1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/IR/CallSite.h" 12 13 using namespace llvm; 14 15 namespace llvm { 16 17 // Explicit instantiations for the core proxy templates. 18 template class AllAnalysesOn<LazyCallGraph::SCC>; 19 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 20 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 21 LazyCallGraph &, CGSCCUpdateResult &>; 22 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 23 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 24 LazyCallGraph::SCC>; 25 template class InnerAnalysisManagerProxy<FunctionAnalysisManager, 26 LazyCallGraph::SCC>; 27 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 28 29 /// Explicitly specialize the pass manager run method to handle call graph 30 /// updates. 31 template <> 32 PreservedAnalyses 33 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 34 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 35 CGSCCAnalysisManager &AM, 36 LazyCallGraph &G, CGSCCUpdateResult &UR) { 37 PreservedAnalyses PA = PreservedAnalyses::all(); 38 39 if (DebugLogging) 40 dbgs() << "Starting CGSCC pass manager run.\n"; 41 42 // The SCC may be refined while we are running passes over it, so set up 43 // a pointer that we can update. 44 LazyCallGraph::SCC *C = &InitialC; 45 46 for (auto &Pass : Passes) { 47 if (DebugLogging) 48 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 49 50 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 51 52 // Update the SCC if necessary. 53 C = UR.UpdatedC ? UR.UpdatedC : C; 54 55 // Check that we didn't miss any update scenario. 56 assert(!UR.InvalidatedSCCs.count(C) && "Processing an invalid SCC!"); 57 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 58 59 // Update the analysis manager as each pass runs and potentially 60 // invalidates analyses. 61 AM.invalidate(*C, PassPA); 62 63 // Finally, we intersect the final preserved analyses to compute the 64 // aggregate preserved set for this pass manager. 65 PA.intersect(std::move(PassPA)); 66 67 // FIXME: Historically, the pass managers all called the LLVM context's 68 // yield function here. We don't have a generic way to acquire the 69 // context and it isn't yet clear what the right pattern is for yielding 70 // in the new pass manager so it is currently omitted. 71 // ...getContext().yield(); 72 } 73 74 // Invaliadtion was handled after each pass in the above loop for the current 75 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 76 // preserved. We mark this with a set so that we don't need to inspect each 77 // one individually. 78 PA.preserve<AllAnalysesOn<LazyCallGraph::SCC>>(); 79 80 if (DebugLogging) 81 dbgs() << "Finished CGSCC pass manager run.\n"; 82 83 return PA; 84 } 85 86 } // End llvm namespace 87 88 namespace { 89 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 90 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 91 /// added SCCs. 92 /// 93 /// The range of new SCCs must be in postorder already. The SCC they were split 94 /// out of must be provided as \p C. The current node being mutated and 95 /// triggering updates must be passed as \p N. 96 /// 97 /// This function returns the SCC containing \p N. This will be either \p C if 98 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 99 template <typename SCCRangeT> 100 LazyCallGraph::SCC * 101 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 102 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 103 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 104 bool DebugLogging = false) { 105 typedef LazyCallGraph::SCC SCC; 106 107 if (NewSCCRange.begin() == NewSCCRange.end()) 108 return C; 109 110 // Invalidate the analyses of the current SCC and add it to the worklist since 111 // it has changed its shape. 112 AM.invalidate(*C, PreservedAnalyses::none()); 113 UR.CWorklist.insert(C); 114 if (DebugLogging) 115 dbgs() << "Enqueuing the existing SCC in the worklist:" << *C << "\n"; 116 117 SCC *OldC = C; 118 (void)OldC; 119 120 // Update the current SCC. Note that if we have new SCCs, this must actually 121 // change the SCC. 122 assert(C != &*NewSCCRange.begin() && 123 "Cannot insert new SCCs without changing current SCC!"); 124 C = &*NewSCCRange.begin(); 125 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 126 127 for (SCC &NewC : 128 reverse(make_range(std::next(NewSCCRange.begin()), NewSCCRange.end()))) { 129 assert(C != &NewC && "No need to re-visit the current SCC!"); 130 assert(OldC != &NewC && "Already handled the original SCC!"); 131 UR.CWorklist.insert(&NewC); 132 if (DebugLogging) 133 dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"; 134 } 135 return C; 136 } 137 } 138 139 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 140 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 141 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, bool DebugLogging) { 142 typedef LazyCallGraph::Node Node; 143 typedef LazyCallGraph::Edge Edge; 144 typedef LazyCallGraph::SCC SCC; 145 typedef LazyCallGraph::RefSCC RefSCC; 146 147 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 148 SCC *C = &InitialC; 149 RefSCC *RC = &InitialRC; 150 Function &F = N.getFunction(); 151 152 // Walk the function body and build up the set of retained, promoted, and 153 // demoted edges. 