1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/CallSite.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/IR/PassManagerImpl.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/Support/TimeProfiler.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <iterator> 31 32 #define DEBUG_TYPE "cgscc" 33 34 using namespace llvm; 35 36 // Explicit template instantiations and specialization definitions for core 37 // template typedefs. 38 namespace llvm { 39 40 // Explicit instantiations for the core proxy templates. 41 template class AllAnalysesOn<LazyCallGraph::SCC>; 42 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 43 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 44 LazyCallGraph &, CGSCCUpdateResult &>; 45 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 46 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 47 LazyCallGraph::SCC, LazyCallGraph &>; 48 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 49 50 /// Explicitly specialize the pass manager run method to handle call graph 51 /// updates. 52 template <> 53 PreservedAnalyses 54 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 55 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 56 CGSCCAnalysisManager &AM, 57 LazyCallGraph &G, CGSCCUpdateResult &UR) { 58 // Request PassInstrumentation from analysis manager, will use it to run 59 // instrumenting callbacks for the passes later. 60 PassInstrumentation PI = 61 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 62 63 PreservedAnalyses PA = PreservedAnalyses::all(); 64 65 if (DebugLogging) 66 dbgs() << "Starting CGSCC pass manager run.\n"; 67 68 // The SCC may be refined while we are running passes over it, so set up 69 // a pointer that we can update. 70 LazyCallGraph::SCC *C = &InitialC; 71 72 for (auto &Pass : Passes) { 73 if (DebugLogging) 74 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 75 76 // Check the PassInstrumentation's BeforePass callbacks before running the 77 // pass, skip its execution completely if asked to (callback returns false). 78 if (!PI.runBeforePass(*Pass, *C)) 79 continue; 80 81 PreservedAnalyses PassPA; 82 { 83 TimeTraceScope TimeScope(Pass->name()); 84 PassPA = Pass->run(*C, AM, G, UR); 85 } 86 87 if (UR.InvalidatedSCCs.count(C)) 88 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); 89 else 90 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); 91 92 // Update the SCC if necessary. 93 C = UR.UpdatedC ? UR.UpdatedC : C; 94 95 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 96 // current SCC may simply need to be skipped if invalid. 97 if (UR.InvalidatedSCCs.count(C)) { 98 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 99 break; 100 } 101 // Check that we didn't miss any update scenario. 102 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 103 104 // Update the analysis manager as each pass runs and potentially 105 // invalidates analyses. 106 AM.invalidate(*C, PassPA); 107 108 // Finally, we intersect the final preserved analyses to compute the 109 // aggregate preserved set for this pass manager. 110 PA.intersect(std::move(PassPA)); 111 112 // FIXME: Historically, the pass managers all called the LLVM context's 113 // yield function here. We don't have a generic way to acquire the 114 // context and it isn't yet clear what the right pattern is for yielding 115 // in the new pass manager so it is currently omitted. 116 // ...getContext().yield(); 117 } 118 119 // Before we mark all of *this* SCC's analyses as preserved below, intersect 120 // this with the cross-SCC preserved analysis set. This is used to allow 121 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 122 // for them. 123 UR.CrossSCCPA.intersect(PA); 124 125 // Invalidation was handled after each pass in the above loop for the current 126 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 127 // preserved. We mark this with a set so that we don't need to inspect each 128 // one individually. 129 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 130 131 if (DebugLogging) 132 dbgs() << "Finished CGSCC pass manager run.\n"; 133 134 return PA; 135 } 136 137 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 138 Module &M, const PreservedAnalyses &PA, 139 ModuleAnalysisManager::Invalidator &Inv) { 140 // If literally everything is preserved, we're done. 141 if (PA.areAllPreserved()) 142 return false; // This is still a valid proxy. 143 144 // If this proxy or the call graph is going to be invalidated, we also need 145 // to clear all the keys coming from that analysis. 146 // 147 // We also directly invalidate the FAM's module proxy if necessary, and if 148 // that proxy isn't preserved we can't preserve this proxy either. We rely on 149 // it to handle module -> function analysis invalidation in the face of 150 // structural changes and so if it's unavailable we conservatively clear the 151 // entire SCC layer as well rather than trying to do invalidation ourselves. 