1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 30 #include "llvm/Analysis/CaptureTracking.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/AtomicOrdering.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 57 using namespace llvm; 58 59 /// Allow disabling BasicAA from the AA results. This is particularly useful 60 /// when testing to isolate a single AA implementation. 61 static cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, 62 cl::init(false)); 63 64 AAResults::AAResults(AAResults &&Arg) 65 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 66 for (auto &AA : AAs) 67 AA->setAAResults(this); 68 } 69 70 AAResults::~AAResults() { 71 // FIXME; It would be nice to at least clear out the pointers back to this 72 // aggregation here, but we end up with non-nesting lifetimes in the legacy 73 // pass manager that prevent this from working. In the legacy pass manager 74 // we'll end up with dangling references here in some cases. 75 #if 0 76 for (auto &AA : AAs) 77 AA->setAAResults(nullptr); 78 #endif 79 } 80 81 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 82 FunctionAnalysisManager::Invalidator &Inv) { 83 // AAResults preserves the AAManager by default, due to the stateless nature 84 // of AliasAnalysis. There is no need to check whether it has been preserved 85 // explicitly. Check if any module dependency was invalidated and caused the 86 // AAManager to be invalidated. Invalidate ourselves in that case. 87 auto PAC = PA.getChecker<AAManager>(); 88 if (!PAC.preservedWhenStateless()) 89 return true; 90 91 // Check if any of the function dependencies were invalidated, and invalidate 92 // ourselves in that case. 93 for (AnalysisKey *ID : AADeps) 94 if (Inv.invalidate(ID, F, PA)) 95 return true; 96 97 // Everything we depend on is still fine, so are we. Nothing to invalidate. 98 return false; 99 } 100 101 //===----------------------------------------------------------------------===// 102 // Default chaining methods 103 //===----------------------------------------------------------------------===// 104 105 AliasResult AAResults::alias(const MemoryLocation &LocA, 106 const MemoryLocation &LocB) { 107 AAQueryInfo AAQIP; 108 return alias(LocA, LocB, AAQIP); 109 } 110 111 AliasResult AAResults::alias(const MemoryLocation &LocA, 112 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 113 for (const auto &AA : AAs) { 114 auto Result = AA->alias(LocA, LocB, AAQI); 115 if (Result != MayAlias) 116 return Result; 117 } 118 return MayAlias; 119 } 120 121 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 122 bool OrLocal) { 123 AAQueryInfo AAQIP; 124 return pointsToConstantMemory(Loc, AAQIP, OrLocal); 125 } 126 127 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 128 AAQueryInfo &AAQI, bool OrLocal) { 129 for (const auto &AA : AAs) 130 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) 131 return true; 132 133 return false; 134 } 135 136 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 137 ModRefInfo Result = ModRefInfo::ModRef; 138 139 for (const auto &AA : AAs) { 140 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); 141 142 // Early-exit the moment we reach the bottom of the lattice. 143 if (isNoModRef(Result)) 144 return ModRefInfo::NoModRef; 145 } 146 147 return Result; 148 } 149 150 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { 151 AAQueryInfo AAQIP; 152 return getModRefInfo(I, Call2, AAQIP); 153 } 154 155 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, 156 AAQueryInfo &AAQI) { 157 // We may have two calls. 158 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 159 // Check if the two calls modify the same memory. 160 return getModRefInfo(Call1, Call2, AAQI); 161 } else if (I->isFenceLike()) { 162 // If this is a fence, just return ModRef. 163 return ModRefInfo::ModRef; 164 } else { 165 // Otherwise, check if the call modifies or references the 166 // location this memory access defines. The best we can say 167 // is that if the call references what this instruction 168 // defines, it must be clobbered by this location. 169 const MemoryLocation DefLoc = MemoryLocation::get(I); 170 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 171 if (isModOrRefSet(MR)) 172 return setModAndRef(MR); 173 } 174 return ModRefInfo::NoModRef; 175 } 176 177 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 178 const MemoryLocation &Loc) { 179 AAQueryInfo AAQIP; 180 return getModRefInfo(Call, Loc, AAQIP); 181 } 182 183 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 184 const MemoryLocation &Loc, 185 AAQueryInfo &AAQI) { 186 ModRefInfo Result = ModRefInfo::ModRef; 187 188 for (const auto &AA : AAs) { 189 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); 190 191 // Early-exit the moment we reach the bottom of the lattice. 192 if (isNoModRef(Result)) 193 return ModRefInfo::NoModRef; 194 } 195 196 // Try to refine the mod-ref info further using other API entry points to the 197 // aggregate set of AA results. 