154 SmallVector<Constant *, 16> Worklist; 155 SmallPtrSet<Constant *, 16> Visited; 156 SmallPtrSet<Function *, 16> RetainedEdges; 157 SmallSetVector<Function *, 4> PromotedRefTargets; 158 SmallSetVector<Function *, 4> DemotedCallTargets; 159 // First walk the function and handle all called functions. We do this first 160 // because if there is a single call edge, whether there are ref edges is 161 // irrelevant. 162 for (BasicBlock &BB : F) 163 for (Instruction &I : BB) 164 if (auto CS = CallSite(&I)) 165 if (Function *Callee = CS.getCalledFunction()) 166 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 167 const Edge *E = N.lookup(*Callee); 168 // FIXME: We should really handle adding new calls. While it will 169 // make downstream usage more complex, there is no fundamental 170 // limitation and it will allow passes within the CGSCC to be a bit 171 // more flexible in what transforms they can do. Until then, we 172 // verify that new calls haven't been introduced. 173 assert(E && "No function transformations should introduce *new* " 174 "call edges! Any new calls should be modeled as " 175 "promoted existing ref edges!"); 176 RetainedEdges.insert(Callee); 177 if (!E->isCall()) 178 PromotedRefTargets.insert(Callee); 179 } 180 181 // Now walk all references. 182 for (BasicBlock &BB : F) 183 for (Instruction &I : BB) { 184 for (Value *Op : I.operand_values()) 185 if (Constant *C = dyn_cast<Constant>(Op)) 186 if (Visited.insert(C).second) 187 Worklist.push_back(C); 188 189 LazyCallGraph::visitReferences(Worklist, Visited, [&](Function &Referee) { 190 // Skip declarations. 191 if (Referee.isDeclaration()) 192 return; 193 194 const Edge *E = N.lookup(Referee); 195 // FIXME: Similarly to new calls, we also currently preclude 196 // introducing new references. See above for details. 197 assert(E && "No function transformations should introduce *new* ref " 198 "edges! Any new ref edges would require IPO which " 199 "function passes aren't allowed to do!"); 200 RetainedEdges.insert(&Referee); 201 if (E->isCall()) 202 DemotedCallTargets.insert(&Referee); 203 }); 204 } 205 206 // First remove all of the edges that are no longer present in this function. 207 // We have to build a list of dead targets first and then remove them as the 208 // data structures will all be invalidated by removing them. 209 SmallVector<PointerIntPair<Node *, 1, Edge::Kind>, 4> DeadTargets; 210 for (Edge &E : N) 211 if (!RetainedEdges.count(&E.getFunction())) 212 DeadTargets.push_back({E.getNode(), E.getKind()}); 213 for (auto DeadTarget : DeadTargets) { 214 Node &TargetN = *DeadTarget.getPointer(); 215 bool IsCall = DeadTarget.getInt() == Edge::Call; 216 SCC &TargetC = *G.lookupSCC(TargetN); 217 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 218 219 if (&TargetRC != RC) { 220 RC->removeOutgoingEdge(N, TargetN); 221 if (DebugLogging) 222 dbgs() << "Deleting outgoing edge from '" << N << "' to '" << TargetN 223 << "'\n"; 224 continue; 225 } 226 if (DebugLogging) 227 dbgs() << "Deleting internal " << (IsCall ? "call" : "ref") 228 << " edge from '" << N << "' to '" << TargetN << "'\n"; 229 230 if (IsCall) 231 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, 232 C, AM, UR, DebugLogging); 233 234 auto NewRefSCCs = RC->removeInternalRefEdge(N, TargetN); 235 if (!NewRefSCCs.empty()) { 236 // Note that we don't bother to invalidate analyses as ref-edge 237 // connectivity is not really observable in any way and is intended 238 // exclusively to be used for ordering of transforms rather than for 239 // analysis conclusions. 240 241 // The RC worklist is in reverse postorder, so we first enqueue the 242 // current RefSCC as it will remain the parent of all split RefSCCs, then 243 // we enqueue the new ones in RPO except for the one which contains the 244 // source node as that is the "bottom" we will continue processing in the 245 // bottom-up walk. 246 UR.RCWorklist.insert(RC); 247 if (DebugLogging) 248 dbgs() << "Enqueuing the existing RefSCC in the update worklist: " 249 << *RC << "\n"; 250 // Update the RC to the "bottom". 