1 //===-- BranchProbabilityInfo.cpp - Branch Probability Analysis -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Loops should be simplified before this analysis. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/BranchProbabilityInfo.h" 15 #include "llvm/ADT/PostOrderIterator.h" 16 #include "llvm/Analysis/LoopInfo.h" 17 #include "llvm/IR/CFG.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/Function.h" 20 #include "llvm/IR/Instructions.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Metadata.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/raw_ostream.h" 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "branch-prob" 29 30 INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob", 31 "Branch Probability Analysis", false, true) 32 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 33 INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob", 34 "Branch Probability Analysis", false, true) 35 36 char BranchProbabilityInfoWrapperPass::ID = 0; 37 38 // Weights are for internal use only. They are used by heuristics to help to 39 // estimate edges' probability. Example: 40 // 41 // Using "Loop Branch Heuristics" we predict weights of edges for the 42 // block BB2. 43 // ... 44 // | 45 // V 46 // BB1<-+ 47 // | | 48 // | | (Weight = 124) 49 // V | 50 // BB2--+ 51 // | 52 // | (Weight = 4) 53 // V 54 // BB3 55 // 56 // Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875 57 // Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125 58 static const uint32_t LBH_TAKEN_WEIGHT = 124; 59 static const uint32_t LBH_NONTAKEN_WEIGHT = 4; 60 61 /// \brief Unreachable-terminating branch taken weight. 62 /// 63 /// This is the weight for a branch being taken to a block that terminates 64 /// (eventually) in unreachable. These are predicted as unlikely as possible. 65 static const uint32_t UR_TAKEN_WEIGHT = 1; 66 67 /// \brief Unreachable-terminating branch not-taken weight. 68 /// 69 /// This is the weight for a branch not being taken toward a block that 70 /// terminates (eventually) in unreachable. Such a branch is essentially never 71 /// taken. Set the weight to an absurdly high value so that nested loops don't 72 /// easily subsume it. 73 static const uint32_t UR_NONTAKEN_WEIGHT = 1024*1024 - 1; 74 75 /// \brief Weight for a branch taken going into a cold block. 76 /// 77 /// This is the weight for a branch taken toward a block marked 78 /// cold. A block is marked cold if it's postdominated by a 79 /// block containing a call to a cold function. Cold functions 80 /// are those marked with attribute 'cold'. 81 static const uint32_t CC_TAKEN_WEIGHT = 4; 82 83 /// \brief Weight for a branch not-taken into a cold block. 84 /// 85 /// This is the weight for a branch not taken toward a block marked 86 /// cold. 87 static const uint32_t CC_NONTAKEN_WEIGHT = 64; 88 89 static const uint32_t PH_TAKEN_WEIGHT = 20; 90 static const uint32_t PH_NONTAKEN_WEIGHT = 12; 91 92 static const uint32_t ZH_TAKEN_WEIGHT = 20; 93 static const uint32_t ZH_NONTAKEN_WEIGHT = 12; 94 95 static const uint32_t FPH_TAKEN_WEIGHT = 20; 96 static const uint32_t FPH_NONTAKEN_WEIGHT = 12; 97 98 /// \brief Invoke-terminating normal branch taken weight 99 /// 100 /// This is the weight for branching to the normal destination of an invoke 101 /// instruction. We expect this to happen most of the time. Set the weight to an 102 /// absurdly high value so that nested loops subsume it. 103 static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1; 104 105 /// \brief Invoke-terminating normal branch not-taken weight. 106 /// 107 /// This is the weight for branching to the unwind destination of an invoke 108 /// instruction. This is essentially never taken. 109 static const uint32_t IH_NONTAKEN_WEIGHT = 1; 110 111 /// \brief Calculate edge weights for successors lead to unreachable. 112 /// 113 /// Predict that a successor which leads necessarily to an 114 /// unreachable-terminated block as extremely unlikely. 