpdatedC); 345 } while (!CWorklist.empty()); 346 347 // We only need to keep internal inlined edge information within 348 // a RefSCC, clear it to save on space and let the next time we visit 349 // any of these functions have a fresh start. 350 InlinedInternalEdges.clear(); 351 } while (!RCWorklist.empty()); 352 } 353 354 // By definition we preserve the call garph, all SCC analyses, and the 355 // analysis proxies by handling them above and in any nested pass managers. 356 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 357 PA.preserve<LazyCallGraphAnalysis>(); 358 PA.preserve<CGSCCAnalysisManagerModuleProxy>(); 359 PA.preserve<FunctionAnalysisManagerModuleProxy>(); 360 return PA; 361 } 362 363 PreservedAnalyses DevirtSCCRepeatedPass::run(LazyCallGraph::SCC &InitialC, 364 CGSCCAnalysisManager &AM, 365 LazyCallGraph &CG, 366 CGSCCUpdateResult &UR) { 367 PreservedAnalyses PA = PreservedAnalyses::all(); 368 PassInstrumentation PI = 369 AM.getResult<PassInstrumentationAnalysis>(InitialC, CG); 370 371 // The SCC may be refined while we are running passes over it, so set up 372 // a pointer that we can update. 373 LazyCallGraph::SCC *C = &InitialC; 374 375 // Struct to track the counts of direct and indirect calls in each function 376 // of the SCC. 377 struct CallCount { 378 int Direct; 379 int Indirect; 380 }; 381 382 // Put value handles on all of the indirect calls and return the number of 383 // direct calls for each function in the SCC. 384 auto ScanSCC = [](LazyCallGraph::SCC &C, 385 SmallMapVector<Value *, WeakTrackingVH, 16> &CallHandles) { 386 assert(CallHandles.empty() && "Must start with a clear set of handles."); 387 388 SmallDenseMap<Function *, CallCount> CallCounts; 389 CallCount CountLocal = {0, 0}; 390 for (LazyCallGraph::Node &N : C) { 391 CallCount &Count = 392 CallCounts.insert(std::make_pair(&N.getFunction(), CountLocal)) 393 .first->second; 394 for (Instruction &I : instructions(N.getFunction())) 395 if (auto *CB = dyn_cast<CallBase>(&I)) { 396 if (CB->getCalledFunction()) { 397 ++Count.Direct; 398 } else { 399 ++Count.Indirect; 400 CallHandles.insert({CB, WeakTrackingVH(CB)}); 401 } 402 } 403 } 404 405 return CallCounts; 406 }; 407 408 UR.IndirectVHs.clear(); 409 // Populate the initial call handles and get the initial call counts. 410 auto CallCounts = ScanSCC(*C, UR.IndirectVHs); 411 412 for (int Iteration = 0;; ++Iteration) { 413 if (!PI.runBeforePass<LazyCallGraph::SCC>(*Pass, *C)) 414 continue; 415 416 PreservedAnalyses PassPA = Pass->run(*C, AM, CG, UR); 417 418 if (UR.InvalidatedSCCs.count(C)) 419 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 420 else 421 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 422 423 // If the SCC structure has changed, bail immediately and let the outer 424 // CGSCC layer handle any iteration to reflect the refined structure. 425 if (UR.UpdatedC && UR.UpdatedC != C) { 426 PA.intersect(std::move(PassPA)); 427 break; 428 } 429 430 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 431 // current SCC may simply need to be skipped if invalid. 432 if (UR.InvalidatedSCCs.count(C)) { 433 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 434 break; 435 } 436 437 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 438 439 // Check whether any of the handles were devirtualized. 440 bool Devirt = llvm::any_of(UR.IndirectVHs, [](auto &P) -> bool { 441 if (P.second) { 442 if (CallBase *CB = dyn_cast<CallBase>(P.second)) { 443 if (CB->getCalledFunction()) { 444 LLVM_DEBUG(dbgs() << "Found devirtualized call: " << *CB << "\n"); 445 return true; 446 } 447 } 448 } 449 return false; 450 }); 451 452 // Rescan to build up a new set of handles and count how many direct 453 // calls remain. If we decide to iterate, this also sets up the input to 454 // the next iteration. 455 UR.IndirectVHs.clear(); 456 auto NewCallCounts = ScanSCC(*C, UR.IndirectVHs); 457 458 // If we haven't found an explicit devirtualization already see if we 459 // have decreased the number of indirect calls and increased the number 460 // of direct calls for any function in the SCC. This can be fooled by all 461 // manner of transformations such as DCE and other things, but seems to 462 // work well in practice. 463 if (!Devirt) 464 // Iterate over the keys in NewCallCounts, if Function also exists in 465 // CallCounts, make the check below. 