1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/PostDominators.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/IR/Attributes.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PassManager.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include <cassert>
43 #include <cstdint>
44 #include <iterator>
45 #include <utility>
46 
47 using namespace llvm;
48 
49 #define DEBUG_TYPE "branch-prob"
50 
51 static cl::opt<bool> PrintBranchProb(
52     "print-bpi", cl::init(false), cl::Hidden,
53     cl::desc("Print the branch probability info."));
54 
55 cl::opt<std::string> PrintBranchProbFuncName(
56     "print-bpi-func-name", cl::Hidden,
57     cl::desc("The option to specify the name of the function "
58              "whose branch probability info is printed."));
59 
60 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
61                       "Branch Probability Analysis", false, true)
62 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
64 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
65 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
66                     "Branch Probability Analysis", false, true)
67 
68 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
69     : FunctionPass(ID) {
70   initializeBranchProbabilityInfoWrapperPassPass(
71       *PassRegistry::getPassRegistry());
72 }
73 
74 char BranchProbabilityInfoWrapperPass::ID = 0;
75 
76 // Weights are for internal use only. They are used by heuristics to help to
77 // estimate edges' probability. Example:
78 //
79 // Using "Loop Branch Heuristics" we predict weights of edges for the
80 // block BB2.
81 //         ...
82 //          |
83 //          V
84 //         BB1<-+
85 //          |   |
86 //          |   | (Weight = 124)
87 //          V   |
88 //         BB2--+
89 //          |
90 //          | (Weight = 4)
91 //          V
92 //         BB3
93 //
94 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
95 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
96 static const uint32_t LBH_TAKEN_WEIGHT = 124;
97 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
98 // Unlikely edges within a loop are half as likely as other edges
99 static const uint32_t LBH_UNLIKELY_WEIGHT = 62;
100 
101 /// Unreachable-terminating branch taken probability.
102 ///
103 /// This is the probability for a branch being taken to a block that terminates
104 /// (eventually) in unreachable. These are predicted as unlikely as possible.
105 /// All reachable probability will proportionally share the remaining part.
106 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
107 
108 /// Weight for a branch taken going into a cold block.
109 ///
110 /// This is the weight for a branch taken toward a block marked
111 /// cold.  A block is marked cold if it's postdominated by a
112 /// block containing a call to a cold function.  Cold functions
113 /// are those marked with attribute 'cold'.
114 static const uint32_t CC_TAKEN_WEIGHT = 4;
115 
116 /// Weight for a branch not-taken into a cold block.
117 ///
118 /// This is the weight for a branch not taken toward a block marked
119 /// cold.
120 static const uint32_t CC_NONTAKEN_WEIGHT = 64;
121 
122 static const uint32_t PH_TAKEN_WEIGHT = 20;
123 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
124 
125 static const uint32_t ZH_TAKEN_WEIGHT = 20;
126 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
127 
128 static const uint32_t FPH_TAKEN_WEIGHT = 20;
129 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
130 
131 /// This is the probability for an ordered floating point comparison.
132 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
133 /// This is the probability for an unordered floating point comparison, it means
134 /// one or two of the operands are NaN. Usually it is used to test for an
135 /// exceptional case, so the result is unlikely.
136 static const uint32_t FPH_UNO_WEIGHT = 1;
137 
138 /// Invoke-terminating normal branch taken weight
139 ///
140 /// This is the weight for branching to the normal destination of an invoke
141 /// instruction. We expect this to happen most of the time. Set the weight to an
142 /// absurdly high value so that nested loops subsume it.
143 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;
144 
145 /// Invoke-terminating normal branch not-taken weight.
146 ///
147 /// This is the weight for branching to the unwind destination of an invoke
148 /// instruction. This is essentially never taken.
149 static const uint32_t IH_NONTAKEN_WEIGHT = 1;
150 
151 static void UpdatePDTWorklist(const BasicBlock *BB, PostDominatorTree *PDT,
152                               SmallVectorImpl<const BasicBlock *> &WorkList,
153                               SmallPtrSetImpl<const BasicBlock *> &TargetSet) {
154   SmallVector<BasicBlock *, 8> Descendants;
155   SmallPtrSet<const BasicBlock *, 16> NewItems;
156 
157   PDT->getDescendants(const_cast<BasicBlock *>(BB), Descendants);
158   for (auto *BB : Descendants)
159     if (TargetSet.insert(BB).second)
160       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
161         if (!TargetSet.count(*PI))
162           NewItems.insert(*PI);
163   WorkList.insert(WorkList.end(), NewItems.begin(), NewItems.end());
164 }
165 
166 /// Compute a set of basic blocks that are post-dominated by unreachables.
167 void BranchProbabilityInfo::computePostDominatedByUnreachable(
168     const Function &F, PostDominatorTree *PDT) {
169   SmallVector<const BasicBlock *, 8> WorkList;
170   for (auto &BB : F) {
171     const Instruction *TI = BB.getTerminator();
172     if (TI->getNumSuccessors() == 0) {
173       if (isa<UnreachableInst>(TI) ||
174           // If this block is terminated by a call to
175           // @llvm.experimental.deoptimize then treat it like an unreachable
176           // since the @llvm.experimental.deoptimize call is expected to
177           // practically never execute.
