1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/CallSite.h" 19 #include "llvm/IR/Constant.h" 20 #include "llvm/IR/InstIterator.h" 21 #include "llvm/IR/Instruction.h" 22 #include "llvm/IR/PassManager.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include <algorithm> 27 #include <cassert> 28 #include <iterator> 29 30 #define DEBUG_TYPE "cgscc" 31 32 using namespace llvm; 33 34 // Explicit template instantiations and specialization definitions for core 35 // template typedefs. 36 namespace llvm { 37 38 // Explicit instantiations for the core proxy templates. 39 template class AllAnalysesOn<LazyCallGraph::SCC>; 40 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 41 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 42 LazyCallGraph &, CGSCCUpdateResult &>; 43 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 44 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 45 LazyCallGraph::SCC, LazyCallGraph &>; 46 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 47 48 /// Explicitly specialize the pass manager run method to handle call graph 49 /// updates. 50 template <> 51 PreservedAnalyses 52 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 53 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 54 CGSCCAnalysisManager &AM, 55 LazyCallGraph &G, CGSCCUpdateResult &UR) { 56 // Request PassInstrumentation from analysis manager, will use it to run 57 // instrumenting callbacks for the passes later. 58 PassInstrumentation PI = 59 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 60 61 PreservedAnalyses PA = PreservedAnalyses::all(); 62 63 if (DebugLogging) 64 dbgs() << "Starting CGSCC pass manager run.\n"; 65 66 // The SCC may be refined while we are running passes over it, so set up 67 // a pointer that we can update. 68 LazyCallGraph::SCC *C = &InitialC; 69 70 for (auto &Pass : Passes) { 71 if (DebugLogging) 72 dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n"; 73 74 // Check the PassInstrumentation's BeforePass callbacks before running the 75 // pass, skip its execution completely if asked to (callback returns false). 76 if (!PI.runBeforePass(*Pass, *C)) 77 continue; 78 79 PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR); 80 81 if (UR.InvalidatedSCCs.count(C)) 82 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass); 83 else 84 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C); 85 86 // Update the SCC if necessary. 87 C = UR.UpdatedC ? UR.UpdatedC : C; 88 89 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 90 // current SCC may simply need to be skipped if invalid. 91 if (UR.InvalidatedSCCs.count(C)) { 92 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 93 break; 94 } 95 // Check that we didn't miss any update scenario. 96 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 97 98 // Update the analysis manager as each pass runs and potentially 99 // invalidates analyses. 100 AM.invalidate(*C, PassPA); 101 102 // Finally, we intersect the final preserved analyses to compute the 103 // aggregate preserved set for this pass manager. 104 PA.intersect(std::move(PassPA)); 105 106 // FIXME: Historically, the pass managers all called the LLVM context's 107 // yield function here. We don't have a generic way to acquire the 108 // context and it isn't yet clear what the right pattern is for yielding 109 // in the new pass manager so it is currently omitted. 110 // ...getContext().yield(); 111 } 112 113 // Invalidation was handled after each pass in the above loop for the current 114 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 115 // preserved. We mark this with a set so that we don't need to inspect each 116 // one individually. 117 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 118 119 if (DebugLogging) 120 dbgs() << "Finished CGSCC pass manager run.\n"; 121 122 return PA; 123 } 124 125 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 126 Module &M, const PreservedAnalyses &PA, 127 ModuleAnalysisManager::Invalidator &Inv) { 128 // If literally everything is preserved, we're done. 129 if (PA.areAllPreserved()) 130 return false; // This is still a valid proxy. 131 132 // If this proxy or the call graph is going to be invalidated, we also need 133 // to clear all the keys coming from that analysis. 134 // 135 // We also directly invalidate the FAM's module proxy if necessary, and if 136 // that proxy isn't preserved we can't preserve this proxy either. We rely on 137 // it to handle module -> function analysis invalidation in the face of 138 // structural changes and so if it's unavailable we conservatively clear the 139 // entire SCC layer as well rather than trying to do invalidation ourselves. 