466 for (auto &Pair : NewCallCounts) { 467 auto &CallCountNew = Pair.second; 468 auto CountIt = CallCounts.find(Pair.first); 469 if (CountIt != CallCounts.end()) { 470 const auto &CallCountOld = CountIt->second; 471 if (CallCountOld.Indirect > CallCountNew.Indirect && 472 CallCountOld.Direct < CallCountNew.Direct) { 473 Devirt = true; 474 break; 475 } 476 } 477 } 478 479 if (!Devirt) { 480 PA.intersect(std::move(PassPA)); 481 break; 482 } 483 484 // Otherwise, if we've already hit our max, we're done. 485 if (Iteration >= MaxIterations) { 486 if (AbortOnMaxDevirtIterationsReached) 487 report_fatal_error("Max devirtualization iterations reached"); 488 LLVM_DEBUG( 489 dbgs() << "Found another devirtualization after hitting the max " 490 "number of repetitions (" 491 << MaxIterations << ") on SCC: " << *C << "\n"); 492 PA.intersect(std::move(PassPA)); 493 break; 494 } 495 496 LLVM_DEBUG( 497 dbgs() << "Repeating an SCC pass after finding a devirtualization in: " 498 << *C << "\n"); 499 500 // Move over the new call counts in preparation for iterating. 501 CallCounts = std::move(NewCallCounts); 502 503 // Update the analysis manager with each run and intersect the total set 504 // of preserved analyses so we're ready to iterate. 505 AM.invalidate(*C, PassPA); 506 507 PA.intersect(std::move(PassPA)); 508 } 509 510 // Note that we don't add any preserved entries here unlike a more normal 511 // "pass manager" because we only handle invalidation *between* iterations, 512 // not after the last iteration. 513 return PA; 514 } 515 516 PreservedAnalyses CGSCCToFunctionPassAdaptor::run(LazyCallGraph::SCC &C, 517 CGSCCAnalysisManager &AM, 518 LazyCallGraph &CG, 519 CGSCCUpdateResult &UR) { 520 // Setup the function analysis manager from its proxy. 521 FunctionAnalysisManager &FAM = 522 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); 523 524 SmallVector<LazyCallGraph::Node *, 4> Nodes; 525 for (LazyCallGraph::Node &N : C) 526 Nodes.push_back(&N); 527 528 // The SCC may get split while we are optimizing functions due to deleting 529 // edges. If this happens, the current SCC can shift, so keep track of 530 // a pointer we can overwrite. 531 LazyCallGraph::SCC *CurrentC = &C; 532 533 LLVM_DEBUG(dbgs() << "Running function passes across an SCC: " << C << "\n"); 534 535 PreservedAnalyses PA = PreservedAnalyses::all(); 536 for (LazyCallGraph::Node *N : Nodes) { 537 // Skip nodes from other SCCs. These may have been split out during 538 // processing. We'll eventually visit those SCCs and pick up the nodes 539 // there. 540 if (CG.lookupSCC(*N) != CurrentC) 541 continue; 542 543 Function &F = N->getFunction(); 544 545 PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F); 546 if (!PI.runBeforePass<Function>(*Pass, F)) 547 continue; 548 549 PreservedAnalyses PassPA; 550 { 551 TimeTraceScope TimeScope(Pass->name()); 552 PassPA = Pass->run(F, FAM); 553 } 554 555 PI.runAfterPass<Function>(*Pass, F, PassPA); 556 557 // We know that the function pass couldn't have invalidated any other 558 // function's analyses (that's the contract of a function pass), so 559 // directly handle the function analysis manager's invalidation here. 560 FAM.invalidate(F, EagerlyInvalidateAnalyses ? PreservedAnalyses::none() 561 : PassPA); 562 563 // Then intersect the preserved set so that invalidation of module 564 // analyses will eventually occur when the module pass completes. 565 PA.intersect(std::move(PassPA)); 566 567 // If the call graph hasn't been preserved, update it based on this 568 // function pass. This may also update the current SCC to point to 569 // a smaller, more refined SCC. 570 auto PAC = PA.getChecker<LazyCallGraphAnalysis>(); 571 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Module>>()) { 572 CurrentC = &updateCGAndAnalysisManagerForFunctionPass(CG, *CurrentC, *N, 573 AM, UR, FAM); 574 assert(CG.lookupSCC(*N) == CurrentC && 575 "Current SCC not updated to the SCC containing the current node!"); 576 } 577 } 578 579 // By definition we preserve the proxy. And we preserve all analyses on 580 // Functions. This precludes *any* invalidation of function analyses by the 581 // proxy, but that's OK because we've taken care to invalidate analyses in 582 // the function analysis manager incrementally above. 