1 //===- CFLGraph.h - Abstract stratified sets implementation. -----*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file defines CFLGraph, an auxiliary data structure used by CFL-based 11 /// alias analysis. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_LIB_ANALYSIS_CFLGRAPH_H 16 #define LLVM_LIB_ANALYSIS_CFLGRAPH_H 17 18 #include "AliasAnalysisSummary.h" 19 #include "llvm/ADT/APInt.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/Analysis/MemoryBuiltins.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstVisitor.h" 32 #include "llvm/IR/InstrTypes.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include <cassert> 41 #include <cstdint> 42 #include <vector> 43 44 namespace llvm { 45 namespace cflaa { 46 47 /// The Program Expression Graph (PEG) of CFL analysis 48 /// CFLGraph is auxiliary data structure used by CFL-based alias analysis to 49 /// describe flow-insensitive pointer-related behaviors. Given an LLVM function, 50 /// the main purpose of this graph is to abstract away unrelated facts and 51 /// translate the rest into a form that can be easily digested by CFL analyses. 52 /// Each Node in the graph is an InstantiatedValue, and each edge represent a 53 /// pointer assignment between InstantiatedValue. Pointer 54 /// references/dereferences are not explicitly stored in the graph: we 55 /// implicitly assume that for each node (X, I) it has a dereference edge to (X, 56 /// I+1) and a reference edge to (X, I-1). 57 class CFLGraph { 58 public: 59 using Node = InstantiatedValue; 60 61 struct Edge { 62 Node Other; 63 int64_t Offset; 64 }; 65 66 using EdgeList = std::vector<Edge>; 67 68 struct NodeInfo { 69 EdgeList Edges, ReverseEdges; 70 AliasAttrs Attr; 71 }; 72 73 class ValueInfo { 74 std::vector<NodeInfo> Levels; 75 76 public: addNodeToLevel(unsigned Level)77 bool addNodeToLevel(unsigned Level) { 78 auto NumLevels = Levels.size(); 79 if (NumLevels > Level) 80 return false; 81 Levels.resize(Level + 1); 82 return true; 83 } 84 getNodeInfoAtLevel(unsigned Level)85 NodeInfo &getNodeInfoAtLevel(unsigned Level) { 86 assert(Level < Levels.size()); 87 return Levels[Level]; 88 } getNodeInfoAtLevel(unsigned Level)89 const NodeInfo &getNodeInfoAtLevel(unsigned Level) const { 90 assert(Level < Levels.size()); 91 return Levels[Level]; 92 } 93 getNumLevels()94 unsigned getNumLevels() const { return Levels.size(); } 95 }; 96 97 private: 98 using ValueMap = DenseMap<Value *, ValueInfo>; 99 100 ValueMap ValueImpls; 101 getNode(Node N)102 NodeInfo *getNode(Node N) { 103 auto Itr = ValueImpls.find(N.Val); 104 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) 105 return nullptr; 106 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); 107 } 108 109 public: 110 using const_value_iterator = ValueMap::const_iterator; 111 112 bool addNode(Node N, AliasAttrs Attr = AliasAttrs()) { 113 assert(N.Val != nullptr); 114 auto &ValInfo = ValueImpls[N.Val]; 115 auto Changed = ValInfo.addNodeToLevel(N.DerefLevel); 116 ValInfo.getNodeInfoAtLevel(N.DerefLevel).Attr |= Attr; 117 return Changed; 118 } 119 addAttr(Node N,AliasAttrs Attr)120 void addAttr(Node N, AliasAttrs Attr) { 121 auto *Info = getNode(N); 122 assert(Info != nullptr); 123 