1 //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Analysis/CGSCCPassManager.h" 10 #include "llvm/ADT/ArrayRef.h" 11 #include "llvm/ADT/Optional.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/ADT/SmallPtrSet.h" 15 #include "llvm/ADT/SmallVector.h" 16 #include "llvm/ADT/iterator_range.h" 17 #include "llvm/Analysis/LazyCallGraph.h" 18 #include "llvm/IR/Constant.h" 19 #include "llvm/IR/InstIterator.h" 20 #include "llvm/IR/Instruction.h" 21 #include "llvm/IR/PassManager.h" 22 #include "llvm/IR/PassManagerImpl.h" 23 #include "llvm/Support/Casting.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/Debug.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/TimeProfiler.h" 28 #include "llvm/Support/raw_ostream.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <iterator> 32 33 #define DEBUG_TYPE "cgscc" 34 35 using namespace llvm; 36 37 // Explicit template instantiations and specialization definitions for core 38 // template typedefs. 39 namespace llvm { 40 41 static cl::opt<bool> AbortOnMaxDevirtIterationsReached( 42 "abort-on-max-devirt-iterations-reached", 43 cl::desc("Abort when the max iterations for devirtualization CGSCC repeat " 44 "pass is reached")); 45 46 // Explicit instantiations for the core proxy templates. 47 template class AllAnalysesOn<LazyCallGraph::SCC>; 48 template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>; 49 template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, 50 LazyCallGraph &, CGSCCUpdateResult &>; 51 template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>; 52 template class OuterAnalysisManagerProxy<ModuleAnalysisManager, 53 LazyCallGraph::SCC, LazyCallGraph &>; 54 template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>; 55 56 /// Explicitly specialize the pass manager run method to handle call graph 57 /// updates. 58 template <> 59 PreservedAnalyses 60 PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &, 61 CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC, 62 CGSCCAnalysisManager &AM, 63 LazyCallGraph &G, CGSCCUpdateResult &UR) { 64 // Request PassInstrumentation from analysis manager, will use it to run 65 // instrumenting callbacks for the passes later. 66 PassInstrumentation PI = 67 AM.getResult<PassInstrumentationAnalysis>(InitialC, G); 68 69 PreservedAnalyses PA = PreservedAnalyses::all(); 70 71 if (DebugLogging) 72 dbgs() << "Starting CGSCC pass manager run.\n"; 73 74 // The SCC may be refined while we are running passes over it, so set up 75 // a pointer that we can update. 76 LazyCallGraph::SCC *C = &InitialC; 77 78 // Get Function analysis manager from its proxy. 79 FunctionAnalysisManager &FAM = 80 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*C)->getManager(); 81 82 for (auto &Pass : Passes) { 83 // Check the PassInstrumentation's BeforePass callbacks before running the 84 // pass, skip its execution completely if asked to (callback returns false). 85 if (!PI.runBeforePass(*Pass, *C)) 86 continue; 87 88 PreservedAnalyses PassPA; 89 { 90 TimeTraceScope TimeScope(Pass->name()); 91 PassPA = Pass->run(*C, AM, G, UR); 92 } 93 94 if (UR.InvalidatedSCCs.count(C)) 95 PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass, PassPA); 96 else 97 PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C, PassPA); 98 99 // Update the SCC if necessary. 100 C = UR.UpdatedC ? UR.UpdatedC : C; 101 if (UR.UpdatedC) { 102 // If C is updated, also create a proxy and update FAM inside the result. 103 auto *ResultFAMCP = 104 &AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G); 105 ResultFAMCP->updateFAM(FAM); 106 } 107 108 // If the CGSCC pass wasn't able to provide a valid updated SCC, the 109 // current SCC may simply need to be skipped if invalid. 110 if (UR.InvalidatedSCCs.count(C)) { 111 LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n"); 112 break; 113 } 114 // Check that we didn't miss any update scenario. 115 assert(C->begin() != C->end() && "Cannot have an empty SCC!"); 116 117 // Update the analysis manager as each pass runs and potentially 118 // invalidates analyses. 119 AM.invalidate(*C, PassPA); 120 121 // Finally, we intersect the final preserved analyses to compute the 122 // aggregate preserved set for this pass manager. 123 PA.intersect(std::move(PassPA)); 124 125 // FIXME: Historically, the pass managers all called the LLVM context's 126 // yield function here. We don't have a generic way to acquire the 127 // context and it isn't yet clear what the right pattern is for yielding 128 // in the new pass manager so it is currently omitted. 