1 //===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Loops should be simplified before this analysis.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/Analysis/BranchProbabilityInfo.h"
14 #include "llvm/ADT/PostOrderIterator.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/PostDominators.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/IR/PassManager.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/BranchProbability.h"
39 #include "llvm/Support/Casting.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <cstdint>
45 #include <iterator>
46 #include <map>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "branch-prob"
52
53 static cl::opt<bool> PrintBranchProb(
54 "print-bpi", cl::init(false), cl::Hidden,
55 cl::desc("Print the branch probability info."));
56
57 cl::opt<std::string> PrintBranchProbFuncName(
58 "print-bpi-func-name", cl::Hidden,
59 cl::desc("The option to specify the name of the function "
60 "whose branch probability info is printed."));
61
62 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
63 "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)64 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
65 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
66 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
67 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
68 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
69 "Branch Probability Analysis", false, true)
70
71 BranchProbabilityInfoWrapperPass::BranchProbabilityInfoWrapperPass()
72 : FunctionPass(ID) {
73 initializeBranchProbabilityInfoWrapperPassPass(
74 *PassRegistry::getPassRegistry());
75 }
76
77 char BranchProbabilityInfoWrapperPass::ID = 0;
78
79 // Weights are for internal use only. They are used by heuristics to help to
80 // estimate edges' probability. Example:
81 //
82 // Using "Loop Branch Heuristics" we predict weights of edges for the
83 // block BB2.
84 // ...
85 // |
86 // V
87 // BB1<-+
88 // | |
89 // | | (Weight = 124)
90 // V |
91 // BB2--+
92 // |
93 // | (Weight = 4)
94 // V
95 // BB3
96 //
97 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
98 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
99 static const uint32_t LBH_TAKEN_WEIGHT = 124;
100 static const uint32_t LBH_NONTAKEN_WEIGHT = 4;
101
102 /// Unreachable-terminating branch taken probability.
103 ///
104 /// This is the probability for a branch being taken to a block that terminates
105 /// (eventually) in unreachable. These are predicted as unlikely as possible.
106 /// All reachable probability will proportionally share the remaining part.
107 static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);
108
109 /// Heuristics and lookup tables for non-loop branches:
110 /// Pointer Heuristics (PH)
111 static const uint32_t PH_TAKEN_WEIGHT = 20;
112 static const uint32_t PH_NONTAKEN_WEIGHT = 12;
113 static const BranchProbability
114 PtrTakenProb(PH_TAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
115 static const BranchProbability
116 PtrUntakenProb(PH_NONTAKEN_WEIGHT, PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
117
118 using ProbabilityList = SmallVector<BranchProbability>;
119 using ProbabilityTable = std::map<CmpInst::Predicate, ProbabilityList>;
120
121 /// Pointer comparisons:
122 static const ProbabilityTable PointerTable{
123 {ICmpInst::ICMP_NE, {PtrTakenProb, PtrUntakenProb}}, /// p != q -> Likely
124 {ICmpInst::ICMP_EQ, {PtrUntakenProb, PtrTakenProb}}, /// p == q -> Unlikely
125 };
126
127 /// Zero Heuristics (ZH)
128 static const uint32_t ZH_TAKEN_WEIGHT = 20;
129 static const uint32_t ZH_NONTAKEN_WEIGHT = 12;
130 static const BranchProbability
131 ZeroTakenProb(ZH_TAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
132 static const BranchProbability
133 ZeroUntakenProb(ZH_NONTAKEN_WEIGHT, ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
134
135 /// Integer compares with 0:
136 static const ProbabilityTable ICmpWithZeroTable{
137 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == 0 -> Unlikely
138 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != 0 -> Likely
139 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X < 0 -> Unlikely
140 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X > 0 -> Likely
141 };
142
143 /// Integer compares with -1:
144 static const ProbabilityTable ICmpWithMinusOneTable{
145 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}}, /// X == -1 -> Unlikely
146 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}}, /// X != -1 -> Likely
147 // InstCombine canonicalizes X >= 0 into X > -1
148 {CmpInst::ICMP_SGT, {ZeroTakenProb, ZeroUntakenProb}}, /// X >= 0 -> Likely
149 };
150
151 /// Integer compares with 1:
152 static const ProbabilityTable ICmpWithOneTable{
153 // InstCombine canonicalizes X <= 0 into X < 1
154 {CmpInst::ICMP_SLT, {ZeroUntakenProb, ZeroTakenProb}}, /// X <= 0 -> Unlikely
155 };
156
157 /// strcmp and similar functions return zero, negative, or positive, if the
158 /// first string is equal, less, or greater than the second. We consider it
159 /// likely that the strings are not equal, so a comparison with zero is
160 /// probably false, but also a comparison with any other number is also
161 /// probably false given that what exactly is returned for nonzero values is
162 /// not specified. Any kind of comparison other than equality we know
163 /// nothing about.
164 static const ProbabilityTable ICmpWithLibCallTable{
165 {CmpInst::ICMP_EQ, {ZeroUntakenProb, ZeroTakenProb}},
166 {CmpInst::ICMP_NE, {ZeroTakenProb, ZeroUntakenProb}},
167 };
168
169 // Floating-Point Heuristics (FPH)
170 static const uint32_t FPH_TAKEN_WEIGHT = 20;
171 static const uint32_t FPH_NONTAKEN_WEIGHT = 12;
172
173 /// This is the probability for an ordered floating point comparison.
174 static const uint32_t FPH_ORD_WEIGHT = 1024 * 1024 - 1;
175 /// This is the probability for an unordered floating point comparison, it means
176 /// one or two of the operands are NaN. Usually it is used to test for an
177 /// exceptional case, so the result is unlikely.
178 static const uint32_t FPH_UNO_WEIGHT = 1;
179
180 static const BranchProbability FPOrdTakenProb(FPH_ORD_WEIGHT,
181 FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
182 static const BranchProbability
183 FPOrdUntakenProb(FPH_UNO_WEIGHT, FPH_ORD_WEIGHT + FPH_UNO_WEIGHT);
184 static const BranchProbability
185 FPTakenProb(FPH_TAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
186 static const BranchProbability
187 FPUntakenProb(FPH_NONTAKEN_WEIGHT, FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
188
189 /// Floating-Point compares:
190 static const ProbabilityTable FCmpTable{
191 {FCmpInst::FCMP_ORD, {FPOrdTakenProb, FPOrdUntakenProb}}, /// !isnan -> Likely
192 {FCmpInst::FCMP_UNO, {FPOrdUntakenProb, FPOrdTakenProb}}, /// isnan -> Unlikely
193 };
194
195 /// Set of dedicated "absolute" execution weights for a block. These weights are
196 /// meaningful relative to each other and their derivatives only.
197 enum class BlockExecWeight : std::uint32_t {
198 /// Special weight used for cases with exact zero probability.
199 ZERO = 0x0,
200 /// Minimal possible non zero weight.
201 LOWEST_NON_ZERO = 0x1,
202 /// Weight to an 'unreachable' block.
203 UNREACHABLE = ZERO,
204 /// Weight to a block containing non returning call.
205 NORETURN = LOWEST_NON_ZERO,
206 /// Weight to 'unwind' block of an invoke instruction.
207 UNWIND = LOWEST_NON_ZERO,
208 /// Weight to a 'cold' block. Cold blocks are the ones containing calls marked
209 /// with attribute 'cold'.
