1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Analysis/CGSCCPassManager.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/Optional.h" 13 #include "llvm/ADT/STLExtras.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/iterator_range.h" 18 #include "llvm/Analysis/LazyCallGraph.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/Constant.h" 21 #include "llvm/IR/InstIterator.h" 22 #include "llvm/IR/Instruction.h" 23 #include "llvm/IR/PassManager.h" 24 #include "llvm/Support/Casting.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <iterator> 30 31 #define DEBUG_TYPE "cgscc" 32 33 using namespace llvm; 34 35 // Explicit template instantiations and specialization definitions for core 36 // template typedefs. 37 namespace llvm { 38 39 // Explicit instantiations for the core proxy templates. 40 template class AllAnalysesOn<LazyCallGraph::SCC>; 41 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 42 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 43 LazyCallGraph &, CGSCCUpdateResult &>; 44 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 45 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 46 LazyCallGraph::SCC, LazyCallGraph &>; 47 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 48 49 /// Explicitly specialize the pass manager run method to handle call graph 50 /// updates. 51 template <> 52 PreservedAnalyses 53 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 54 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 55 CGSCCAnalysisManager &AM, 56 LazyCallGraph &G, CGSCCUpdateResult &UR) { 57 // Request PassInstrumentation from analysis manager, will use it to run 58 // instrumenting callbacks for the passes later. 59 PassInstrumentation PI = 60 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 61 62 PreservedAnalyses PA = PreservedAnalyses::all(); 63 64 if (DebugLogging) 65 dbgs() << "Starting CGSCC pass manager run.\n"; 66 67 // The SCC may be refined while we are running passes over it, so set up 68 // a pointer that we can update. 69 LazyCallGraph::SCC *C = &InitialC; 70 71 for (auto &Pass : Passes) { 72 if (DebugLogging) 73 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 74 75 // Check the PassInstrumentation's BeforePass callbacks before running the 76 // pass, skip its execution completely if asked to (callback returns false). 77 if (!PI.runBeforePass(*Pass, *C)) 78 continue; 79 80 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 81 82 if (UR.InvalidatedSCCs.count(C)) 83 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); 84 else 85 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); 86 87 // Update the SCC if necessary. 88 C = UR.UpdatedC ? UR.UpdatedC : C; 89 90 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 91 // current SCC may simply need to be skipped if invalid. 92 if (UR.InvalidatedSCCs.count(C)) { 93 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 94 break; 95 } 96 // Check that we didn't miss any update scenario. 97 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 98 99 // Update the analysis manager as each pass runs and potentially 100 // invalidates analyses. 101 AM.invalidate(*C, PassPA); 102 103 // Finally, we intersect the final preserved analyses to compute the 104 // aggregate preserved set for this pass manager. 105 PA.intersect(std::move(PassPA)); 106 107 // FIXME: Historically, the pass managers all called the LLVM context's 108 // yield function here. We don't have a generic way to acquire the 109 // context and it isn't yet clear what the right pattern is for yielding 110 // in the new pass manager so it is currently omitted. 111 // ...getContext().yield(); 112 } 113 114 // Invalidation was handled after each pass in the above loop for the current 115 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 116 // preserved. We mark this with a set so that we don't need to inspect each 117 // one individually. 118 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 119 120 if (DebugLogging) 121 dbgs() << "Finished CGSCC pass manager run.\n"; 122 123 return PA; 124 } 125 126 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 127 Module &M, const PreservedAnalyses &PA, 128 ModuleAnalysisManager::Invalidator &Inv) { 129 // If literally everything is preserved, we're done. 130 if (PA.areAllPreserved()) 131 return false; // This is still a valid proxy. 132 133 // If this proxy or the call graph is going to be invalidated, we also need 134 // to clear all the keys coming from that analysis. 