1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified. This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation. Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/AtomicOrdering.h"
50 #include "llvm/Support/Casting.h"
51 #include "llvm/Support/CommandLine.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <functional>
55 #include <iterator>
56
57 #define DEBUG_TYPE "aa"
58
59 using namespace llvm;
60
61 STATISTIC(NumNoAlias, "Number of NoAlias results");
62 STATISTIC(NumMayAlias, "Number of MayAlias results");
63 STATISTIC(NumMustAlias, "Number of MustAlias results");
64
65 namespace llvm {
66 /// Allow disabling BasicAA from the AA results. This is particularly useful
67 /// when testing to isolate a single AA implementation.
68 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
69 } // namespace llvm
70
71 #ifndef NDEBUG
72 /// Print a trace of alias analysis queries and their results.
73 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
74 #else
75 static const bool EnableAATrace = false;
76 #endif
77
AAResults(AAResults && Arg)78 AAResults::AAResults(AAResults &&Arg)
79 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
80 for (auto &AA : AAs)
81 AA->setAAResults(this);
82 }
83
~AAResults()84 AAResults::~AAResults() {
85 // FIXME; It would be nice to at least clear out the pointers back to this
86 // aggregation here, but we end up with non-nesting lifetimes in the legacy
87 // pass manager that prevent this from working. In the legacy pass manager
88 // we'll end up with dangling references here in some cases.
89 #if 0
90 for (auto &AA : AAs)
91 AA->setAAResults(nullptr);
92 #endif
93 }
94
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)95 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
96 FunctionAnalysisManager::Invalidator &Inv) {
97 // AAResults preserves the AAManager by default, due to the stateless nature
98 // of AliasAnalysis. There is no need to check whether it has been preserved
99 // explicitly. Check if any module dependency was invalidated and caused the
100 // AAManager to be invalidated. Invalidate ourselves in that case.
101 auto PAC = PA.getChecker<AAManager>();
102 if (!PAC.preservedWhenStateless())
103 return true;
104
105 // Check if any of the function dependencies were invalidated, and invalidate
106 // ourselves in that case.
107 for (AnalysisKey *ID : AADeps)
108 if (Inv.invalidate(ID, F, PA))
109 return true;
110
111 // Everything we depend on is still fine, so are we. Nothing to invalidate.
112 return false;
113 }
114
115 //===----------------------------------------------------------------------===//
116 // Default chaining methods
117 //===----------------------------------------------------------------------===//
118
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)119 AliasResult AAResults::alias(const MemoryLocation &LocA,
120 const MemoryLocation &LocB) {
121 SimpleAAQueryInfo AAQIP;
122 return alias(LocA, LocB, AAQIP);
123 }
124
alias(const MemoryLocation & LocA,const MemoryLocation & LocB,AAQueryInfo & AAQI)125 AliasResult AAResults::alias(const MemoryLocation &LocA,
126 const MemoryLocation &LocB, AAQueryInfo &AAQI) {
127 AliasResult Result = AliasResult::MayAlias;
128
129 if (EnableAATrace) {
130 for (unsigned I = 0; I < AAQI.Depth; ++I)
131 dbgs() << " ";
132 dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
133 << *LocB.Ptr << " @ " << LocB.Size << "\n";
134 }
135
136 AAQI.Depth++;
137 for (const auto &AA : AAs) {
138 Result = AA->alias(LocA, LocB, AAQI);
139 if (Result != AliasResult::MayAlias)
140 break;
141 }
142 AAQI.Depth--;
143
144 if (EnableAATrace) {
145 for (unsigned I = 0; I < AAQI.Depth; ++I)
146 dbgs() << " ";
147 dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
148 << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
149 }
150
151 if (AAQI.Depth == 0) {
152 if (Result == AliasResult::NoAlias)
153 ++NumNoAlias;
154 else if (Result == AliasResult::MustAlias)
155 ++NumMustAlias;
156 else
157 ++NumMayAlias;
158 }
159 return Result;
160 }
161
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)162 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
163 bool OrLocal) {
164 SimpleAAQueryInfo AAQIP;
165 return pointsToConstantMemory(Loc, AAQIP, OrLocal);
166 }
167
pointsToConstantMemory(const MemoryLocation & Loc,AAQueryInfo & AAQI,bool OrLocal)168 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
169 AAQueryInfo &AAQI, bool OrLocal) {
170 for (const auto &AA : AAs)
171 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
172 return true;
173
174 return false;
175 }
176
getArgModRefInfo(const CallBase * Call,unsigned ArgIdx)177 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
178 ModRefInfo Result = ModRefInfo::ModRef;
179
180 for (const auto &AA : AAs) {
181 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
182
183 // Early-exit the moment we reach the bottom of the lattice.