210 COLD = 0xffff,
211 /// Default weight is used in cases when there is no dedicated execution
212 /// weight set. It is not propagated through the domination line either.
213 DEFAULT = 0xfffff
214 };
215
SccInfo(const Function & F)216 BranchProbabilityInfo::SccInfo::SccInfo(const Function &F) {
217 // Record SCC numbers of blocks in the CFG to identify irreducible loops.
218 // FIXME: We could only calculate this if the CFG is known to be irreducible
219 // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
220 int SccNum = 0;
221 for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
222 ++It, ++SccNum) {
223 // Ignore single-block SCCs since they either aren't loops or LoopInfo will
224 // catch them.
225 const std::vector<const BasicBlock *> &Scc = *It;
226 if (Scc.size() == 1)
227 continue;
228
229 LLVM_DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
230 for (const auto *BB : Scc) {
231 LLVM_DEBUG(dbgs() << " " << BB->getName());
232 SccNums[BB] = SccNum;
233 calculateSccBlockType(BB, SccNum);
234 }
235 LLVM_DEBUG(dbgs() << "\n");
236 }
237 }
238
getSCCNum(const BasicBlock * BB) const239 int BranchProbabilityInfo::SccInfo::getSCCNum(const BasicBlock *BB) const {
240 auto SccIt = SccNums.find(BB);
241 if (SccIt == SccNums.end())
242 return -1;
243 return SccIt->second;
244 }
245
getSccEnterBlocks(int SccNum,SmallVectorImpl<BasicBlock * > & Enters) const246 void BranchProbabilityInfo::SccInfo::getSccEnterBlocks(
247 int SccNum, SmallVectorImpl<BasicBlock *> &Enters) const {
248
249 for (auto MapIt : SccBlocks[SccNum]) {
250 const auto *BB = MapIt.first;
251 if (isSCCHeader(BB, SccNum))
252 for (const auto *Pred : predecessors(BB))
253 if (getSCCNum(Pred) != SccNum)
254 Enters.push_back(const_cast<BasicBlock *>(BB));
255 }
256 }
257
getSccExitBlocks(int SccNum,SmallVectorImpl<BasicBlock * > & Exits) const258 void BranchProbabilityInfo::SccInfo::getSccExitBlocks(
259 int SccNum, SmallVectorImpl<BasicBlock *> &Exits) const {
260 for (auto MapIt : SccBlocks[SccNum]) {
261 const auto *BB = MapIt.first;
262 if (isSCCExitingBlock(BB, SccNum))
263 for (const auto *Succ : successors(BB))
264 if (getSCCNum(Succ) != SccNum)
265 Exits.push_back(const_cast<BasicBlock *>(Succ));
266 }
267 }
268
getSccBlockType(const BasicBlock * BB,int SccNum) const269 uint32_t BranchProbabilityInfo::SccInfo::getSccBlockType(const BasicBlock *BB,
270 int SccNum) const {
271 assert(getSCCNum(BB) == SccNum);
272
273 assert(SccBlocks.size() > static_cast<unsigned>(SccNum) && "Unknown SCC");
274 const auto &SccBlockTypes = SccBlocks[SccNum];
275
276 auto It = SccBlockTypes.find(BB);
277 if (It != SccBlockTypes.end()) {
278 return It->second;
279 }
280 return Inner;
281 }
282
calculateSccBlockType(const BasicBlock * BB,int SccNum)283 void BranchProbabilityInfo::SccInfo::calculateSccBlockType(const BasicBlock *BB,
284 int SccNum) {
285 assert(getSCCNum(BB) == SccNum);
286 uint32_t BlockType = Inner;
287
288 if (llvm::any_of(predecessors(BB), [&](const BasicBlock *Pred) {
289 // Consider any block that is an entry point to the SCC as
290 // a header.
291 return getSCCNum(Pred) != SccNum;
292 }))
293 BlockType |= Header;
294
295 if (llvm::any_of(successors(BB), [&](const BasicBlock *Succ) {
296 return getSCCNum(Succ) != SccNum;
297 }))
298 BlockType |= Exiting;
299
300 // Lazily compute the set of headers for a given SCC and cache the results
301 // in the SccHeaderMap.
302 if (SccBlocks.size() <= static_cast<unsigned>(SccNum))
303 SccBlocks.resize(SccNum + 1);
304 auto &SccBlockTypes = SccBlocks[SccNum];
305
306 if (BlockType != Inner) {
307 bool IsInserted;
308 std::tie(std::ignore, IsInserted) =
309 SccBlockTypes.insert(std::make_pair(BB, BlockType));
310 assert(IsInserted && "Duplicated block in SCC");
311 }
312 }
313
LoopBlock(const BasicBlock * BB,const LoopInfo & LI,const SccInfo & SccI)314 BranchProbabilityInfo::LoopBlock::LoopBlock(const BasicBlock *BB,
315 const LoopInfo &LI,
316 const SccInfo &SccI)
317 : BB(BB) {
318 LD.first = LI.getLoopFor(BB);
319 if (!LD.first) {
320 LD.second = SccI.getSCCNum(BB);
321 }
322 }
323
isLoopEnteringEdge(const LoopEdge & Edge) const324 bool BranchProbabilityInfo::isLoopEnteringEdge(const LoopEdge &Edge) const {
325 const auto &SrcBlock = Edge.first;
326 const auto &DstBlock = Edge.second;
327 return (DstBlock.getLoop() &&
328 !DstBlock.getLoop()->contains(SrcBlock.getLoop())) ||
329 // Assume that SCCs can't be nested.
330 (DstBlock.getSccNum() != -1 &&
331 SrcBlock.getSccNum() != DstBlock.getSccNum());
332 }
333
isLoopExitingEdge(const LoopEdge & Edge) const334 bool BranchProbabilityInfo::isLoopExitingEdge(const LoopEdge &Edge) const {
335 return isLoopEnteringEdge({Edge.second, Edge.first});
336 }
337
isLoopEnteringExitingEdge(const LoopEdge & Edge) const338 bool BranchProbabilityInfo::isLoopEnteringExitingEdge(
339 const LoopEdge &Edge) const {
340 return isLoopEnteringEdge(Edge) || isLoopExitingEdge(Edge);
341 }
342
isLoopBackEdge(const LoopEdge & Edge) const343 bool BranchProbabilityInfo::isLoopBackEdge(const LoopEdge &Edge) const {
344 const auto &SrcBlock = Edge.first;
345 const auto &DstBlock = Edge.second;
346 return SrcBlock.belongsToSameLoop(DstBlock) &&
347 ((DstBlock.getLoop() &&
348 DstBlock.getLoop()->getHeader() == DstBlock.getBlock()) ||
349 (DstBlock.getSccNum() != -1 &&
350 SccI->isSCCHeader(DstBlock.getBlock(), DstBlock.getSccNum())));
351 }
352
getLoopEnterBlocks(const LoopBlock & LB,SmallVectorImpl<BasicBlock * > & Enters) const353 void BranchProbabilityInfo::getLoopEnterBlocks(
354 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Enters) const {
355 if (LB.getLoop()) {
356 auto *Header = LB.getLoop()->getHeader();
357 Enters.append(pred_begin(Header), pred_end(Header));
358 } else {
359 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
360 SccI->getSccEnterBlocks(LB.getSccNum(), Enters);
361 }
362 }
363
getLoopExitBlocks(const LoopBlock & LB,SmallVectorImpl<BasicBlock * > & Exits) const364 void BranchProbabilityInfo::getLoopExitBlocks(
365 const LoopBlock &LB, SmallVectorImpl<BasicBlock *> &Exits) const {
366 if (LB.getLoop()) {
367 LB.getLoop()->getExitBlocks(Exits);
368 } else {
369 assert(LB.getSccNum() != -1 && "LB doesn't belong to any loop?");
370 SccI->getSccExitBlocks(LB.getSccNum(), Exits);
371 }
372 }
373
374 // Propagate existing explicit probabilities from either profile data or
375 // 'expect' intrinsic processing. Examine metadata against unreachable
376 // heuristic. The probability of the edge coming to unreachable block is
377 // set to min of metadata and unreachable heuristic.
calcMetadataWeights(const BasicBlock * BB)378 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
379 const Instruction *TI = BB->getTerminator();
380 assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
381 if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI) ||
382 isa<InvokeInst>(TI)))
383 return false;
384
385 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
386 if (!WeightsNode)
387 return false;
388
389 // Check that the number of successors is manageable.