583 PA.preserveSet<AllAnalysesOn<Function>>(); 584 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 585 586 // We've also ensured that we updated the call graph along the way. 587 PA.preserve<LazyCallGraphAnalysis>(); 588 589 return PA; 590 } 591 592 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 593 Module &M, const PreservedAnalyses &PA, 594 ModuleAnalysisManager::Invalidator &Inv) { 595 // If literally everything is preserved, we're done. 596 if (PA.areAllPreserved()) 597 return false; // This is still a valid proxy. 598 599 // If this proxy or the call graph is going to be invalidated, we also need 600 // to clear all the keys coming from that analysis. 601 // 602 // We also directly invalidate the FAM's module proxy if necessary, and if 603 // that proxy isn't preserved we can't preserve this proxy either. We rely on 604 // it to handle module -> function analysis invalidation in the face of 605 // structural changes and so if it's unavailable we conservatively clear the 606 // entire SCC layer as well rather than trying to do invalidation ourselves. 607 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 608 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 609 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 610 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 611 InnerAM->clear(); 612 613 // And the proxy itself should be marked as invalid so that we can observe 614 // the new call graph. This isn't strictly necessary because we cheat 615 // above, but is still useful. 616 return true; 617 } 618 619 // Directly check if the relevant set is preserved so we can short circuit 620 // invalidating SCCs below. 621 bool AreSCCAnalysesPreserved = 622 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 623 624 // Ok, we have a graph, so we can propagate the invalidation down into it. 625 G->buildRefSCCs(); 626 for (auto &RC : G->postorder_ref_sccs()) 627 for (auto &C : RC) { 628 Optional<PreservedAnalyses> InnerPA; 629 630 // Check to see whether the preserved set needs to be adjusted based on 631 // module-level analysis invalidation triggering deferred invalidation 632 // for this SCC. 633 if (auto *OuterProxy = 634 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 635 for (const auto &OuterInvalidationPair : 636 OuterProxy->getOuterInvalidations()) { 637 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 638 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 639 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 640 if (!InnerPA) 641 InnerPA = PA; 642 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 643 InnerPA->abandon(InnerAnalysisID); 644 } 645 } 646 647 // Check if we needed a custom PA set. If so we'll need to run the inner 648 // invalidation. 649 if (InnerPA) { 650 InnerAM->invalidate(C, *InnerPA); 651 continue; 652 } 653 654 // Otherwise we only need to do invalidation if the original PA set didn't 655 // preserve all SCC analyses. 656 if (!AreSCCAnalysesPreserved) 657 InnerAM->invalidate(C, PA); 658 } 659 660 // Return false to indicate that this result is still a valid proxy. 661 return false; 662 } 663 664 template <> 665 CGSCCAnalysisManagerModuleProxy::Result 666 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 667 // Force the Function analysis manager to also be available so that it can 668 // be accessed in an SCC analysis and proxied onward to function passes. 669 // FIXME: It is pretty awkward to just drop the result here and assert that 670 // we can find it again later. 671 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 672 673 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 674 } 675 676 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 677 678 FunctionAnalysisManagerCGSCCProxy::Result 679 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 680 CGSCCAnalysisManager &AM, 681 LazyCallGraph &CG) { 682 // Note: unconditionally getting checking that the proxy exists may get it at 683 // this point. There are cases when this is being run unnecessarily, but 684 // it is cheap and having the assertion in place is more valuable. 