184 if (isNoModRef(Result))
185 return ModRefInfo::NoModRef;
186 }
187
188 return Result;
189 }
190
getModRefInfo(Instruction * I,const CallBase * Call2)191 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
192 SimpleAAQueryInfo AAQIP;
193 return getModRefInfo(I, Call2, AAQIP);
194 }
195
getModRefInfo(Instruction * I,const CallBase * Call2,AAQueryInfo & AAQI)196 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
197 AAQueryInfo &AAQI) {
198 // We may have two calls.
199 if (const auto *Call1 = dyn_cast<CallBase>(I)) {
200 // Check if the two calls modify the same memory.
201 return getModRefInfo(Call1, Call2, AAQI);
202 }
203 // If this is a fence, just return ModRef.
204 if (I->isFenceLike())
205 return ModRefInfo::ModRef;
206 // Otherwise, check if the call modifies or references the
207 // location this memory access defines. The best we can say
208 // is that if the call references what this instruction
209 // defines, it must be clobbered by this location.
210 const MemoryLocation DefLoc = MemoryLocation::get(I);
211 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
212 if (isModOrRefSet(MR))
213 return setModAndRef(MR);
214 return ModRefInfo::NoModRef;
215 }
216
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc)217 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
218 const MemoryLocation &Loc) {
219 SimpleAAQueryInfo AAQIP;
220 return getModRefInfo(Call, Loc, AAQIP);
221 }
222
getModRefInfo(const CallBase * Call,const MemoryLocation & Loc,AAQueryInfo & AAQI)223 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
224 const MemoryLocation &Loc,
225 AAQueryInfo &AAQI) {
226 ModRefInfo Result = ModRefInfo::ModRef;
227
228 for (const auto &AA : AAs) {
229 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
230
231 // Early-exit the moment we reach the bottom of the lattice.
232 if (isNoModRef(Result))
233 return ModRefInfo::NoModRef;
234 }
235
236 // Try to refine the mod-ref info further using other API entry points to the
237 // aggregate set of AA results.
238 auto MRB = getModRefBehavior(Call);
239 if (onlyAccessesInaccessibleMem(MRB))
240 return ModRefInfo::NoModRef;
241
242 if (onlyReadsMemory(MRB))
243 Result = clearMod(Result);
244 else if (onlyWritesMemory(MRB))
245 Result = clearRef(Result);
246
247 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
248 bool IsMustAlias = true;
249 ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
250 if (doesAccessArgPointees(MRB)) {
251 for (const auto &I : llvm::enumerate(Call->args())) {
252 const Value *Arg = I.value();
253 if (!Arg->getType()->isPointerTy())
254 continue;
255 unsigned ArgIdx = I.index();
256 MemoryLocation ArgLoc =
257 MemoryLocation::getForArgument(Call, ArgIdx, TLI);
258 AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI);
259 if (ArgAlias != AliasResult::NoAlias) {
260 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
261 AllArgsMask = unionModRef(AllArgsMask, ArgMask);
262 }
263 // Conservatively clear IsMustAlias unless only MustAlias is found.