390 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");
391
392 // Ensure there are weights for all of the successors. Note that the first
393 // operand to the metadata node is a name, not a weight.
394 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
395 return false;
396
397 // Build up the final weights that will be used in a temporary buffer.
398 // Compute the sum of all weights to later decide whether they need to
399 // be scaled to fit in 32 bits.
400 uint64_t WeightSum = 0;
401 SmallVector<uint32_t, 2> Weights;
402 SmallVector<unsigned, 2> UnreachableIdxs;
403 SmallVector<unsigned, 2> ReachableIdxs;
404 Weights.reserve(TI->getNumSuccessors());
405 for (unsigned I = 1, E = WeightsNode->getNumOperands(); I != E; ++I) {
406 ConstantInt *Weight =
407 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(I));
408 if (!Weight)
409 return false;
410 assert(Weight->getValue().getActiveBits() <= 32 &&
411 "Too many bits for uint32_t");
412 Weights.push_back(Weight->getZExtValue());
413 WeightSum += Weights.back();
414 const LoopBlock SrcLoopBB = getLoopBlock(BB);
415 const LoopBlock DstLoopBB = getLoopBlock(TI->getSuccessor(I - 1));
416 auto EstimatedWeight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
417 if (EstimatedWeight &&
418 *EstimatedWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
419 UnreachableIdxs.push_back(I - 1);
420 else
421 ReachableIdxs.push_back(I - 1);
422 }
423 assert(Weights.size() == TI->getNumSuccessors() && "Checked above");
424
425 // If the sum of weights does not fit in 32 bits, scale every weight down
426 // accordingly.
427 uint64_t ScalingFactor =
428 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;
429
430 if (ScalingFactor > 1) {
431 WeightSum = 0;
432 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
433 Weights[I] /= ScalingFactor;
434 WeightSum += Weights[I];
435 }
436 }
437 assert(WeightSum <= UINT32_MAX &&
438 "Expected weights to scale down to 32 bits");
439
440 if (WeightSum == 0 || ReachableIdxs.size() == 0) {
441 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
442 Weights[I] = 1;
443 WeightSum = TI->getNumSuccessors();
444 }
445
446 // Set the probability.
447 SmallVector<BranchProbability, 2> BP;
448 for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I)
449 BP.push_back({ Weights[I], static_cast<uint32_t>(WeightSum) });
450
451 // Examine the metadata against unreachable heuristic.
452 // If the unreachable heuristic is more strong then we use it for this edge.
453 if (UnreachableIdxs.size() == 0 || ReachableIdxs.size() == 0) {
454 setEdgeProbability(BB, BP);
455 return true;
456 }
457
458 auto UnreachableProb = UR_TAKEN_PROB;
459 for (auto I : UnreachableIdxs)
460 if (UnreachableProb < BP[I]) {
461 BP[I] = UnreachableProb;
462 }
463
464 // Sum of all edge probabilities must be 1.0. If we modified the probability
465 // of some edges then we must distribute the introduced difference over the
466 // reachable blocks.
467 //
468 // Proportional distribution: the relation between probabilities of the
469 // reachable edges is kept unchanged. That is for any reachable edges i and j:
470 // newBP[i] / newBP[j] == oldBP[i] / oldBP[j] =>
471 // newBP[i] / oldBP[i] == newBP[j] / oldBP[j] == K
472 // Where K is independent of i,j.
473 // newBP[i] == oldBP[i] * K
474 // We need to find K.
475 // Make sum of all reachables of the left and right parts:
476 // sum_of_reachable(newBP) == K * sum_of_reachable(oldBP)
477 // Sum of newBP must be equal to 1.0:
478 // sum_of_reachable(newBP) + sum_of_unreachable(newBP) == 1.0 =>
479 // sum_of_reachable(newBP) = 1.0 - sum_of_unreachable(newBP)
480 // Where sum_of_unreachable(newBP) is what has been just changed.
481 // Finally:
482 // K == sum_of_reachable(newBP) / sum_of_reachable(oldBP) =>
483 // K == (1.0 - sum_of_unreachable(newBP)) / sum_of_reachable(oldBP)
484 BranchProbability NewUnreachableSum = BranchProbability::getZero();
485 for (auto I : UnreachableIdxs)
486 NewUnreachableSum += BP[I];
487
488 BranchProbability NewReachableSum =
489 BranchProbability::getOne() - NewUnreachableSum;
490
491 BranchProbability OldReachableSum = BranchProbability::getZero();
492 for (auto I : ReachableIdxs)
493 OldReachableSum += BP[I];
494
495 if (OldReachableSum != NewReachableSum) { // Anything to dsitribute?
496 if (OldReachableSum.isZero()) {
497 // If all oldBP[i] are zeroes then the proportional distribution results
498 // in all zero probabilities and the error stays big. In this case we
499 // evenly spread NewReachableSum over the reachable edges.
500 BranchProbability PerEdge = NewReachableSum / ReachableIdxs.size();
501 for (auto I : ReachableIdxs)
502 BP[I] = PerEdge;
503 } else {
504 for (auto I : ReachableIdxs) {
505 // We use uint64_t to avoid double rounding error of the following
506 // calculation: BP[i] = BP[i] * NewReachableSum / OldReachableSum
507 // The formula is taken from the private constructor
508 // BranchProbability(uint32_t Numerator, uint32_t Denominator)
509 uint64_t Mul = static_cast<uint64_t>(NewReachableSum.getNumerator()) *
510 BP[I].getNumerator();
511 uint32_t Div = static_cast<uint32_t>(
512 divideNearest(Mul, OldReachableSum.getNumerator()));
513 BP[I] = BranchProbability::getRaw(Div);
514 }
515 }
516 }
517
518 setEdgeProbability(BB, BP);
519
520 return true;
521 }
522
523 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparison
524 // between two pointer or pointer and NULL will fail.
calcPointerHeuristics(const BasicBlock * BB)525 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
526 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
527 if (!BI || !BI->isConditional())
528 return false;
529
530 Value *Cond = BI->getCondition();
531 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
532 if (!CI || !CI->isEquality())
533 return false;
534
535 Value *LHS = CI->getOperand(0);
536
537 if (!LHS->getType()->isPointerTy())
538 return false;
539
540 assert(CI->getOperand(1)->getType()->isPointerTy());
541
542 auto Search = PointerTable.find(CI->getPredicate());
543 if (Search == PointerTable.end())
544 return false;
545 setEdgeProbability(BB, Search->second);
546 return true;
547 }
548
549 // Compute the unlikely successors to the block BB in the loop L, specifically
550 // those that are unlikely because this is a loop, and add them to the
551 // UnlikelyBlocks set.