115 bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) { 116 const TerminatorInst *TI = BB->getTerminator(); 117 if (TI->getNumSuccessors() == 0) { 118 if (isa<UnreachableInst>(TI) || 119 // If this block is terminated by a call to 120 // @llvm.experimental.deoptimize then treat it like an unreachable since 121 // the @llvm.experimental.deoptimize call is expected to practically 122 // never execute. 123 BB->getTerminatingDeoptimizeCall()) 124 PostDominatedByUnreachable.insert(BB); 125 return false; 126 } 127 128 SmallVector<unsigned, 4> UnreachableEdges; 129 SmallVector<unsigned, 4> ReachableEdges; 130 131 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 132 if (PostDominatedByUnreachable.count(*I)) 133 UnreachableEdges.push_back(I.getSuccessorIndex()); 134 else 135 ReachableEdges.push_back(I.getSuccessorIndex()); 136 } 137 138 // If all successors are in the set of blocks post-dominated by unreachable, 139 // this block is too. 140 if (UnreachableEdges.size() == TI->getNumSuccessors()) 141 PostDominatedByUnreachable.insert(BB); 142 143 // Skip probabilities if this block has a single successor or if all were 144 // reachable. 145 if (TI->getNumSuccessors() == 1 || UnreachableEdges.empty()) 146 return false; 147 148 // If the terminator is an InvokeInst, check only the normal destination block 149 // as the unwind edge of InvokeInst is also very unlikely taken. 150 if (auto *II = dyn_cast<InvokeInst>(TI)) 151 if (PostDominatedByUnreachable.count(II->getNormalDest())) { 152 PostDominatedByUnreachable.insert(BB); 153 // Return false here so that edge weights for InvokeInst could be decided 154 // in calcInvokeHeuristics(). 155 return false; 156 } 157 158 if (ReachableEdges.empty()) { 159 BranchProbability Prob(1, UnreachableEdges.size()); 160 for (unsigned SuccIdx : UnreachableEdges) 161 setEdgeProbability(BB, SuccIdx, Prob); 162 return true; 163 } 164 165 BranchProbability UnreachableProb(UR_TAKEN_WEIGHT, 166 (UR_TAKEN_WEIGHT + UR_NONTAKEN_WEIGHT) * 167 UnreachableEdges.size()); 168 BranchProbability ReachableProb(UR_NONTAKEN_WEIGHT, 169 (UR_TAKEN_WEIGHT + UR_NONTAKEN_WEIGHT) * 170 ReachableEdges.size()); 171 172 for (unsigned SuccIdx : UnreachableEdges) 173 setEdgeProbability(BB, SuccIdx, UnreachableProb); 174 for (unsigned SuccIdx : ReachableEdges) 175 setEdgeProbability(BB, SuccIdx, ReachableProb); 176 177 return true; 178 } 179 180 // Propagate existing explicit probabilities from either profile data or 181 // 'expect' intrinsic processing. 182 bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) { 183 const TerminatorInst *TI = BB->getTerminator(); 184 if (TI->getNumSuccessors() == 1) 185 return false; 186 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) 187 return false; 188 189 MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof); 190 if (!WeightsNode) 191 return false; 192 193 // Check that the number of successors is manageable. 194 assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors"); 195 196 // Ensure there are weights for all of the successors. Note that the first 197 // operand to the metadata node is a name, not a weight. 198 if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1) 199 return false; 200 201 // Build up the final weights that will be used in a temporary buffer. 202 // Compute the sum of all weights to later decide whether they need to 203 // be scaled to fit in 32 bits. 204 uint64_t WeightSum = 0; 205 SmallVector<uint32_t, 2> Weights; 206 Weights.reserve(TI->getNumSuccessors()); 207 for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) { 208 ConstantInt *Weight = 209 mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i)); 210 if (!Weight) 211 return false; 212 assert(Weight->getValue().getActiveBits() <= 32 && 213 "Too many bits for uint32_t"); 214 Weights.push_back(Weight->getZExtValue()); 215 WeightSum += Weights.back(); 216 } 217 assert(Weights.size() == TI->getNumSuccessors() && "Checked above"); 218 219 // If the sum of weights does not fit in 32 bits, scale every weight down 220 // accordingly. 