135 // 136 // We also directly invalidate the FAM's module proxy if necessary, and if 137 // that proxy isn't preserved we can't preserve this proxy either. We rely on 138 // it to handle module -> function analysis invalidation in the face of 139 // structural changes and so if it's unavailable we conservatively clear the 140 // entire SCC layer as well rather than trying to do invalidation ourselves. 141 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 142 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 143 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 144 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 145 InnerAM->clear(); 146 147 // And the proxy itself should be marked as invalid so that we can observe 148 // the new call graph. This isn't strictly necessary because we cheat 149 // above, but is still useful. 150 return true; 151 } 152 153 // Directly check if the relevant set is preserved so we can short circuit 154 // invalidating SCCs below. 155 bool AreSCCAnalysesPreserved = 156 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 157 158 // Ok, we have a graph, so we can propagate the invalidation down into it. 159 G->buildRefSCCs(); 160 for (auto &RC : G->postorder_ref_sccs()) 161 for (auto &C : RC) { 162 Optional<PreservedAnalyses> InnerPA; 163 164 // Check to see whether the preserved set needs to be adjusted based on 165 // module-level analysis invalidation triggering deferred invalidation 166 // for this SCC. 167 if (auto *OuterProxy = 168 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 169 for (const auto &OuterInvalidationPair : 170 OuterProxy->getOuterInvalidations()) { 171 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 172 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 173 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 174 if (!InnerPA) 175 InnerPA = PA; 176 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 177 InnerPA->abandon(InnerAnalysisID); 178 } 179 } 180 181 // Check if we needed a custom PA set. If so we'll need to run the inner 182 // invalidation. 183 if (InnerPA) { 184 InnerAM->invalidate(C, *InnerPA); 185 continue; 186 } 187 188 // Otherwise we only need to do invalidation if the original PA set didn't 189 // preserve all SCC analyses. 190 if (!AreSCCAnalysesPreserved) 191 InnerAM->invalidate(C, PA); 192 } 193 194 // Return false to indicate that this result is still a valid proxy. 195 return false; 196 } 197 198 template <> 199 CGSCCAnalysisManagerModuleProxy::Result 200 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 201 // Force the Function analysis manager to also be available so that it can 202 // be accessed in an SCC analysis and proxied onward to function passes. 203 // FIXME: It is pretty awkward to just drop the result here and assert that 204 // we can find it again later. 205 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 206 207 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 208 } 209 210 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 211 212 FunctionAnalysisManagerCGSCCProxy::Result 213 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 214 CGSCCAnalysisManager &AM, 215 LazyCallGraph &CG) { 216 // Collect the FunctionAnalysisManager from the Module layer and use that to 217 // build the proxy result. 218 // 219 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 220 // invalidate the function analyses. 221 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 222 Module &M = *C.begin()->getFunction().getParent(); 223 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 224 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 225 "proxy is run on the module prior to entering the CGSCC " 226 "walk."); 227 228 // Note that we special-case invalidation handling of this proxy in the CGSCC 229 // analysis manager's Module proxy. This avoids the need to do anything 230 // special here to recompute all of this if ever the FAM's module proxy goes 231 // away. 232 return Result(FAMProxy->getManager()); 233 } 234 235 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 236 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 237 CGSCCAnalysisManager::Invalidator &Inv) { 238 // If literally everything is preserved, we're done. 239 if (PA.areAllPreserved()) 240 return false; // This is still a valid proxy. 241 242 // If this proxy isn't marked as preserved, then even if the result remains 243 // valid, the key itself may no longer be valid, so we clear everything. 244 // 245 // Note that in order to preserve this proxy, a module pass must ensure that 246 // the FAM has been completely updated to handle the deletion of functions. 