129 // ...getContext().yield(); 130 } 131 132 // Before we mark all of *this* SCC's analyses as preserved below, intersect 133 // this with the cross-SCC preserved analysis set. This is used to allow 134 // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation 135 // for them. 136 UR.CrossSCCPA.intersect(PA); 137 138 // Invalidation was handled after each pass in the above loop for the current 139 // SCC. Therefore, the remaining analysis results in the AnalysisManager are 140 // preserved. We mark this with a set so that we don't need to inspect each 141 // one individually. 142 PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>(); 143 144 if (DebugLogging) 145 dbgs() << "Finished CGSCC pass manager run.\n"; 146 147 return PA; 148 } 149 150 bool CGSCCAnalysisManagerModuleProxy::Result::invalidate( 151 Module &M, const PreservedAnalyses &PA, 152 ModuleAnalysisManager::Invalidator &Inv) { 153 // If literally everything is preserved, we're done. 154 if (PA.areAllPreserved()) 155 return false; // This is still a valid proxy. 156 157 // If this proxy or the call graph is going to be invalidated, we also need 158 // to clear all the keys coming from that analysis. 159 // 160 // We also directly invalidate the FAM's module proxy if necessary, and if 161 // that proxy isn't preserved we can't preserve this proxy either. We rely on 162 // it to handle module -> function analysis invalidation in the face of 163 // structural changes and so if it's unavailable we conservatively clear the 164 // entire SCC layer as well rather than trying to do invalidation ourselves. 165 auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>(); 166 if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) || 167 Inv.invalidate<LazyCallGraphAnalysis>(M, PA) || 168 Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) { 169 InnerAM->clear(); 170 171 // And the proxy itself should be marked as invalid so that we can observe 172 // the new call graph. This isn't strictly necessary because we cheat 173 // above, but is still useful. 174 return true; 175 } 176 177 // Directly check if the relevant set is preserved so we can short circuit 178 // invalidating SCCs below. 179 bool AreSCCAnalysesPreserved = 180 PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>(); 181 182 // Ok, we have a graph, so we can propagate the invalidation down into it. 183 G->buildRefSCCs(); 184 for (auto &RC : G->postorder_ref_sccs()) 185 for (auto &C : RC) { 186 Optional<PreservedAnalyses> InnerPA; 187 188 // Check to see whether the preserved set needs to be adjusted based on 189 // module-level analysis invalidation triggering deferred invalidation 190 // for this SCC. 191 if (auto *OuterProxy = 192 InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C)) 193 for (const auto &OuterInvalidationPair : 194 OuterProxy->getOuterInvalidations()) { 195 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 196 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 197 if (Inv.invalidate(OuterAnalysisID, M, PA)) { 198 if (!InnerPA) 199 InnerPA = PA; 200 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 201 InnerPA->abandon(InnerAnalysisID); 202 } 203 } 204 205 // Check if we needed a custom PA set. If so we'll need to run the inner 206 // invalidation. 207 if (InnerPA) { 208 InnerAM->invalidate(C, *InnerPA); 209 continue; 210 } 211 212 // Otherwise we only need to do invalidation if the original PA set didn't 213 // preserve all SCC analyses. 214 if (!AreSCCAnalysesPreserved) 215 InnerAM->invalidate(C, PA); 216 } 217 218 // Return false to indicate that this result is still a valid proxy. 219 return false; 220 } 221 222 template <> 223 CGSCCAnalysisManagerModuleProxy::Result 224 CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) { 225 // Force the Function analysis manager to also be available so that it can 226 // be accessed in an SCC analysis and proxied onward to function passes. 227 // FIXME: It is pretty awkward to just drop the result here and assert that 228 // we can find it again later. 