221 uint64_t ScalingFactor = 222 (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1; 223 224 WeightSum = 0; 225 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { 226 Weights[i] /= ScalingFactor; 227 WeightSum += Weights[i]; 228 } 229 230 if (WeightSum == 0) { 231 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 232 setEdgeProbability(BB, i, {1, e}); 233 } else { 234 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) 235 setEdgeProbability(BB, i, {Weights[i], static_cast<uint32_t>(WeightSum)}); 236 } 237 238 assert(WeightSum <= UINT32_MAX && 239 "Expected weights to scale down to 32 bits"); 240 241 return true; 242 } 243 244 /// \brief Calculate edge weights for edges leading to cold blocks. 245 /// 246 /// A cold block is one post-dominated by a block with a call to a 247 /// cold function. Those edges are unlikely to be taken, so we give 248 /// them relatively low weight. 249 /// 250 /// Return true if we could compute the weights for cold edges. 251 /// Return false, otherwise. 252 bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) { 253 const TerminatorInst *TI = BB->getTerminator(); 254 if (TI->getNumSuccessors() == 0) 255 return false; 256 257 // Determine which successors are post-dominated by a cold block. 258 SmallVector<unsigned, 4> ColdEdges; 259 SmallVector<unsigned, 4> NormalEdges; 260 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) 261 if (PostDominatedByColdCall.count(*I)) 262 ColdEdges.push_back(I.getSuccessorIndex()); 263 else 264 NormalEdges.push_back(I.getSuccessorIndex()); 265 266 // If all successors are in the set of blocks post-dominated by cold calls, 267 // this block is in the set post-dominated by cold calls. 268 if (ColdEdges.size() == TI->getNumSuccessors()) 269 PostDominatedByColdCall.insert(BB); 270 else { 271 // Otherwise, if the block itself contains a cold function, add it to the 272 // set of blocks postdominated by a cold call. 273 assert(!PostDominatedByColdCall.count(BB)); 274 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) 275 if (const CallInst *CI = dyn_cast<CallInst>(I)) 276 if (CI->hasFnAttr(Attribute::Cold)) { 277 PostDominatedByColdCall.insert(BB); 278 break; 279 } 280 } 281 282 if (auto *II = dyn_cast<InvokeInst>(TI)) { 283 // If the terminator is an InvokeInst, consider only the normal destination 284 // block. 285 if (PostDominatedByColdCall.count(II->getNormalDest())) 286 PostDominatedByColdCall.insert(BB); 287 // Return false here so that edge weights for InvokeInst could be decided 288 // in calcInvokeHeuristics(). 289 return false; 290 } 291 292 // Skip probabilities if this block has a single successor. 293 if (TI->getNumSuccessors() == 1 || ColdEdges.empty()) 294 return false; 295 296 if (NormalEdges.empty()) { 297 BranchProbability Prob(1, ColdEdges.size()); 298 for (unsigned SuccIdx : ColdEdges) 299 setEdgeProbability(BB, SuccIdx, Prob); 300 return true; 301 } 302 303 BranchProbability ColdProb(CC_TAKEN_WEIGHT, 304 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * 305 ColdEdges.size()); 306 BranchProbability NormalProb(CC_NONTAKEN_WEIGHT, 307 (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * 308 NormalEdges.size()); 309 310 for (unsigned SuccIdx : ColdEdges) 311 setEdgeProbability(BB, SuccIdx, ColdProb); 312 for (unsigned SuccIdx : NormalEdges) 313 setEdgeProbability(BB, SuccIdx, NormalProb); 314 315 return true; 316 } 317 318 // Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion 319 // between two pointer or pointer and NULL will fail. 320 bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) { 321 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 322 if (!BI || !BI->isConditional()) 323 return false; 324 325 Value *Cond = BI->getCondition(); 326 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 327 if (!CI || !CI->isEquality()) 328 return false; 329 330 Value *LHS = CI->getOperand(0); 331 332 if (!LHS->getType()->isPointerTy()) 333 return false; 334 335 assert(CI->getOperand(1)->getType()->isPointerTy()); 336 337 // p != 0 -> isProb = true 338 // p == 0 -> isProb = false 339 // p != q -> isProb = true 340 // p == q -> isProb = false; 341 unsigned TakenIdx = 0, NonTakenIdx = 1; 342 bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE; 343 if (!isProb) 344 std::swap(TakenIdx, NonTakenIdx); 345 346 BranchProbability TakenProb(PH_TAKEN_WEIGHT, 347 PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT); 348 setEdgeProbability(BB, TakenIdx, TakenProb); 349 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 350 return true; 351 } 352 353 // Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges 354 // as taken, exiting edges as not-taken. 