685 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 686 Module &M = *C.begin()->getFunction().getParent(); 687 bool ProxyExists = 688 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 689 assert(ProxyExists && 690 "The CGSCC pass manager requires that the FAM module proxy is run " 691 "on the module prior to entering the CGSCC walk"); 692 (void)ProxyExists; 693 694 // We just return an empty result. The caller will use the updateFAM interface 695 // to correctly register the relevant FunctionAnalysisManager based on the 696 // context in which this proxy is run. 697 return Result(); 698 } 699 700 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 701 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 702 CGSCCAnalysisManager::Invalidator &Inv) { 703 // If literally everything is preserved, we're done. 704 if (PA.areAllPreserved()) 705 return false; // This is still a valid proxy. 706 707 // All updates to preserve valid results are done below, so we don't need to 708 // invalidate this proxy. 709 // 710 // Note that in order to preserve this proxy, a module pass must ensure that 711 // the FAM has been completely updated to handle the deletion of functions. 712 // Specifically, any FAM-cached results for those functions need to have been 713 // forcibly cleared. When preserved, this proxy will only invalidate results 714 // cached on functions *still in the module* at the end of the module pass. 715 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 716 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 717 for (LazyCallGraph::Node &N : C) 718 FAM->invalidate(N.getFunction(), PA); 719 720 return false; 721 } 722 723 // Directly check if the relevant set is preserved. 724 bool AreFunctionAnalysesPreserved = 725 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 726 727 // Now walk all the functions to see if any inner analysis invalidation is 728 // necessary. 729 for (LazyCallGraph::Node &N : C) { 730 Function &F = N.getFunction(); 731 Optional<PreservedAnalyses> FunctionPA; 732 733 // Check to see whether the preserved set needs to be pruned based on 734 // SCC-level analysis invalidation that triggers deferred invalidation 735 // registered with the outer analysis manager proxy for this function. 736 if (auto *OuterProxy = 737 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 738 for (const auto &OuterInvalidationPair : 739 OuterProxy->getOuterInvalidations()) { 740 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 741 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 742 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 743 if (!FunctionPA) 744 FunctionPA = PA; 745 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 746 FunctionPA->abandon(InnerAnalysisID); 747 } 748 } 749 750 // Check if we needed a custom PA set, and if so we'll need to run the 751 // inner invalidation. 752 if (FunctionPA) { 753 FAM->invalidate(F, *FunctionPA); 754 continue; 755 } 756 757 // Otherwise we only need to do invalidation if the original PA set didn't 758 // preserve all function analyses. 759 if (!AreFunctionAnalysesPreserved) 760 FAM->invalidate(F, PA); 761 } 762 763 // Return false to indicate that this result is still a valid proxy. 764 return false; 765 } 766 767 } // end namespace llvm 768 769 /// When a new SCC is created for the graph we first update the 770 /// FunctionAnalysisManager in the Proxy's result. 771 /// As there might be function analysis results cached for the functions now in 772 /// that SCC, two forms of updates are required. 773 /// 774 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 775 /// created so that any subsequent invalidation events to the SCC are 776 /// propagated to the function analysis results cached for functions within it. 777 /// 778 /// Second, if any of the functions within the SCC have analysis results with 779 /// outer analysis dependencies, then those dependencies would point to the 780 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 781 /// function analyses so that they don't retain stale handles. 782 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 783 LazyCallGraph &G, 784 CGSCCAnalysisManager &AM, 785 FunctionAnalysisManager &FAM) { 786 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 787 788 // Now walk the functions in this SCC and invalidate any function analysis 789 // results that might have outer dependencies on an SCC analysis. 