1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Loops should be simplified before this analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/BranchProbabilityInfo.h" 15 #include "llvm/ADT/PostOrderIterator.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/IR/CFG.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Metadata.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "branch-prob" 29 30 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 31 "Branch Probability Analysis", false, true) 32 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 33 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 34 "Branch Probability Analysis", false, true) 35 36 char BranchProbabilityInfoWrapperPass::ID = 0; 37 38 // Weights are for internal use only. They are used by heuristics to help to 39 // estimate edges' probability. Example: 40 // 41 // Using "Loop Branch Heuristics" we predict weights of edges for the 42 // block BB2. 43 // ... 44 // | 45 // V 46 // BB1<-+ 47 // | | 48 // | | (Weight = 124) 49 // V | 50 // BB2--+ 51 // | 52 // | (Weight = 4) 53 // V 54 // BB3 55 // 56 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 57 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 58 static const uint32_t LBH_TAKEN_WEIGHT = 124; 59 static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 60 61 /// \brief Unreachable-terminating branch taken weight. 62 /// 63 /// This is the weight for a branch being taken to a block that terminates 64 /// (eventually) in unreachable. These are predicted as unlikely as possible. 65 static const uint32_t UR_TAKEN_WEIGHT = 1; 66 67 /// \brief Unreachable-terminating branch not-taken weight. 68 /// 69 /// This is the weight for a branch not being taken toward a block that 70 /// terminates (eventually) in unreachable. Such a branch is essentially never 71 /// taken. Set the weight to an absurdly high value so that nested loops don't 72 /// easily subsume it. 73 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1; 74 75 /// \brief Weight for a branch taken going into a cold block. 76 /// 77 /// This is the weight for a branch taken toward a block marked 78 /// cold. A block is marked cold if it's postdominated by a 79 /// block containing a call to a cold function. Cold functions 80 /// are those marked with attribute 'cold'. 81 static const uint32_t CC_TAKEN_WEIGHT = 4; 82 83 /// \brief Weight for a branch not-taken into a cold block. 84 /// 85 /// This is the weight for a branch not taken toward a block marked 86 /// cold. 87 static const uint32_t CC_NONTAKEN_WEIGHT = 64; 88 89 static const uint32_t PH_TAKEN_WEIGHT = 20; 90 static const uint32_t PH_NONTAKEN_WEIGHT = 12; 91 92 static const uint32_t ZH_TAKEN_WEIGHT = 20; 93 static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 94 95 static const uint32_t FPH_TAKEN_WEIGHT = 20; 96 static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 97 98 /// \brief Invoke-terminating normal branch taken weight 99 /// 100 /// This is the weight for branching to the normal destination of an invoke 101 /// instruction. We expect this to happen most of the time. Set the weight to an 102 /// absurdly high value so that nested loops subsume it. 103 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; 104 105 /// \brief Invoke-terminating normal branch not-taken weight. 106 /// 107 /// This is the weight for branching to the unwind destination of an invoke 108 /// instruction. This is essentially never taken. 109 static const uint32_t IH_NONTAKEN_WEIGHT = 1; 110 111 // Standard weight value. Used when none of the heuristics set weight for 112 // the edge. 113 static const uint32_t NORMAL_WEIGHT = 16; 114 115 // Minimum weight of an edge. Please note, that weight is NEVER 0. 