247 // Specifically, any FAM-cached results for those functions need to have been 248 // forcibly cleared. When preserved, this proxy will only invalidate results 249 // cached on functions *still in the module* at the end of the module pass. 250 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 251 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 252 for (LazyCallGraph::Node &N : C) 253 FAM->clear(N.getFunction(), N.getFunction().getName()); 254 255 return true; 256 } 257 258 // Directly check if the relevant set is preserved. 259 bool AreFunctionAnalysesPreserved = 260 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 261 262 // Now walk all the functions to see if any inner analysis invalidation is 263 // necessary. 264 for (LazyCallGraph::Node &N : C) { 265 Function &F = N.getFunction(); 266 Optional<PreservedAnalyses> FunctionPA; 267 268 // Check to see whether the preserved set needs to be pruned based on 269 // SCC-level analysis invalidation that triggers deferred invalidation 270 // registered with the outer analysis manager proxy for this function. 271 if (auto *OuterProxy = 272 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 273 for (const auto &OuterInvalidationPair : 274 OuterProxy->getOuterInvalidations()) { 275 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 276 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 277 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 278 if (!FunctionPA) 279 FunctionPA = PA; 280 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 281 FunctionPA->abandon(InnerAnalysisID); 282 } 283 } 284 285 // Check if we needed a custom PA set, and if so we'll need to run the 286 // inner invalidation. 287 if (FunctionPA) { 288 FAM->invalidate(F, *FunctionPA); 289 continue; 290 } 291 292 // Otherwise we only need to do invalidation if the original PA set didn't 293 // preserve all function analyses. 294 if (!AreFunctionAnalysesPreserved) 295 FAM->invalidate(F, PA); 296 } 297 298 // Return false to indicate that this result is still a valid proxy. 299 return false; 300 } 301 302 } // end namespace llvm 303 304 /// When a new SCC is created for the graph and there might be function 305 /// analysis results cached for the functions now in that SCC two forms of 306 /// updates are required. 307 /// 308 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 309 /// created so that any subsequent invalidation events to the SCC are 310 /// propagated to the function analysis results cached for functions within it. 311 /// 312 /// Second, if any of the functions within the SCC have analysis results with 313 /// outer analysis dependencies, then those dependencies would point to the 314 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 315 /// function analyses so that they don't retain stale handles. 316 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 317 LazyCallGraph &G, 318 CGSCCAnalysisManager &AM) { 319 // Get the relevant function analysis manager. 320 auto &FAM = 321 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 322 323 // Now walk the functions in this SCC and invalidate any function analysis 324 // results that might have outer dependencies on an SCC analysis. 325 for (LazyCallGraph::Node &N : C) { 326 Function &F = N.getFunction(); 327 328 auto *OuterProxy = 329 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 330 if (!OuterProxy) 331 // No outer analyses were queried, nothing to do. 332 continue; 333 334 // Forcibly abandon all the inner analyses with dependencies, but 335 // invalidate nothing else. 336 auto PA = PreservedAnalyses::all(); 337 for (const auto &OuterInvalidationPair : 338 OuterProxy->getOuterInvalidations()) { 339 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 340 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 341 PA.abandon(InnerAnalysisID); 342 } 343 344 // Now invalidate anything we found. 345 FAM.invalidate(F, PA); 346 } 347 } 348 349 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 350 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 351 /// added SCCs. 352 /// 353 /// The range of new SCCs must be in postorder already. The SCC they were split 354 /// out of must be provided as \p C. The current node being mutated and 355 /// triggering updates must be passed as \p N. 356 /// 357 /// This function returns the SCC containing \p N. This will be either \p C if 358 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 359 template <typename SCCRangeT> 360 static LazyCallGraph::SCC * 361 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 362 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 363 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 364 using SCC = LazyCallGraph::SCC; 365 366 if (NewSCCRange.begin() == NewSCCRange.end()) 367 return C; 368 369 // Add the current SCC to the worklist as its shape has changed. 