178           BB.getTerminatingDeoptimizeCall())
179         UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByUnreachable);
180     }
181   }
182 
183   while (!WorkList.empty()) {
184     const BasicBlock *BB = WorkList.pop_back_val();
185     if (PostDominatedByUnreachable.count(BB))
186       continue;
187     // If the terminator is an InvokeInst, check only the normal destination
188     // block as the unwind edge of InvokeInst is also very unlikely taken.
189     if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
190       if (PostDominatedByUnreachable.count(II->getNormalDest()))
191         UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
192     }
193     // If all the successors are unreachable, BB is unreachable as well.
194     else if (!successors(BB).empty() &&
195              llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
196                return PostDominatedByUnreachable.count(Succ);
197              }))
198       UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByUnreachable);
199   }
200 }
201 
202 /// compute a set of basic blocks that are post-dominated by ColdCalls.
203 void BranchProbabilityInfo::computePostDominatedByColdCall(
204     const Function &F, PostDominatorTree *PDT) {
205   SmallVector<const BasicBlock *, 8> WorkList;
206   for (auto &BB : F)
207     for (auto &I : BB)
208       if (const CallInst *CI = dyn_cast<CallInst>(&I))
209         if (CI->hasFnAttr(Attribute::Cold))
210           UpdatePDTWorklist(&BB, PDT, WorkList, PostDominatedByColdCall);
211 
212   while (!WorkList.empty()) {
213     const BasicBlock *BB = WorkList.pop_back_val();
214 
215     // If the terminator is an InvokeInst, check only the normal destination
216     // block as the unwind edge of InvokeInst is also very unlikely taken.
217     if (auto *II = dyn_cast<InvokeInst>(BB->getTerminator())) {
218       if (PostDominatedByColdCall.count(II->getNormalDest()))
219         UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
220     }
221     // If all of successor are post dominated then BB is also done.
222     else if (!successors(BB).empty() &&
223              llvm::all_of(successors(BB), [this](const BasicBlock *Succ) {
224                return PostDominatedByColdCall.count(Succ);
225              }))
226       UpdatePDTWorklist(BB, PDT, WorkList, PostDominatedByColdCall);
227   }
228 }
229 
230 /// Calculate edge weights for successors lead to unreachable.
231 ///
232 /// Predict that a successor which leads necessarily to an
233 /// unreachable-terminated block as extremely unlikely.
234 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
235   const Instruction *TI = BB->getTerminator();
236   (void) TI;
237   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
238   assert(!isa<InvokeInst>(TI) &&
239          "Invokes should have already been handled by calcInvokeHeuristics");
240 
241   SmallVector<unsigned, 4> UnreachableEdges;
242   SmallVector<unsigned, 4> ReachableEdges;
243 
244   for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
245     if (PostDominatedByUnreachable.count(*I))
246       UnreachableEdges.push_back(I.getSuccessorIndex());
247     else
248       ReachableEdges.push_back(I.getSuccessorIndex());
249 
250   // Skip probabilities if all were reachable.
251   if (UnreachableEdges.empty())
252     return false;
253 
254   SmallVector<BranchProbability, 4> EdgeProbabilities(
255       BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
256   if (ReachableEdges.empty()) {
257     BranchProbability Prob(1, UnreachableEdges.size());
258     for (unsigned SuccIdx : UnreachableEdges)
259       EdgeProbabilities[SuccIdx] = Prob;
260     setEdgeProbability(BB, EdgeProbabilities);
261     return true;
262   }
263 
264   auto UnreachableProb = UR_TAKEN_PROB;
265   auto ReachableProb =
266       (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
267       ReachableEdges.size();
268 
269   for (unsigned SuccIdx : UnreachableEdges)
270     EdgeProbabilities[SuccIdx] = UnreachableProb;
271   for (unsigned SuccIdx : ReachableEdges)
272     EdgeProbabilities[SuccIdx] = ReachableProb;
273 
274   setEdgeProbability(BB, EdgeProbabilities);
275   return true;
276 }
277 
278 // Propagate existing explicit probabilities from either profile data or
279 // 'expect' intrinsic processing. Examine metadata against unreachable
280 // heuristic. The probability of the edge coming to unreachable block is
281 // set to min of metadata and unreachable heuristic.
282 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
283   const Instruction *TI = BB->getTerminator();
284   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
285   if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
286     return false;
287 
288   MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
289   if (!WeightsNode)
290     return false;
291 
292   // Check that the number of successors is manageable.
293   assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
294 
295   // Ensure there are weights for all of the successors. Note that the first
296   // operand to the metadata node is a name, not a weight.
297   if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
298     return false;
299 
300   // Build up the final weights that will be used in a temporary buffer.
301   // Compute the sum of all weights to later decide whether they need to
302   // be scaled to fit in 32 bits.