116 static const uint32_t MIN_WEIGHT = 1; 117 118 /// \brief Calculate edge weights for successors lead to unreachable. 119 /// 120 /// Predict that a successor which leads necessarily to an 121 /// unreachable-terminated block as extremely unlikely. 122 bool BranchProbabilityInfo::calcUnreachableHeuristics(BasicBlock *BB) { 123 TerminatorInst *TI = BB->getTerminator(); 124 if (TI->getNumSuccessors() == 0) { 125 if (isa<UnreachableInst>(TI)) 126 PostDominatedByUnreachable.insert(BB); 127 return false; 128 } 129 130 SmallVector<unsigned, 4> UnreachableEdges; 131 SmallVector<unsigned, 4> ReachableEdges; 132 133 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 134 if (PostDominatedByUnreachable.count(*I)) 135 UnreachableEdges.push_back(I.getSuccessorIndex()); 136 else 137 ReachableEdges.push_back(I.getSuccessorIndex()); 138 } 139 140 // If all successors are in the set of blocks post-dominated by unreachable, 141 // this block is too. 142 if (UnreachableEdges.size() == TI->getNumSuccessors()) 143 PostDominatedByUnreachable.insert(BB); 144 145 // Skip probabilities if this block has a single successor or if all were 146 // reachable. 147 if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty()) 148 return false; 149 150 uint32_t UnreachableWeight = 151 std::max(UR_TAKEN_WEIGHT / (unsigned)UnreachableEdges.size(), MIN_WEIGHT); 152 for (SmallVectorImpl<unsigned>::iterator I = UnreachableEdges.begin(), 153 E = UnreachableEdges.end(); 154 I != E; ++I) 155 setEdgeWeight(BB, *I, UnreachableWeight); 156 157 if (ReachableEdges.empty()) 158 return true; 159 uint32_t ReachableWeight = 160 std::max(UR_NONTAKEN_WEIGHT / (unsigned)ReachableEdges.size(), 161 NORMAL_WEIGHT); 162 for (SmallVectorImpl<unsigned>::iterator I = ReachableEdges.begin(), 163 E = ReachableEdges.end(); 164 I != E; ++I) 165 setEdgeWeight(BB, *I, ReachableWeight); 166 167 return true; 168 } 169 170 // Propagate existing explicit probabilities from either profile data or 171 // 'expect' intrinsic processing. 172 bool BranchProbabilityInfo::calcMetadataWeights(BasicBlock *BB) { 173 TerminatorInst *TI = BB->getTerminator(); 174 if (TI->getNumSuccessors() == 1) 175 return false; 176 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 177 return false; 178 179 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 180 if (!WeightsNode) 181 return false; 182 183 // Check that the number of successors is manageable. 184 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 185 186 // Ensure there are weights for all of the successors. Note that the first 187 // operand to the metadata node is a name, not a weight. 188 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 189 return false; 190 191 // Build up the final weights that will be used in a temporary buffer. 192 // Compute the sum of all weights to later decide whether they need to 193 // be scaled to fit in 32 bits. 194 uint64_t WeightSum = 0; 195 SmallVector<uint32_t, 2> Weights; 196 Weights.reserve(TI->getNumSuccessors()); 197 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { 198 ConstantInt *Weight = 199 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); 200 if (!Weight) 201 return false; 202 assert(Weight->getValue().getActiveBits() <= 32 && 203 "Too many bits for uint32_t"); 204 Weights.push_back(Weight->getZExtValue()); 205 WeightSum += Weights.back(); 206 } 207 assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 208 209 // If the sum of weights does not fit in 32 bits, scale every weight down 210 // accordingly. 211 uint64_t ScalingFactor = 212 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 213 214 WeightSum = 0; 215 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 216 uint32_t W = Weights[i] / ScalingFactor; 217 WeightSum += W; 218 setEdgeWeight(BB, i, W); 219 } 220 assert(WeightSum <= UINT32_MAX && 221 "Expected weights to scale down to 32 bits"); 222 223 return true; 224 } 225 226 /// \brief Calculate edge weights for edges leading to cold blocks. 