264 IsMustAlias &= (ArgAlias == AliasResult::MustAlias);
265 }
266 }
267 // Return NoModRef if no alias found with any argument.
268 if (isNoModRef(AllArgsMask))
269 return ModRefInfo::NoModRef;
270 // Logical & between other AA analyses and argument analysis.
271 Result = intersectModRef(Result, AllArgsMask);
272 // If only MustAlias found above, set Must bit.
273 Result = IsMustAlias ? setMust(Result) : clearMust(Result);
274 }
275
276 // If Loc is a constant memory location, the call definitely could not
277 // modify the memory location.
278 if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
279 Result = clearMod(Result);
280
281 return Result;
282 }
283
getModRefInfo(const CallBase * Call1,const CallBase * Call2)284 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
285 const CallBase *Call2) {
286 SimpleAAQueryInfo AAQIP;
287 return getModRefInfo(Call1, Call2, AAQIP);
288 }
289
getModRefInfo(const CallBase * Call1,const CallBase * Call2,AAQueryInfo & AAQI)290 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
291 const CallBase *Call2, AAQueryInfo &AAQI) {
292 ModRefInfo Result = ModRefInfo::ModRef;
293
294 for (const auto &AA : AAs) {
295 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
296
297 // Early-exit the moment we reach the bottom of the lattice.
298 if (isNoModRef(Result))
299 return ModRefInfo::NoModRef;
300 }
301
302 // Try to refine the mod-ref info further using other API entry points to the
303 // aggregate set of AA results.
304
305 // If Call1 or Call2 are readnone, they don't interact.
306 auto Call1B = getModRefBehavior(Call1);
307 if (Call1B == FMRB_DoesNotAccessMemory)
308 return ModRefInfo::NoModRef;
309
310 auto Call2B = getModRefBehavior(Call2);
311 if (Call2B == FMRB_DoesNotAccessMemory)
312 return ModRefInfo::NoModRef;
313
314 // If they both only read from memory, there is no dependence.
315 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
316 return ModRefInfo::NoModRef;
317
318 // If Call1 only reads memory, the only dependence on Call2 can be
319 // from Call1 reading memory written by Call2.
320 if (onlyReadsMemory(Call1B))
321 Result = clearMod(Result);
322 else if (onlyWritesMemory(Call1B))
323 Result = clearRef(Result);
324
325 // If Call2 only access memory through arguments, accumulate the mod/ref
326 // information from Call1's references to the memory referenced by
327 // Call2's arguments.
328 if (onlyAccessesArgPointees(Call2B)) {
329 if (!doesAccessArgPointees(Call2B))
330 return ModRefInfo::NoModRef;
331 ModRefInfo R = ModRefInfo::NoModRef;
332 bool IsMustAlias = true;
333 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
334 const Value *Arg = *I;
335 if (!Arg->getType()->isPointerTy())
336 continue;
337 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
338 auto Call2ArgLoc =
339 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
340
341 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
342 // dependence of Call1 on that location is the inverse:
343 // - If Call2 modifies location, dependence exists if Call1 reads or
344 // writes.
345 // - If Call2 only reads location, dependence exists if Call1 writes.
346 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
347 ModRefInfo ArgMask = ModRefInfo::NoModRef;
348 if (isModSet(ArgModRefC2))
349 ArgMask = ModRefInfo::ModRef;
350 else if (isRefSet(ArgModRefC2))
351 ArgMask = ModRefInfo::Mod;
352
353 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
354 // above ArgMask to update dependence info.
355 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
356 ArgMask = intersectModRef(ArgMask, ModRefC1);
357
358 // Conservatively clear IsMustAlias unless only MustAlias is found.
359 IsMustAlias &= isMustSet(ModRefC1);
360
361 R = intersectModRef(unionModRef(R, ArgMask), Result);
362 if (R == Result) {
363 // On early exit, not all args were checked, cannot set Must.