152 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 153 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 154 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 155 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 156 InnerAM->clear(); 157 158 // And the proxy itself should be marked as invalid so that we can observe 159 // the new call graph. This isn't strictly necessary because we cheat 160 // above, but is still useful. 161 return true; 162 } 163 164 // Directly check if the relevant set is preserved so we can short circuit 165 // invalidating SCCs below. 166 bool AreSCCAnalysesPreserved = 167 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 168 169 // Ok, we have a graph, so we can propagate the invalidation down into it. 170 G->buildRefSCCs(); 171 for (auto &RC : G->postorder_ref_sccs()) 172 for (auto &C : RC) { 173 Optional<PreservedAnalyses> InnerPA; 174 175 // Check to see whether the preserved set needs to be adjusted based on 176 // module-level analysis invalidation triggering deferred invalidation 177 // for this SCC. 178 if (auto *OuterProxy = 179 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 180 for (const auto &OuterInvalidationPair : 181 OuterProxy->getOuterInvalidations()) { 182 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 183 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 184 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 185 if (!InnerPA) 186 InnerPA = PA; 187 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 188 InnerPA->abandon(InnerAnalysisID); 189 } 190 } 191 192 // Check if we needed a custom PA set. If so we'll need to run the inner 193 // invalidation. 194 if (InnerPA) { 195 InnerAM->invalidate(C, *InnerPA); 196 continue; 197 } 198 199 // Otherwise we only need to do invalidation if the original PA set didn't 200 // preserve all SCC analyses. 201 if (!AreSCCAnalysesPreserved) 202 InnerAM->invalidate(C, PA); 203 } 204 205 // Return false to indicate that this result is still a valid proxy. 206 return false; 207 } 208 209 template <> 210 CGSCCAnalysisManagerModuleProxy::Result 211 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 212 // Force the Function analysis manager to also be available so that it can 213 // be accessed in an SCC analysis and proxied onward to function passes. 214 // FIXME: It is pretty awkward to just drop the result here and assert that 215 // we can find it again later. 216 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 217 218 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 219 } 220 221 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 222 223 FunctionAnalysisManagerCGSCCProxy::Result 224 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 225 CGSCCAnalysisManager &AM, 226 LazyCallGraph &CG) { 227 // Collect the FunctionAnalysisManager from the Module layer and use that to 228 // build the proxy result. 229 // 230 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 231 // invalidate the function analyses. 232 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 233 Module &M = *C.begin()->getFunction().getParent(); 234 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 235 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 236 "proxy is run on the module prior to entering the CGSCC " 237 "walk."); 238 239 // Note that we special-case invalidation handling of this proxy in the CGSCC 240 // analysis manager's Module proxy. This avoids the need to do anything 241 // special here to recompute all of this if ever the FAM's module proxy goes 242 // away. 243 return Result(FAMProxy->getManager()); 244 } 245 246 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 247 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 248 CGSCCAnalysisManager::Invalidator &Inv) { 249 // If literally everything is preserved, we're done. 250 if (PA.areAllPreserved()) 251 return false; // This is still a valid proxy. 252 253 // If this proxy isn't marked as preserved, then even if the result remains 254 // valid, the key itself may no longer be valid, so we clear everything. 255 // 256 // Note that in order to preserve this proxy, a module pass must ensure that 257 // the FAM has been completely updated to handle the deletion of functions. 258 // Specifically, any FAM-cached results for those functions need to have been 259 // forcibly cleared. When preserved, this proxy will only invalidate results 260 // cached on functions *still in the module* at the end of the module pass. 261 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 262 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 263 for (LazyCallGraph::Node &N : C) 264 FAM->clear(N.getFunction(), N.getFunction().getName()); 265 266 return true; 267 } 268 269 // Directly check if the relevant set is preserved. 