552 static void
computeUnlikelySuccessors(const BasicBlock * BB,Loop * L,SmallPtrSetImpl<const BasicBlock * > & UnlikelyBlocks)553 computeUnlikelySuccessors(const BasicBlock *BB, Loop *L,
554 SmallPtrSetImpl<const BasicBlock*> &UnlikelyBlocks) {
555 // Sometimes in a loop we have a branch whose condition is made false by
556 // taking it. This is typically something like
557 // int n = 0;
558 // while (...) {
559 // if (++n >= MAX) {
560 // n = 0;
561 // }
562 // }
563 // In this sort of situation taking the branch means that at the very least it
564 // won't be taken again in the next iteration of the loop, so we should
565 // consider it less likely than a typical branch.
566 //
567 // We detect this by looking back through the graph of PHI nodes that sets the
568 // value that the condition depends on, and seeing if we can reach a successor
569 // block which can be determined to make the condition false.
570 //
571 // FIXME: We currently consider unlikely blocks to be half as likely as other
572 // blocks, but if we consider the example above the likelyhood is actually
573 // 1/MAX. We could therefore be more precise in how unlikely we consider
574 // blocks to be, but it would require more careful examination of the form
575 // of the comparison expression.
576 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
577 if (!BI || !BI->isConditional())
578 return;
579
580 // Check if the branch is based on an instruction compared with a constant
581 CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition());
582 if (!CI || !isa<Instruction>(CI->getOperand(0)) ||
583 !isa<Constant>(CI->getOperand(1)))
584 return;
585
586 // Either the instruction must be a PHI, or a chain of operations involving
587 // constants that ends in a PHI which we can then collapse into a single value
588 // if the PHI value is known.
589 Instruction *CmpLHS = dyn_cast<Instruction>(CI->getOperand(0));
590 PHINode *CmpPHI = dyn_cast<PHINode>(CmpLHS);
591 Constant *CmpConst = dyn_cast<Constant>(CI->getOperand(1));
592 // Collect the instructions until we hit a PHI
593 SmallVector<BinaryOperator *, 1> InstChain;
594 while (!CmpPHI && CmpLHS && isa<BinaryOperator>(CmpLHS) &&
595 isa<Constant>(CmpLHS->getOperand(1))) {
596 // Stop if the chain extends outside of the loop
597 if (!L->contains(CmpLHS))
598 return;
599 InstChain.push_back(cast<BinaryOperator>(CmpLHS));
600 CmpLHS = dyn_cast<Instruction>(CmpLHS->getOperand(0));
601 if (CmpLHS)
602 CmpPHI = dyn_cast<PHINode>(CmpLHS);
603 }
604 if (!CmpPHI || !L->contains(CmpPHI))
605 return;
606
607 // Trace the phi node to find all values that come from successors of BB
608 SmallPtrSet<PHINode*, 8> VisitedInsts;
609 SmallVector<PHINode*, 8> WorkList;
610 WorkList.push_back(CmpPHI);
611 VisitedInsts.insert(CmpPHI);
612 while (!WorkList.empty()) {
613 PHINode *P = WorkList.pop_back_val();
614 for (BasicBlock *B : P->blocks()) {
615 // Skip blocks that aren't part of the loop
616 if (!L->contains(B))
617 continue;
618 Value *V = P->getIncomingValueForBlock(B);
619 // If the source is a PHI add it to the work list if we haven't
620 // already visited it.
621 if (PHINode *PN = dyn_cast<PHINode>(V)) {
622 if (VisitedInsts.insert(PN).second)
623 WorkList.push_back(PN);
624 continue;
625 }
626 // If this incoming value is a constant and B is a successor of BB, then
627 // we can constant-evaluate the compare to see if it makes the branch be
628 // taken or not.
629 Constant *CmpLHSConst = dyn_cast<Constant>(V);
630 if (!CmpLHSConst || !llvm::is_contained(successors(BB), B))
631 continue;
632 // First collapse InstChain
633 const DataLayout &DL = BB->getModule()->getDataLayout();
634 for (Instruction *I : llvm::reverse(InstChain)) {
635 CmpLHSConst = ConstantFoldBinaryOpOperands(
636 I->getOpcode(), CmpLHSConst, cast<Constant>(I->getOperand(1)), DL);
637 if (!CmpLHSConst)
638 break;
639 }
640 if (!CmpLHSConst)
641 continue;
642 // Now constant-evaluate the compare
643 Constant *Result = ConstantExpr::getCompare(CI->getPredicate(),
644 CmpLHSConst, CmpConst, true);
645 // If the result means we don't branch to the block then that block is
646 // unlikely.
647 if (Result &&
648 ((Result->isZeroValue() && B == BI->getSuccessor(0)) ||
649 (Result->isOneValue() && B == BI->getSuccessor(1))))
650 UnlikelyBlocks.insert(B);
651 }
652 }
653 }
654
655 Optional<uint32_t>
getEstimatedBlockWeight(const BasicBlock * BB) const656 BranchProbabilityInfo::getEstimatedBlockWeight(const BasicBlock *BB) const {
657 auto WeightIt = EstimatedBlockWeight.find(BB);
658 if (WeightIt == EstimatedBlockWeight.end())
659 return None;
660 return WeightIt->second;
661 }
662
663 Optional<uint32_t>
getEstimatedLoopWeight(const LoopData & L) const664 BranchProbabilityInfo::getEstimatedLoopWeight(const LoopData &L) const {
665 auto WeightIt = EstimatedLoopWeight.find(L);
666 if (WeightIt == EstimatedLoopWeight.end())
667 return None;
668 return WeightIt->second;
669 }
670
671 Optional<uint32_t>
getEstimatedEdgeWeight(const LoopEdge & Edge) const672 BranchProbabilityInfo::getEstimatedEdgeWeight(const LoopEdge &Edge) const {
673 // For edges entering a loop take weight of a loop rather than an individual
674 // block in the loop.
675 return isLoopEnteringEdge(Edge)
676 ? getEstimatedLoopWeight(Edge.second.getLoopData())
677 : getEstimatedBlockWeight(Edge.second.getBlock());
678 }
679
680 template <class IterT>
getMaxEstimatedEdgeWeight(const LoopBlock & SrcLoopBB,iterator_range<IterT> Successors) const681 Optional<uint32_t> BranchProbabilityInfo::getMaxEstimatedEdgeWeight(
682 const LoopBlock &SrcLoopBB, iterator_range<IterT> Successors) const {
683 SmallVector<uint32_t, 4> Weights;
684 Optional<uint32_t> MaxWeight;
685 for (const BasicBlock *DstBB : Successors) {
686 const LoopBlock DstLoopBB = getLoopBlock(DstBB);
687 auto Weight = getEstimatedEdgeWeight({SrcLoopBB, DstLoopBB});
688
689 if (!Weight)
690 return None;
691
692 if (!MaxWeight || *MaxWeight < *Weight)
693 MaxWeight = Weight;
694 }
695
696 return MaxWeight;
697 }
698
699 // Updates \p LoopBB's weight and returns true. If \p LoopBB has already
700 // an associated weight it is unchanged and false is returned.