355 bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB, 356 const LoopInfo &LI) { 357 Loop *L = LI.getLoopFor(BB); 358 if (!L) 359 return false; 360 361 SmallVector<unsigned, 8> BackEdges; 362 SmallVector<unsigned, 8> ExitingEdges; 363 SmallVector<unsigned, 8> InEdges; // Edges from header to the loop. 364 365 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 366 if (!L->contains(*I)) 367 ExitingEdges.push_back(I.getSuccessorIndex()); 368 else if (L->getHeader() == *I) 369 BackEdges.push_back(I.getSuccessorIndex()); 370 else 371 InEdges.push_back(I.getSuccessorIndex()); 372 } 373 374 if (BackEdges.empty() && ExitingEdges.empty()) 375 return false; 376 377 // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and 378 // normalize them so that they sum up to one. 379 BranchProbability Probs[] = {BranchProbability::getZero(), 380 BranchProbability::getZero(), 381 BranchProbability::getZero()}; 382 unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 383 (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) + 384 (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT); 385 if (!BackEdges.empty()) 386 Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 387 if (!InEdges.empty()) 388 Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom); 389 if (!ExitingEdges.empty()) 390 Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom); 391 392 if (uint32_t numBackEdges = BackEdges.size()) { 393 auto Prob = Probs[0] / numBackEdges; 394 for (unsigned SuccIdx : BackEdges) 395 setEdgeProbability(BB, SuccIdx, Prob); 396 } 397 398 if (uint32_t numInEdges = InEdges.size()) { 399 auto Prob = Probs[1] / numInEdges; 400 for (unsigned SuccIdx : InEdges) 401 setEdgeProbability(BB, SuccIdx, Prob); 402 } 403 404 if (uint32_t numExitingEdges = ExitingEdges.size()) { 405 auto Prob = Probs[2] / numExitingEdges; 406 for (unsigned SuccIdx : ExitingEdges) 407 setEdgeProbability(BB, SuccIdx, Prob); 408 } 409 410 return true; 411 } 412 413 bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB) { 414 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 415 if (!BI || !BI->isConditional()) 416 return false; 417 418 Value *Cond = BI->getCondition(); 419 ICmpInst *CI = dyn_cast<ICmpInst>(Cond); 420 if (!CI) 421 return false; 422 423 Value *RHS = CI->getOperand(1); 424 ConstantInt *CV = dyn_cast<ConstantInt>(RHS); 425 if (!CV) 426 return false; 427 428 // If the LHS is the result of AND'ing a value with a single bit bitmask, 429 // we don't have information about probabilities. 430 if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0))) 431 if (LHS->getOpcode() == Instruction::And) 432 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) 433 if (AndRHS->getUniqueInteger().isPowerOf2()) 434 return false; 435 436 bool isProb; 437 if (CV->isZero()) { 438 switch (CI->getPredicate()) { 439 case CmpInst::ICMP_EQ: 440 // X == 0 -> Unlikely 441 isProb = false; 442 break; 443 case CmpInst::ICMP_NE: 444 // X != 0 -> Likely 445 isProb = true; 446 break; 447 case CmpInst::ICMP_SLT: 448 // X < 0 -> Unlikely 449 isProb = false; 450 break; 451 case CmpInst::ICMP_SGT: 452 // X > 0 -> Likely 453 isProb = true; 454 break; 455 default: 456 return false; 457 } 458 } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) { 459 // InstCombine canonicalizes X <= 0 into X < 1. 460 // X <= 0 -> Unlikely 461 isProb = false; 462 } else if (CV->isAllOnesValue()) { 463 switch (CI->getPredicate()) { 464 case CmpInst::ICMP_EQ: 465 // X == -1 -> Unlikely 466 isProb = false; 467 break; 468 case CmpInst::ICMP_NE: 469 // X != -1 -> Likely 470 isProb = true; 471 break; 472 case CmpInst::ICMP_SGT: 473 // InstCombine canonicalizes X >= 0 into X > -1. 