270 bool AreFunctionAnalysesPreserved = 271 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 272 273 // Now walk all the functions to see if any inner analysis invalidation is 274 // necessary. 275 for (LazyCallGraph::Node &N : C) { 276 Function &F = N.getFunction(); 277 Optional<PreservedAnalyses> FunctionPA; 278 279 // Check to see whether the preserved set needs to be pruned based on 280 // SCC-level analysis invalidation that triggers deferred invalidation 281 // registered with the outer analysis manager proxy for this function. 282 if (auto *OuterProxy = 283 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 284 for (const auto &OuterInvalidationPair : 285 OuterProxy->getOuterInvalidations()) { 286 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 287 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 288 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 289 if (!FunctionPA) 290 FunctionPA = PA; 291 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 292 FunctionPA->abandon(InnerAnalysisID); 293 } 294 } 295 296 // Check if we needed a custom PA set, and if so we'll need to run the 297 // inner invalidation. 298 if (FunctionPA) { 299 FAM->invalidate(F, *FunctionPA); 300 continue; 301 } 302 303 // Otherwise we only need to do invalidation if the original PA set didn't 304 // preserve all function analyses. 305 if (!AreFunctionAnalysesPreserved) 306 FAM->invalidate(F, PA); 307 } 308 309 // Return false to indicate that this result is still a valid proxy. 310 return false; 311 } 312 313 } // end namespace llvm 314 315 /// When a new SCC is created for the graph and there might be function 316 /// analysis results cached for the functions now in that SCC two forms of 317 /// updates are required. 318 /// 319 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 320 /// created so that any subsequent invalidation events to the SCC are 321 /// propagated to the function analysis results cached for functions within it. 322 /// 323 /// Second, if any of the functions within the SCC have analysis results with 324 /// outer analysis dependencies, then those dependencies would point to the 325 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 326 /// function analyses so that they don't retain stale handles. 327 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 328 LazyCallGraph &G, 329 CGSCCAnalysisManager &AM) { 330 // Get the relevant function analysis manager. 331 auto &FAM = 332 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 333 334 // Now walk the functions in this SCC and invalidate any function analysis 335 // results that might have outer dependencies on an SCC analysis. 336 for (LazyCallGraph::Node &N : C) { 337 Function &F = N.getFunction(); 338 339 auto *OuterProxy = 340 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 341 if (!OuterProxy) 342 // No outer analyses were queried, nothing to do. 343 continue; 344 345 // Forcibly abandon all the inner analyses with dependencies, but 346 // invalidate nothing else. 347 auto PA = PreservedAnalyses::all(); 348 for (const auto &OuterInvalidationPair : 349 OuterProxy->getOuterInvalidations()) { 350 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 351 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 352 PA.abandon(InnerAnalysisID); 353 } 354 355 // Now invalidate anything we found. 356 FAM.invalidate(F, PA); 357 } 358 } 359 360 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 361 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 362 /// added SCCs. 363 /// 364 /// The range of new SCCs must be in postorder already. The SCC they were split 365 /// out of must be provided as \p C. The current node being mutated and 366 /// triggering updates must be passed as \p N. 367 /// 368 /// This function returns the SCC containing \p N. This will be either \p C if 369 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 370 template <typename SCCRangeT> 371 static LazyCallGraph::SCC * 372 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 373 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 374 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 375 using SCC = LazyCallGraph::SCC; 376 377 if (NewSCCRange.begin() == NewSCCRange.end()) 378 return C; 379 380 // Add the current SCC to the worklist as its shape has changed. 