790 for (LazyCallGraph::Node &N : C) { 791 Function &F = N.getFunction(); 792 793 auto *OuterProxy = 794 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 795 if (!OuterProxy) 796 // No outer analyses were queried, nothing to do. 797 continue; 798 799 // Forcibly abandon all the inner analyses with dependencies, but 800 // invalidate nothing else. 801 auto PA = PreservedAnalyses::all(); 802 for (const auto &OuterInvalidationPair : 803 OuterProxy->getOuterInvalidations()) { 804 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 805 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 806 PA.abandon(InnerAnalysisID); 807 } 808 809 // Now invalidate anything we found. 810 FAM.invalidate(F, PA); 811 } 812 } 813 814 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 815 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 816 /// added SCCs. 817 /// 818 /// The range of new SCCs must be in postorder already. The SCC they were split 819 /// out of must be provided as \p C. The current node being mutated and 820 /// triggering updates must be passed as \p N. 821 /// 822 /// This function returns the SCC containing \p N. This will be either \p C if 823 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 824 template <typename SCCRangeT> 825 static LazyCallGraph::SCC * 826 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 827 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 828 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 829 using SCC = LazyCallGraph::SCC; 830 831 if (NewSCCRange.empty()) 832 return C; 833 834 // Add the current SCC to the worklist as its shape has changed. 835 UR.CWorklist.insert(C); 836 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 837 << "\n"); 838 839 SCC *OldC = C; 840 841 // Update the current SCC. Note that if we have new SCCs, this must actually 842 // change the SCC. 843 assert(C != &*NewSCCRange.begin() && 844 "Cannot insert new SCCs without changing current SCC!"); 845 C = &*NewSCCRange.begin(); 846 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 847 848 // If we had a cached FAM proxy originally, we will want to create more of 849 // them for each SCC that was split off. 850 FunctionAnalysisManager *FAM = nullptr; 851 if (auto *FAMProxy = 852 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 853 FAM = &FAMProxy->getManager(); 854 855 // We need to propagate an invalidation call to all but the newly current SCC 856 // because the outer pass manager won't do that for us after splitting them. 857 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 858 // there are preserved analysis we can avoid invalidating them here for 859 // split-off SCCs. 860 // We know however that this will preserve any FAM proxy so go ahead and mark 861 // that. 862 PreservedAnalyses PA; 863 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 864 AM.invalidate(*OldC, PA); 865 866 // Ensure the now-current SCC's function analyses are updated. 867 if (FAM) 868 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 869 870 for (SCC &NewC : llvm::reverse(llvm::drop_begin(NewSCCRange))) { 871 assert(C != &NewC && "No need to re-visit the current SCC!"); 872 assert(OldC != &NewC && "Already handled the original SCC!"); 873 UR.CWorklist.insert(&NewC); 874 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 875 876 // Ensure new SCCs' function analyses are updated. 877 if (FAM) 878 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 879 880 // Also propagate a normal invalidation to the new SCC as only the current 881 // will get one from the pass manager infrastructure. 882 AM.invalidate(NewC, PA); 883 } 884 return C; 885 } 886 887 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 888 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 889 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 890 FunctionAnalysisManager &FAM, bool FunctionPass) { 891 using Node = LazyCallGraph::Node; 892 using Edge = LazyCallGraph::Edge; 893 using SCC = LazyCallGraph::SCC; 894 using RefSCC = LazyCallGraph::RefSCC; 895 896 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 897 SCC *C = &InitialC; 898 RefSCC *RC = &InitialRC; 899 Function &F = N.getFunction(); 900 901 // Walk the function body and build up the set of retained, promoted, and 902 // demoted edges. 903 SmallVector<Constant *, 16> Worklist; 904 SmallPtrSet<Constant *, 16> Visited; 905 SmallPtrSet<Node *, 16> RetainedEdges; 906 SmallSetVector<Node *, 4> PromotedRefTargets; 907 SmallSetVector<Node *, 4> DemotedCallTargets; 908 SmallSetVector<Node *, 4> NewCallEdges; 909 SmallSetVector<Node *, 4> NewRefEdges; 910 911 // First walk the function and handle all called functions. We do this first 912 // because if there is a single call edge, whether there are ref edges is 913 // irrelevant. 