Info->Attr |= Attr; 124 } 125 126 void addEdge(Node From, Node To, int64_t Offset = 0) { 127 auto *FromInfo = getNode(From); 128 assert(FromInfo != nullptr); 129 auto *ToInfo = getNode(To); 130 assert(ToInfo != nullptr); 131 132 FromInfo->Edges.push_back(Edge{To, Offset}); 133 ToInfo->ReverseEdges.push_back(Edge{From, Offset}); 134 } 135 getNode(Node N)136 const NodeInfo *getNode(Node N) const { 137 auto Itr = ValueImpls.find(N.Val); 138 if (Itr == ValueImpls.end() || Itr->second.getNumLevels() <= N.DerefLevel) 139 return nullptr; 140 return &Itr->second.getNodeInfoAtLevel(N.DerefLevel); 141 } 142 attrFor(Node N)143 AliasAttrs attrFor(Node N) const { 144 auto *Info = getNode(N); 145 assert(Info != nullptr); 146 return Info->Attr; 147 } 148 value_mappings()149 iterator_range<const_value_iterator> value_mappings() const { 150 return make_range<const_value_iterator>(ValueImpls.begin(), 151 ValueImpls.end()); 152 } 153 }; 154 155 /// A builder class used to create CFLGraph instance from a given function 156 /// The CFL-AA that uses this builder must provide its own type as a template 157 /// argument. This is necessary for interprocedural processing: CFLGraphBuilder 158 /// needs a way of obtaining the summary of other functions when callinsts are 159 /// encountered. 160 /// As a result, we expect the said CFL-AA to expose a getAliasSummary() public 161 /// member function that takes a Function& and returns the corresponding summary 162 /// as a const AliasSummary*. 163 template <typename CFLAA> class CFLGraphBuilder { 164 // Input of the builder 165 CFLAA &Analysis; 166 const TargetLibraryInfo &TLI; 167 168 // Output of the builder 169 CFLGraph Graph; 170 SmallVector<Value *, 4> ReturnedValues; 171 172 // Helper class 173 /// Gets the edges our graph should have, based on an Instruction* 174 class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { 175 CFLAA &AA; 176 const DataLayout &DL; 177 const TargetLibraryInfo &TLI; 178 179 CFLGraph &Graph; 180 SmallVectorImpl<Value *> &ReturnValues; 181 hasUsefulEdges(ConstantExpr * CE)182 static bool hasUsefulEdges(ConstantExpr *CE) { 183 // ConstantExpr doesn't have terminators, invokes, or fences, so only 184 // needs to check for compares. 185 return CE->getOpcode() != Instruction::ICmp && 186 CE->getOpcode() != Instruction::FCmp; 187 } 188 189 // Returns possible functions called by CS into the given SmallVectorImpl. 190 // Returns true if targets found, false otherwise. getPossibleTargets(CallBase & Call,SmallVectorImpl<Function * > & Output)191 static bool getPossibleTargets(CallBase &Call, 192 SmallVectorImpl<Function *> &Output) { 193 if (auto *Fn = Call.getCalledFunction()) { 194 Output.push_back(Fn); 195 return true; 196 } 197 198 // TODO: If the call is indirect, we might be able to enumerate all 199 // potential targets of the call and return them, rather than just 200 // failing. 