381 UR.CWorklist.insert(C); 382 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 383 << "\n"); 384 385 SCC *OldC = C; 386 387 // Update the current SCC. Note that if we have new SCCs, this must actually 388 // change the SCC. 389 assert(C != &*NewSCCRange.begin() && 390 "Cannot insert new SCCs without changing current SCC!"); 391 C = &*NewSCCRange.begin(); 392 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 393 394 // If we had a cached FAM proxy originally, we will want to create more of 395 // them for each SCC that was split off. 396 bool NeedFAMProxy = 397 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 398 399 // We need to propagate an invalidation call to all but the newly current SCC 400 // because the outer pass manager won't do that for us after splitting them. 401 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 402 // there are preserved analysis we can avoid invalidating them here for 403 // split-off SCCs. 404 // We know however that this will preserve any FAM proxy so go ahead and mark 405 // that. 406 PreservedAnalyses PA; 407 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 408 AM.invalidate(*OldC, PA); 409 410 // Ensure the now-current SCC's function analyses are updated. 411 if (NeedFAMProxy) 412 updateNewSCCFunctionAnalyses(*C, G, AM); 413 414 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 415 NewSCCRange.end()))) { 416 assert(C != &NewC && "No need to re-visit the current SCC!"); 417 assert(OldC != &NewC && "Already handled the original SCC!"); 418 UR.CWorklist.insert(&NewC); 419 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 420 421 // Ensure new SCCs' function analyses are updated. 422 if (NeedFAMProxy) 423 updateNewSCCFunctionAnalyses(NewC, G, AM); 424 425 // Also propagate a normal invalidation to the new SCC as only the current 426 // will get one from the pass manager infrastructure. 427 AM.invalidate(NewC, PA); 428 } 429 return C; 430 } 431 432 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 433 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 434 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool FunctionPass) { 435 using Node = LazyCallGraph::Node; 436 using Edge = LazyCallGraph::Edge; 437 using SCC = LazyCallGraph::SCC; 438 using RefSCC = LazyCallGraph::RefSCC; 439 440 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 441 SCC *C = &InitialC; 442 RefSCC *RC = &InitialRC; 443 Function &F = N.getFunction(); 444 445 // Walk the function body and build up the set of retained, promoted, and 446 // demoted edges. 447 SmallVector<Constant *, 16> Worklist; 448 SmallPtrSet<Constant *, 16> Visited; 449 SmallPtrSet<Node *, 16> RetainedEdges; 450 SmallSetVector<Node *, 4> PromotedRefTargets; 451 SmallSetVector<Node *, 4> DemotedCallTargets; 452 SmallSetVector<Node *, 4> NewCallEdges; 453 SmallSetVector<Node *, 4> NewRefEdges; 454 455 // First walk the function and handle all called functions. We do this first 456 // because if there is a single call edge, whether there are ref edges is 457 // irrelevant. 458 for (Instruction &I : instructions(F)) 459 if (auto CS = CallSite(&I)) 460 if (Function *Callee = CS.getCalledFunction()) 461 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 462 Node &CalleeN = *G.lookup(*Callee); 463 Edge *E = N->lookup(CalleeN); 464 assert((E || !FunctionPass) && 465 "No function transformations should introduce *new* " 466 "call edges! Any new calls should be modeled as " 467 "promoted existing ref edges!"); 468 bool Inserted = RetainedEdges.insert(&CalleeN).second; 469 (void)Inserted; 470 assert(Inserted && "We should never visit a function twice."); 471 if (!E) 472 NewCallEdges.insert(&CalleeN); 473 else if (!E->isCall()) 474 PromotedRefTargets.insert(&CalleeN); 475 } 476 477 // Now walk all references. 478 for (Instruction &I : instructions(F)) 479 for (Value *Op : I.operand_values()) 480 if (auto *C = dyn_cast<Constant>(Op)) 481 if (Visited.insert(C).second) 482 Worklist.push_back(C); 483 484 auto VisitRef = [&](Function &Referee) { 485 Node &RefereeN = *G.lookup(Referee); 486 Edge *E = N->lookup(RefereeN); 487 assert((E || !FunctionPass) && 488 "No function transformations should introduce *new* ref " 489 "edges! Any new ref edges would require IPO which " 490 "function passes aren't allowed to do!"); 491 bool Inserted = RetainedEdges.insert(&RefereeN).second; 492 (void)Inserted; 493 assert(Inserted && "We should never visit a function twice."); 494 if (!E) 495 NewRefEdges.insert(&RefereeN); 496 else if (E->isCall()) 497 DemotedCallTargets.insert(&RefereeN); 498 }; 499 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 500 501 // Handle new ref edges. 502 for (Node *RefTarget : NewRefEdges) { 503 SCC &TargetC = *G.lookupSCC(*RefTarget); 504 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 505 (void)TargetRC; 506 // TODO: This only allows trivial edges to be added for now. 507 assert((RC == &TargetRC || 508 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 509 RC->insertTrivialRefEdge(N, *RefTarget); 510 } 511 512 // Handle new call edges. 