229 (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M); 230 231 return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M)); 232 } 233 234 AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key; 235 236 FunctionAnalysisManagerCGSCCProxy::Result 237 FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C, 238 CGSCCAnalysisManager &AM, 239 LazyCallGraph &CG) { 240 // Note: unconditionally getting checking that the proxy exists may get it at 241 // this point. There are cases when this is being run unnecessarily, but 242 // it is cheap and having the assertion in place is more valuable. 243 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG); 244 Module &M = *C.begin()->getFunction().getParent(); 245 bool ProxyExists = 246 MAMProxy.cachedResultExists<FunctionAnalysisManagerModuleProxy>(M); 247 assert(ProxyExists && 248 "The CGSCC pass manager requires that the FAM module proxy is run " 249 "on the module prior to entering the CGSCC walk"); 250 (void)ProxyExists; 251 252 // We just return an empty result. The caller will use the updateFAM interface 253 // to correctly register the relevant FunctionAnalysisManager based on the 254 // context in which this proxy is run. 255 return Result(); 256 } 257 258 bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate( 259 LazyCallGraph::SCC &C, const PreservedAnalyses &PA, 260 CGSCCAnalysisManager::Invalidator &Inv) { 261 // If literally everything is preserved, we're done. 262 if (PA.areAllPreserved()) 263 return false; // This is still a valid proxy. 264 265 // All updates to preserve valid results are done below, so we don't need to 266 // invalidate this proxy. 267 // 268 // Note that in order to preserve this proxy, a module pass must ensure that 269 // the FAM has been completely updated to handle the deletion of functions. 270 // Specifically, any FAM-cached results for those functions need to have been 271 // forcibly cleared. When preserved, this proxy will only invalidate results 272 // cached on functions *still in the module* at the end of the module pass. 273 auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>(); 274 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) { 275 for (LazyCallGraph::Node &N : C) 276 FAM->clear(N.getFunction(), N.getFunction().getName()); 277 278 return false; 279 } 280 281 // Directly check if the relevant set is preserved. 282 bool AreFunctionAnalysesPreserved = 283 PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>(); 284 285 // Now walk all the functions to see if any inner analysis invalidation is 286 // necessary. 287 for (LazyCallGraph::Node &N : C) { 288 Function &F = N.getFunction(); 289 Optional<PreservedAnalyses> FunctionPA; 290 291 // Check to see whether the preserved set needs to be pruned based on 292 // SCC-level analysis invalidation that triggers deferred invalidation 293 // registered with the outer analysis manager proxy for this function. 294 if (auto *OuterProxy = 295 FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F)) 296 for (const auto &OuterInvalidationPair : 297 OuterProxy->getOuterInvalidations()) { 298 AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first; 299 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 300 if (Inv.invalidate(OuterAnalysisID, C, PA)) { 301 if (!FunctionPA) 302 FunctionPA = PA; 303 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 304 FunctionPA->abandon(InnerAnalysisID); 305 } 306 } 307 308 // Check if we needed a custom PA set, and if so we'll need to run the 309 // inner invalidation. 310 if (FunctionPA) { 311 FAM->invalidate(F, *FunctionPA); 312 continue; 313 } 314 315 // Otherwise we only need to do invalidation if the original PA set didn't 316 // preserve all function analyses. 317 if (!AreFunctionAnalysesPreserved) 318 FAM->invalidate(F, PA); 319 } 320 321 // Return false to indicate that this result is still a valid proxy. 322 return false; 323 } 324 325 } // end namespace llvm 326 327 /// When a new SCC is created for the graph we first update the 328 /// FunctionAnalysisManager in the Proxy's result. 329 /// As there might be function analysis results cached for the functions now in 330 /// that SCC, two forms of updates are required. 331 /// 332 /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be 333 /// created so that any subsequent invalidation events to the SCC are 334 /// propagated to the function analysis results cached for functions within it. 335 /// 336 /// Second, if any of the functions within the SCC have analysis results with 337 /// outer analysis dependencies, then those dependencies would point to the 338 /// *wrong* SCC's analysis result. We forcibly invalidate the necessary 339 /// function analyses so that they don't retain stale handles. 