201 return false; 202 } 203 204 void addNode(Value *Val, AliasAttrs Attr = AliasAttrs()) { 205 assert(Val != nullptr && Val->getType()->isPointerTy()); 206 if (auto GVal = dyn_cast<GlobalValue>(Val)) { 207 if (Graph.addNode(InstantiatedValue{GVal, 0}, 208 getGlobalOrArgAttrFromValue(*GVal))) 209 Graph.addNode(InstantiatedValue{GVal, 1}, getAttrUnknown()); 210 } else if (auto CExpr = dyn_cast<ConstantExpr>(Val)) { 211 if (hasUsefulEdges(CExpr)) { 212 if (Graph.addNode(InstantiatedValue{CExpr, 0})) 213 visitConstantExpr(CExpr); 214 } 215 } else 216 Graph.addNode(InstantiatedValue{Val, 0}, Attr); 217 } 218 219 void addAssignEdge(Value *From, Value *To, int64_t Offset = 0) { 220 assert(From != nullptr && To != nullptr); 221 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) 222 return; 223 addNode(From); 224 if (To != From) { 225 addNode(To); 226 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 0}, 227 Offset); 228 } 229 } 230 addDerefEdge(Value * From,Value * To,bool IsRead)231 void addDerefEdge(Value *From, Value *To, bool IsRead) { 232 assert(From != nullptr && To != nullptr); 233 // FIXME: This is subtly broken, due to how we model some instructions 234 // (e.g. extractvalue, extractelement) as loads. Since those take 235 // non-pointer operands, we'll entirely skip adding edges for those. 236 // 237 // addAssignEdge seems to have a similar issue with insertvalue, etc. 238 if (!From->getType()->isPointerTy() || !To->getType()->isPointerTy()) 239 return; 240 addNode(From); 241 addNode(To); 242 if (IsRead) { 243 Graph.addNode(InstantiatedValue{From, 1}); 244 Graph.addEdge(InstantiatedValue{From, 1}, InstantiatedValue{To, 0}); 245 } else { 246 Graph.addNode(InstantiatedValue{To, 1}); 247 Graph.addEdge(InstantiatedValue{From, 0}, InstantiatedValue{To, 1}); 248 } 249 } 250 addLoadEdge(Value * From,Value * To)251 void addLoadEdge(Value *From, Value *To) { addDerefEdge(From, To, true); } addStoreEdge(Value * From,Value * To)252 void addStoreEdge(Value *From, Value *To) { addDerefEdge(From, To, false); } 253 254 public: GetEdgesVisitor(CFLGraphBuilder & Builder,const DataLayout & DL)255 GetEdgesVisitor(CFLGraphBuilder &Builder, const DataLayout &DL) 256 : AA(Builder.Analysis), DL(DL), TLI(Builder.TLI), Graph(Builder.Graph), 257 ReturnValues(Builder.ReturnedValues) {} 258 visitInstruction(Instruction &)259 void visitInstruction(Instruction &) { 260 llvm_unreachable("Unsupported instruction encountered"); 261 } 262 visitReturnInst(ReturnInst & Inst)263 void visitReturnInst(ReturnInst &Inst) { 264 if (auto RetVal = Inst.getReturnValue()) { 265 if (RetVal->getType()->isPointerTy()) { 266 addNode(RetVal); 267 ReturnValues.push_back(RetVal); 268 } 269 } 270 } 271 visitPtrToIntInst(PtrToIntInst & Inst)272 void visitPtrToIntInst(PtrToIntInst &Inst) { 273 auto *Ptr = Inst.getOperand(0); 274 addNode(Ptr, getAttrEscaped()); 275 } 276 visitIntToPtrInst(IntToPtrInst & Inst)277 void visitIntToPtrInst(IntToPtrInst &Inst) { 278 auto *Ptr = &Inst; 279 addNode(Ptr, getAttrUnknown()); 280 } 281 visitCastInst(CastInst & Inst)282 void visitCastInst(CastInst &Inst) { 283 auto *Src = Inst.getOperand(0); 284 addAssignEdge(Src, &Inst); 285 } 286 visitFreezeInst(FreezeInst & Inst)287 void visitFreezeInst(FreezeInst &Inst) { 288 // Accessing freeze(ptr) is equivalent to accessing ptr. 289 // The former raises UB iff latter raises UB. 290 auto *Src = Inst.getOperand(0); 291 addAssignEdge(Src, &Inst); 292 } 293 visitBinaryOperator(BinaryOperator & Inst)294 void