303   uint64_t WeightSum = 0;
304   SmallVector<uint32_t, 2> Weights;
305   SmallVector<unsigned, 2> UnreachableIdxs;
306   SmallVector<unsigned, 2> ReachableIdxs;
307   Weights.reserve(TI->getNumSuccessors());
308   for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
309     ConstantInt *Weight =
310         mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
311     if (!Weight)
312       return false;
313     assert(Weight->getValue().getActiveBits() <= 32 &&
314            "Too many bits for uint32_t");
315     Weights.push_back(Weight->getZExtValue());
316     WeightSum += Weights.back();
317     if (PostDominatedByUnreachable.count(TI->getSuccessor(I - 1)))
318       UnreachableIdxs.push_back(I - 1);
319     else
320       ReachableIdxs.push_back(I - 1);
321   }
322   assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
323 
324   // If the sum of weights does not fit in 32 bits, scale every weight down
325   // accordingly.
326   uint64_t ScalingFactor =
327       (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
328 
329   if (ScalingFactor > 1) {
330     WeightSum = 0;
331     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
332       Weights[I] /= ScalingFactor;
333       WeightSum += Weights[I];
334     }
335   }
336   assert(WeightSum <= UINT32_MAX &&
337          "Expected weights to scale down to 32 bits");
338 
339   if (WeightSum == 0 || ReachableIdxs.size() == 0) {
340     for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
341       Weights[I] = 1;
342     WeightSum = TI->getNumSuccessors();
343   }
344 
345   // Set the probability.
346   SmallVector<BranchProbability, 2> BP;
347   for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
348     BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
349 
350   // Examine the metadata against unreachable heuristic.
351   // If the unreachable heuristic is more strong then we use it for this edge.
352   if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
353     setEdgeProbability(BB, BP);
354     return true;
355   }
356 
357   auto UnreachableProb = UR_TAKEN_PROB;
358   for (auto I : UnreachableIdxs)
359     if (UnreachableProb < BP[I]) {
360       BP[I] = UnreachableProb;
361     }
362 
363   // Sum of all edge probabilities must be 1.0. If we modified the probability
364   // of some edges then we must distribute the introduced difference over the
365   // reachable blocks.
366   //
367   // Proportional distribution: the relation between probabilities of the
368   // reachable edges is kept unchanged. That is for any reachable edges i and j:
369   //   newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
370   //   newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
371   // Where K is independent of i,j.
372   //   newBP[i] == oldBP[i] * K
373   // We need to find K.
374   // Make sum of all reachables of the left and right parts:
375   //   sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
376   // Sum of newBP must be equal to 1.0:
377   //   sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
378   //   sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
379   // Where sum_of_unreachable(newBP) is what has been just changed.
380   // Finally:
381   //   K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
382   //   K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
383   BranchProbability NewUnreachableSum = BranchProbability::getZero();
384   for (auto I : UnreachableIdxs)
385     NewUnreachableSum += BP[I];
386 
387   BranchProbability NewReachableSum =
388       BranchProbability::getOne() - NewUnreachableSum;
389 
390   BranchProbability OldReachableSum = BranchProbability::getZero();
391   for (auto I : ReachableIdxs)
392     OldReachableSum += BP[I];
393 
394   if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
395     if (OldReachableSum.isZero()) {
396       // If all oldBP[i] are zeroes then the proportional distribution results
397       // in all zero probabilities and the error stays big. In this case we
398       // evenly spread NewReachableSum over the reachable edges.
399       BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
400       for (auto I : ReachableIdxs)
401         BP[I] = PerEdge;
402     } else {
403       for (auto I : ReachableIdxs) {
404         // We use uint64_t to avoid double rounding error of the following
405         // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
406         // The formula is taken from the private constructor
407         // BranchProbability(uint32_t Numerator, uint32_t Denominator)
408         uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
409                        BP[I].getNumerator();
410         uint32_t Div = static_cast<uint32_t>(
411             divideNearest(Mul, OldReachableSum.getNumerator()));
412         BP[I] = BranchProbability::getRaw(Div);
413       }
414     }
415   }
416 
417   setEdgeProbability(BB, BP);
418 
419   return true;
420 }
421 
422 /// Calculate edge weights for edges leading to cold blocks.
423 ///
424 /// A cold block is one post-dominated by  a block with a call to a
425 /// cold function.  Those edges are unlikely to be taken, so we give
426 /// them relatively low weight.
427 ///
428 /// Return true if we could compute the weights for cold edges.
429 /// Return false, otherwise.
430 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
431   const Instruction *TI = BB->getTerminator();
432   (void) TI;
433   assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
434   assert(!isa<InvokeInst>(TI) &&
435          "Invokes should have already been handled by calcInvokeHeuristics");
436 
437   // Determine which successors are post-dominated by a cold block.
438   SmallVector<unsigned, 4> ColdEdges;
439   SmallVector<unsigned, 4> NormalEdges;
440   for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
441     if (PostDominatedByColdCall.count(*I))
442       ColdEdges.push_back(I.getSuccessorIndex());
443     else
444       NormalEdges.push_back(I.getSuccessorIndex());
445 
446   // Skip probabilities if no cold edges.