701 //
702 // Please note by the algorithm the weight is not expected to change once set
703 // thus 'false' status is used to track visited blocks.
updateEstimatedBlockWeight(LoopBlock & LoopBB,uint32_t BBWeight,SmallVectorImpl<BasicBlock * > & BlockWorkList,SmallVectorImpl<LoopBlock> & LoopWorkList)704 bool BranchProbabilityInfo::updateEstimatedBlockWeight(
705 LoopBlock &LoopBB, uint32_t BBWeight,
706 SmallVectorImpl<BasicBlock *> &BlockWorkList,
707 SmallVectorImpl<LoopBlock> &LoopWorkList) {
708 BasicBlock *BB = LoopBB.getBlock();
709
710 // In general, weight is assigned to a block when it has final value and
711 // can't/shouldn't be changed. However, there are cases when a block
712 // inherently has several (possibly "contradicting") weights. For example,
713 // "unwind" block may also contain "cold" call. In that case the first
714 // set weight is favored and all consequent weights are ignored.
715 if (!EstimatedBlockWeight.insert({BB, BBWeight}).second)
716 return false;
717
718 for (BasicBlock *PredBlock : predecessors(BB)) {
719 LoopBlock PredLoop = getLoopBlock(PredBlock);
720 // Add affected block/loop to a working list.
721 if (isLoopExitingEdge({PredLoop, LoopBB})) {
722 if (!EstimatedLoopWeight.count(PredLoop.getLoopData()))
723 LoopWorkList.push_back(PredLoop);
724 } else if (!EstimatedBlockWeight.count(PredBlock))
725 BlockWorkList.push_back(PredBlock);
726 }
727 return true;
728 }
729
730 // Starting from \p BB traverse through dominator blocks and assign \p BBWeight
731 // to all such blocks that are post dominated by \BB. In other words to all
732 // blocks that the one is executed if and only if another one is executed.
733 // Importantly, we skip loops here for two reasons. First weights of blocks in
734 // a loop should be scaled by trip count (yet possibly unknown). Second there is
735 // no any value in doing that because that doesn't give any additional
736 // information regarding distribution of probabilities inside the loop.
737 // Exception is loop 'enter' and 'exit' edges that are handled in a special way
738 // at calcEstimatedHeuristics.
739 //
740 // In addition, \p WorkList is populated with basic blocks if at leas one
741 // successor has updated estimated weight.
propagateEstimatedBlockWeight(const LoopBlock & LoopBB,DominatorTree * DT,PostDominatorTree * PDT,uint32_t BBWeight,SmallVectorImpl<BasicBlock * > & BlockWorkList,SmallVectorImpl<LoopBlock> & LoopWorkList)742 void BranchProbabilityInfo::propagateEstimatedBlockWeight(
743 const LoopBlock &LoopBB, DominatorTree *DT, PostDominatorTree *PDT,
744 uint32_t BBWeight, SmallVectorImpl<BasicBlock *> &BlockWorkList,
745 SmallVectorImpl<LoopBlock> &LoopWorkList) {
746 const BasicBlock *BB = LoopBB.getBlock();
747 const auto *DTStartNode = DT->getNode(BB);
748 const auto *PDTStartNode = PDT->getNode(BB);
749
750 // TODO: Consider propagating weight down the domination line as well.
751 for (const auto *DTNode = DTStartNode; DTNode != nullptr;
752 DTNode = DTNode->getIDom()) {
753 auto *DomBB = DTNode->getBlock();
754 // Consider blocks which lie on one 'line'.
755 if (!PDT->dominates(PDTStartNode, PDT->getNode(DomBB)))
756 // If BB doesn't post dominate DomBB it will not post dominate dominators
757 // of DomBB as well.
758 break;
759
760 LoopBlock DomLoopBB = getLoopBlock(DomBB);
761 const LoopEdge Edge{DomLoopBB, LoopBB};
762 // Don't propagate weight to blocks belonging to different loops.
763 if (!isLoopEnteringExitingEdge(Edge)) {
764 if (!updateEstimatedBlockWeight(DomLoopBB, BBWeight, BlockWorkList,
765 LoopWorkList))
766 // If DomBB has weight set then all it's predecessors are already
767 // processed (since we propagate weight up to the top of IR each time).
768 break;
769 } else if (isLoopExitingEdge(Edge)) {
770 LoopWorkList.push_back(DomLoopBB);
771 }
772 }
773 }
774
getInitialEstimatedBlockWeight(const BasicBlock * BB)775 Optional<uint32_t> BranchProbabilityInfo::getInitialEstimatedBlockWeight(
776 const BasicBlock *BB) {
777 // Returns true if \p BB has call marked with "NoReturn" attribute.
778 auto hasNoReturn = [&](const BasicBlock *BB) {
779 for (const auto &I : reverse(*BB))
780 if (const CallInst *CI = dyn_cast<CallInst>(&I))
781 if (CI->hasFnAttr(Attribute::NoReturn))
782 return true;
783
784 return false;
785 };
786
787 // Important note regarding the order of checks. They are ordered by weight
788 // from lowest to highest. Doing that allows to avoid "unstable" results
789 // when several conditions heuristics can be applied simultaneously.
790 if (isa<UnreachableInst>(BB->getTerminator()) ||
791 // If this block is terminated by a call to
792 // @llvm.experimental.deoptimize then treat it like an unreachable
793 // since it is expected to practically never execute.
794 // TODO: Should we actually treat as never returning call?
795 BB->getTerminatingDeoptimizeCall())
796 return hasNoReturn(BB)
797 ? static_cast<uint32_t>(BlockExecWeight::NORETURN)
798 : static_cast<uint32_t>(BlockExecWeight::UNREACHABLE);
799
800 // Check if the block is 'unwind' handler of some invoke instruction.
801 for (const auto *Pred : predecessors(BB))
802 if (Pred)
803 if (const auto *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
804 if (II->getUnwindDest() == BB)
805 return static_cast<uint32_t>(BlockExecWeight::UNWIND);
806
807 // Check if the block contains 'cold' call.
808 for (const auto &I : *BB)
809 if (const CallInst *CI = dyn_cast<CallInst>(&I))
810 if (CI->hasFnAttr(Attribute::Cold))
811 return static_cast<uint32_t>(BlockExecWeight::COLD);
812
813 return None;
814 }
815
816 // Does RPO traversal over all blocks in \p F and assigns weights to
817 // 'unreachable', 'noreturn', 'cold', 'unwind' blocks. In addition it does its
818 // best to propagate the weight to up/down the IR.
computeEestimateBlockWeight(const Function & F,DominatorTree * DT,PostDominatorTree * PDT)819 void BranchProbabilityInfo::computeEestimateBlockWeight(
820 const Function &F, DominatorTree *DT, PostDominatorTree *PDT) {
821 SmallVector<BasicBlock *, 8> BlockWorkList;
822 SmallVector<LoopBlock, 8> LoopWorkList;
823
824 // By doing RPO we make sure that all predecessors already have weights
825 // calculated before visiting theirs successors.
826 ReversePostOrderTraversal<const Function *> RPOT(&F);
827 for (const auto *BB : RPOT)
828 if (auto BBWeight = getInitialEstimatedBlockWeight(BB))
829 // If we were able to find estimated weight for the block set it to this
830 // block and propagate up the IR.