visitBinaryOperator(BinaryOperator &Inst) { 295 auto *Op1 = Inst.getOperand(0); 296 auto *Op2 = Inst.getOperand(1); 297 addAssignEdge(Op1, &Inst); 298 addAssignEdge(Op2, &Inst); 299 } 300 visitUnaryOperator(UnaryOperator & Inst)301 void visitUnaryOperator(UnaryOperator &Inst) { 302 auto *Src = Inst.getOperand(0); 303 addAssignEdge(Src, &Inst); 304 } 305 visitAtomicCmpXchgInst(AtomicCmpXchgInst & Inst)306 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { 307 auto *Ptr = Inst.getPointerOperand(); 308 auto *Val = Inst.getNewValOperand(); 309 addStoreEdge(Val, Ptr); 310 } 311 visitAtomicRMWInst(AtomicRMWInst & Inst)312 void visitAtomicRMWInst(AtomicRMWInst &Inst) { 313 auto *Ptr = Inst.getPointerOperand(); 314 auto *Val = Inst.getValOperand(); 315 addStoreEdge(Val, Ptr); 316 } 317 visitPHINode(PHINode & Inst)318 void visitPHINode(PHINode &Inst) { 319 for (Value *Val : Inst.incoming_values()) 320 addAssignEdge(Val, &Inst); 321 } 322 visitGEP(GEPOperator & GEPOp)323 void visitGEP(GEPOperator &GEPOp) { 324 uint64_t Offset = UnknownOffset; 325 APInt APOffset(DL.getPointerSizeInBits(GEPOp.getPointerAddressSpace()), 326 0); 327 if (GEPOp.accumulateConstantOffset(DL, APOffset)) 328 Offset = APOffset.getSExtValue(); 329 330 auto *Op = GEPOp.getPointerOperand(); 331 addAssignEdge(Op, &GEPOp, Offset); 332 } 333 visitGetElementPtrInst(GetElementPtrInst & Inst)334 void visitGetElementPtrInst(GetElementPtrInst &Inst) { 335 auto *GEPOp = cast<GEPOperator>(&Inst); 336 visitGEP(*GEPOp); 337 } 338 visitSelectInst(SelectInst & Inst)339 void visitSelectInst(SelectInst &Inst) { 340 // Condition is not processed here (The actual statement producing 341 // the condition result is processed elsewhere). For select, the 342 // condition is evaluated, but not loaded, stored, or assigned 343 // simply as a result of being the condition of a select. 344 345 auto *TrueVal = Inst.getTrueValue(); 346 auto *FalseVal = Inst.getFalseValue(); 347 addAssignEdge(TrueVal, &Inst); 348 addAssignEdge(FalseVal, &Inst); 349 } 350 visitAllocaInst(AllocaInst & Inst)351 void visitAllocaInst(AllocaInst &Inst) { addNode(&Inst); } 352 visitLoadInst(LoadInst & Inst)353 void visitLoadInst(LoadInst &Inst) { 354 auto *Ptr = Inst.getPointerOperand(); 355 auto *Val = &Inst; 356 addLoadEdge(Ptr, Val); 357 } 358 visitStoreInst(StoreInst & Inst)359 void visitStoreInst(StoreInst &Inst) { 360 auto *Ptr = Inst.getPointerOperand(); 361 auto *Val = Inst.getValueOperand(); 362 addStoreEdge(Val, Ptr); 363 } 364 visitVAArgInst(VAArgInst & Inst)365 void visitVAArgInst(VAArgInst &Inst) { 366 // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it 367 // does 368 // two things: 369 // 1. Loads a value from *((T*)*Ptr). 370 // 2. Increments (stores to) *Ptr by some target-specific amount. 371 // For now, we'll handle this like a landingpad instruction (by placing 372 // the 373 // result in its own group, and having that group alias externals). 