370 UR.CWorklist.insert(C); 371 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 372 << "\n"); 373 374 SCC *OldC = C; 375 376 // Update the current SCC. Note that if we have new SCCs, this must actually 377 // change the SCC. 378 assert(C != &*NewSCCRange.begin() && 379 "Cannot insert new SCCs without changing current SCC!"); 380 C = &*NewSCCRange.begin(); 381 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 382 383 // If we had a cached FAM proxy originally, we will want to create more of 384 // them for each SCC that was split off. 385 bool NeedFAMProxy = 386 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 387 388 // We need to propagate an invalidation call to all but the newly current SCC 389 // because the outer pass manager won't do that for us after splitting them. 390 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 391 // there are preserved analysis we can avoid invalidating them here for 392 // split-off SCCs. 393 // We know however that this will preserve any FAM proxy so go ahead and mark 394 // that. 395 PreservedAnalyses PA; 396 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 397 AM.invalidate(*OldC, PA); 398 399 // Ensure the now-current SCC's function analyses are updated. 400 if (NeedFAMProxy) 401 updateNewSCCFunctionAnalyses(*C, G, AM); 402 403 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 404 NewSCCRange.end()))) { 405 assert(C != &NewC && "No need to re-visit the current SCC!"); 406 assert(OldC != &NewC && "Already handled the original SCC!"); 407 UR.CWorklist.insert(&NewC); 408 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 409 410 // Ensure new SCCs' function analyses are updated. 411 if (NeedFAMProxy) 412 updateNewSCCFunctionAnalyses(NewC, G, AM); 413 414 // Also propagate a normal invalidation to the new SCC as only the current 415 // will get one from the pass manager infrastructure. 416 AM.invalidate(NewC, PA); 417 } 418 return C; 419 } 420 421 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 422 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 423 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 424 using Node = LazyCallGraph::Node; 425 using Edge = LazyCallGraph::Edge; 426 using SCC = LazyCallGraph::SCC; 427 using RefSCC = LazyCallGraph::RefSCC; 428 429 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 430 SCC *C = &InitialC; 431 RefSCC *RC = &InitialRC; 432 Function &F = N.getFunction(); 433 434 // Walk the function body and build up the set of retained, promoted, and 435 // demoted edges. 436 SmallVector<Constant *, 16> Worklist; 437 SmallPtrSet<Constant *, 16> Visited; 438 SmallPtrSet<Node *, 16> RetainedEdges; 439 SmallSetVector<Node *, 4> PromotedRefTargets; 440 SmallSetVector<Node *, 4> DemotedCallTargets; 441 442 // First walk the function and handle all called functions. We do this first 443 // because if there is a single call edge, whether there are ref edges is 444 // irrelevant. 445 for (Instruction &I : instructions(F)) 446 if (auto CS = CallSite(&I)) 447 if (Function *Callee = CS.getCalledFunction()) 448 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 449 Node &CalleeN = *G.lookup(*Callee); 450 Edge *E = N->lookup(CalleeN); 451 // FIXME: We should really handle adding new calls. While it will 452 // make downstream usage more complex, there is no fundamental 453 // limitation and it will allow passes within the CGSCC to be a bit 454 // more flexible in what transforms they can do. Until then, we 455 // verify that new calls haven't been introduced. 456 assert(E && "No function transformations should introduce *new* " 457 "call edges! Any new calls should be modeled as " 458 "promoted existing ref edges!"); 459 bool Inserted = RetainedEdges.insert(&CalleeN).second; 460 (void)Inserted; 461 assert(Inserted && "We should never visit a function twice."); 462 if (!E->isCall()) 463 PromotedRefTargets.insert(&CalleeN); 464 } 465 466 // Now walk all references. 467 for (Instruction &I : instructions(F)) 468 for (Value *Op : I.operand_values()) 469 if (auto *C = dyn_cast<Constant>(Op)) 470 if (Visited.insert(C).second) 471 Worklist.push_back(C); 472 473 auto VisitRef = [&](Function &Referee) { 474 Node &RefereeN = *G.lookup(Referee); 475 Edge *E = N->lookup(RefereeN); 476 // FIXME: Similarly to new calls, we also currently preclude 477 // introducing new references. See above for details. 