340 static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C, 341 LazyCallGraph &G, 342 CGSCCAnalysisManager &AM, 343 FunctionAnalysisManager &FAM) { 344 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).updateFAM(FAM); 345 346 // Now walk the functions in this SCC and invalidate any function analysis 347 // results that might have outer dependencies on an SCC analysis. 348 for (LazyCallGraph::Node &N : C) { 349 Function &F = N.getFunction(); 350 351 auto *OuterProxy = 352 FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F); 353 if (!OuterProxy) 354 // No outer analyses were queried, nothing to do. 355 continue; 356 357 // Forcibly abandon all the inner analyses with dependencies, but 358 // invalidate nothing else. 359 auto PA = PreservedAnalyses::all(); 360 for (const auto &OuterInvalidationPair : 361 OuterProxy->getOuterInvalidations()) { 362 const auto &InnerAnalysisIDs = OuterInvalidationPair.second; 363 for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs) 364 PA.abandon(InnerAnalysisID); 365 } 366 367 // Now invalidate anything we found. 368 FAM.invalidate(F, PA); 369 } 370 } 371 372 void llvm::maxDevirtIterationsReached() { 373 if (AbortOnMaxDevirtIterationsReached) 374 report_fatal_error("Max devirtualization iterations reached"); 375 } 376 377 /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c 378 /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly 379 /// added SCCs. 380 /// 381 /// The range of new SCCs must be in postorder already. The SCC they were split 382 /// out of must be provided as \p C. The current node being mutated and 383 /// triggering updates must be passed as \p N. 384 /// 385 /// This function returns the SCC containing \p N. This will be either \p C if 386 /// no new SCCs have been split out, or it will be the new SCC containing \p N. 387 template <typename SCCRangeT> 388 static LazyCallGraph::SCC * 389 incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G, 390 LazyCallGraph::Node &N, LazyCallGraph::SCC *C, 391 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) { 392 using SCC = LazyCallGraph::SCC; 393 394 if (NewSCCRange.begin() == NewSCCRange.end()) 395 return C; 396 397 // Add the current SCC to the worklist as its shape has changed. 398 UR.CWorklist.insert(C); 399 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C 400 << "\n"); 401 402 SCC *OldC = C; 403 404 // Update the current SCC. Note that if we have new SCCs, this must actually 405 // change the SCC. 406 assert(C != &*NewSCCRange.begin() && 407 "Cannot insert new SCCs without changing current SCC!"); 408 C = &*NewSCCRange.begin(); 409 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 410 411 // If we had a cached FAM proxy originally, we will want to create more of 412 // them for each SCC that was split off. 413 FunctionAnalysisManager *FAM = nullptr; 414 if (auto *FAMProxy = 415 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC)) 416 FAM = &FAMProxy->getManager(); 417 418 // We need to propagate an invalidation call to all but the newly current SCC 419 // because the outer pass manager won't do that for us after splitting them. 420 // FIXME: We should accept a PreservedAnalysis from the CG updater so that if 421 // there are preserved analysis we can avoid invalidating them here for 422 // split-off SCCs. 423 // We know however that this will preserve any FAM proxy so go ahead and mark 424 // that. 425 PreservedAnalyses PA; 426 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 427 AM.invalidate(*OldC, PA); 428 429 // Ensure the now-current SCC's function analyses are updated. 430 if (FAM) 431 updateNewSCCFunctionAnalyses(*C, G, AM, *FAM); 432 433 for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()), 434 NewSCCRange.end()))) { 435 assert(C != &NewC && "No need to re-visit the current SCC!"); 436 assert(OldC != &NewC && "Already handled the original SCC!"); 437 UR.CWorklist.insert(&NewC); 438 LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n"); 439 440 // Ensure new SCCs' function analyses are updated. 441 if (FAM) 442 updateNewSCCFunctionAnalyses(NewC, G, AM, *FAM); 443 444 // Also propagate a normal invalidation to the new SCC as only the current 445 // will get one from the pass manager infrastructure. 