251 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 252 RC = &C->getOuterRefSCC(); 253 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 254 for (RefSCC *NewRC : reverse(NewRefSCCs)) 255 if (NewRC != RC) { 256 UR.RCWorklist.insert(NewRC); 257 if (DebugLogging) 258 dbgs() << "Enqueuing a new RefSCC in the update worklist: " 259 << *NewRC << "\n"; 260 } 261 } 262 } 263 264 // Next demote all the call edges that are now ref edges. This helps make 265 // the SCCs small which should minimize the work below as we don't want to 266 // form cycles that this would break. 267 for (Function *RefTarget : DemotedCallTargets) { 268 Node &TargetN = *G.lookup(*RefTarget); 269 SCC &TargetC = *G.lookupSCC(TargetN); 270 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 271 272 // The easy case is when the target RefSCC is not this RefSCC. This is 273 // only supported when the target RefSCC is a child of this RefSCC. 274 if (&TargetRC != RC) { 275 assert(RC->isAncestorOf(TargetRC) && 276 "Cannot potentially form RefSCC cycles here!"); 277 RC->switchOutgoingEdgeToRef(N, TargetN); 278 if (DebugLogging) 279 dbgs() << "Switch outgoing call edge to a ref edge from '" << N 280 << "' to '" << TargetN << "'\n"; 281 continue; 282 } 283 284 // Otherwise we are switching an internal call edge to a ref edge. This 285 // may split up some SCCs. 286 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, TargetN), G, N, C, 287 AM, UR, DebugLogging); 288 } 289 290 // Now promote ref edges into call edges. 291 for (Function *CallTarget : PromotedRefTargets) { 292 Node &TargetN = *G.lookup(*CallTarget); 293 SCC &TargetC = *G.lookupSCC(TargetN); 294 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 295 296 // The easy case is when the target RefSCC is not this RefSCC. This is 297 // only supported when the target RefSCC is a child of this RefSCC. 298 if (&TargetRC != RC) { 299 assert(RC->isAncestorOf(TargetRC) && 300 "Cannot potentially form RefSCC cycles here!"); 301 RC->switchOutgoingEdgeToCall(N, TargetN); 302 if (DebugLogging) 303 dbgs() << "Switch outgoing ref edge to a call edge from '" << N 304 << "' to '" << TargetN << "'\n"; 305 continue; 306 } 307 if (DebugLogging) 308 dbgs() << "Switch an internal ref edge to a call edge from '" << N 309 << "' to '" << TargetN << "'\n"; 310 311 // Otherwise we are switching an internal ref edge to a call edge. This 312 // may merge away some SCCs, and we add those to the UpdateResult. We also 313 // need to make sure to update the worklist in the event SCCs have moved 314 // before the current one in the post-order sequence. 315 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 316 auto InvalidatedSCCs = RC->switchInternalEdgeToCall(N, TargetN); 317 if (!InvalidatedSCCs.empty()) { 318 C = &TargetC; 319 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 320 321 // Any analyses cached for this SCC are no longer precise as the shape 322 // has changed by introducing this cycle. 323 AM.invalidate(*C, PreservedAnalyses::none()); 324 325 for (SCC *InvalidatedC : InvalidatedSCCs) { 326 assert(InvalidatedC != C && "Cannot invalidate the current SCC!"); 327 UR.InvalidatedSCCs.insert(InvalidatedC); 328 329 // Also clear any cached analyses for the SCCs that are dead. This 330 // isn't really necessary for correctness but can release memory. 331 AM.clear(*InvalidatedC); 332 } 333 } 334 auto NewSCCIndex = RC->find(*C) - RC->begin(); 335 if (InitialSCCIndex < NewSCCIndex) { 336 // Put our current SCC back onto the worklist as we'll visit other SCCs 337 // that are now definitively ordered prior to the current one in the 338 // post-order sequence, and may end up observing more precise context to 339 // optimize the current SCC. 340 UR.CWorklist.insert(C); 341 if (DebugLogging) 342 dbgs() << "Enqueuing the existing SCC in the worklist: " << *C << "\n"; 343 // Enqueue in reverse order as we pop off the back of the worklist. 344 for (SCC &MovedC : reverse(make_range(RC->begin() + InitialSCCIndex, 345 RC->begin() + NewSCCIndex))) { 346 UR.CWorklist.insert(&MovedC); 347 if (DebugLogging) 348 dbgs() << "Enqueuing a newly earlier in post-order SCC: " << MovedC 349 << "\n"; 350 } 351 } 352 } 353 354 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 355 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 356 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 357 358 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 359 // manager now that all the updates have been applied. 360 if (RC != &InitialRC) 361 UR.UpdatedRC = RC; 362 if (C != &InitialC) 363 UR.UpdatedC = C; 364 365 return *C; 366 } 367