227 /// 228 /// A cold block is one post-dominated by a block with a call to a 229 /// cold function. Those edges are unlikely to be taken, so we give 230 /// them relatively low weight. 231 /// 232 /// Return true if we could compute the weights for cold edges. 233 /// Return false, otherwise. 234 bool BranchProbabilityInfo::calcColdCallHeuristics(BasicBlock *BB) { 235 TerminatorInst *TI = BB->getTerminator(); 236 if (TI->getNumSuccessors() == 0) 237 return false; 238 239 // Determine which successors are post-dominated by a cold block. 240 SmallVector<unsigned, 4> ColdEdges; 241 SmallVector<unsigned, 4> NormalEdges; 242 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 243 if (PostDominatedByColdCall.count(*I)) 244 ColdEdges.push_back(I.getSuccessorIndex()); 245 else 246 NormalEdges.push_back(I.getSuccessorIndex()); 247 248 // If all successors are in the set of blocks post-dominated by cold calls, 249 // this block is in the set post-dominated by cold calls. 250 if (ColdEdges.size() == TI->getNumSuccessors()) 251 PostDominatedByColdCall.insert(BB); 252 else { 253 // Otherwise, if the block itself contains a cold function, add it to the 254 // set of blocks postdominated by a cold call. 255 assert(!PostDominatedByColdCall.count(BB)); 256 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 257 if (CallInst *CI = dyn_cast<CallInst>(I)) 258 if (CI->hasFnAttr(Attribute::Cold)) { 259 PostDominatedByColdCall.insert(BB); 260 break; 261 } 262 } 263 264 // Skip probabilities if this block has a single successor. 265 if (TI->getNumSuccessors() == 1 || ColdEdges.empty()) 266 return false; 267 268 uint32_t ColdWeight = 269 std::max(CC_TAKEN_WEIGHT / (unsigned) ColdEdges.size(), MIN_WEIGHT); 270 for (SmallVectorImpl<unsigned>::iterator I = ColdEdges.begin(), 271 E = ColdEdges.end(); 272 I != E; ++I) 273 setEdgeWeight(BB, *I, ColdWeight); 274 275 if (NormalEdges.empty()) 276 return true; 277 uint32_t NormalWeight = std::max( 278 CC_NONTAKEN_WEIGHT / (unsigned) NormalEdges.size(), NORMAL_WEIGHT); 279 for (SmallVectorImpl<unsigned>::iterator I = NormalEdges.begin(), 280 E = NormalEdges.end(); 281 I != E; ++I) 282 setEdgeWeight(BB, *I, NormalWeight); 283 284 return true; 285 } 286 287 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion 288 // between two pointer or pointer and NULL will fail. 289 bool BranchProbabilityInfo::calcPointerHeuristics(BasicBlock *BB) { 290 BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator()); 291 if (!BI || !BI->isConditional()) 292 return false; 293 294 Value *Cond = BI->getCondition(); 295 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 296 if (!CI || !CI->isEquality()) 297 return false; 298 299 Value *LHS = CI->getOperand(0); 300 301 if (!LHS->getType()->isPointerTy()) 302 return false; 303 304 assert(CI->getOperand(1)->getType()->isPointerTy()); 305 306 // p != 0 -> isProb = true 307 // p == 0 -> isProb = false 308 // p != q -> isProb = true 309 // p == q -> isProb = false; 310 unsigned TakenIdx = 0, NonTakenIdx = 1; 311 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; 312 if (!isProb) 313 std::swap(TakenIdx, NonTakenIdx); 314 315 setEdgeWeight(BB, TakenIdx, PH_TAKEN_WEIGHT); 316 setEdgeWeight(BB, NonTakenIdx, PH_NONTAKEN_WEIGHT); 317 return true; 318 } 319 320 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges 321 // as taken, exiting edges as not-taken. 322 bool BranchProbabilityInfo::calcLoopBranchHeuristics(BasicBlock *BB, 323 const LoopInfo &LI) { 324 Loop *L = LI.getLoopFor(BB); 325 if (!L) 326 return false; 327 328 SmallVector<unsigned, 8> BackEdges; 329 SmallVector<unsigned, 8> ExitingEdges; 330 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. 