513 for (Node *CallTarget : NewCallEdges) { 514 SCC &TargetC = *G.lookupSCC(*CallTarget); 515 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 516 (void)TargetRC; 517 // TODO: This only allows trivial edges to be added for now. 518 assert((RC == &TargetRC || 519 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 520 RC->insertTrivialCallEdge(N, *CallTarget); 521 } 522 523 // Include synthetic reference edges to known, defined lib functions. 524 for (auto *F : G.getLibFunctions()) 525 // While the list of lib functions doesn't have repeats, don't re-visit 526 // anything handled above. 527 if (!Visited.count(F)) 528 VisitRef(*F); 529 530 // First remove all of the edges that are no longer present in this function. 531 // The first step makes these edges uniformly ref edges and accumulates them 532 // into a separate data structure so removal doesn't invalidate anything. 533 SmallVector<Node *, 4> DeadTargets; 534 for (Edge &E : *N) { 535 if (RetainedEdges.count(&E.getNode())) 536 continue; 537 538 SCC &TargetC = *G.lookupSCC(E.getNode()); 539 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 540 if (&TargetRC == RC && E.isCall()) { 541 if (C != &TargetC) { 542 // For separate SCCs this is trivial. 543 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 544 } else { 545 // Now update the call graph. 546 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 547 G, N, C, AM, UR); 548 } 549 } 550 551 // Now that this is ready for actual removal, put it into our list. 552 DeadTargets.push_back(&E.getNode()); 553 } 554 // Remove the easy cases quickly and actually pull them out of our list. 555 DeadTargets.erase( 556 llvm::remove_if(DeadTargets, 557 [&](Node *TargetN) { 558 SCC &TargetC = *G.lookupSCC(*TargetN); 559 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 560 561 // We can't trivially remove internal targets, so skip 562 // those. 563 if (&TargetRC == RC) 564 return false; 565 566 RC->removeOutgoingEdge(N, *TargetN); 567 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 568 << N << "' to '" << TargetN << "'\n"); 569 return true; 570 }), 571 DeadTargets.end()); 572 573 // Now do a batch removal of the internal ref edges left. 574 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 575 if (!NewRefSCCs.empty()) { 576 // The old RefSCC is dead, mark it as such. 577 UR.InvalidatedRefSCCs.insert(RC); 578 579 // Note that we don't bother to invalidate analyses as ref-edge 580 // connectivity is not really observable in any way and is intended 581 // exclusively to be used for ordering of transforms rather than for 582 // analysis conclusions. 583 584 // Update RC to the "bottom". 585 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 586 RC = &C->getOuterRefSCC(); 587 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 588 589 // The RC worklist is in reverse postorder, so we enqueue the new ones in 590 // RPO except for the one which contains the source node as that is the 591 // "bottom" we will continue processing in the bottom-up walk. 592 assert(NewRefSCCs.front() == RC && 593 "New current RefSCC not first in the returned list!"); 594 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 595 NewRefSCCs.end()))) { 596 assert(NewRC != RC && "Should not encounter the current RefSCC further " 597 "in the postorder list of new RefSCCs."); 598 UR.RCWorklist.insert(NewRC); 599 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 600 << *NewRC << "\n"); 601 } 602 } 603 604 // Next demote all the call edges that are now ref edges. This helps make 605 // the SCCs small which should minimize the work below as we don't want to 606 // form cycles that this would break. 607 for (Node *RefTarget : DemotedCallTargets) { 608 SCC &TargetC = *G.lookupSCC(*RefTarget); 609 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 610 611 // The easy case is when the target RefSCC is not this RefSCC. This is 612 // only supported when the target RefSCC is a child of this RefSCC. 613 if (&TargetRC != RC) { 614 assert(RC->isAncestorOf(TargetRC) && 615 "Cannot potentially form RefSCC cycles here!"); 616 RC->switchOutgoingEdgeToRef(N, *RefTarget); 617 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 618 << "' to '" << *RefTarget << "'\n"); 619 continue; 620 } 621 622 // We are switching an internal call edge to a ref edge. This may split up 623 // some SCCs. 624 if (C != &TargetC) { 625 // For separate SCCs this is trivial. 626 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 627 continue; 628 } 629 630 // Now update the call graph. 631 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 632 C, AM, UR); 633 } 634 635 // Now promote ref edges into call edges. 