198 auto MRB = getModRefBehavior(Call); 199 if (onlyAccessesInaccessibleMem(MRB)) 200 return ModRefInfo::NoModRef; 201 202 if (onlyReadsMemory(MRB)) 203 Result = clearMod(Result); 204 else if (doesNotReadMemory(MRB)) 205 Result = clearRef(Result); 206 207 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 208 bool IsMustAlias = true; 209 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 210 if (doesAccessArgPointees(MRB)) { 211 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { 212 const Value *Arg = *AI; 213 if (!Arg->getType()->isPointerTy()) 214 continue; 215 unsigned ArgIdx = std::distance(Call->arg_begin(), AI); 216 MemoryLocation ArgLoc = 217 MemoryLocation::getForArgument(Call, ArgIdx, TLI); 218 AliasResult ArgAlias = alias(ArgLoc, Loc); 219 if (ArgAlias != NoAlias) { 220 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); 221 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 222 } 223 // Conservatively clear IsMustAlias unless only MustAlias is found. 224 IsMustAlias &= (ArgAlias == MustAlias); 225 } 226 } 227 // Return NoModRef if no alias found with any argument. 228 if (isNoModRef(AllArgsMask)) 229 return ModRefInfo::NoModRef; 230 // Logical & between other AA analyses and argument analysis. 231 Result = intersectModRef(Result, AllArgsMask); 232 // If only MustAlias found above, set Must bit. 233 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 234 } 235 236 // If Loc is a constant memory location, the call definitely could not 237 // modify the memory location. 238 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 239 Result = clearMod(Result); 240 241 return Result; 242 } 243 244 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 245 const CallBase *Call2) { 246 AAQueryInfo AAQIP; 247 return getModRefInfo(Call1, Call2, AAQIP); 248 } 249 250 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 251 const CallBase *Call2, AAQueryInfo &AAQI) { 252 ModRefInfo Result = ModRefInfo::ModRef; 253 254 for (const auto &AA : AAs) { 255 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); 256 257 // Early-exit the moment we reach the bottom of the lattice. 258 if (isNoModRef(Result)) 259 return ModRefInfo::NoModRef; 260 } 261 262 // Try to refine the mod-ref info further using other API entry points to the 263 // aggregate set of AA results. 264 265 // If Call1 or Call2 are readnone, they don't interact. 266 auto Call1B = getModRefBehavior(Call1); 267 if (Call1B == FMRB_DoesNotAccessMemory) 268 return ModRefInfo::NoModRef; 269 270 auto Call2B = getModRefBehavior(Call2); 271 if (Call2B == FMRB_DoesNotAccessMemory) 272 return ModRefInfo::NoModRef; 273 274 // If they both only read from memory, there is no dependence. 275 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) 276 return ModRefInfo::NoModRef; 277 278 // If Call1 only reads memory, the only dependence on Call2 can be 279 // from Call1 reading memory written by Call2. 280 if (onlyReadsMemory(Call1B)) 281 Result = clearMod(Result); 282 else if (doesNotReadMemory(Call1B)) 283 Result = clearRef(Result); 284 285 // If Call2 only access memory through arguments, accumulate the mod/ref 286 // information from Call1's references to the memory referenced by 287 // Call2's arguments. 288 if (onlyAccessesArgPointees(Call2B)) { 289 if (!doesAccessArgPointees(Call2B)) 290 return ModRefInfo::NoModRef; 291 ModRefInfo R = ModRefInfo::NoModRef; 292 bool IsMustAlias = true; 293 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 294 const Value *Arg = *I; 295 if (!Arg->getType()->isPointerTy()) 296 continue; 297 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 298 auto Call2ArgLoc = 299 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 300 301 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 302 // dependence of Call1 on that location is the inverse: 303 // - If Call2 modifies location, dependence exists if Call1 reads or 304 // writes. 305 // - If Call2 only reads location, dependence exists if Call1 writes. 306 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 307 ModRefInfo ArgMask = ModRefInfo::NoModRef; 308 if (isModSet(ArgModRefC2)) 309 ArgMask = ModRefInfo::ModRef; 310 else if (isRefSet(ArgModRefC2)) 311 ArgMask = ModRefInfo::Mod; 312 313 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 314 // above ArgMask to update dependence info. 315 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc); 316 ArgMask = intersectModRef(ArgMask, ModRefC1); 317 318 // Conservatively clear IsMustAlias unless only MustAlias is found. 