140 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 141 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 142 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 143 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 144 InnerAM->clear(); 145 146 // And the proxy itself should be marked as invalid so that we can observe 147 // the new call graph. This isn't strictly necessary because we cheat 148 // above, but is still useful. 149 return true; 150 } 151 152 // Directly check if the relevant set is preserved so we can short circuit 153 // invalidating SCCs below. 154 bool AreSCCAnalysesPreserved = 155 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 156 157 // Ok, we have a graph, so we can propagate the invalidation down into it. 158 G->buildRefSCCs(); 159 for (auto &RC : G->postorder_ref_sccs()) 160 for (auto &C : RC) { 161 Optional<PreservedAnalyses> InnerPA; 162 163 // Check to see whether the preserved set needs to be adjusted based on 164 // module-level analysis invalidation triggering deferred invalidation 165 // for this SCC. 166 if (auto *OuterProxy = 167 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 168 for (const auto &OuterInvalidationPair : 169 OuterProxy->getOuterInvalidations()) { 170 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 171 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 172 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 173 if (!InnerPA) 174 InnerPA = PA; 175 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 176 InnerPA->abandon(InnerAnalysisID); 177 } 178 } 179 180 // Check if we needed a custom PA set. If so we'll need to run the inner 181 // invalidation. 182 if (InnerPA) { 183 InnerAM->invalidate(C, *InnerPA); 184 continue; 185 } 186 187 // Otherwise we only need to do invalidation if the original PA set didn't 188 // preserve all SCC analyses. 189 if (!AreSCCAnalysesPreserved) 190 InnerAM->invalidate(C, PA); 191 } 192 193 // Return false to indicate that this result is still a valid proxy. 194 return false; 195 } 196 197 template <> 198 CGSCCAnalysisManagerModuleProxy::Result 199 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 200 // Force the Function analysis manager to also be available so that it can 201 // be accessed in an SCC analysis and proxied onward to function passes. 202 // FIXME: It is pretty awkward to just drop the result here and assert that 203 // we can find it again later. 204 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 205 206 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 207 } 208 209 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 210 211 FunctionAnalysisManagerCGSCCProxy::Result 212 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 213 CGSCCAnalysisManager &AM, 214 LazyCallGraph &CG) { 215 // Collect the FunctionAnalysisManager from the Module layer and use that to 216 // build the proxy result. 217 // 218 // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to 219 // invalidate the function analyses. 220 auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager(); 221 Module &M = *C.begin()->getFunction().getParent(); 222 auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M); 223 assert(FAMProxy && "The CGSCC pass manager requires that the FAM module " 224 "proxy is run on the module prior to entering the CGSCC " 225 "walk."); 226 227 // Note that we special-case invalidation handling of this proxy in the CGSCC 228 // analysis manager's Module proxy. This avoids the need to do anything 229 // special here to recompute all of this if ever the FAM's module proxy goes 230 // away. 231 return Result(FAMProxy->getManager()); 232 } 233 234 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 235 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 236 CGSCCAnalysisManager::Invalidator &Inv) { 237 // If literally everything is preserved, we're done. 238 if (PA.areAllPreserved()) 239 return false; // This is still a valid proxy. 240 241 // If this proxy isn't marked as preserved, then even if the result remains 242 // valid, the key itself may no longer be valid, so we clear everything. 243 // 244 // Note that in order to preserve this proxy, a module pass must ensure that 245 // the FAM has been completely updated to handle the deletion of functions. 