447   if (ColdEdges.empty())
448     return false;
449 
450   SmallVector<BranchProbability, 4> EdgeProbabilities(
451       BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
452   if (NormalEdges.empty()) {
453     BranchProbability Prob(1, ColdEdges.size());
454     for (unsigned SuccIdx : ColdEdges)
455       EdgeProbabilities[SuccIdx] = Prob;
456     setEdgeProbability(BB, EdgeProbabilities);
457     return true;
458   }
459 
460   auto ColdProb = BranchProbability::getBranchProbability(
461       CC_TAKEN_WEIGHT,
462       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
463   auto NormalProb = BranchProbability::getBranchProbability(
464       CC_NONTAKEN_WEIGHT,
465       (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));
466 
467   for (unsigned SuccIdx : ColdEdges)
468     EdgeProbabilities[SuccIdx] = ColdProb;
469   for (unsigned SuccIdx : NormalEdges)
470     EdgeProbabilities[SuccIdx] = NormalProb;
471 
472   setEdgeProbability(BB, EdgeProbabilities);
473   return true;
474 }
475 
476 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
477 // between two pointer or pointer and NULL will fail.
478 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
479   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
480   if (!BI || !BI->isConditional())
481     return false;
482 
483   Value *Cond = BI->getCondition();
484   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
485   if (!CI || !CI->isEquality())
486     return false;
487 
488   Value *LHS = CI->getOperand(0);
489 
490   if (!LHS->getType()->isPointerTy())
491     return false;
492 
493   assert(CI->getOperand(1)->getType()->isPointerTy());
494 
495   BranchProbability TakenProb(PH_TAKEN_WEIGHT,
496                               PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
497   BranchProbability UntakenProb(PH_NONTAKEN_WEIGHT,
498                                 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
499 
500   // p != 0   ->   isProb = true
501   // p == 0   ->   isProb = false
502   // p != q   ->   isProb = true
503   // p == q   ->   isProb = false;
504   bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
505   if (!isProb)
506     std::swap(TakenProb, UntakenProb);
507 
508   setEdgeProbability(
509       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
510   return true;
511 }
512 
513 static int getSCCNum(const BasicBlock *BB,
514                      const BranchProbabilityInfo::SccInfo &SccI) {
515   auto SccIt = SccI.SccNums.find(BB);
516   if (SccIt == SccI.SccNums.end())
517     return -1;
518   return SccIt->second;
519 }
520 
521 // Consider any block that is an entry point to the SCC as a header.
522 static bool isSCCHeader(const BasicBlock *BB, int SccNum,
523                         BranchProbabilityInfo::SccInfo &SccI) {
524   assert(getSCCNum(BB, SccI) == SccNum);
525 
526   // Lazily compute the set of headers for a given SCC and cache the results
527   // in the SccHeaderMap.
528   if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
529     SccI.SccHeaders.resize(SccNum + 1);
530   auto &HeaderMap = SccI.SccHeaders[SccNum];
531   bool Inserted;
532   BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
533   std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
534   if (Inserted) {
535     bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
536                                  [&](const BasicBlock *Pred) {
537                                    return getSCCNum(Pred, SccI) != SccNum;
538                                  });
539     HeaderMapIt->second = IsHeader;
540     return IsHeader;
541   } else
542     return HeaderMapIt->second;
543 }
544 
545 // Compute the unlikely successors to the block BB in the loop L, specifically
546 // those that are unlikely because this is a loop, and add them to the
547 // UnlikelyBlocks set.
548 static void
549 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
550                           SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
551   // Sometimes in a loop we have a branch whose condition is made false by
552   // taking it. This is typically something like
553   //  int n = 0;
554   //  while (...) {
555   //    if (++n >= MAX) {
556   //      n = 0;
557   //    }
558   //  }
559   // In this sort of situation taking the branch means that at the very least it
560   // won't be taken again in the next iteration of the loop, so we should
561   // consider it less likely than a typical branch.
562   //
563   // We detect this by looking back through the graph of PHI nodes that sets the
564   // value that the condition depends on, and seeing if we can reach a successor
565   // block which can be determined to make the condition false.
566   //
567   // FIXME: We currently consider unlikely blocks to be half as likely as other
568   // blocks, but if we consider the example above the likelyhood is actually
569   // 1/MAX. We could therefore be more precise in how unlikely we consider
570   // blocks to be, but it would require more careful examination of the form
571   // of the comparison expression.
572   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
573   if (!BI || !BI->isConditional())
574     return;
575 
576   // Check if the branch is based on an instruction compared with a constant
577   CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
578   if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
579       !isa<Constant>(CI->getOperand(1)))
580     return;
581 
582   // Either the instruction must be a PHI, or a chain of operations involving
583   // constants that ends in a PHI which we can then collapse into a single value
584   // if the PHI value is known.