478 assert(E && "No function transformations should introduce *new* ref " 479 "edges! Any new ref edges would require IPO which " 480 "function passes aren't allowed to do!"); 481 bool Inserted = RetainedEdges.insert(&RefereeN).second; 482 (void)Inserted; 483 assert(Inserted && "We should never visit a function twice."); 484 if (E->isCall()) 485 DemotedCallTargets.insert(&RefereeN); 486 }; 487 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 488 489 // Include synthetic reference edges to known, defined lib functions. 490 for (auto *F : G.getLibFunctions()) 491 // While the list of lib functions doesn't have repeats, don't re-visit 492 // anything handled above. 493 if (!Visited.count(F)) 494 VisitRef(*F); 495 496 // First remove all of the edges that are no longer present in this function. 497 // The first step makes these edges uniformly ref edges and accumulates them 498 // into a separate data structure so removal doesn't invalidate anything. 499 SmallVector<Node *, 4> DeadTargets; 500 for (Edge &E : *N) { 501 if (RetainedEdges.count(&E.getNode())) 502 continue; 503 504 SCC &TargetC = *G.lookupSCC(E.getNode()); 505 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 506 if (&TargetRC == RC && E.isCall()) { 507 if (C != &TargetC) { 508 // For separate SCCs this is trivial. 509 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 510 } else { 511 // Now update the call graph. 512 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 513 G, N, C, AM, UR); 514 } 515 } 516 517 // Now that this is ready for actual removal, put it into our list. 518 DeadTargets.push_back(&E.getNode()); 519 } 520 // Remove the easy cases quickly and actually pull them out of our list. 521 DeadTargets.erase( 522 llvm::remove_if(DeadTargets, 523 [&](Node *TargetN) { 524 SCC &TargetC = *G.lookupSCC(*TargetN); 525 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 526 527 // We can't trivially remove internal targets, so skip 528 // those. 529 if (&TargetRC == RC) 530 return false; 531 532 RC->removeOutgoingEdge(N, *TargetN); 533 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 534 << N << "' to '" << TargetN << "'\n"); 535 return true; 536 }), 537 DeadTargets.end()); 538 539 // Now do a batch removal of the internal ref edges left. 540 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 541 if (!NewRefSCCs.empty()) { 542 // The old RefSCC is dead, mark it as such. 543 UR.InvalidatedRefSCCs.insert(RC); 544 545 // Note that we don't bother to invalidate analyses as ref-edge 546 // connectivity is not really observable in any way and is intended 547 // exclusively to be used for ordering of transforms rather than for 548 // analysis conclusions. 549 550 // Update RC to the "bottom". 551 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 552 RC = &C->getOuterRefSCC(); 553 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 554 555 // The RC worklist is in reverse postorder, so we enqueue the new ones in 556 // RPO except for the one which contains the source node as that is the 557 // "bottom" we will continue processing in the bottom-up walk. 558 assert(NewRefSCCs.front() == RC && 559 "New current RefSCC not first in the returned list!"); 560 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 561 NewRefSCCs.end()))) { 562 assert(NewRC != RC && "Should not encounter the current RefSCC further " 563 "in the postorder list of new RefSCCs."); 564 UR.RCWorklist.insert(NewRC); 565 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 566 << *NewRC << "\n"); 567 } 568 } 569 570 // Next demote all the call edges that are now ref edges. This helps make 571 // the SCCs small which should minimize the work below as we don't want to 572 // form cycles that this would break. 573 for (Node *RefTarget : DemotedCallTargets) { 574 SCC &TargetC = *G.lookupSCC(*RefTarget); 575 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 576 577 // The easy case is when the target RefSCC is not this RefSCC. This is 578 // only supported when the target RefSCC is a child of this RefSCC. 579 if (&TargetRC != RC) { 580 assert(RC->isAncestorOf(TargetRC) && 581 "Cannot potentially form RefSCC cycles here!"); 582 RC->switchOutgoingEdgeToRef(N, *RefTarget); 583 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 584 << "' to '" << *RefTarget << "'\n"); 585 continue; 586 } 587 588 // We are switching an internal call edge to a ref edge. This may split up 589 // some SCCs. 590 if (C != &TargetC) { 591 // For separate SCCs this is trivial. 