914 for (Instruction &I : instructions(F)) { 915 if (auto *CB = dyn_cast<CallBase>(&I)) { 916 if (Function *Callee = CB->getCalledFunction()) { 917 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 918 Node *CalleeN = G.lookup(*Callee); 919 assert(CalleeN && 920 "Visited function should already have an associated node"); 921 Edge *E = N->lookup(*CalleeN); 922 assert((E || !FunctionPass) && 923 "No function transformations should introduce *new* " 924 "call edges! Any new calls should be modeled as " 925 "promoted existing ref edges!"); 926 bool Inserted = RetainedEdges.insert(CalleeN).second; 927 (void)Inserted; 928 assert(Inserted && "We should never visit a function twice."); 929 if (!E) 930 NewCallEdges.insert(CalleeN); 931 else if (!E->isCall()) 932 PromotedRefTargets.insert(CalleeN); 933 } 934 } else { 935 // We can miss devirtualization if an indirect call is created then 936 // promoted before updateCGAndAnalysisManagerForPass runs. 937 auto *Entry = UR.IndirectVHs.find(CB); 938 if (Entry == UR.IndirectVHs.end()) 939 UR.IndirectVHs.insert({CB, WeakTrackingVH(CB)}); 940 else if (!Entry->second) 941 Entry->second = WeakTrackingVH(CB); 942 } 943 } 944 } 945 946 // Now walk all references. 947 for (Instruction &I : instructions(F)) 948 for (Value *Op : I.operand_values()) 949 if (auto *OpC = dyn_cast<Constant>(Op)) 950 if (Visited.insert(OpC).second) 951 Worklist.push_back(OpC); 952 953 auto VisitRef = [&](Function &Referee) { 954 Node *RefereeN = G.lookup(Referee); 955 assert(RefereeN && 956 "Visited function should already have an associated node"); 957 Edge *E = N->lookup(*RefereeN); 958 assert((E || !FunctionPass) && 959 "No function transformations should introduce *new* ref " 960 "edges! Any new ref edges would require IPO which " 961 "function passes aren't allowed to do!"); 962 bool Inserted = RetainedEdges.insert(RefereeN).second; 963 (void)Inserted; 964 assert(Inserted && "We should never visit a function twice."); 965 if (!E) 966 NewRefEdges.insert(RefereeN); 967 else if (E->isCall()) 968 DemotedCallTargets.insert(RefereeN); 969 }; 970 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 971 972 // Handle new ref edges. 973 for (Node *RefTarget : NewRefEdges) { 974 SCC &TargetC = *G.lookupSCC(*RefTarget); 975 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 976 (void)TargetRC; 977 // TODO: This only allows trivial edges to be added for now. 978 #ifdef EXPENSIVE_CHECKS 979 assert((RC == &TargetRC || 980 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 981 #endif 982 RC->insertTrivialRefEdge(N, *RefTarget); 983 } 984 985 // Handle new call edges. 986 for (Node *CallTarget : NewCallEdges) { 987 SCC &TargetC = *G.lookupSCC(*CallTarget); 988 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 989 (void)TargetRC; 990 // TODO: This only allows trivial edges to be added for now. 991 #ifdef EXPENSIVE_CHECKS 992 assert((RC == &TargetRC || 993 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 994 #endif 995 // Add a trivial ref edge to be promoted later on alongside 996 // PromotedRefTargets. 997 RC->insertTrivialRefEdge(N, *CallTarget); 998 } 999 1000 // Include synthetic reference edges to known, defined lib functions. 1001 for (auto *LibFn : G.getLibFunctions()) 1002 // While the list of lib functions doesn't have repeats, don't re-visit 1003 // anything handled above. 1004 if (!Visited.count(LibFn)) 1005 VisitRef(*LibFn); 1006 1007 // First remove all of the edges that are no longer present in this function. 1008 // The first step makes these edges uniformly ref edges and accumulates them 1009 // into a separate data structure so removal doesn't invalidate anything. 1010 SmallVector<Node *, 4> DeadTargets; 1011 for (Edge &E : *N) { 1012 if (RetainedEdges.count(&E.getNode())) 1013 continue; 1014 1015 SCC &TargetC = *G.lookupSCC(E.getNode()); 1016 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1017 if (&TargetRC == RC && E.isCall()) { 1018 if (C != &TargetC) { 1019 // For separate SCCs this is trivial. 1020 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 1021 } else { 1022 // Now update the call graph. 