446 AM.invalidate(NewC, PA); 447 } 448 return C; 449 } 450 451 static LazyCallGraph::SCC &updateCGAndAnalysisManagerForPass( 452 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 453 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 454 FunctionAnalysisManager &FAM, bool FunctionPass) { 455 using Node = LazyCallGraph::Node; 456 using Edge = LazyCallGraph::Edge; 457 using SCC = LazyCallGraph::SCC; 458 using RefSCC = LazyCallGraph::RefSCC; 459 460 RefSCC &InitialRC = InitialC.getOuterRefSCC(); 461 SCC *C = &InitialC; 462 RefSCC *RC = &InitialRC; 463 Function &F = N.getFunction(); 464 465 // Walk the function body and build up the set of retained, promoted, and 466 // demoted edges. 467 SmallVector<Constant *, 16> Worklist; 468 SmallPtrSet<Constant *, 16> Visited; 469 SmallPtrSet<Node *, 16> RetainedEdges; 470 SmallSetVector<Node *, 4> PromotedRefTargets; 471 SmallSetVector<Node *, 4> DemotedCallTargets; 472 SmallSetVector<Node *, 4> NewCallEdges; 473 SmallSetVector<Node *, 4> NewRefEdges; 474 SmallSetVector<Node *, 4> NewNodes; 475 476 // First walk the function and handle all called functions. We do this first 477 // because if there is a single call edge, whether there are ref edges is 478 // irrelevant. 479 for (Instruction &I : instructions(F)) 480 if (auto *CB = dyn_cast<CallBase>(&I)) 481 if (Function *Callee = CB->getCalledFunction()) 482 if (Visited.insert(Callee).second && !Callee->isDeclaration()) { 483 Node *CalleeN = G.lookup(*Callee); 484 if (!CalleeN) { 485 CalleeN = &G.get(*Callee); 486 NewNodes.insert(CalleeN); 487 } 488 Edge *E = N->lookup(*CalleeN); 489 assert((E || !FunctionPass) && 490 "No function transformations should introduce *new* " 491 "call edges! Any new calls should be modeled as " 492 "promoted existing ref edges!"); 493 bool Inserted = RetainedEdges.insert(CalleeN).second; 494 (void)Inserted; 495 assert(Inserted && "We should never visit a function twice."); 496 if (!E) 497 NewCallEdges.insert(CalleeN); 498 else if (!E->isCall()) 499 PromotedRefTargets.insert(CalleeN); 500 } 501 502 // Now walk all references. 503 for (Instruction &I : instructions(F)) 504 for (Value *Op : I.operand_values()) 505 if (auto *C = dyn_cast<Constant>(Op)) 506 if (Visited.insert(C).second) 507 Worklist.push_back(C); 508 509 auto VisitRef = [&](Function &Referee) { 510 Node *RefereeN = G.lookup(Referee); 511 if (!RefereeN) { 512 RefereeN = &G.get(Referee); 513 NewNodes.insert(RefereeN); 514 } 515 Edge *E = N->lookup(*RefereeN); 516 assert((E || !FunctionPass) && 517 "No function transformations should introduce *new* ref " 518 "edges! Any new ref edges would require IPO which " 519 "function passes aren't allowed to do!"); 520 bool Inserted = RetainedEdges.insert(RefereeN).second; 521 (void)Inserted; 522 assert(Inserted && "We should never visit a function twice."); 523 if (!E) 524 NewRefEdges.insert(RefereeN); 525 else if (E->isCall()) 526 DemotedCallTargets.insert(RefereeN); 527 }; 528 LazyCallGraph::visitReferences(Worklist, Visited, VisitRef); 529 530 for (Node *NewNode : NewNodes) 531 G.initNode(*NewNode, *C); 532 533 // Handle new ref edges. 534 for (Node *RefTarget : NewRefEdges) { 535 SCC &TargetC = *G.lookupSCC(*RefTarget); 536 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 537 (void)TargetRC; 538 // TODO: This only allows trivial edges to be added for now. 539 assert((RC == &TargetRC || 540 RC->isAncestorOf(TargetRC)) && "New ref edge is not trivial!"); 541 RC->insertTrivialRefEdge(N, *RefTarget); 542 } 543 544 // Handle new call edges. 545 for (Node *CallTarget : NewCallEdges) { 546 SCC &TargetC = *G.lookupSCC(*CallTarget); 547 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 548 (void)TargetRC; 549 // TODO: This only allows trivial edges to be added for now. 550 assert((RC == &TargetRC || 551 RC->isAncestorOf(TargetRC)) && "New call edge is not trivial!"); 552 RC->insertTrivialCallEdge(N, *CallTarget); 553 } 554 555 // Include synthetic reference edges to known, defined lib functions. 556 for (auto *F : G.getLibFunctions()) 557 // While the list of lib functions doesn't have repeats, don't re-visit 558 // anything handled above. 559 if (!Visited.count(F)) 560 VisitRef(*F); 561 562 // First remove all of the edges that are no longer present in this function. 563 // The first step makes these edges uniformly ref edges and accumulates them 564 // into a separate data structure so removal doesn't invalidate anything. 