831 propagateEstimatedBlockWeight(getLoopBlock(BB), DT, PDT, BBWeight.value(),
832 BlockWorkList, LoopWorkList);
833
834 // BlockWorklist/LoopWorkList contains blocks/loops with at least one
835 // successor/exit having estimated weight. Try to propagate weight to such
836 // blocks/loops from successors/exits.
837 // Process loops and blocks. Order is not important.
838 do {
839 while (!LoopWorkList.empty()) {
840 const LoopBlock LoopBB = LoopWorkList.pop_back_val();
841
842 if (EstimatedLoopWeight.count(LoopBB.getLoopData()))
843 continue;
844
845 SmallVector<BasicBlock *, 4> Exits;
846 getLoopExitBlocks(LoopBB, Exits);
847 auto LoopWeight = getMaxEstimatedEdgeWeight(
848 LoopBB, make_range(Exits.begin(), Exits.end()));
849
850 if (LoopWeight) {
851 // If we never exit the loop then we can enter it once at maximum.
852 if (LoopWeight <= static_cast<uint32_t>(BlockExecWeight::UNREACHABLE))
853 LoopWeight = static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
854
855 EstimatedLoopWeight.insert({LoopBB.getLoopData(), *LoopWeight});
856 // Add all blocks entering the loop into working list.
857 getLoopEnterBlocks(LoopBB, BlockWorkList);
858 }
859 }
860
861 while (!BlockWorkList.empty()) {
862 // We can reach here only if BlockWorkList is not empty.
863 const BasicBlock *BB = BlockWorkList.pop_back_val();
864 if (EstimatedBlockWeight.count(BB))
865 continue;
866
867 // We take maximum over all weights of successors. In other words we take
868 // weight of "hot" path. In theory we can probably find a better function
869 // which gives higher accuracy results (comparing to "maximum") but I
870 // can't
871 // think of any right now. And I doubt it will make any difference in
872 // practice.
873 const LoopBlock LoopBB = getLoopBlock(BB);
874 auto MaxWeight = getMaxEstimatedEdgeWeight(LoopBB, successors(BB));
875
876 if (MaxWeight)
877 propagateEstimatedBlockWeight(LoopBB, DT, PDT, *MaxWeight,
878 BlockWorkList, LoopWorkList);
879 }
880 } while (!BlockWorkList.empty() || !LoopWorkList.empty());
881 }
882
883 // Calculate edge probabilities based on block's estimated weight.
884 // Note that gathered weights were not scaled for loops. Thus edges entering
885 // and exiting loops requires special processing.
calcEstimatedHeuristics(const BasicBlock * BB)886 bool BranchProbabilityInfo::calcEstimatedHeuristics(const BasicBlock *BB) {
887 assert(BB->getTerminator()->getNumSuccessors() > 1 &&
888 "expected more than one successor!");
889
890 const LoopBlock LoopBB = getLoopBlock(BB);
891
892 SmallPtrSet<const BasicBlock *, 8> UnlikelyBlocks;
893 uint32_t TC = LBH_TAKEN_WEIGHT / LBH_NONTAKEN_WEIGHT;
894 if (LoopBB.getLoop())
895 computeUnlikelySuccessors(BB, LoopBB.getLoop(), UnlikelyBlocks);
896
897 // Changed to 'true' if at least one successor has estimated weight.
898 bool FoundEstimatedWeight = false;
899 SmallVector<uint32_t, 4> SuccWeights;
900 uint64_t TotalWeight = 0;
901 // Go over all successors of BB and put their weights into SuccWeights.
902 for (const BasicBlock *SuccBB : successors(BB)) {
903 Optional<uint32_t> Weight;
904 const LoopBlock SuccLoopBB = getLoopBlock(SuccBB);
905 const LoopEdge Edge{LoopBB, SuccLoopBB};
906
907 Weight = getEstimatedEdgeWeight(Edge);
908
909 if (isLoopExitingEdge(Edge) &&
910 // Avoid adjustment of ZERO weight since it should remain unchanged.
911 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
912 // Scale down loop exiting weight by trip count.
913 Weight = std::max(
914 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
915 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) /
916 TC);
917 }
918 bool IsUnlikelyEdge = LoopBB.getLoop() && UnlikelyBlocks.contains(SuccBB);
919 if (IsUnlikelyEdge &&
920 // Avoid adjustment of ZERO weight since it should remain unchanged.
921 Weight != static_cast<uint32_t>(BlockExecWeight::ZERO)) {
922 // 'Unlikely' blocks have twice lower weight.
923 Weight = std::max(
924 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO),
925 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT)) / 2);
926 }
927
928 if (Weight)
929 FoundEstimatedWeight = true;
930
931 auto WeightVal =
932 Weight.value_or(static_cast<uint32_t>(BlockExecWeight::DEFAULT));
933 TotalWeight += WeightVal;
934 SuccWeights.push_back(WeightVal);
935 }
936
937 // If non of blocks have estimated weight bail out.
938 // If TotalWeight is 0 that means weight of each successor is 0 as well and
939 // equally likely. Bail out early to not deal with devision by zero.
940 if (!FoundEstimatedWeight || TotalWeight == 0)
941 return false;
942
943 assert(SuccWeights.size() == succ_size(BB) && "Missed successor?");
944 const unsigned SuccCount = SuccWeights.size();
945
946 // If the sum of weights does not fit in 32 bits, scale every weight down
947 // accordingly.
948 if (TotalWeight > UINT32_MAX) {
949 uint64_t ScalingFactor = TotalWeight / UINT32_MAX + 1;
950 TotalWeight = 0;
951 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
952 SuccWeights[Idx] /= ScalingFactor;
953 if (SuccWeights[Idx] == static_cast<uint32_t>(BlockExecWeight::ZERO))
954 SuccWeights[Idx] =
955 static_cast<uint32_t>(BlockExecWeight::LOWEST_NON_ZERO);
956 TotalWeight += SuccWeights[Idx];
957 }
958 assert(TotalWeight <= UINT32_MAX && "Total weight overflows");
959 }
960
961 // Finally set probabilities to edges according to estimated block weights.
962 SmallVector<BranchProbability, 4> EdgeProbabilities(
963 SuccCount, BranchProbability::getUnknown());
964
965 for (unsigned Idx = 0; Idx < SuccCount; ++Idx) {
966 EdgeProbabilities[Idx] =
967 BranchProbability(SuccWeights[Idx], (uint32_t)TotalWeight);
968 }
969 setEdgeProbability(BB, EdgeProbabilities);
970 return true;
971 }
972
calcZeroHeuristics(const BasicBlock * BB,const TargetLibraryInfo * TLI)973 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
974 const TargetLibraryInfo *TLI) {
975 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
976 if (!BI || !BI->isConditional())
977 return false;
978
979 Value *Cond = BI->getCondition();
980 ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
981 if (!CI)
982 return false;
983
984 auto GetConstantInt = [](Value *V) {
985 if (auto *I = dyn_cast<BitCastInst>(V))
986 return dyn_cast<ConstantInt>(I->getOperand(0));
987 return dyn_cast<ConstantInt>(V);
988 };
989
990 Value *RHS = CI->getOperand(1);
991 ConstantInt *CV = GetConstantInt(RHS);
992 if (!CV)
993 return false;
994
995 // If the LHS is the result of AND'ing a value with a single bit bitmask,
996 // we don't have information about probabilities.