319 IsMustAlias &= isMustSet(ModRefC1); 320 321 R = intersectModRef(unionModRef(R, ArgMask), Result); 322 if (R == Result) { 323 // On early exit, not all args were checked, cannot set Must. 324 if (I + 1 != E) 325 IsMustAlias = false; 326 break; 327 } 328 } 329 330 if (isNoModRef(R)) 331 return ModRefInfo::NoModRef; 332 333 // If MustAlias found above, set Must bit. 334 return IsMustAlias ? setMust(R) : clearMust(R); 335 } 336 337 // If Call1 only accesses memory through arguments, check if Call2 references 338 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 339 if (onlyAccessesArgPointees(Call1B)) { 340 if (!doesAccessArgPointees(Call1B)) 341 return ModRefInfo::NoModRef; 342 ModRefInfo R = ModRefInfo::NoModRef; 343 bool IsMustAlias = true; 344 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 345 const Value *Arg = *I; 346 if (!Arg->getType()->isPointerTy()) 347 continue; 348 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 349 auto Call1ArgLoc = 350 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 351 352 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 353 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 354 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 355 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 356 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc); 357 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 358 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 359 R = intersectModRef(unionModRef(R, ArgModRefC1), Result); 360 361 // Conservatively clear IsMustAlias unless only MustAlias is found. 362 IsMustAlias &= isMustSet(ModRefC2); 363 364 if (R == Result) { 365 // On early exit, not all args were checked, cannot set Must. 366 if (I + 1 != E) 367 IsMustAlias = false; 368 break; 369 } 370 } 371 372 if (isNoModRef(R)) 373 return ModRefInfo::NoModRef; 374 375 // If MustAlias found above, set Must bit. 376 return IsMustAlias ? setMust(R) : clearMust(R); 377 } 378 379 return Result; 380 } 381 382 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { 383 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 384 385 for (const auto &AA : AAs) { 386 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); 387 388 // Early-exit the moment we reach the bottom of the lattice. 389 if (Result == FMRB_DoesNotAccessMemory) 390 return Result; 391 } 392 393 return Result; 394 } 395 396 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 397 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 398 399 for (const auto &AA : AAs) { 400 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 401 402 // Early-exit the moment we reach the bottom of the lattice. 403 if (Result == FMRB_DoesNotAccessMemory) 404 return Result; 405 } 406 407 return Result; 408 } 409 410 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 411 switch (AR) { 412 case NoAlias: 413 OS << "NoAlias"; 414 break; 415 case MustAlias: 416 OS << "MustAlias"; 417 break; 418 case MayAlias: 419 OS << "MayAlias"; 420 break; 421 case PartialAlias: 422 OS << "PartialAlias"; 423 break; 424 } 425 return OS; 426 } 427 428 //===----------------------------------------------------------------------===// 429 // Helper method implementation 430 //===----------------------------------------------------------------------===// 431 432 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 433 const MemoryLocation &Loc) { 434 AAQueryInfo AAQIP; 435 return getModRefInfo(L, Loc, AAQIP); 436 } 437 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 438 const MemoryLocation &Loc, 439 AAQueryInfo &AAQI) { 440 // Be conservative in the face of atomic. 441 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 442 return ModRefInfo::ModRef; 443 444 // If the load address doesn't alias the given address, it doesn't read 445 // or write the specified memory. 446 if (Loc.Ptr) { 447 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 448 if (AR == NoAlias) 449 return ModRefInfo::NoModRef; 450 if (AR == MustAlias) 451 return ModRefInfo::MustRef; 452 } 453 // Otherwise, a load just reads. 454 return ModRefInfo::Ref; 455 } 456 457 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 458 const MemoryLocation &Loc) { 459 AAQueryInfo AAQIP; 460 return getModRefInfo(S, Loc, AAQIP); 461 } 462 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 463 const MemoryLocation &Loc, 464 AAQueryInfo &AAQI) { 465 // Be conservative in the face of atomic. 466 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 467 return ModRefInfo::ModRef; 468 469 if (Loc.Ptr) { 470 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 471 // If the store address cannot alias the pointer in question, then the 472 // specified memory cannot be modified by the store. 473 if (AR == NoAlias) 474 return ModRefInfo::NoModRef; 475 476 // If the pointer is a pointer to constant memory, then it could not have 477 // been modified by this store. 478 if (pointsToConstantMemory(Loc, AAQI)) 479 return ModRefInfo::NoModRef; 480 481 // If the store address aliases the pointer as must alias, set Must. 482 if (AR == MustAlias) 483 return ModRefInfo::MustMod; 484 } 485 486 // Otherwise, a store just writes. 487 return ModRefInfo::Mod; 488 } 489 490 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 491 AAQueryInfo AAQIP; 492 return getModRefInfo(S, Loc, AAQIP); 493 } 494 495 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 496 const MemoryLocation &Loc, 497 AAQueryInfo &AAQI) { 498 // If we know that the location is a constant memory location, the fence 499 // cannot modify this location. 