374 if (Inst.getType()->isPointerTy()) 375 addNode(&Inst, getAttrUnknown()); 376 } 377 isFunctionExternal(Function * Fn)378 static bool isFunctionExternal(Function *Fn) { 379 return !Fn->hasExactDefinition(); 380 } 381 tryInterproceduralAnalysis(CallBase & Call,const SmallVectorImpl<Function * > & Fns)382 bool tryInterproceduralAnalysis(CallBase &Call, 383 const SmallVectorImpl<Function *> &Fns) { 384 assert(Fns.size() > 0); 385 386 if (Call.arg_size() > MaxSupportedArgsInSummary) 387 return false; 388 389 // Exit early if we'll fail anyway 390 for (auto *Fn : Fns) { 391 if (isFunctionExternal(Fn) || Fn->isVarArg()) 392 return false; 393 // Fail if the caller does not provide enough arguments 394 assert(Fn->arg_size() <= Call.arg_size()); 395 if (!AA.getAliasSummary(*Fn)) 396 return false; 397 } 398 399 for (auto *Fn : Fns) { 400 auto Summary = AA.getAliasSummary(*Fn); 401 assert(Summary != nullptr); 402 403 auto &RetParamRelations = Summary->RetParamRelations; 404 for (auto &Relation : RetParamRelations) { 405 auto IRelation = instantiateExternalRelation(Relation, Call); 406 if (IRelation) { 407 Graph.addNode(IRelation->From); 408 Graph.addNode(IRelation->To); 409 Graph.addEdge(IRelation->From, IRelation->To); 410 } 411 } 412 413 auto &RetParamAttributes = Summary->RetParamAttributes; 414 for (auto &Attribute : RetParamAttributes) { 415 auto IAttr = instantiateExternalAttribute(Attribute, Call); 416 if (IAttr) 417 Graph.addNode(IAttr->IValue, IAttr->Attr); 418 } 419 } 420 421 return true; 422 } 423 visitCallBase(CallBase & Call)424 void visitCallBase(CallBase &Call) { 425 // Make sure all arguments and return value are added to the graph first 426 for (Value *V : Call.args()) 427 if (V->getType()->isPointerTy()) 428 addNode(V); 429 if (Call.getType()->isPointerTy()) 430 addNode(&Call); 431 432 // Check if Inst is a call to a library function that 433 // allocates/deallocates on the heap. Those kinds of functions do not 434 // introduce any aliases. 435 // TODO: address other common library functions such as realloc(), 436 // strdup(), etc. 437 if (isMallocOrCallocLikeFn(&Call, &TLI) || 438 getFreedOperand(&Call, &TLI) != nullptr) 439 return; 440 441 // TODO: Add support for noalias args/all the other fun function 442 // attributes that we can tack on. 443 SmallVector<Function *, 4> Targets; 444 if (getPossibleTargets(Call, Targets)) 445 if (tryInterproceduralAnalysis(Call, Targets)) 446 return; 447 448 // Because the function is opaque, we need to note that anything 449 // could have happened to the arguments (unless the function is marked 450 // readonly or readnone), and that the result could alias just about 451 // anything, too (unless the result is marked noalias). 452 if (!Call.onlyReadsMemory()) 453 for (Value *V : Call.args()) { 454 if (V->getType()->isPointerTy()) { 455 // The argument itself escapes. 456 Graph.addAttr(InstantiatedValue{V, 0}, getAttrEscaped()); 457 // The fate of argument memory is unknown. Note that since 458 // AliasAttrs is transitive with respect to dereference, we only 459 // need to specify it for the first-level memory. 460 Graph.addNode(InstantiatedValue{V, 1}, getAttrUnknown()); 461 } 462 } 463 464 if (Call.getType()->isPointerTy()) { 465 auto *Fn = Call.getCalledFunction(); 466 if (Fn == nullptr || !Fn->returnDoesNotAlias()) 467 // No need to call addNode() since we've added Inst at the 468 // beginning of this function and we know it is not a global. 