1023 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 1024 G, N, C, AM, UR); 1025 } 1026 } 1027 1028 // Now that this is ready for actual removal, put it into our list. 1029 DeadTargets.push_back(&E.getNode()); 1030 } 1031 // Remove the easy cases quickly and actually pull them out of our list. 1032 llvm::erase_if(DeadTargets, [&](Node *TargetN) { 1033 SCC &TargetC = *G.lookupSCC(*TargetN); 1034 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1035 1036 // We can't trivially remove internal targets, so skip 1037 // those. 1038 if (&TargetRC == RC) 1039 return false; 1040 1041 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" << N << "' to '" 1042 << *TargetN << "'\n"); 1043 RC->removeOutgoingEdge(N, *TargetN); 1044 return true; 1045 }); 1046 1047 // Now do a batch removal of the internal ref edges left. 1048 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 1049 if (!NewRefSCCs.empty()) { 1050 // The old RefSCC is dead, mark it as such. 1051 UR.InvalidatedRefSCCs.insert(RC); 1052 1053 // Note that we don't bother to invalidate analyses as ref-edge 1054 // connectivity is not really observable in any way and is intended 1055 // exclusively to be used for ordering of transforms rather than for 1056 // analysis conclusions. 1057 1058 // Update RC to the "bottom". 1059 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 1060 RC = &C->getOuterRefSCC(); 1061 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 1062 1063 // The RC worklist is in reverse postorder, so we enqueue the new ones in 1064 // RPO except for the one which contains the source node as that is the 1065 // "bottom" we will continue processing in the bottom-up walk. 1066 assert(NewRefSCCs.front() == RC && 1067 "New current RefSCC not first in the returned list!"); 1068 for (RefSCC *NewRC : llvm::reverse(llvm::drop_begin(NewRefSCCs))) { 1069 assert(NewRC != RC && "Should not encounter the current RefSCC further " 1070 "in the postorder list of new RefSCCs."); 1071 UR.RCWorklist.insert(NewRC); 1072 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 1073 << *NewRC << "\n"); 1074 } 1075 } 1076 1077 // Next demote all the call edges that are now ref edges. This helps make 1078 // the SCCs small which should minimize the work below as we don't want to 1079 // form cycles that this would break. 1080 for (Node *RefTarget : DemotedCallTargets) { 1081 SCC &TargetC = *G.lookupSCC(*RefTarget); 1082 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1083 1084 // The easy case is when the target RefSCC is not this RefSCC. This is 1085 // only supported when the target RefSCC is a child of this RefSCC. 1086 if (&TargetRC != RC) { 1087 #ifdef EXPENSIVE_CHECKS 1088 assert(RC->isAncestorOf(TargetRC) && 1089 "Cannot potentially form RefSCC cycles here!"); 1090 #endif 1091 RC->switchOutgoingEdgeToRef(N, *RefTarget); 1092 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 1093 << "' to '" << *RefTarget << "'\n"); 1094 continue; 1095 } 1096 1097 // We are switching an internal call edge to a ref edge. This may split up 1098 // some SCCs. 1099 if (C != &TargetC) { 1100 // For separate SCCs this is trivial. 1101 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 1102 continue; 1103 } 1104 1105 // Now update the call graph. 1106 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 1107 C, AM, UR); 1108 } 1109 1110 // We added a ref edge earlier for new call edges, promote those to call edges 1111 // alongside PromotedRefTargets. 1112 for (Node *E : NewCallEdges) 1113 PromotedRefTargets.insert(E); 1114 1115 // Now promote ref edges into call edges. 1116 for (Node *CallTarget : PromotedRefTargets) { 1117 SCC &TargetC = *G.lookupSCC(*CallTarget); 1118 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 1119 1120 // The easy case is when the target RefSCC is not this RefSCC. This is 1121 // only supported when the target RefSCC is a child of this RefSCC. 