997 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
998 if (LHS->getOpcode() == Instruction::And)
999 if (ConstantInt *AndRHS = GetConstantInt(LHS->getOperand(1)))
1000 if (AndRHS->getValue().isPowerOf2())
1001 return false;
1002
1003 // Check if the LHS is the return value of a library function
1004 LibFunc Func = NumLibFuncs;
1005 if (TLI)
1006 if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
1007 if (Function *CalledFn = Call->getCalledFunction())
1008 TLI->getLibFunc(*CalledFn, Func);
1009
1010 ProbabilityTable::const_iterator Search;
1011 if (Func == LibFunc_strcasecmp ||
1012 Func == LibFunc_strcmp ||
1013 Func == LibFunc_strncasecmp ||
1014 Func == LibFunc_strncmp ||
1015 Func == LibFunc_memcmp ||
1016 Func == LibFunc_bcmp) {
1017 Search = ICmpWithLibCallTable.find(CI->getPredicate());
1018 if (Search == ICmpWithLibCallTable.end())
1019 return false;
1020 } else if (CV->isZero()) {
1021 Search = ICmpWithZeroTable.find(CI->getPredicate());
1022 if (Search == ICmpWithZeroTable.end())
1023 return false;
1024 } else if (CV->isOne()) {
1025 Search = ICmpWithOneTable.find(CI->getPredicate());
1026 if (Search == ICmpWithOneTable.end())
1027 return false;
1028 } else if (CV->isMinusOne()) {
1029 Search = ICmpWithMinusOneTable.find(CI->getPredicate());
1030 if (Search == ICmpWithMinusOneTable.end())
1031 return false;
1032 } else {
1033 return false;
1034 }
1035
1036 setEdgeProbability(BB, Search->second);
1037 return true;
1038 }
1039
calcFloatingPointHeuristics(const BasicBlock * BB)1040 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
1041 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
1042 if (!BI || !BI->isConditional())
1043 return false;
1044
1045 Value *Cond = BI->getCondition();
1046 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
1047 if (!FCmp)
1048 return false;
1049
1050 ProbabilityList ProbList;
1051 if (FCmp->isEquality()) {
1052 ProbList = !FCmp->isTrueWhenEqual() ?
1053 // f1 == f2 -> Unlikely
1054 ProbabilityList({FPTakenProb, FPUntakenProb}) :
1055 // f1 != f2 -> Likely
1056 ProbabilityList({FPUntakenProb, FPTakenProb});
1057 } else {
1058 auto Search = FCmpTable.find(FCmp->getPredicate());
1059 if (Search == FCmpTable.end())
1060 return false;
1061 ProbList = Search->second;
1062 }
1063
1064 setEdgeProbability(BB, ProbList);
1065 return true;
1066 }
1067
releaseMemory()1068 void BranchProbabilityInfo::releaseMemory() {
1069 Probs.clear();
1070 Handles.clear();
1071 }
1072
invalidate(Function &,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator &)1073 bool BranchProbabilityInfo::invalidate(Function &, const PreservedAnalyses &PA,
1074 FunctionAnalysisManager::Invalidator &) {
1075 // Check whether the analysis, all analyses on functions, or the function's
1076 // CFG have been preserved.
1077 auto PAC = PA.getChecker<BranchProbabilityAnalysis>();
1078 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>() ||
1079 PAC.preservedSet<CFGAnalyses>());
1080 }
1081
print(raw_ostream & OS) const1082 void BranchProbabilityInfo::print(raw_ostream &OS) const {
1083 OS << "---- Branch Probabilities ----\n";
1084 // We print the probabilities from the last function the analysis ran over,
1085 // or the function it is currently running over.
1086 assert(LastF && "Cannot print prior to running over a function");
1087 for (const auto &BI : *LastF) {
1088 for (const BasicBlock *Succ : successors(&BI))
1089 printEdgeProbability(OS << " ", &BI, Succ);
1090 }
1091 }
1092
1093 bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock * Src,const BasicBlock * Dst) const1094 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
1095 // Hot probability is at least 4/5 = 80%
1096 // FIXME: Compare against a static "hot" BranchProbability.
1097 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
1098 }
1099
1100 /// Get the raw edge probability for the edge. If can't find it, return a
1101 /// default probability 1/N where N is the number of successors. Here an edge is
1102 /// specified using PredBlock and an
1103 /// index to the successors.
1104 BranchProbability
getEdgeProbability(const BasicBlock * Src,unsigned IndexInSuccessors) const1105 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1106 unsigned IndexInSuccessors) const {
1107 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));
1108 assert((Probs.end() == Probs.find(std::make_pair(Src, 0))) ==
1109 (Probs.end() == I) &&
1110 "Probability for I-th successor must always be defined along with the "
1111 "probability for the first successor");
1112
1113 if (I != Probs.end())
1114 return I->second;
1115
1116 return {1, static_cast<uint32_t>(succ_size(Src))};
1117 }
1118
1119 BranchProbability
getEdgeProbability(const BasicBlock * Src,const_succ_iterator Dst) const1120 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1121 const_succ_iterator Dst) const {
1122 return getEdgeProbability(Src, Dst.getSuccessorIndex());
1123 }
1124
1125 /// Get the raw edge probability calculated for the block pair. This returns the
1126 /// sum of all raw edge probabilities from Src to Dst.
1127 BranchProbability
getEdgeProbability(const BasicBlock * Src,const BasicBlock * Dst) const1128 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
1129 const BasicBlock *Dst) const {
1130 if (!Probs.count(std::make_pair(Src, 0)))
1131 return BranchProbability(llvm::count(successors(Src), Dst), succ_size(Src));
1132
1133 auto Prob = BranchProbability::getZero();
1134 for (const_succ_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
1135 if (*I == Dst)
1136 Prob += Probs.find(std::make_pair(Src, I.getSuccessorIndex()))->second;
1137
1138 return Prob;
1139 }
1140
1141 /// Set the edge probability for all edges at once.
setEdgeProbability(const BasicBlock * Src,const SmallVectorImpl<BranchProbability> & Probs)1142 void BranchProbabilityInfo::setEdgeProbability(
1143 const BasicBlock *Src, const SmallVectorImpl<BranchProbability> &Probs) {
1144 assert(Src->getTerminator()->getNumSuccessors() == Probs.size());
1145 eraseBlock(Src); // Erase stale data if any.
1146 if (Probs.size() == 0)
1147 return; // Nothing to set.
1148
1149 Handles.insert(BasicBlockCallbackVH(Src, this));
1150 uint64_t TotalNumerator = 0;
1151 for (unsigned SuccIdx = 0; SuccIdx < Probs.size(); ++SuccIdx) {
1152 this->Probs[std::make_pair(Src, SuccIdx)] = Probs[SuccIdx];
1153 LLVM_DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << SuccIdx
1154 << " successor probability to " << Probs[SuccIdx]
1155 << "\n");
1156 TotalNumerator += Probs[SuccIdx].getNumerator();
1157 }
1158
1159 // Because of rounding errors the total probability cannot be checked to be
1160 // 1.0 exactly. That is TotalNumerator == BranchProbability::getDenominator.
1161 // Instead, every single probability in Probs must be as accurate as possible.
1162 // This results in error 1/denominator at most, thus the total absolute error
1163 // should be within Probs.size / BranchProbability::getDenominator.