246 // Specifically, any FAM-cached results for those functions need to have been 247 // forcibly cleared. When preserved, this proxy will only invalidate results 248 // cached on functions *still in the module* at the end of the module pass. 249 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 250 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 251 for (LazyCallGraph::Node &N : C) 252 FAM->clear(N.getFunction(), N.getFunction().getName()); 253 254 return true; 255 } 256 257 // Directly check if the relevant set is preserved. 258 bool AreFunctionAnalysesPreserved = 259 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 260 261 // Now walk all the functions to see if any inner analysis invalidation is 262 // necessary. 263 for (LazyCallGraph::Node &N : C) { 264 Function &F = N.getFunction(); 265 Optional<PreservedAnalyses> FunctionPA; 266 267 // Check to see whether the preserved set needs to be pruned based on 268 // SCC-level analysis invalidation that triggers deferred invalidation 269 // registered with the outer analysis manager proxy for this function. 270 if (auto *OuterProxy = 271 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 272 for (const auto &OuterInvalidationPair : 273 OuterProxy->getOuterInvalidations()) { 274 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 275 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 276 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 277 if (!FunctionPA) 278 FunctionPA = PA; 279 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 280 FunctionPA->abandon(InnerAnalysisID); 281 } 282 } 283 284 // Check if we needed a custom PA set, and if so we'll need to run the 285 // inner invalidation. 286 if (FunctionPA) { 287 FAM->invalidate(F, *FunctionPA); 288 continue; 289 } 290 291 // Otherwise we only need to do invalidation if the original PA set didn't 292 // preserve all function analyses. 293 if (!AreFunctionAnalysesPreserved) 294 FAM->invalidate(F, PA); 295 } 296 297 // Return false to indicate that this result is still a valid proxy. 298 return false; 299 } 300 301 } // end namespace llvm 302 303 /// When a new SCC is created for the graph and there might be function 304 /// analysis results cached for the functions now in that SCC two forms of 305 /// updates are required. 306 /// 307 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 308 /// created so that any subsequent invalidation events to the SCC are 309 /// propagated to the function analysis results cached for functions within it. 310 /// 311 /// Second, if any of the functions within the SCC have analysis results with 312 /// outer analysis dependencies, then those dependencies would point to the 313 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 314 /// function analyses so that they don't retain stale handles. 315 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 316 LazyCallGraph &G, 317 CGSCCAnalysisManager &AM) { 318 // Get the relevant function analysis manager. 319 auto &FAM = 320 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager(); 321 322 // Now walk the functions in this SCC and invalidate any function analysis 323 // results that might have outer dependencies on an SCC analysis. 324 for (LazyCallGraph::Node &N : C) { 325 Function &F = N.getFunction(); 326 327 auto *OuterProxy = 328 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 329 if (!OuterProxy) 330 // No outer analyses were queried, nothing to do. 331 continue; 332 333 // Forcibly abandon all the inner analyses with dependencies, but 334 // invalidate nothing else. 335 auto PA = PreservedAnalyses::all(); 336 for (const auto &OuterInvalidationPair : 337 OuterProxy->getOuterInvalidations()) { 338 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 339 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 340 PA.abandon(InnerAnalysisID); 341 } 342 343 // Now invalidate anything we found. 344 FAM.invalidate(F, PA); 345 } 346 } 347 348 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 349 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 350 /// added SCCs. 351 /// 352 /// The range of new SCCs must be in postorder already. The SCC they were split 353 /// out of must be provided as \p C. The current node being mutated and 354 /// triggering updates must be passed as \p N. 355 /// 356 /// This function returns the SCC containing \p N. This will be either \p C if 357 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 358 template <typename SCCRangeT> 359 static LazyCallGraph::SCC * 360 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 361 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 362 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 363 using SCC = LazyCallGraph::SCC; 364 365 if (NewSCCRange.begin() == NewSCCRange.end()) 366 return C; 367 368 // Add the current SCC to the worklist as its shape has changed. 