585   Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
586   PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
587   Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
588   // Collect the instructions until we hit a PHI
589   SmallVector<BinaryOperator *, 1> InstChain;
590   while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
591          isa<Constant>(CmpLHS->getOperand(1))) {
592     // Stop if the chain extends outside of the loop
593     if (!L->contains(CmpLHS))
594       return;
595     InstChain.push_back(cast<BinaryOperator>(CmpLHS));
596     CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
597     if (CmpLHS)
598       CmpPHI = dyn_cast<PHINode>(CmpLHS);
599   }
600   if (!CmpPHI || !L->contains(CmpPHI))
601     return;
602 
603   // Trace the phi node to find all values that come from successors of BB
604   SmallPtrSet<PHINode*, 8> VisitedInsts;
605   SmallVector<PHINode*, 8> WorkList;
606   WorkList.push_back(CmpPHI);
607   VisitedInsts.insert(CmpPHI);
608   while (!WorkList.empty()) {
609     PHINode *P = WorkList.back();
610     WorkList.pop_back();
611     for (BasicBlock *B : P->blocks()) {
612       // Skip blocks that aren't part of the loop
613       if (!L->contains(B))
614         continue;
615       Value *V = P->getIncomingValueForBlock(B);
616       // If the source is a PHI add it to the work list if we haven't
617       // already visited it.
618       if (PHINode *PN = dyn_cast<PHINode>(V)) {
619         if (VisitedInsts.insert(PN).second)
620           WorkList.push_back(PN);
621         continue;
622       }
623       // If this incoming value is a constant and B is a successor of BB, then
624       // we can constant-evaluate the compare to see if it makes the branch be
625       // taken or not.
626       Constant *CmpLHSConst = dyn_cast<Constant>(V);
627       if (!CmpLHSConst ||
628           std::find(succ_begin(BB), succ_end(BB), B) == succ_end(BB))
629         continue;
630       // First collapse InstChain
631       for (Instruction *I : llvm::reverse(InstChain)) {
632         CmpLHSConst = ConstantExpr::get(I->getOpcode(), CmpLHSConst,
633                                         cast<Constant>(I->getOperand(1)), true);
634         if (!CmpLHSConst)
635           break;
636       }
637       if (!CmpLHSConst)
638         continue;
639       // Now constant-evaluate the compare
640       Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
641                                                   CmpLHSConst, CmpConst, true);
642       // If the result means we don't branch to the block then that block is
643       // unlikely.
644       if (Result &&
645           ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
646            (Result->isOneValue() && B == BI->getSuccessor(1))))
647         UnlikelyBlocks.insert(B);
648     }
649   }
650 }
651 
652 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
653 // as taken, exiting edges as not-taken.
654 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
655                                                      const LoopInfo &LI,
656                                                      SccInfo &SccI) {
657   int SccNum;
658   Loop *L = LI.getLoopFor(BB);
659   if (!L) {
660     SccNum = getSCCNum(BB, SccI);
661     if (SccNum < 0)
662       return false;
663   }
664 
665   SmallPtrSet<const BasicBlock*, 8> UnlikelyBlocks;
666   if (L)
667     computeUnlikelySuccessors(BB, L, UnlikelyBlocks);
668 
669   SmallVector<unsigned, 8> BackEdges;
670   SmallVector<unsigned, 8> ExitingEdges;
671   SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.
672   SmallVector<unsigned, 8> UnlikelyEdges;
673 
674   for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
675     // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
676     // irreducible loops.
677     if (L) {
678       if (UnlikelyBlocks.count(*I) != 0)
679         UnlikelyEdges.push_back(I.getSuccessorIndex());
680       else if (!L->contains(*I))
681         ExitingEdges.push_back(I.getSuccessorIndex());
682       else if (L->getHeader() == *I)
683         BackEdges.push_back(I.getSuccessorIndex());
684       else
685         InEdges.push_back(I.getSuccessorIndex());
686     } else {
687       if (getSCCNum(*I, SccI) != SccNum)
688         ExitingEdges.push_back(I.getSuccessorIndex());
689       else if (isSCCHeader(*I, SccNum, SccI))
690         BackEdges.push_back(I.getSuccessorIndex());
691       else
692         InEdges.push_back(I.getSuccessorIndex());
693     }
694   }
695 
696   if (BackEdges.empty() && ExitingEdges.empty() && UnlikelyEdges.empty())
697     return false;
698 
699   // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
700   // normalize them so that they sum up to one.