500 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) 501 return ModRefInfo::Ref; 502 return ModRefInfo::ModRef; 503 } 504 505 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 506 const MemoryLocation &Loc) { 507 AAQueryInfo AAQIP; 508 return getModRefInfo(V, Loc, AAQIP); 509 } 510 511 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 512 const MemoryLocation &Loc, 513 AAQueryInfo &AAQI) { 514 if (Loc.Ptr) { 515 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 516 // If the va_arg address cannot alias the pointer in question, then the 517 // specified memory cannot be accessed by the va_arg. 518 if (AR == NoAlias) 519 return ModRefInfo::NoModRef; 520 521 // If the pointer is a pointer to constant memory, then it could not have 522 // been modified by this va_arg. 523 if (pointsToConstantMemory(Loc, AAQI)) 524 return ModRefInfo::NoModRef; 525 526 // If the va_arg aliases the pointer as must alias, set Must. 527 if (AR == MustAlias) 528 return ModRefInfo::MustModRef; 529 } 530 531 // Otherwise, a va_arg reads and writes. 532 return ModRefInfo::ModRef; 533 } 534 535 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 536 const MemoryLocation &Loc) { 537 AAQueryInfo AAQIP; 538 return getModRefInfo(CatchPad, Loc, AAQIP); 539 } 540 541 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 542 const MemoryLocation &Loc, 543 AAQueryInfo &AAQI) { 544 if (Loc.Ptr) { 545 // If the pointer is a pointer to constant memory, 546 // then it could not have been modified by this catchpad. 547 if (pointsToConstantMemory(Loc, AAQI)) 548 return ModRefInfo::NoModRef; 549 } 550 551 // Otherwise, a catchpad reads and writes. 552 return ModRefInfo::ModRef; 553 } 554 555 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 556 const MemoryLocation &Loc) { 557 AAQueryInfo AAQIP; 558 return getModRefInfo(CatchRet, Loc, AAQIP); 559 } 560 561 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 562 const MemoryLocation &Loc, 563 AAQueryInfo &AAQI) { 564 if (Loc.Ptr) { 565 // If the pointer is a pointer to constant memory, 566 // then it could not have been modified by this catchpad. 567 if (pointsToConstantMemory(Loc, AAQI)) 568 return ModRefInfo::NoModRef; 569 } 570 571 // Otherwise, a catchret reads and writes. 572 return ModRefInfo::ModRef; 573 } 574 575 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 576 const MemoryLocation &Loc) { 577 AAQueryInfo AAQIP; 578 return getModRefInfo(CX, Loc, AAQIP); 579 } 580 581 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 582 const MemoryLocation &Loc, 583 AAQueryInfo &AAQI) { 584 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 585 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 586 return ModRefInfo::ModRef; 587 588 if (Loc.Ptr) { 589 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 590 // If the cmpxchg address does not alias the location, it does not access 591 // it. 592 if (AR == NoAlias) 593 return ModRefInfo::NoModRef; 594 595 // If the cmpxchg address aliases the pointer as must alias, set Must. 596 if (AR == MustAlias) 597 return ModRefInfo::MustModRef; 598 } 599 600 return ModRefInfo::ModRef; 601 } 602 603 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 604 const MemoryLocation &Loc) { 605 AAQueryInfo AAQIP; 606 return getModRefInfo(RMW, Loc, AAQIP); 607 } 608 609 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 610 const MemoryLocation &Loc, 611 AAQueryInfo &AAQI) { 612 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 613 if (isStrongerThanMonotonic(RMW->getOrdering())) 614 return ModRefInfo::ModRef; 615 616 if (Loc.Ptr) { 617 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 618 // If the atomicrmw address does not alias the location, it does not access 619 // it. 620 if (AR == NoAlias) 621 return ModRefInfo::NoModRef; 622 623 // If the atomicrmw address aliases the pointer as must alias, set Must. 624 if (AR == MustAlias) 625 return ModRefInfo::MustModRef; 626 } 627 628 return ModRefInfo::ModRef; 629 } 630 631 /// Return information about whether a particular call site modifies 632 /// or reads the specified memory location \p MemLoc before instruction \p I 633 /// in a BasicBlock. 634 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 635 /// BasicAA isn't willing to spend linear time determining whether an alloca 636 /// was captured before or after this particular call, while we are. However, 637 /// with a smarter AA in place, this test is just wasting compile time. 638 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 639 const MemoryLocation &MemLoc, 640 DominatorTree *DT) { 641 if (!DT) 642 return ModRefInfo::ModRef; 643 644 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 645 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 646 isa<Constant>(Object)) 647 return ModRefInfo::ModRef; 648 649 const auto *Call = dyn_cast<CallBase>(I); 650 if (!Call || Call == Object) 651 return ModRefInfo::ModRef; 652 653 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 654 /* StoreCaptures */ true, I, DT, 655 /* include Object */ true)) 656 return ModRefInfo::ModRef; 657 658 unsigned ArgNo = 0; 659 ModRefInfo R = ModRefInfo::NoModRef; 660 bool IsMustAlias = true; 661 // Set flag only if no May found and all operands processed. 