369 UR.CWorklist.insert(C); 370 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 371 << "\n"); 372 373 SCC *OldC = C; 374 375 // Update the current SCC. Note that if we have new SCCs, this must actually 376 // change the SCC. 377 assert(C != &*NewSCCRange.begin() && 378 "Cannot insert new SCCs without changing current SCC!"); 379 C = &*NewSCCRange.begin(); 380 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 381 382 // If we had a cached FAM proxy originally, we will want to create more of 383 // them for each SCC that was split off. 384 bool NeedFAMProxy = 385 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr; 386 387 // We need to propagate an invalidation call to all but the newly current SCC 388 // because the outer pass manager won't do that for us after splitting them. 389 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 390 // there are preserved analysis we can avoid invalidating them here for 391 // split-off SCCs. 392 // We know however that this will preserve any FAM proxy so go ahead and mark 393 // that. 394 PreservedAnalyses PA; 395 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 396 AM.invalidate(*OldC, PA); 397 398 // Ensure the now-current SCC's function analyses are updated. 399 if (NeedFAMProxy) 400 updateNewSCCFunctionAnalyses(*C, G, AM); 401 402 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 403 NewSCCRange.end()))) { 404 assert(C != &NewC && "No need to re-visit the current SCC!"); 405 assert(OldC != &NewC && "Already handled the original SCC!"); 406 UR.CWorklist.insert(&NewC); 407 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 408 409 // Ensure new SCCs' function analyses are updated. 410 if (NeedFAMProxy) 411 updateNewSCCFunctionAnalyses(NewC, G, AM); 412 413 // Also propagate a normal invalidation to the new SCC as only the current 414 // will get one from the pass manager infrastructure. 415 AM.invalidate(NewC, PA); 416 } 417 return C; 418 } 419 420 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 421 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 422 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 423 using Node = LazyCallGraph::Node; 424 using Edge = LazyCallGraph::Edge; 425 using SCC = LazyCallGraph::SCC; 426 using RefSCC = LazyCallGraph::RefSCC; 427 428 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 429 SCC *C = &InitialC; 430 RefSCC *RC = &InitialRC; 431 Function &F = N.getFunction(); 432 433 // Walk the function body and build up the set of retained, promoted, and 434 // demoted edges. 435 SmallVector<Constant *, 16> Worklist; 436 SmallPtrSet<Constant *, 16> Visited; 437 SmallPtrSet<Node *, 16> RetainedEdges; 438 SmallSetVector<Node *, 4> PromotedRefTargets; 439 SmallSetVector<Node *, 4> DemotedCallTargets; 440 441 // First walk the function and handle all called functions. We do this first 442 // because if there is a single call edge, whether there are ref edges is 443 // irrelevant. 444 for (Instruction &I : instructions(F)) 445 if (auto CS = CallSite(&I)) 446 if (Function *Callee = CS.getCalledFunction()) 447 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 448 Node &CalleeN = *G.lookup(*Callee); 449 Edge *E = N->lookup(CalleeN); 450 // FIXME: We should really handle adding new calls. While it will 451 // make downstream usage more complex, there is no fundamental 452 // limitation and it will allow passes within the CGSCC to be a bit 453 // more flexible in what transforms they can do. Until then, we 454 // verify that new calls haven't been introduced. 455 assert(E && "No function transformations should introduce *new* " 456 "call edges! Any new calls should be modeled as " 457 "promoted existing ref edges!"); 458 bool Inserted = RetainedEdges.insert(&CalleeN).second; 459 (void)Inserted; 460 assert(Inserted && "We should never visit a function twice."); 461 if (!E->isCall()) 462 PromotedRefTargets.insert(&CalleeN); 463 } 464 465 // Now walk all references. 466 for (Instruction &I : instructions(F)) 467 for (Value *Op : I.operand_values()) 468 if (auto *C = dyn_cast<Constant>(Op)) 469 if (Visited.insert(C).second) 470 Worklist.push_back(C); 471 472 auto VisitRef = [&](Function &Referee) { 473 Node &RefereeN = *G.lookup(Referee); 474 Edge *E = N->lookup(RefereeN); 475 // FIXME: Similarly to new calls, we also currently preclude 476 // introducing new references. See above for details. 