701   unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
702                    (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
703                    (UnlikelyEdges.empty() ? 0 : LBH_UNLIKELY_WEIGHT) +
704                    (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
705 
706   SmallVector<BranchProbability, 4> EdgeProbabilities(
707       BB->getTerminator()->getNumSuccessors(), BranchProbability::getUnknown());
708   if (uint32_t numBackEdges = BackEdges.size()) {
709     BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
710     auto Prob = TakenProb / numBackEdges;
711     for (unsigned SuccIdx : BackEdges)
712       EdgeProbabilities[SuccIdx] = Prob;
713   }
714 
715   if (uint32_t numInEdges = InEdges.size()) {
716     BranchProbability TakenProb = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
717     auto Prob = TakenProb / numInEdges;
718     for (unsigned SuccIdx : InEdges)
719       EdgeProbabilities[SuccIdx] = Prob;
720   }
721 
722   if (uint32_t numExitingEdges = ExitingEdges.size()) {
723     BranchProbability NotTakenProb = BranchProbability(LBH_NONTAKEN_WEIGHT,
724                                                        Denom);
725     auto Prob = NotTakenProb / numExitingEdges;
726     for (unsigned SuccIdx : ExitingEdges)
727       EdgeProbabilities[SuccIdx] = Prob;
728   }
729 
730   if (uint32_t numUnlikelyEdges = UnlikelyEdges.size()) {
731     BranchProbability UnlikelyProb = BranchProbability(LBH_UNLIKELY_WEIGHT,
732                                                        Denom);
733     auto Prob = UnlikelyProb / numUnlikelyEdges;
734     for (unsigned SuccIdx : UnlikelyEdges)
735       EdgeProbabilities[SuccIdx] = Prob;
736   }
737 
738   setEdgeProbability(BB, EdgeProbabilities);
739   return true;
740 }
741 
742 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
743                                                const TargetLibraryInfo *TLI) {
744   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
745   if (!BI || !BI->isConditional())
746     return false;
747 
748   Value *Cond = BI->getCondition();
749   ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
750   if (!CI)
751     return false;
752 
753   auto GetConstantInt = [](Value *V) {
754     if (auto *I = dyn_cast<BitCastInst>(V))
755       return dyn_cast<ConstantInt>(I->getOperand(0));
756     return dyn_cast<ConstantInt>(V);
757   };
758 
759   Value *RHS = CI->getOperand(1);
760   ConstantInt *CV = GetConstantInt(RHS);
761   if (!CV)
762     return false;
763 
764   // If the LHS is the result of AND'ing a value with a single bit bitmask,
765   // we don't have information about probabilities.
766   if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
767     if (LHS->getOpcode() == Instruction::And)
768       if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
769         if (AndRHS->getValue().isPowerOf2())
770           return false;
771 
772   // Check if the LHS is the return value of a library function
773   LibFunc Func = NumLibFuncs;
774   if (TLI)
775     if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
776       if (Function *CalledFn = Call->getCalledFunction())
777         TLI->getLibFunc(*CalledFn, Func);
778 
779   bool isProb;
780   if (Func == LibFunc_strcasecmp ||
781       Func == LibFunc_strcmp ||
782       Func == LibFunc_strncasecmp ||
783       Func == LibFunc_strncmp ||
784       Func == LibFunc_memcmp) {
785     // strcmp and similar functions return zero, negative, or positive, if the
786     // first string is equal, less, or greater than the second. We consider it
787     // likely that the strings are not equal, so a comparison with zero is
788     // probably false, but also a comparison with any other number is also
789     // probably false given that what exactly is returned for nonzero values is
790     // not specified. Any kind of comparison other than equality we know
791     // nothing about.
792     switch (CI->getPredicate()) {
793     case CmpInst::ICMP_EQ:
794       isProb = false;
795       break;
796     case CmpInst::ICMP_NE:
797       isProb = true;
798       break;
799     default:
800       return false;
801     }
802   } else if (CV->isZero()) {
803     switch (CI->getPredicate()) {
804     case CmpInst::ICMP_EQ:
805       // X == 0   ->  Unlikely
806       isProb = false;
807       break;
808     case CmpInst::ICMP_NE:
809       // X != 0   ->  Likely
810       isProb = true;
811       break;
812     case CmpInst::ICMP_SLT:
813       // X < 0   ->  Unlikely
814       isProb = false;
815       break;
816     case CmpInst::ICMP_SGT:
817       // X > 0   ->  Likely
818       isProb = true;
819       break;
820     default:
821       return false;
822     }
823   } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
824     // InstCombine canonicalizes X <= 0 into X < 1.
825     // X <= 0   ->  Unlikely
826     isProb = false;
827   } else if (CV->isMinusOne()) {
828     switch (CI->getPredicate()) {
829     case CmpInst::ICMP_EQ:
830       // X == -1  ->  Unlikely
831       isProb = false;
832       break;
833     case CmpInst::ICMP_NE:
834       // X != -1  ->  Likely
835       isProb = true;
836       break;
837     case CmpInst::ICMP_SGT:
838       // InstCombine canonicalizes X >= 0 into X > -1.