565 SmallVector<Node *, 4> DeadTargets; 566 for (Edge &E : *N) { 567 if (RetainedEdges.count(&E.getNode())) 568 continue; 569 570 SCC &TargetC = *G.lookupSCC(E.getNode()); 571 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 572 if (&TargetRC == RC && E.isCall()) { 573 if (C != &TargetC) { 574 // For separate SCCs this is trivial. 575 RC->switchTrivialInternalEdgeToRef(N, E.getNode()); 576 } else { 577 // Now update the call graph. 578 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()), 579 G, N, C, AM, UR); 580 } 581 } 582 583 // Now that this is ready for actual removal, put it into our list. 584 DeadTargets.push_back(&E.getNode()); 585 } 586 // Remove the easy cases quickly and actually pull them out of our list. 587 DeadTargets.erase( 588 llvm::remove_if(DeadTargets, 589 [&](Node *TargetN) { 590 SCC &TargetC = *G.lookupSCC(*TargetN); 591 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 592 593 // We can't trivially remove internal targets, so skip 594 // those. 595 if (&TargetRC == RC) 596 return false; 597 598 RC->removeOutgoingEdge(N, *TargetN); 599 LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '" 600 << N << "' to '" << TargetN << "'\n"); 601 return true; 602 }), 603 DeadTargets.end()); 604 605 // Now do a batch removal of the internal ref edges left. 606 auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets); 607 if (!NewRefSCCs.empty()) { 608 // The old RefSCC is dead, mark it as such. 609 UR.InvalidatedRefSCCs.insert(RC); 610 611 // Note that we don't bother to invalidate analyses as ref-edge 612 // connectivity is not really observable in any way and is intended 613 // exclusively to be used for ordering of transforms rather than for 614 // analysis conclusions. 615 616 // Update RC to the "bottom". 617 assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!"); 618 RC = &C->getOuterRefSCC(); 619 assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!"); 620 621 // The RC worklist is in reverse postorder, so we enqueue the new ones in 622 // RPO except for the one which contains the source node as that is the 623 // "bottom" we will continue processing in the bottom-up walk. 624 assert(NewRefSCCs.front() == RC && 625 "New current RefSCC not first in the returned list!"); 626 for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()), 627 NewRefSCCs.end()))) { 628 assert(NewRC != RC && "Should not encounter the current RefSCC further " 629 "in the postorder list of new RefSCCs."); 630 UR.RCWorklist.insert(NewRC); 631 LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: " 632 << *NewRC << "\n"); 633 } 634 } 635 636 // Next demote all the call edges that are now ref edges. This helps make 637 // the SCCs small which should minimize the work below as we don't want to 638 // form cycles that this would break. 639 for (Node *RefTarget : DemotedCallTargets) { 640 SCC &TargetC = *G.lookupSCC(*RefTarget); 641 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 642 643 // The easy case is when the target RefSCC is not this RefSCC. This is 644 // only supported when the target RefSCC is a child of this RefSCC. 645 if (&TargetRC != RC) { 646 assert(RC->isAncestorOf(TargetRC) && 647 "Cannot potentially form RefSCC cycles here!"); 648 RC->switchOutgoingEdgeToRef(N, *RefTarget); 649 LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N 650 << "' to '" << *RefTarget << "'\n"); 651 continue; 652 } 653 654 // We are switching an internal call edge to a ref edge. This may split up 655 // some SCCs. 656 if (C != &TargetC) { 657 // For separate SCCs this is trivial. 658 RC->switchTrivialInternalEdgeToRef(N, *RefTarget); 659 continue; 660 } 661 662 // Now update the call graph. 663 C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N, 664 C, AM, UR); 665 } 666 667 // Now promote ref edges into call edges. 668 for (Node *CallTarget : PromotedRefTargets) { 669 SCC &TargetC = *G.lookupSCC(*CallTarget); 670 RefSCC &TargetRC = TargetC.getOuterRefSCC(); 671 672 // The easy case is when the target RefSCC is not this RefSCC. This is 673 // only supported when the target RefSCC is a child of this RefSCC. 