477 assert(E && "No function transformations should introduce *new* ref " 478 "edges! Any new ref edges would require IPO which " 479 "function passes aren't allowed to do!"); 480 bool Inserted = RetainedEdges.insert(&RefereeN).second; 481 (void)Inserted; 482 assert(Inserted && "We should never visit a function twice."); 483 if (E->isCall()) 484 DemotedCallTargets.insert(&RefereeN); 485 }; 486 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 487 488 // Include synthetic reference edges to known, defined lib functions. 489 for (auto *F : G.getLibFunctions()) 490 // While the list of lib functions doesn't have repeats, don't re-visit 491 // anything handled above. 492 if (!Visited.count(F)) 493 VisitRef(*F); 494 495 // First remove all of the edges that are no longer present in this function. 496 // The first step makes these edges uniformly ref edges and accumulates them 497 // into a separate data structure so removal doesn't invalidate anything. 498 SmallVector<Node *, 4> DeadTargets; 499 for (Edge &E : *N) { 500 if (RetainedEdges.count(&E.getNode())) 501 continue; 502 503 SCC &TargetC = *G.lookupSCC(E.getNode()); 504 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 505 if (&TargetRC == RC && E.isCall()) { 506 if (C != &TargetC) { 507 // For separate SCCs this is trivial. 508 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 509 } else { 510 // Now update the call graph. 511 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 512 G, N, C, AM, UR); 513 } 514 } 515 516 // Now that this is ready for actual removal, put it into our list. 517 DeadTargets.push_back(&E.getNode()); 518 } 519 // Remove the easy cases quickly and actually pull them out of our list. 520 DeadTargets.erase( 521 llvm::remove_if(DeadTargets, 522 [&](Node *TargetN) { 523 SCC &TargetC = *G.lookupSCC(*TargetN); 524 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 525 526 // We can't trivially remove internal targets, so skip 527 // those. 528 if (&TargetRC == RC) 529 return false; 530 531 RC->removeOutgoingEdge(N, *TargetN); 532 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 533 << N << "' to '" << TargetN << "'\n"); 534 return true; 535 }), 536 DeadTargets.end()); 537 538 // Now do a batch removal of the internal ref edges left. 539 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 540 if (!NewRefSCCs.empty()) { 541 // The old RefSCC is dead, mark it as such. 542 UR.InvalidatedRefSCCs.insert(RC); 543 544 // Note that we don't bother to invalidate analyses as ref-edge 545 // connectivity is not really observable in any way and is intended 546 // exclusively to be used for ordering of transforms rather than for 547 // analysis conclusions. 548 549 // Update RC to the "bottom". 550 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 551 RC = &C->getOuterRefSCC(); 552 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 553 554 // The RC worklist is in reverse postorder, so we enqueue the new ones in 555 // RPO except for the one which contains the source node as that is the 556 // "bottom" we will continue processing in the bottom-up walk. 557 assert(NewRefSCCs.front() == RC && 558 "New current RefSCC not first in the returned list!"); 559 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 560 NewRefSCCs.end()))) { 561 assert(NewRC != RC && "Should not encounter the current RefSCC further " 562 "in the postorder list of new RefSCCs."); 563 UR.RCWorklist.insert(NewRC); 564 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 565 << *NewRC << "\n"); 566 } 567 } 568 569 // Next demote all the call edges that are now ref edges. This helps make 570 // the SCCs small which should minimize the work below as we don't want to 571 // form cycles that this would break. 572 for (Node *RefTarget : DemotedCallTargets) { 573 SCC &TargetC = *G.lookupSCC(*RefTarget); 574 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 575 576 // The easy case is when the target RefSCC is not this RefSCC. This is 577 // only supported when the target RefSCC is a child of this RefSCC. 578 if (&TargetRC != RC) { 579 assert(RC->isAncestorOf(TargetRC) && 580 "Cannot potentially form RefSCC cycles here!"); 581 RC->switchOutgoingEdgeToRef(N, *RefTarget); 582 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 583 << "' to '" << *RefTarget << "'\n"); 584 continue; 585 } 586 587 // We are switching an internal call edge to a ref edge. This may split up 588 // some SCCs. 589 if (C != &TargetC) { 590 // For separate SCCs this is trivial. 