839       // X >= 0   ->  Likely
840       isProb = true;
841       break;
842     default:
843       return false;
844     }
845   } else {
846     return false;
847   }
848 
849   BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
850                               ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
851   BranchProbability UntakenProb(ZH_NONTAKEN_WEIGHT,
852                                 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
853   if (!isProb)
854     std::swap(TakenProb, UntakenProb);
855 
856   setEdgeProbability(
857       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
858   return true;
859 }
860 
861 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
862   const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
863   if (!BI || !BI->isConditional())
864     return false;
865 
866   Value *Cond = BI->getCondition();
867   FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
868   if (!FCmp)
869     return false;
870 
871   uint32_t TakenWeight = FPH_TAKEN_WEIGHT;
872   uint32_t NontakenWeight = FPH_NONTAKEN_WEIGHT;
873   bool isProb;
874   if (FCmp->isEquality()) {
875     // f1 == f2 -> Unlikely
876     // f1 != f2 -> Likely
877     isProb = !FCmp->isTrueWhenEqual();
878   } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
879     // !isnan -> Likely
880     isProb = true;
881     TakenWeight = FPH_ORD_WEIGHT;
882     NontakenWeight = FPH_UNO_WEIGHT;
883   } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
884     // isnan -> Unlikely
885     isProb = false;
886     TakenWeight = FPH_ORD_WEIGHT;
887     NontakenWeight = FPH_UNO_WEIGHT;
888   } else {
889     return false;
890   }
891 
892   BranchProbability TakenProb(TakenWeight, TakenWeight + NontakenWeight);
893   BranchProbability UntakenProb(NontakenWeight, TakenWeight + NontakenWeight);
894   if (!isProb)
895     std::swap(TakenProb, UntakenProb);
896 
897   setEdgeProbability(
898       BB, SmallVector<BranchProbability, 2>({TakenProb, UntakenProb}));
899   return true;
900 }
901 
902 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
903   const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
904   if (!II)
905     return false;
906 
907   BranchProbability TakenProb(IH_TAKEN_WEIGHT,
908                               IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
909   setEdgeProbability(
910       BB, SmallVector<BranchProbability, 2>({TakenProb, TakenProb.getCompl()}));
911   return true;
912 }
913 
914 void BranchProbabilityInfo::releaseMemory() {
915   Probs.clear();
916   Handles.clear();
917 }
918 
919 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
920                                        FunctionAnalysisManager::Invalidator &) {
921   // Check whether the analysis, all analyses on functions, or the function's
922   // CFG have been preserved.
923   auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
924   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
925            PAC.preservedSet<CFGAnalyses>());
926 }
927 
928 void BranchProbabilityInfo::print(raw_ostream &OS) const {
929   OS << "---- Branch Probabilities ----\n";
930   // We print the probabilities from the last function the analysis ran over,
931   // or the function it is currently running over.
932   assert(LastF && "Cannot print prior to running over a function");
933   for (const auto &BI : *LastF) {
934     for (const_succ_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
935          ++SI) {
936       printEdgeProbability(OS << "  ", &BI, *SI);
937     }
938   }
939 }
940 
941 bool BranchProbabilityInfo::
942 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
943   // Hot probability is at least 4/5 = 80%
944   // FIXME: Compare against a static "hot" BranchProbability.
945   return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
946 }
947 
948 const BasicBlock *
949 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
950   auto MaxProb = BranchProbability::getZero();
951   const BasicBlock *MaxSucc = nullptr;
952 
953   for (const_succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
954     const BasicBlock *Succ = *I;
955     auto Prob = getEdgeProbability(BB, Succ);
956     if (Prob > MaxProb) {
957       MaxProb = Prob;
958       MaxSucc = Succ;
959     }
960   }
961 
962   // Hot probability is at least 4/5 = 80%
963   if (MaxProb > BranchProbability(4, 5))
964     return MaxSucc;
965 
966   return nullptr;
967 }
968 
969 /// Get the raw edge probability for the edge. If can't find it, return a
970 /// default probability 1/N where N is the number of successors. Here an edge is
971 /// specified using PredBlock and an
972 /// index to the successors.
973 BranchProbability
974 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
975                                           unsigned IndexInSuccessors) const {
976   auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
977 
978   if (I != Probs.end())
979     return I->second;
980 
981   return {1, static_cast<uint32_t>(succ_size(Src))};
982 }
983 
984 BranchProbability
985 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
986                                           const_succ_iterator Dst) const {
987   return getEdgeProbability(Src, Dst.getSuccessorIndex());
988 }
989 
990 /// Get the raw edge probability calculated for the block pair. This returns the
991 /// sum of all raw edge probabilities from Src to Dst.
992 BranchProbability
993 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
994                                           const BasicBlock *Dst) const {
995   auto Prob = BranchProbability::getZero();
996   bool FoundProb = false;
997   uint32_t EdgeCount = 0;
998   for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
999     if (*I == Dst) {
1000       ++EdgeCount;
1001       auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
1002       if (MapI != Probs.end()) {
1003         FoundProb = true;
1004         Prob += MapI->second;
1005       }
1006     }
1007   uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
1008   return FoundProb ? Prob : BranchProbability(EdgeCount, succ_num);
1009 }
1010 
1011 /// Set the edge probability for a given edge specified by PredBlock and an
1012 /// index to the successors.
1013 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
1014                                                unsigned IndexInSuccessors,
1015                                                BranchProbability Prob) {
1016   Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
1017   Handles.insert(BasicBlockCallbackVH(Src, this));
1018   LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> "
1019                     << IndexInSuccessors << " successor probability to " << Prob
1020                     << "\n");
1021 }
1022 
1023 /// Set the edge probability for all edges at once.
1024 void BranchProbabilityInfo::setEdgeProbability(
1025     const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1026   assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1027   if (Probs.size() == 0)
1028     return; // Nothing to set.
1029 
1030   uint64_t TotalNumerator = 0;
1031   for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1032     setEdgeProbability(Src, SuccIdx, Probs[SuccIdx]);
1033     TotalNumerator += Probs[SuccIdx].getNumerator();
1034   }
1035 
1036   // Because of rounding errors the total probability cannot be checked to be
1037   // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1038   // Instead, every single probability in Probs must be as accurate as possible.