469 Graph.addAttr(InstantiatedValue{&Call, 0}, getAttrUnknown()); 470 } 471 } 472 473 /// Because vectors/aggregates are immutable and unaddressable, there's 474 /// nothing we can do to coax a value out of them, other than calling 475 /// Extract{Element,Value}. We can effectively treat them as pointers to 476 /// arbitrary memory locations we can store in and load from. visitExtractElementInst(ExtractElementInst & Inst)477 void visitExtractElementInst(ExtractElementInst &Inst) { 478 auto *Ptr = Inst.getVectorOperand(); 479 auto *Val = &Inst; 480 addLoadEdge(Ptr, Val); 481 } 482 visitInsertElementInst(InsertElementInst & Inst)483 void visitInsertElementInst(InsertElementInst &Inst) { 484 auto *Vec = Inst.getOperand(0); 485 auto *Val = Inst.getOperand(1); 486 addAssignEdge(Vec, &Inst); 487 addStoreEdge(Val, &Inst); 488 } 489 visitLandingPadInst(LandingPadInst & Inst)490 void visitLandingPadInst(LandingPadInst &Inst) { 491 // Exceptions come from "nowhere", from our analysis' perspective. 492 // So we place the instruction its own group, noting that said group may 493 // alias externals 494 if (Inst.getType()->isPointerTy()) 495 addNode(&Inst, getAttrUnknown()); 496 } 497 visitInsertValueInst(InsertValueInst & Inst)498 void visitInsertValueInst(InsertValueInst &Inst) { 499 auto *Agg = Inst.getOperand(0); 500 auto *Val = Inst.getOperand(1); 501 addAssignEdge(Agg, &Inst); 502 addStoreEdge(Val, &Inst); 503 } 504 visitExtractValueInst(ExtractValueInst & Inst)505 void visitExtractValueInst(ExtractValueInst &Inst) { 506 auto *Ptr = Inst.getAggregateOperand(); 507 addLoadEdge(Ptr, &Inst); 508 } 509 visitShuffleVectorInst(ShuffleVectorInst & Inst)510 void visitShuffleVectorInst(ShuffleVectorInst &Inst) { 511 auto *From1 = Inst.getOperand(0); 512 auto *From2 = Inst.getOperand(1); 513 addAssignEdge(From1, &Inst); 514 addAssignEdge(From2, &Inst); 515 } 516 visitConstantExpr(ConstantExpr * CE)517 void visitConstantExpr(ConstantExpr *CE) { 518 switch (CE->getOpcode()) { 519 case Instruction::GetElementPtr: { 520 auto GEPOp = cast<GEPOperator>(CE); 521 visitGEP(*GEPOp); 522 break; 523 } 524 525 case Instruction::PtrToInt: { 526 addNode(CE->getOperand(0), getAttrEscaped()); 527 break; 528 } 529 530 case Instruction::IntToPtr: { 531 addNode(CE, getAttrUnknown()); 532 break; 533 } 534 535 case Instruction::BitCast: 536 case Instruction::AddrSpaceCast: 537 case Instruction::Trunc: 538 case Instruction::ZExt: 539 case Instruction::SExt: 540 case Instruction::FPExt: 541 case Instruction::FPTrunc: 542 case Instruction::UIToFP: 543 case Instruction::SIToFP: 544 case Instruction::FPToUI: 545 case Instruction::FPToSI: { 546 addAssignEdge(CE->getOperand(0), CE); 547 break; 548 } 549 550 case Instruction::Select: { 551 addAssignEdge(CE->getOperand(1), CE); 552 addAssignEdge(CE->getOperand(2), CE); 553 break; 554 } 555 556 case Instruction::InsertElement: 557 case Instruction::InsertValue: { 558 addAssignEdge(CE->getOperand(0), CE); 559 addStoreEdge(CE->getOperand(1), CE); 560 break; 561 } 562 563 case Instruction::ExtractElement: 564 case Instruction::ExtractValue: { 565 addLoadEdge(CE->getOperand(0), CE); 566 break; 567 } 568 569 case Instruction::Add: 570 case Instruction::FAdd: 571 