591 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 592 continue; 593 } 594 595 // Now update the call graph. 596 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 597 C, AM, UR); 598 } 599 600 // Now promote ref edges into call edges. 601 for (Node *CallTarget : PromotedRefTargets) { 602 SCC &TargetC = *G.lookupSCC(*CallTarget); 603 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 604 605 // The easy case is when the target RefSCC is not this RefSCC. This is 606 // only supported when the target RefSCC is a child of this RefSCC. 607 if (&TargetRC != RC) { 608 assert(RC->isAncestorOf(TargetRC) && 609 "Cannot potentially form RefSCC cycles here!"); 610 RC->switchOutgoingEdgeToCall(N, *CallTarget); 611 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 612 << "' to '" << *CallTarget << "'\n"); 613 continue; 614 } 615 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 616 << N << "' to '" << *CallTarget << "'\n"); 617 618 // Otherwise we are switching an internal ref edge to a call edge. This 619 // may merge away some SCCs, and we add those to the UpdateResult. We also 620 // need to make sure to update the worklist in the event SCCs have moved 621 // before the current one in the post-order sequence 622 bool HasFunctionAnalysisProxy = false; 623 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 624 bool FormedCycle = RC->switchInternalEdgeToCall( 625 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 626 for (SCC *MergedC : MergedSCCs) { 627 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 628 629 HasFunctionAnalysisProxy |= 630 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 631 *MergedC) != nullptr; 632 633 // Mark that this SCC will no longer be valid. 634 UR.InvalidatedSCCs.insert(MergedC); 635 636 // FIXME: We should really do a 'clear' here to forcibly release 637 // memory, but we don't have a good way of doing that and 638 // preserving the function analyses. 639 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 640 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 641 AM.invalidate(*MergedC, PA); 642 } 643 }); 644 645 // If we formed a cycle by creating this call, we need to update more data 646 // structures. 647 if (FormedCycle) { 648 C = &TargetC; 649 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 650 651 // If one of the invalidated SCCs had a cached proxy to a function 652 // analysis manager, we need to create a proxy in the new current SCC as 653 // the invalidated SCCs had their functions moved. 654 if (HasFunctionAnalysisProxy) 655 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 656 657 // Any analyses cached for this SCC are no longer precise as the shape 658 // has changed by introducing this cycle. However, we have taken care to 659 // update the proxies so it remains valide. 660 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 661 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 662 AM.invalidate(*C, PA); 663 } 664 auto NewSCCIndex = RC->find(*C) - RC->begin(); 665 // If we have actually moved an SCC to be topologically "below" the current 666 // one due to merging, we will need to revisit the current SCC after 667 // visiting those moved SCCs. 668 // 669 // It is critical that we *do not* revisit the current SCC unless we 670 // actually move SCCs in the process of merging because otherwise we may 671 // form a cycle where an SCC is split apart, merged, split, merged and so 672 // on infinitely. 673 if (InitialSCCIndex < NewSCCIndex) { 674 // Put our current SCC back onto the worklist as we'll visit other SCCs 675 // that are now definitively ordered prior to the current one in the 676 // post-order sequence, and may end up observing more precise context to 677 // optimize the current SCC. 678 UR.CWorklist.insert(C); 679 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 680 << "\n"); 681 // Enqueue in reverse order as we pop off the back of the worklist. 682 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 683 RC->begin() + NewSCCIndex))) { 684 UR.CWorklist.insert(&MovedC); 685 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 686 << MovedC << "\n"); 687 } 688 } 689 } 690 691 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 692 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 693 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 694 695 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 696 // manager now that all the updates have been applied. 697 if (RC != &InitialRC) 698 UR.UpdatedRC = RC; 699 if (C != &InitialC) 700 UR.UpdatedC = C; 701 702 return *C; 703 } 704