592 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 593 continue; 594 } 595 596 // Now update the call graph. 597 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 598 C, AM, UR); 599 } 600 601 // Now promote ref edges into call edges. 602 for (Node *CallTarget : PromotedRefTargets) { 603 SCC &TargetC = *G.lookupSCC(*CallTarget); 604 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 605 606 // The easy case is when the target RefSCC is not this RefSCC. This is 607 // only supported when the target RefSCC is a child of this RefSCC. 608 if (&TargetRC != RC) { 609 assert(RC->isAncestorOf(TargetRC) && 610 "Cannot potentially form RefSCC cycles here!"); 611 RC->switchOutgoingEdgeToCall(N, *CallTarget); 612 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 613 << "' to '" << *CallTarget << "'\n"); 614 continue; 615 } 616 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 617 << N << "' to '" << *CallTarget << "'\n"); 618 619 // Otherwise we are switching an internal ref edge to a call edge. This 620 // may merge away some SCCs, and we add those to the UpdateResult. We also 621 // need to make sure to update the worklist in the event SCCs have moved 622 // before the current one in the post-order sequence 623 bool HasFunctionAnalysisProxy = false; 624 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 625 bool FormedCycle = RC->switchInternalEdgeToCall( 626 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 627 for (SCC *MergedC : MergedSCCs) { 628 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 629 630 HasFunctionAnalysisProxy |= 631 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 632 *MergedC) != nullptr; 633 634 // Mark that this SCC will no longer be valid. 635 UR.InvalidatedSCCs.insert(MergedC); 636 637 // FIXME: We should really do a 'clear' here to forcibly release 638 // memory, but we don't have a good way of doing that and 639 // preserving the function analyses. 640 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 641 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 642 AM.invalidate(*MergedC, PA); 643 } 644 }); 645 646 // If we formed a cycle by creating this call, we need to update more data 647 // structures. 648 if (FormedCycle) { 649 C = &TargetC; 650 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 651 652 // If one of the invalidated SCCs had a cached proxy to a function 653 // analysis manager, we need to create a proxy in the new current SCC as 654 // the invalidated SCCs had their functions moved. 655 if (HasFunctionAnalysisProxy) 656 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 657 658 // Any analyses cached for this SCC are no longer precise as the shape 659 // has changed by introducing this cycle. However, we have taken care to 660 // update the proxies so it remains valide. 661 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 662 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 663 AM.invalidate(*C, PA); 664 } 665 auto NewSCCIndex = RC->find(*C) - RC->begin(); 666 // If we have actually moved an SCC to be topologically "below" the current 667 // one due to merging, we will need to revisit the current SCC after 668 // visiting those moved SCCs. 669 // 670 // It is critical that we *do not* revisit the current SCC unless we 671 // actually move SCCs in the process of merging because otherwise we may 672 // form a cycle where an SCC is split apart, merged, split, merged and so 673 // on infinitely. 674 if (InitialSCCIndex < NewSCCIndex) { 675 // Put our current SCC back onto the worklist as we'll visit other SCCs 676 // that are now definitively ordered prior to the current one in the 677 // post-order sequence, and may end up observing more precise context to 678 // optimize the current SCC. 679 UR.CWorklist.insert(C); 680 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 681 << "\n"); 682 // Enqueue in reverse order as we pop off the back of the worklist. 683 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 684 RC->begin() + NewSCCIndex))) { 685 UR.CWorklist.insert(&MovedC); 686 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 687 << MovedC << "\n"); 688 } 689 } 690 } 691 692 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 693 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 694 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 695 696 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 697 // manager now that all the updates have been applied. 698 if (RC != &InitialRC) 699 UR.UpdatedRC = RC; 700 if (C != &InitialC) 701 UR.UpdatedC = C; 702 703 return *C; 704 } 705