case Instruction::Sub: 572 case Instruction::FSub: 573 case Instruction::Mul: 574 case Instruction::FMul: 575 case Instruction::UDiv: 576 case Instruction::SDiv: 577 case Instruction::FDiv: 578 case Instruction::URem: 579 case Instruction::SRem: 580 case Instruction::FRem: 581 case Instruction::And: 582 case Instruction::Or: 583 case Instruction::Xor: 584 case Instruction::Shl: 585 case Instruction::LShr: 586 case Instruction::AShr: 587 case Instruction::ICmp: 588 case Instruction::FCmp: 589 case Instruction::ShuffleVector: { 590 addAssignEdge(CE->getOperand(0), CE); 591 addAssignEdge(CE->getOperand(1), CE); 592 break; 593 } 594 595 case Instruction::FNeg: { 596 addAssignEdge(CE->getOperand(0), CE); 597 break; 598 } 599 600 default: 601 llvm_unreachable("Unknown instruction type encountered!"); 602 } 603 } 604 }; 605 606 // Helper functions 607 608 // Determines whether or not we an instruction is useless to us (e.g. 609 // FenceInst) hasUsefulEdges(Instruction * Inst)610 static bool hasUsefulEdges(Instruction *Inst) { 611 bool IsNonInvokeRetTerminator = Inst->isTerminator() && 612 !isa<InvokeInst>(Inst) && 613 !isa<ReturnInst>(Inst); 614 return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && 615 !IsNonInvokeRetTerminator; 616 } 617 addArgumentToGraph(Argument & Arg)618 void addArgumentToGraph(Argument &Arg) { 619 if (Arg.getType()->isPointerTy()) { 620 Graph.addNode(InstantiatedValue{&Arg, 0}, 621 getGlobalOrArgAttrFromValue(Arg)); 622 // Pointees of a formal parameter is known to the caller 623 Graph.addNode(InstantiatedValue{&Arg, 1}, getAttrCaller()); 624 } 625 } 626 627 // Given an Instruction, this will add it to the graph, along with any 628 // Instructions that are potentially only available from said Instruction 629 // For example, given the following line: 630 // %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2 631 // addInstructionToGraph would add both the `load` and `getelementptr` 632 // instructions to the graph appropriately. addInstructionToGraph(GetEdgesVisitor & Visitor,Instruction & Inst)633 void addInstructionToGraph(GetEdgesVisitor &Visitor, Instruction &Inst) { 634 if (!hasUsefulEdges(&Inst)) 635 return; 636 637 Visitor.visit(Inst); 638 } 639 640 // Builds the graph needed for constructing the StratifiedSets for the given 641 // function buildGraphFrom(Function & Fn)642 void buildGraphFrom(Function &Fn) { 643 GetEdgesVisitor Visitor(*this, Fn.getParent()->getDataLayout()); 644 645 for (auto &Bb : Fn.getBasicBlockList()) 646 for (auto &Inst : Bb.getInstList()) 647 addInstructionToGraph(Visitor, Inst); 648 649 for (auto &Arg : Fn.args()) 650 addArgumentToGraph(Arg); 651 } 652 653 public: CFLGraphBuilder(CFLAA & Analysis,const TargetLibraryInfo & TLI,Function & Fn)654 CFLGraphBuilder(CFLAA &Analysis, const TargetLibraryInfo &TLI, Function &Fn) 655 : Analysis(Analysis), TLI(TLI) { 656 buildGraphFrom(Fn); 657 } 658 getCFLGraph()659 const CFLGraph &getCFLGraph() const { return Graph; } getReturnValues()660 const SmallVector<Value *, 4> &getReturnValues() const { 661 return ReturnedValues; 662 } 663 }; 664 665 } // end namespace cflaa 666 } // end namespace llvm 667 668 #endif // LLVM_LIB_ANALYSIS_CFLGRAPH_H 669