1122 if (&TargetRC != RC) { 1123 #ifdef EXPENSIVE_CHECKS 1124 assert(RC->isAncestorOf(TargetRC) && 1125 "Cannot potentially form RefSCC cycles here!"); 1126 #endif 1127 RC->switchOutgoingEdgeToCall(N, *CallTarget); 1128 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 1129 << "' to '" << *CallTarget << "'\n"); 1130 continue; 1131 } 1132 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 1133 << N << "' to '" << *CallTarget << "'\n"); 1134 1135 // Otherwise we are switching an internal ref edge to a call edge. This 1136 // may merge away some SCCs, and we add those to the UpdateResult. We also 1137 // need to make sure to update the worklist in the event SCCs have moved 1138 // before the current one in the post-order sequence 1139 bool HasFunctionAnalysisProxy = false; 1140 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 1141 bool FormedCycle = RC->switchInternalEdgeToCall( 1142 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 1143 for (SCC *MergedC : MergedSCCs) { 1144 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 1145 1146 HasFunctionAnalysisProxy |= 1147 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 1148 *MergedC) != nullptr; 1149 1150 // Mark that this SCC will no longer be valid. 1151 UR.InvalidatedSCCs.insert(MergedC); 1152 1153 // FIXME: We should really do a 'clear' here to forcibly release 1154 // memory, but we don't have a good way of doing that and 1155 // preserving the function analyses. 1156 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1157 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1158 AM.invalidate(*MergedC, PA); 1159 } 1160 }); 1161 1162 // If we formed a cycle by creating this call, we need to update more data 1163 // structures. 1164 if (FormedCycle) { 1165 C = &TargetC; 1166 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 1167 1168 // If one of the invalidated SCCs had a cached proxy to a function 1169 // analysis manager, we need to create a proxy in the new current SCC as 1170 // the invalidated SCCs had their functions moved. 1171 if (HasFunctionAnalysisProxy) 1172 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 1173 1174 // Any analyses cached for this SCC are no longer precise as the shape 1175 // has changed by introducing this cycle. However, we have taken care to 1176 // update the proxies so it remains valide. 1177 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 1178 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 1179 AM.invalidate(*C, PA); 1180 } 1181 auto NewSCCIndex = RC->find(*C) - RC->begin(); 1182 // If we have actually moved an SCC to be topologically "below" the current 1183 // one due to merging, we will need to revisit the current SCC after 1184 // visiting those moved SCCs. 1185 // 1186 // It is critical that we *do not* revisit the current SCC unless we 1187 // actually move SCCs in the process of merging because otherwise we may 1188 // form a cycle where an SCC is split apart, merged, split, merged and so 1189 // on infinitely. 1190 if (InitialSCCIndex < NewSCCIndex) { 1191 // Put our current SCC back onto the worklist as we'll visit other SCCs 1192 // that are now definitively ordered prior to the current one in the 1193 // post-order sequence, and may end up observing more precise context to 1194 // optimize the current SCC. 1195 UR.CWorklist.insert(C); 1196 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 1197 << "\n"); 1198 // Enqueue in reverse order as we pop off the back of the worklist. 1199 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 1200 RC->begin() + NewSCCIndex))) { 1201 UR.CWorklist.insert(&MovedC); 1202 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 1203 << MovedC << "\n"); 1204 } 1205 } 1206 } 1207 1208 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 1209 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 1210 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 1211 1212 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 1213 // manager now that all the updates have been applied. 1214 if (RC != &InitialRC) 1215 UR.UpdatedRC = RC; 1216 if (C != &InitialC) 1217 UR.UpdatedC = C; 1218 1219 return *C; 1220 } 1221 1222 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 1223 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1224 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1225 FunctionAnalysisManager &FAM) { 1226 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1227 /* FunctionPass */ true); 1228 } 1229 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 1230 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 1231 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 1232 FunctionAnalysisManager &FAM) { 1233 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 1234 /* FunctionPass */ false); 1235 } 1236