331 332 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 333 if (!L->contains(*I)) 334 ExitingEdges.push_back(I.getSuccessorIndex()); 335 else if (L->getHeader() == *I) 336 BackEdges.push_back(I.getSuccessorIndex()); 337 else 338 InEdges.push_back(I.getSuccessorIndex()); 339 } 340 341 if (BackEdges.empty() && ExitingEdges.empty()) 342 return false; 343 344 if (uint32_t numBackEdges = BackEdges.size()) { 345 uint32_t backWeight = LBH_TAKEN_WEIGHT / numBackEdges; 346 if (backWeight < NORMAL_WEIGHT) 347 backWeight = NORMAL_WEIGHT; 348 349 for (SmallVectorImpl<unsigned>::iterator EI = BackEdges.begin(), 350 EE = BackEdges.end(); EI != EE; ++EI) { 351 setEdgeWeight(BB, *EI, backWeight); 352 } 353 } 354 355 if (uint32_t numInEdges = InEdges.size()) { 356 uint32_t inWeight = LBH_TAKEN_WEIGHT / numInEdges; 357 if (inWeight < NORMAL_WEIGHT) 358 inWeight = NORMAL_WEIGHT; 359 360 for (SmallVectorImpl<unsigned>::iterator EI = InEdges.begin(), 361 EE = InEdges.end(); EI != EE; ++EI) { 362 setEdgeWeight(BB, *EI, inWeight); 363 } 364 } 365 366 if (uint32_t numExitingEdges = ExitingEdges.size()) { 367 uint32_t exitWeight = LBH_NONTAKEN_WEIGHT / numExitingEdges; 368 if (exitWeight < MIN_WEIGHT) 369 exitWeight = MIN_WEIGHT; 370 371 for (SmallVectorImpl<unsigned>::iterator EI = ExitingEdges.begin(), 372 EE = ExitingEdges.end(); EI != EE; ++EI) { 373 setEdgeWeight(BB, *EI, exitWeight); 374 } 375 } 376 377 return true; 378 } 379 380 bool BranchProbabilityInfo::calcZeroHeuristics(BasicBlock *BB) { 381 BranchInst * BI = dyn_cast<BranchInst>(BB->getTerminator()); 382 if (!BI || !BI->isConditional()) 383 return false; 384 385 Value *Cond = BI->getCondition(); 386 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 387 if (!CI) 388 return false; 389 390 Value *RHS = CI->getOperand(1); 391 ConstantInt *CV = dyn_cast<ConstantInt>(RHS); 392 if (!CV) 393 return false; 394 395 // If the LHS is the result of AND'ing a value with a single bit bitmask, 396 // we don't have information about probabilities. 397 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 398 if (LHS->getOpcode() == Instruction::And) 399 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) 400 if (AndRHS->getUniqueInteger().isPowerOf2()) 401 return false; 402 403 bool isProb; 404 if (CV->isZero()) { 405 switch (CI->getPredicate()) { 406 case CmpInst::ICMP_EQ: 407 // X == 0 -> Unlikely 408 isProb = false; 409 break; 410 case CmpInst::ICMP_NE: 411 // X != 0 -> Likely 412 isProb = true; 413 break; 414 case CmpInst::ICMP_SLT: 415 // X < 0 -> Unlikely 416 isProb = false; 417 break; 418 case CmpInst::ICMP_SGT: 419 // X > 0 -> Likely 420 isProb = true; 421 break; 422 default: 423 return false; 424 } 425 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { 426 // InstCombine canonicalizes X <= 0 into X < 1. 427 // X <= 0 -> Unlikely 428 isProb = false; 429 } else if (CV->isAllOnesValue()) { 430 switch (CI->getPredicate()) { 431 case CmpInst::ICMP_EQ: 432 // X == -1 -> Unlikely 433 isProb = false; 434 break; 435 case CmpInst::ICMP_NE: 436 // X != -1 -> Likely 437 isProb = true; 438 break; 439 case CmpInst::ICMP_SGT: 440 // InstCombine canonicalizes X >= 0 into X > -1. 