662 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 663 CI != CE; ++CI, ++ArgNo) { 664 // Only look at the no-capture or byval pointer arguments. If this 665 // pointer were passed to arguments that were neither of these, then it 666 // couldn't be no-capture. 667 if (!(*CI)->getType()->isPointerTy() || 668 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && 669 !Call->isByValArgument(ArgNo))) 670 continue; 671 672 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); 673 // If this is a no-capture pointer argument, see if we can tell that it 674 // is impossible to alias the pointer we're checking. If not, we have to 675 // assume that the call could touch the pointer, even though it doesn't 676 // escape. 677 if (AR != MustAlias) 678 IsMustAlias = false; 679 if (AR == NoAlias) 680 continue; 681 if (Call->doesNotAccessMemory(ArgNo)) 682 continue; 683 if (Call->onlyReadsMemory(ArgNo)) { 684 R = ModRefInfo::Ref; 685 continue; 686 } 687 // Not returning MustModRef since we have not seen all the arguments. 688 return ModRefInfo::ModRef; 689 } 690 return IsMustAlias ? setMust(R) : clearMust(R); 691 } 692 693 /// canBasicBlockModify - Return true if it is possible for execution of the 694 /// specified basic block to modify the location Loc. 695 /// 696 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 697 const MemoryLocation &Loc) { 698 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 699 } 700 701 /// canInstructionRangeModRef - Return true if it is possible for the 702 /// execution of the specified instructions to mod\ref (according to the 703 /// mode) the location Loc. The instructions to consider are all 704 /// of the instructions in the range of [I1,I2] INCLUSIVE. 705 /// I1 and I2 must be in the same basic block. 706 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 707 const Instruction &I2, 708 const MemoryLocation &Loc, 709 const ModRefInfo Mode) { 710 assert(I1.getParent() == I2.getParent() && 711 "Instructions not in same basic block!"); 712 BasicBlock::const_iterator I = I1.getIterator(); 713 BasicBlock::const_iterator E = I2.getIterator(); 714 ++E; // Convert from inclusive to exclusive range. 715 716 for (; I != E; ++I) // Check every instruction in range 717 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 718 return true; 719 return false; 720 } 721 722 // Provide a definition for the root virtual destructor. 723 AAResults::Concept::~Concept() = default; 724 725 // Provide a definition for the static object used to identify passes. 726 AnalysisKey AAManager::Key; 727 728 namespace { 729 730 731 } // end anonymous namespace 732 733 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 734 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 735 } 736 737 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 738 : ImmutablePass(ID), CB(std::move(CB)) { 739 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 740 } 741 742 char ExternalAAWrapperPass::ID = 0; 743 744 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 745 false, true) 746 747 ImmutablePass * 748 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 749 return new ExternalAAWrapperPass(std::move(Callback)); 750 } 751 752 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 753 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 754 } 755 756 char AAResultsWrapperPass::ID = 0; 757 758 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 759 "Function Alias Analysis Results", false, true) 760 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 761 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 762 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 763 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 764 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 765 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 766 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 767 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 768 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 769 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 770 "Function Alias Analysis Results", false, true) 771 772 FunctionPass *llvm::createAAResultsWrapperPass() { 773 return new AAResultsWrapperPass(); 774 } 775 776 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 777 /// 778 /// This is the legacy pass manager's interface to the new-style AA results 779 /// aggregation object. Because this is somewhat shoe-horned into the legacy 780 /// pass manager, we hard code all the specific alias analyses available into 781 /// it. While the particular set enabled is configured via commandline flags, 782 /// adding a new alias analysis to LLVM will require adding support for it to 783 /// this list. 784 bool AAResultsWrapperPass::runOnFunction(Function &F) { 785 // NB! This *must* be reset before adding new AA results to the new 786 // AAResults object because in the legacy pass manager, each instance 787 // of these will refer to the *same* immutable analyses, registering and 788 // unregistering themselves with them. We need to carefully tear down the 789 // previous object first, in this case replacing it with an empty one, before 790 // registering new results. 