1164 assert(TotalNumerator <= BranchProbability::getDenominator() + Probs.size());
1165 assert(TotalNumerator >= BranchProbability::getDenominator() - Probs.size());
1166 (void)TotalNumerator;
1167 }
1168
copyEdgeProbabilities(BasicBlock * Src,BasicBlock * Dst)1169 void BranchProbabilityInfo::copyEdgeProbabilities(BasicBlock *Src,
1170 BasicBlock *Dst) {
1171 eraseBlock(Dst); // Erase stale data if any.
1172 unsigned NumSuccessors = Src->getTerminator()->getNumSuccessors();
1173 assert(NumSuccessors == Dst->getTerminator()->getNumSuccessors());
1174 if (NumSuccessors == 0)
1175 return; // Nothing to set.
1176 if (this->Probs.find(std::make_pair(Src, 0)) == this->Probs.end())
1177 return; // No probability is set for edges from Src. Keep the same for Dst.
1178
1179 Handles.insert(BasicBlockCallbackVH(Dst, this));
1180 for (unsigned SuccIdx = 0; SuccIdx < NumSuccessors; ++SuccIdx) {
1181 auto Prob = this->Probs[std::make_pair(Src, SuccIdx)];
1182 this->Probs[std::make_pair(Dst, SuccIdx)] = Prob;
1183 LLVM_DEBUG(dbgs() << "set edge " << Dst->getName() << " -> " << SuccIdx
1184 << " successor probability to " << Prob << "\n");
1185 }
1186 }
1187
1188 raw_ostream &
printEdgeProbability(raw_ostream & OS,const BasicBlock * Src,const BasicBlock * Dst) const1189 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
1190 const BasicBlock *Src,
1191 const BasicBlock *Dst) const {
1192 const BranchProbability Prob = getEdgeProbability(Src, Dst);
1193 OS << "edge " << Src->getName() << " -> " << Dst->getName()
1194 << " probability is " << Prob
1195 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");
1196
1197 return OS;
1198 }
1199
eraseBlock(const BasicBlock * BB)1200 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
1201 LLVM_DEBUG(dbgs() << "eraseBlock " << BB->getName() << "\n");
1202
1203 // Note that we cannot use successors of BB because the terminator of BB may
1204 // have changed when eraseBlock is called as a BasicBlockCallbackVH callback.
1205 // Instead we remove prob data for the block by iterating successors by their
1206 // indices from 0 till the last which exists. There could not be prob data for
1207 // a pair (BB, N) if there is no data for (BB, N-1) because the data is always
1208 // set for all successors from 0 to M at once by the method
1209 // setEdgeProbability().
1210 Handles.erase(BasicBlockCallbackVH(BB, this));
1211 for (unsigned I = 0;; ++I) {
1212 auto MapI = Probs.find(std::make_pair(BB, I));
1213 if (MapI == Probs.end()) {
1214 assert(Probs.count(std::make_pair(BB, I + 1)) == 0 &&
1215 "Must be no more successors");
1216 return;
1217 }
1218 Probs.erase(MapI);
1219 }
1220 }
1221
calculate(const Function & F,const LoopInfo & LoopI,const TargetLibraryInfo * TLI,DominatorTree * DT,PostDominatorTree * PDT)1222 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LoopI,
1223 const TargetLibraryInfo *TLI,
1224 DominatorTree *DT,
1225 PostDominatorTree *PDT) {
1226 LLVM_DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
1227 << " ----\n\n");
1228 LastF = &F; // Store the last function we ran on for printing.
1229 LI = &LoopI;
1230
1231 SccI = std::make_unique<SccInfo>(F);
1232
1233 assert(EstimatedBlockWeight.empty());
1234 assert(EstimatedLoopWeight.empty());
1235
1236 std::unique_ptr<DominatorTree> DTPtr;
1237 std::unique_ptr<PostDominatorTree> PDTPtr;
1238
1239 if (!DT) {
1240 DTPtr = std::make_unique<DominatorTree>(const_cast<Function &>(F));
1241 DT = DTPtr.get();
1242 }
1243
1244 if (!PDT) {
1245 PDTPtr = std::make_unique<PostDominatorTree>(const_cast<Function &>(F));
1246 PDT = PDTPtr.get();
1247 }
1248
1249 computeEestimateBlockWeight(F, DT, PDT);
1250
1251 // Walk the basic blocks in post-order so that we can build up state about
1252 // the successors of a block iteratively.
1253 for (const auto *BB : post_order(&F.getEntryBlock())) {
1254 LLVM_DEBUG(dbgs() << "Computing probabilities for " << BB->getName()
1255 << "\n");
1256 // If there is no at least two successors, no sense to set probability.
1257 if (BB->getTerminator()->getNumSuccessors() < 2)
1258 continue;
1259 if (calcMetadataWeights(BB))
1260 continue;
1261 if (calcEstimatedHeuristics(BB))
1262 continue;
1263 if (calcPointerHeuristics(BB))
1264 continue;
1265 if (calcZeroHeuristics(BB, TLI))
1266 continue;
1267 if (calcFloatingPointHeuristics(BB))
1268 continue;
1269 }
1270
1271 EstimatedLoopWeight.clear();
1272 EstimatedBlockWeight.clear();
1273 SccI.reset();
1274
1275 if (PrintBranchProb &&
1276 (PrintBranchProbFuncName.empty() ||
1277 F.getName().equals(PrintBranchProbFuncName))) {
1278 print(dbgs());
1279 }
1280 }
1281
getAnalysisUsage(AnalysisUsage & AU) const1282 void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
1283 AnalysisUsage &AU) const {
1284 // We require DT so it's available when LI is available. The LI updating code
1285 // asserts that DT is also present so if we don't make sure that we have DT
1286 // here, that assert will trigger.
1287 AU.addRequired<DominatorTreeWrapperPass>();
1288 AU.addRequired<LoopInfoWrapperPass>();
1289 AU.addRequired<TargetLibraryInfoWrapperPass>();
1290 AU.addRequired<DominatorTreeWrapperPass>();
1291 AU.addRequired<PostDominatorTreeWrapperPass>();
1292 AU.setPreservesAll();
1293 }
1294
runOnFunction(Function & F)1295 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
1296 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1297 const TargetLibraryInfo &TLI =
1298 getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1299 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1300 PostDominatorTree &PDT =
1301 getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1302 BPI.calculate(F, LI, &TLI, &DT, &PDT);
1303 return false;
1304 }
1305
releaseMemory()1306 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }
1307
print(raw_ostream & OS,const Module *) const1308 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
1309 const Module *) const {
1310 BPI.print(OS);
1311 }
1312
1313 AnalysisKey BranchProbabilityAnalysis::Key;
1314 BranchProbabilityInfo
run(Function & F,FunctionAnalysisManager & AM)1315 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1316 BranchProbabilityInfo BPI;
1317 BPI.calculate(F, AM.getResult<LoopAnalysis>(F),
1318 &AM.getResult<TargetLibraryAnalysis>(F),
1319 &AM.getResult<DominatorTreeAnalysis>(F),
1320 &AM.getResult<PostDominatorTreeAnalysis>(F));
1321 return BPI;
1322 }
1323
1324 PreservedAnalyses
run(Function & F,FunctionAnalysisManager & AM)1325 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
1326 OS << "Printing analysis results of BPI for function "
1327 << "'" << F.getName() << "':"
1328 << "\n";
1329 AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
1330 return PreservedAnalyses::all();
1331 }
1332