441 // X >= 0 -> Likely 442 isProb = true; 443 break; 444 default: 445 return false; 446 } 447 } else { 448 return false; 449 } 450 451 unsigned TakenIdx = 0, NonTakenIdx = 1; 452 453 if (!isProb) 454 std::swap(TakenIdx, NonTakenIdx); 455 456 setEdgeWeight(BB, TakenIdx, ZH_TAKEN_WEIGHT); 457 setEdgeWeight(BB, NonTakenIdx, ZH_NONTAKEN_WEIGHT); 458 459 return true; 460 } 461 462 bool BranchProbabilityInfo::calcFloatingPointHeuristics(BasicBlock *BB) { 463 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 464 if (!BI || !BI->isConditional()) 465 return false; 466 467 Value *Cond = BI->getCondition(); 468 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 469 if (!FCmp) 470 return false; 471 472 bool isProb; 473 if (FCmp->isEquality()) { 474 // f1 == f2 -> Unlikely 475 // f1 != f2 -> Likely 476 isProb = !FCmp->isTrueWhenEqual(); 477 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { 478 // !isnan -> Likely 479 isProb = true; 480 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { 481 // isnan -> Unlikely 482 isProb = false; 483 } else { 484 return false; 485 } 486 487 unsigned TakenIdx = 0, NonTakenIdx = 1; 488 489 if (!isProb) 490 std::swap(TakenIdx, NonTakenIdx); 491 492 setEdgeWeight(BB, TakenIdx, FPH_TAKEN_WEIGHT); 493 setEdgeWeight(BB, NonTakenIdx, FPH_NONTAKEN_WEIGHT); 494 495 return true; 496 } 497 498 bool BranchProbabilityInfo::calcInvokeHeuristics(BasicBlock *BB) { 499 InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); 500 if (!II) 501 return false; 502 503 setEdgeWeight(BB, 0/*Index for Normal*/, IH_TAKEN_WEIGHT); 504 setEdgeWeight(BB, 1/*Index for Unwind*/, IH_NONTAKEN_WEIGHT); 505 return true; 506 } 507 508 void BranchProbabilityInfo::releaseMemory() { 509 Weights.clear(); 510 } 511 512 void BranchProbabilityInfo::print(raw_ostream &OS) const { 513 OS << "---- Branch Probabilities ----\n"; 514 // We print the probabilities from the last function the analysis ran over, 515 // or the function it is currently running over. 516 assert(LastF && "Cannot print prior to running over a function"); 517 for (const auto &BI : *LastF) { 518 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; 519 ++SI) { 520 printEdgeProbability(OS << " ", &BI, *SI); 521 } 522 } 523 } 524 525 uint32_t BranchProbabilityInfo::getSumForBlock(const BasicBlock *BB) const { 526 uint32_t Sum = 0; 527 528 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 529 uint32_t Weight = getEdgeWeight(BB, I.getSuccessorIndex()); 530 uint32_t PrevSum = Sum; 531 532 Sum += Weight; 533 assert(Sum >= PrevSum); (void) PrevSum; 534 } 535 536 return Sum; 537 } 538 539 bool BranchProbabilityInfo:: 540 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 541 // Hot probability is at least 4/5 = 80% 542 // FIXME: Compare against a static "hot" BranchProbability. 543 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 544 } 545 546 BasicBlock *BranchProbabilityInfo::getHotSucc(BasicBlock *BB) const { 547 uint32_t Sum = 0; 548 uint32_t MaxWeight = 0; 549 BasicBlock *MaxSucc = nullptr; 550 551 for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 552 BasicBlock *Succ = *I; 553 uint32_t Weight = getEdgeWeight(BB, Succ); 554 uint32_t PrevSum = Sum; 555 556 Sum += Weight; 557 assert(Sum > PrevSum); (void) PrevSum; 558 559 if (Weight > MaxWeight) { 560 MaxWeight = Weight; 561 MaxSucc = Succ; 562 } 563 } 564 565 // Hot probability is at least 4/5 = 80% 566 if (BranchProbability(MaxWeight, Sum) > BranchProbability(4, 5)) 567 return MaxSucc; 568 569 return nullptr; 570 } 571 572 /// Get the raw edge weight for the edge. If can't find it, return 573 /// DEFAULT_WEIGHT value. Here an edge is specified using PredBlock and an index 574 /// to the successors. 