791 AAR.reset( 792 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 793 794 // BasicAA is always available for function analyses. Also, we add it first 795 // so that it can trump TBAA results when it proves MustAlias. 796 // FIXME: TBAA should have an explicit mode to support this and then we 797 // should reconsider the ordering here. 798 if (!DisableBasicAA) 799 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 800 801 // Populate the results with the currently available AAs. 802 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 803 AAR->addAAResult(WrapperPass->getResult()); 804 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 805 AAR->addAAResult(WrapperPass->getResult()); 806 if (auto *WrapperPass = 807 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 808 AAR->addAAResult(WrapperPass->getResult()); 809 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 810 AAR->addAAResult(WrapperPass->getResult()); 811 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 812 AAR->addAAResult(WrapperPass->getResult()); 813 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 814 AAR->addAAResult(WrapperPass->getResult()); 815 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 816 AAR->addAAResult(WrapperPass->getResult()); 817 818 // If available, run an external AA providing callback over the results as 819 // well. 820 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 821 if (WrapperPass->CB) 822 WrapperPass->CB(*this, F, *AAR); 823 824 // Analyses don't mutate the IR, so return false. 825 return false; 826 } 827 828 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 829 AU.setPreservesAll(); 830 AU.addRequired<BasicAAWrapperPass>(); 831 AU.addRequired<TargetLibraryInfoWrapperPass>(); 832 833 // We also need to mark all the alias analysis passes we will potentially 834 // probe in runOnFunction as used here to ensure the legacy pass manager 835 // preserves them. This hard coding of lists of alias analyses is specific to 836 // the legacy pass manager. 837 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 838 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 839 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 840 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 841 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 842 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 843 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 844 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 845 } 846 847 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 848 BasicAAResult &BAR) { 849 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 850 851 // Add in our explicitly constructed BasicAA results. 852 if (!DisableBasicAA) 853 AAR.addAAResult(BAR); 854 855 // Populate the results with the other currently available AAs. 856 if (auto *WrapperPass = 857 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 858 AAR.addAAResult(WrapperPass->getResult()); 859 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 860 AAR.addAAResult(WrapperPass->getResult()); 861 if (auto *WrapperPass = 862 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 863 AAR.addAAResult(WrapperPass->getResult()); 864 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 865 AAR.addAAResult(WrapperPass->getResult()); 866 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 867 AAR.addAAResult(WrapperPass->getResult()); 868 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 869 AAR.addAAResult(WrapperPass->getResult()); 870 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>()) 871 if (WrapperPass->CB) 872 WrapperPass->CB(P, F, AAR); 873 874 return AAR; 875 } 876 877 bool llvm::isNoAliasCall(const Value *V) { 878 if (const auto *Call = dyn_cast<CallBase>(V)) 879 return Call->hasRetAttr(Attribute::NoAlias); 880 return false; 881 } 882 883 bool llvm::isNoAliasArgument(const Value *V) { 884 if (const Argument *A = dyn_cast<Argument>(V)) 885 return A->hasNoAliasAttr(); 886 return false; 887 } 888 889 bool llvm::isIdentifiedObject(const Value *V) { 890 if (isa<AllocaInst>(V)) 891 return true; 892 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 893 return true; 894 if (isNoAliasCall(V)) 895 return true; 896 if (const Argument *A = dyn_cast<Argument>(V)) 897 return A->hasNoAliasAttr() || A->hasByValAttr(); 898 return false; 899 } 900 901 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 902 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 903 } 904 905 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 906 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 907 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 908 // to be added here also. 909 AU.addRequired<TargetLibraryInfoWrapperPass>(); 910 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 911 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 912 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 913 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 914 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 915 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 916 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 917 } 918