674 if (&TargetRC != RC) { 675 assert(RC->isAncestorOf(TargetRC) && 676 "Cannot potentially form RefSCC cycles here!"); 677 RC->switchOutgoingEdgeToCall(N, *CallTarget); 678 LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N 679 << "' to '" << *CallTarget << "'\n"); 680 continue; 681 } 682 LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '" 683 << N << "' to '" << *CallTarget << "'\n"); 684 685 // Otherwise we are switching an internal ref edge to a call edge. This 686 // may merge away some SCCs, and we add those to the UpdateResult. We also 687 // need to make sure to update the worklist in the event SCCs have moved 688 // before the current one in the post-order sequence 689 bool HasFunctionAnalysisProxy = false; 690 auto InitialSCCIndex = RC->find(*C) - RC->begin(); 691 bool FormedCycle = RC->switchInternalEdgeToCall( 692 N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) { 693 for (SCC *MergedC : MergedSCCs) { 694 assert(MergedC != &TargetC && "Cannot merge away the target SCC!"); 695 696 HasFunctionAnalysisProxy |= 697 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>( 698 *MergedC) != nullptr; 699 700 // Mark that this SCC will no longer be valid. 701 UR.InvalidatedSCCs.insert(MergedC); 702 703 // FIXME: We should really do a 'clear' here to forcibly release 704 // memory, but we don't have a good way of doing that and 705 // preserving the function analyses. 706 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 707 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 708 AM.invalidate(*MergedC, PA); 709 } 710 }); 711 712 // If we formed a cycle by creating this call, we need to update more data 713 // structures. 714 if (FormedCycle) { 715 C = &TargetC; 716 assert(G.lookupSCC(N) == C && "Failed to update current SCC!"); 717 718 // If one of the invalidated SCCs had a cached proxy to a function 719 // analysis manager, we need to create a proxy in the new current SCC as 720 // the invalidated SCCs had their functions moved. 721 if (HasFunctionAnalysisProxy) 722 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G).updateFAM(FAM); 723 724 // Any analyses cached for this SCC are no longer precise as the shape 725 // has changed by introducing this cycle. However, we have taken care to 726 // update the proxies so it remains valide. 727 auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>(); 728 PA.preserve<FunctionAnalysisManagerCGSCCProxy>(); 729 AM.invalidate(*C, PA); 730 } 731 auto NewSCCIndex = RC->find(*C) - RC->begin(); 732 // If we have actually moved an SCC to be topologically "below" the current 733 // one due to merging, we will need to revisit the current SCC after 734 // visiting those moved SCCs. 735 // 736 // It is critical that we *do not* revisit the current SCC unless we 737 // actually move SCCs in the process of merging because otherwise we may 738 // form a cycle where an SCC is split apart, merged, split, merged and so 739 // on infinitely. 740 if (InitialSCCIndex < NewSCCIndex) { 741 // Put our current SCC back onto the worklist as we'll visit other SCCs 742 // that are now definitively ordered prior to the current one in the 743 // post-order sequence, and may end up observing more precise context to 744 // optimize the current SCC. 745 UR.CWorklist.insert(C); 746 LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C 747 << "\n"); 748 // Enqueue in reverse order as we pop off the back of the worklist. 749 for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex, 750 RC->begin() + NewSCCIndex))) { 751 UR.CWorklist.insert(&MovedC); 752 LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: " 753 << MovedC << "\n"); 754 } 755 } 756 } 757 758 assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!"); 759 assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!"); 760 assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!"); 761 762 // Record the current RefSCC and SCC for higher layers of the CGSCC pass 763 // manager now that all the updates have been applied. 764 if (RC != &InitialRC) 765 UR.UpdatedRC = RC; 766 if (C != &InitialC) 767 UR.UpdatedC = C; 768 769 return *C; 770 } 771 772 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass( 773 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 774 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 775 FunctionAnalysisManager &FAM) { 776 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 777 /* FunctionPass */ true); 778 } 779 LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForCGSCCPass( 780 LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N, 781 CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR, 782 FunctionAnalysisManager &FAM) { 783 return updateCGAndAnalysisManagerForPass(G, InitialC, N, AM, UR, FAM, 784 /* FunctionPass */ false); 785 } 786