1039   // This results in error 1/denominator at most, thus the total absolute error
1040   // should be within Probs.size / BranchProbability::getDenominator.
1041   assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1042   assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1043 }
1044 
1045 raw_ostream &
1046 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1047                                             const BasicBlock *Src,
1048                                             const BasicBlock *Dst) const {
1049   const BranchProbability Prob = getEdgeProbability(Src, Dst);
1050   OS << "edge " << Src->getName() << " -> " << Dst->getName()
1051      << " probability is " << Prob
1052      << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1053 
1054   return OS;
1055 }
1056 
1057 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1058   for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
1059     auto Key = I->first;
1060     if (Key.first == BB)
1061       Probs.erase(Key);
1062   }
1063 }
1064 
1065 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
1066                                       const TargetLibraryInfo *TLI,
1067                                       PostDominatorTree *PDT) {
1068   LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1069                     << " ----\n\n");
1070   LastF = &F; // Store the last function we ran on for printing.
1071   assert(PostDominatedByUnreachable.empty());
1072   assert(PostDominatedByColdCall.empty());
1073 
1074   // Record SCC numbers of blocks in the CFG to identify irreducible loops.
1075   // FIXME: We could only calculate this if the CFG is known to be irreducible
1076   // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
1077   int SccNum = 0;
1078   SccInfo SccI;
1079   for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
1080        ++It, ++SccNum) {
1081     // Ignore single-block SCCs since they either aren't loops or LoopInfo will
1082     // catch them.
1083     const std::vector<const BasicBlock *> &Scc = *It;
1084     if (Scc.size() == 1)
1085       continue;
1086 
1087     LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
1088     for (auto *BB : Scc) {
1089       LLVM_DEBUG(dbgs() << " " << BB->getName());
1090       SccI.SccNums[BB] = SccNum;
1091     }
1092     LLVM_DEBUG(dbgs() << "\n");
1093   }
1094 
1095   std::unique_ptr<PostDominatorTree> PDTPtr;
1096 
1097   if (!PDT) {
1098     PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1099     PDT = PDTPtr.get();
1100   }
1101 
1102   computePostDominatedByUnreachable(F, PDT);
1103   computePostDominatedByColdCall(F, PDT);
1104 
1105   // Walk the basic blocks in post-order so that we can build up state about
1106   // the successors of a block iteratively.
1107   for (auto BB : post_order(&F.getEntryBlock())) {
1108     LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1109                       << "\n");
1110     // If there is no at least two successors, no sense to set probability.
1111     if (BB->getTerminator()->getNumSuccessors() < 2)
1112       continue;
1113     if (calcMetadataWeights(BB))
1114       continue;
1115     if (calcInvokeHeuristics(BB))
1116       continue;
1117     if (calcUnreachableHeuristics(BB))
1118       continue;
1119     if (calcColdCallHeuristics(BB))
1120       continue;
1121     if (calcLoopBranchHeuristics(BB, LI, SccI))
1122       continue;
1123     if (calcPointerHeuristics(BB))
1124       continue;
1125     if (calcZeroHeuristics(BB, TLI))
1126       continue;
1127     if (calcFloatingPointHeuristics(BB))
1128       continue;
1129   }
1130 
1131   PostDominatedByUnreachable.clear();
1132   PostDominatedByColdCall.clear();
1133 
1134   if (PrintBranchProb &&
1135       (PrintBranchProbFuncName.empty() ||
1136        F.getName().equals(PrintBranchProbFuncName))) {
1137     print(dbgs());
1138   }
1139 }
1140 
1141 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1142     AnalysisUsage &AU) const {
1143   // We require DT so it's available when LI is available. The LI updating code
1144   // asserts that DT is also present so if we don't make sure that we have DT
1145   // here, that assert will trigger.
1146   AU.addRequired<DominatorTreeWrapperPass>();
1147   AU.addRequired<LoopInfoWrapperPass>();
1148   AU.addRequired<TargetLibraryInfoWrapperPass>();
1149   AU.addRequired<PostDominatorTreeWrapperPass>();
1150   AU.setPreservesAll();
1151 }
1152 
1153 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1154   const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1155   const TargetLibraryInfo &TLI =
1156       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1157   PostDominatorTree &PDT =
1158       getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1159   BPI.calculate(F, LI, &TLI, &PDT);
1160   return false;
1161 }
1162 
1163 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1164 
1165 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1166                                              const Module *) const {
1167   BPI.print(OS);
1168 }
1169 
1170 AnalysisKey BranchProbabilityAnalysis::Key;
1171 BranchProbabilityInfo
1172 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1173   BranchProbabilityInfo BPI;
1174   BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1175                 &AM.getResult<TargetLibraryAnalysis>(F),
1176                 &AM.getResult<PostDominatorTreeAnalysis>(F));
1177   return BPI;
1178 }
1179 
1180 PreservedAnalyses
1181 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1182   OS << "Printing analysis results of BPI for function "
1183      << "'" << F.getName() << "':"
1184      << "\n";
1185   AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1186   return PreservedAnalyses::all();
1187 }
1188