636 for (Node *CallTarget : PromotedRefTargets) { 637 SCC &TargetC = *G.lookupSCC(*CallTarget); 638 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 639 640 // The easy case is when the target RefSCC is not this RefSCC. This is 641 // only supported when the target RefSCC is a child of this RefSCC. 642 if (&TargetRC != RC) { 643 assert(RC->isAncestorOf(TargetRC) && 644 "Cannot potentially form RefSCC cycles here!"); 645 RC->switchOutgoingEdgeToCall(N, *CallTarget); 646 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 647 << "' to '" << *CallTarget << "'\n"); 648 continue; 649 } 650 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 651 << N << "' to '" << *CallTarget << "'\n"); 652 653 // Otherwise we are switching an internal ref edge to a call edge. This 654 // may merge away some SCCs, and we add those to the UpdateResult. We also 655 // need to make sure to update the worklist in the event SCCs have moved 656 // before the current one in the post-order sequence 657 bool HasFunctionAnalysisProxy = false; 658 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 659 bool FormedCycle = RC->switchInternalEdgeToCall( 660 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 661 for (SCC *MergedC : MergedSCCs) { 662 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 663 664 HasFunctionAnalysisProxy |= 665 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 666 *MergedC) != nullptr; 667 668 // Mark that this SCC will no longer be valid. 669 UR.InvalidatedSCCs.insert(MergedC); 670 671 // FIXME: We should really do a 'clear' here to forcibly release 672 // memory, but we don't have a good way of doing that and 673 // preserving the function analyses. 674 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 675 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 676 AM.invalidate(*MergedC, PA); 677 } 678 }); 679 680 // If we formed a cycle by creating this call, we need to update more data 681 // structures. 682 if (FormedCycle) { 683 C = &TargetC; 684 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 685 686 // If one of the invalidated SCCs had a cached proxy to a function 687 // analysis manager, we need to create a proxy in the new current SCC as 688 // the invalidated SCCs had their functions moved. 689 if (HasFunctionAnalysisProxy) 690 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 691 692 // Any analyses cached for this SCC are no longer precise as the shape 693 // has changed by introducing this cycle. However, we have taken care to 694 // update the proxies so it remains valide. 695 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 696 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 697 AM.invalidate(*C, PA); 698 } 699 auto NewSCCIndex = RC->find(*C) - RC->begin(); 700 // If we have actually moved an SCC to be topologically "below" the current 701 // one due to merging, we will need to revisit the current SCC after 702 // visiting those moved SCCs. 703 // 704 // It is critical that we *do not* revisit the current SCC unless we 705 // actually move SCCs in the process of merging because otherwise we may 706 // form a cycle where an SCC is split apart, merged, split, merged and so 707 // on infinitely. 708 if (InitialSCCIndex < NewSCCIndex) { 709 // Put our current SCC back onto the worklist as we'll visit other SCCs 710 // that are now definitively ordered prior to the current one in the 711 // post-order sequence, and may end up observing more precise context to 712 // optimize the current SCC. 713 UR.CWorklist.insert(C); 714 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 715 << "\n"); 716 // Enqueue in reverse order as we pop off the back of the worklist. 717 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 718 RC->begin() + NewSCCIndex))) { 719 UR.CWorklist.insert(&MovedC); 720 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 721 << MovedC << "\n"); 722 } 723 } 724 } 725 726 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 727 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 728 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 729 730 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 731 // manager now that all the updates have been applied. 732 if (RC != &InitialRC) 733 UR.UpdatedRC = RC; 734 if (C != &InitialC) 735 UR.UpdatedC = C; 736 737 return *C; 738 } 739 740 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 741 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 742 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 743 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 744 /* FunctionPass */ true); 745 } 746 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 747 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 748 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 749 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, 750 /* FunctionPass */ false); 751 } 752