474 // X >= 0 -> Likely 475 isProb = true; 476 break; 477 default: 478 return false; 479 } 480 } else { 481 return false; 482 } 483 484 unsigned TakenIdx = 0, NonTakenIdx = 1; 485 486 if (!isProb) 487 std::swap(TakenIdx, NonTakenIdx); 488 489 BranchProbability TakenProb(ZH_TAKEN_WEIGHT, 490 ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT); 491 setEdgeProbability(BB, TakenIdx, TakenProb); 492 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 493 return true; 494 } 495 496 bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) { 497 const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 498 if (!BI || !BI->isConditional()) 499 return false; 500 501 Value *Cond = BI->getCondition(); 502 FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond); 503 if (!FCmp) 504 return false; 505 506 bool isProb; 507 if (FCmp->isEquality()) { 508 // f1 == f2 -> Unlikely 509 // f1 != f2 -> Likely 510 isProb = !FCmp->isTrueWhenEqual(); 511 } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) { 512 // !isnan -> Likely 513 isProb = true; 514 } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) { 515 // isnan -> Unlikely 516 isProb = false; 517 } else { 518 return false; 519 } 520 521 unsigned TakenIdx = 0, NonTakenIdx = 1; 522 523 if (!isProb) 524 std::swap(TakenIdx, NonTakenIdx); 525 526 BranchProbability TakenProb(FPH_TAKEN_WEIGHT, 527 FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT); 528 setEdgeProbability(BB, TakenIdx, TakenProb); 529 setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl()); 530 return true; 531 } 532 533 bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) { 534 const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator()); 535 if (!II) 536 return false; 537 538 BranchProbability TakenProb(IH_TAKEN_WEIGHT, 539 IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT); 540 setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb); 541 setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl()); 542 return true; 543 } 544 545 void BranchProbabilityInfo::releaseMemory() { 546 Probs.clear(); 547 } 548 549 void BranchProbabilityInfo::print(raw_ostream &OS) const { 550 OS << "---- Branch Probabilities ----\n"; 551 // We print the probabilities from the last function the analysis ran over, 552 // or the function it is currently running over. 553 assert(LastF && "Cannot print prior to running over a function"); 554 for (const auto &BI : *LastF) { 555 for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE; 556 ++SI) { 557 printEdgeProbability(OS << " ", &BI, *SI); 558 } 559 } 560 } 561 562 bool BranchProbabilityInfo:: 563 isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const { 564 // Hot probability is at least 4/5 = 80% 565 // FIXME: Compare against a static "hot" BranchProbability. 566 return getEdgeProbability(Src, Dst) > BranchProbability(4, 5); 567 } 568 569 const BasicBlock * 570 BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const { 571 auto MaxProb = BranchProbability::getZero(); 572 const BasicBlock *MaxSucc = nullptr; 573 574 for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { 575 const BasicBlock *Succ = *I; 576 auto Prob = getEdgeProbability(BB, Succ); 577 if (Prob > MaxProb) { 578 MaxProb = Prob; 579 MaxSucc = Succ; 580 } 581 } 582 583 // Hot probability is at least 4/5 = 80% 584 if (MaxProb > BranchProbability(4, 5)) 585 return MaxSucc; 586 587 return nullptr; 588 } 589 590 /// Get the raw edge probability for the edge. If can't find it, return a 591 /// default probability 1/N where N is the number of successors. Here an edge is 592 /// specified using PredBlock and an 593 /// index to the successors. 