575 uint32_t BranchProbabilityInfo:: 576 getEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors) const { 577 DenseMap<Edge, uint32_t>::const_iterator I = 578 Weights.find(std::make_pair(Src, IndexInSuccessors)); 579 580 if (I != Weights.end()) 581 return I->second; 582 583 return DEFAULT_WEIGHT; 584 } 585 586 uint32_t BranchProbabilityInfo::getEdgeWeight(const BasicBlock *Src, 587 succ_const_iterator Dst) const { 588 return getEdgeWeight(Src, Dst.getSuccessorIndex()); 589 } 590 591 /// Get the raw edge weight calculated for the block pair. This returns the sum 592 /// of all raw edge weights from Src to Dst. 593 uint32_t BranchProbabilityInfo:: 594 getEdgeWeight(const BasicBlock *Src, const BasicBlock *Dst) const { 595 uint32_t Weight = 0; 596 bool FoundWeight = false; 597 DenseMap<Edge, uint32_t>::const_iterator MapI; 598 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 599 if (*I == Dst) { 600 MapI = Weights.find(std::make_pair(Src, I.getSuccessorIndex())); 601 if (MapI != Weights.end()) { 602 FoundWeight = true; 603 Weight += MapI->second; 604 } 605 } 606 return (!FoundWeight) ? DEFAULT_WEIGHT : Weight; 607 } 608 609 /// Set the edge weight for a given edge specified by PredBlock and an index 610 /// to the successors. 611 void BranchProbabilityInfo:: 612 setEdgeWeight(const BasicBlock *Src, unsigned IndexInSuccessors, 613 uint32_t Weight) { 614 Weights[std::make_pair(Src, IndexInSuccessors)] = Weight; 615 DEBUG(dbgs() << "set edge " << Src->getName() << " -> " 616 << IndexInSuccessors << " successor weight to " 617 << Weight << "\n"); 618 } 619 620 /// Get an edge's probability, relative to other out-edges from Src. 621 BranchProbability BranchProbabilityInfo:: 622 getEdgeProbability(const BasicBlock *Src, unsigned IndexInSuccessors) const { 623 uint32_t N = getEdgeWeight(Src, IndexInSuccessors); 624 uint32_t D = getSumForBlock(Src); 625 626 return BranchProbability(N, D); 627 } 628 629 /// Get the probability of going from Src to Dst. It returns the sum of all 630 /// probabilities for edges from Src to Dst. 631 BranchProbability BranchProbabilityInfo:: 632 getEdgeProbability(const BasicBlock *Src, const BasicBlock *Dst) const { 633 634 uint32_t N = getEdgeWeight(Src, Dst); 635 uint32_t D = getSumForBlock(Src); 636 637 return BranchProbability(N, D); 638 } 639 640 raw_ostream & 641 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 642 const BasicBlock *Src, 643 const BasicBlock *Dst) const { 644 645 const BranchProbability Prob = getEdgeProbability(Src, Dst); 646 OS << "edge " << Src->getName() << " -> " << Dst->getName() 647 << " probability is " << Prob 648 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 649 650 return OS; 651 } 652 653 void BranchProbabilityInfo::calculate(Function &F, const LoopInfo& LI) { 654 DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 655 << " ----\n\n"); 656 LastF = &F; // Store the last function we ran on for printing. 657 assert(PostDominatedByUnreachable.empty()); 658 assert(PostDominatedByColdCall.empty()); 659 660 // Walk the basic blocks in post-order so that we can build up state about 661 // the successors of a block iteratively. 662 for (auto BB : post_order(&F.getEntryBlock())) { 663 DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n"); 664 if (calcUnreachableHeuristics(BB)) 665 continue; 666 if (calcMetadataWeights(BB)) 667 continue; 668 if (calcColdCallHeuristics(BB)) 669 continue; 670 if (calcLoopBranchHeuristics(BB, LI)) 671 continue; 672 if (calcPointerHeuristics(BB)) 673 continue; 674 if (calcZeroHeuristics(BB)) 675 continue; 676 if (calcFloatingPointHeuristics(BB)) 677 continue; 678 calcInvokeHeuristics(BB); 679 } 680 681 PostDominatedByUnreachable.clear(); 682 PostDominatedByColdCall.clear(); 683 } 684 685 void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 686 AnalysisUsage &AU) const { 687 AU.addRequired<LoopInfoWrapperPass>(); 688 AU.setPreservesAll(); 689 } 690 691 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 692 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 693 BPI.calculate(F, LI); 694 return false; 695 } 696 697 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 698 699 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 700 const Module *) const { 701 BPI.print(OS); 702 } 703