594 BranchProbability 595 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 596 unsigned IndexInSuccessors) const { 597 auto I = Probs.find(std::make_pair(Src, IndexInSuccessors)); 598 599 if (I != Probs.end()) 600 return I->second; 601 602 return {1, 603 static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))}; 604 } 605 606 BranchProbability 607 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 608 succ_const_iterator Dst) const { 609 return getEdgeProbability(Src, Dst.getSuccessorIndex()); 610 } 611 612 /// Get the raw edge probability calculated for the block pair. This returns the 613 /// sum of all raw edge probabilities from Src to Dst. 614 BranchProbability 615 BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src, 616 const BasicBlock *Dst) const { 617 auto Prob = BranchProbability::getZero(); 618 bool FoundProb = false; 619 for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I) 620 if (*I == Dst) { 621 auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex())); 622 if (MapI != Probs.end()) { 623 FoundProb = true; 624 Prob += MapI->second; 625 } 626 } 627 uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src)); 628 return FoundProb ? Prob : BranchProbability(1, succ_num); 629 } 630 631 /// Set the edge probability for a given edge specified by PredBlock and an 632 /// index to the successors. 633 void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src, 634 unsigned IndexInSuccessors, 635 BranchProbability Prob) { 636 Probs[std::make_pair(Src, IndexInSuccessors)] = Prob; 637 Handles.insert(BasicBlockCallbackVH(Src, this)); 638 DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors 639 << " successor probability to " << Prob << "\n"); 640 } 641 642 raw_ostream & 643 BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS, 644 const BasicBlock *Src, 645 const BasicBlock *Dst) const { 646 647 const BranchProbability Prob = getEdgeProbability(Src, Dst); 648 OS << "edge " << Src->getName() << " -> " << Dst->getName() 649 << " probability is " << Prob 650 << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n"); 651 652 return OS; 653 } 654 655 void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) { 656 for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) { 657 auto Key = I->first; 658 if (Key.first == BB) 659 Probs.erase(Key); 660 } 661 } 662 663 void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI) { 664 DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName() 665 << " ----\n\n"); 666 LastF = &F; // Store the last function we ran on for printing. 667 assert(PostDominatedByUnreachable.empty()); 668 assert(PostDominatedByColdCall.empty()); 669 670 // Walk the basic blocks in post-order so that we can build up state about 671 // the successors of a block iteratively. 672 for (auto BB : post_order(&F.getEntryBlock())) { 673 DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n"); 674 if (calcUnreachableHeuristics(BB)) 675 continue; 676 if (calcMetadataWeights(BB)) 677 continue; 678 if (calcColdCallHeuristics(BB)) 679 continue; 680 if (calcLoopBranchHeuristics(BB, LI)) 681 continue; 682 if (calcPointerHeuristics(BB)) 683 continue; 684 if (calcZeroHeuristics(BB)) 685 continue; 686 if (calcFloatingPointHeuristics(BB)) 687 continue; 688 calcInvokeHeuristics(BB); 689 } 690 691 PostDominatedByUnreachable.clear(); 692 PostDominatedByColdCall.clear(); 693 } 694 695 void BranchProbabilityInfoWrapperPass::getAnalysisUsage( 696 AnalysisUsage &AU) const { 697 AU.addRequired<LoopInfoWrapperPass>(); 698 AU.setPreservesAll(); 699 } 700 701 bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) { 702 const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 703 BPI.calculate(F, LI); 704 return false; 705 } 706 707 void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); } 708 709 void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS, 710 const Module *) const { 711 BPI.print(OS); 712 } 713 714 char BranchProbabilityAnalysis::PassID; 715 BranchProbabilityInfo 716 BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) { 717 BranchProbabilityInfo BPI; 718 BPI.calculate(F, AM.getResult<LoopAnalysis>(F)); 719 return BPI; 720 } 721 722 PreservedAnalyses 723 BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 724 OS << "Printing analysis results of BPI for function " 725 << "'" << F.getName() << "':" 726 << "\n"; 727 AM.getResult<BranchProbabilityAnalysis>(F).print(OS); 728 return PreservedAnalyses::all(); 729 } 730