364 if (I + 1 != E)
365 IsMustAlias = false;
366 break;
367 }
368 }
369
370 if (isNoModRef(R))
371 return ModRefInfo::NoModRef;
372
373 // If MustAlias found above, set Must bit.
374 return IsMustAlias ? setMust(R) : clearMust(R);
375 }
376
377 // If Call1 only accesses memory through arguments, check if Call2 references
378 // any of the memory referenced by Call1's arguments. If not, return NoModRef.
379 if (onlyAccessesArgPointees(Call1B)) {
380 if (!doesAccessArgPointees(Call1B))
381 return ModRefInfo::NoModRef;
382 ModRefInfo R = ModRefInfo::NoModRef;
383 bool IsMustAlias = true;
384 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
385 const Value *Arg = *I;
386 if (!Arg->getType()->isPointerTy())
387 continue;
388 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
389 auto Call1ArgLoc =
390 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
391
392 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
393 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
394 // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
395 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
396 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
397 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
398 (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
399 R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
400
401 // Conservatively clear IsMustAlias unless only MustAlias is found.
402 IsMustAlias &= isMustSet(ModRefC2);
403
404 if (R == Result) {
405 // On early exit, not all args were checked, cannot set Must.
406 if (I + 1 != E)
407 IsMustAlias = false;
408 break;
409 }
410 }
411
412 if (isNoModRef(R))
413 return ModRefInfo::NoModRef;
414
415 // If MustAlias found above, set Must bit.
416 return IsMustAlias ? setMust(R) : clearMust(R);
417 }
418
419 return Result;
420 }
421
getModRefBehavior(const CallBase * Call)422 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
423 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
424
425 for (const auto &AA : AAs) {
426 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
427
428 // Early-exit the moment we reach the bottom of the lattice.
429 if (Result == FMRB_DoesNotAccessMemory)
430 return Result;
431 }
432
433 return Result;
434 }
435
getModRefBehavior(const Function * F)436 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
437 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
438
439 for (const auto &AA : AAs) {
440 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
441
442 // Early-exit the moment we reach the bottom of the lattice.
443 if (Result == FMRB_DoesNotAccessMemory)
444 return Result;
445 }
446
447 return Result;
448 }
449
operator <<(raw_ostream & OS,AliasResult AR)450 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
451 switch (AR) {
452 case AliasResult::NoAlias:
453 OS << "NoAlias";
454 break;
455 case AliasResult::MustAlias:
456 OS << "MustAlias";
457 break;
458 case AliasResult::MayAlias:
459 OS << "MayAlias";
460 break;
461 case AliasResult::PartialAlias:
462 OS << "PartialAlias";
463 if (AR.hasOffset())
464 OS << " (off " << AR.getOffset() << ")";
465 break;
466 }
467 return OS;
468 }
469
470 //===----------------------------------------------------------------------===//
471 // Helper method implementation
472 //===----------------------------------------------------------------------===//
473
getModRefInfo(const LoadInst * L,const MemoryLocation & Loc)474 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
475 const MemoryLocation &Loc) {
476 SimpleAAQueryInfo AAQIP;
477 return getModRefInfo(L, Loc, AAQIP);
478 }
getModRefInfo(const LoadInst * L,const MemoryLocation & Loc,AAQueryInfo & AAQI)479 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
480 const MemoryLocation &Loc,
481 AAQueryInfo &AAQI) {
482 // Be conservative in the face of atomic.
483 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
484 return ModRefInfo::ModRef;
485
486 // If the load address doesn't alias the given address, it doesn't read
487 // or write the specified memory.
488 if (Loc.Ptr) {
489 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
490 if (AR == AliasResult::NoAlias)
491 return ModRefInfo::NoModRef;
492 if (AR == AliasResult::MustAlias)
493 return ModRefInfo::MustRef;
494 }
495 // Otherwise, a load just reads.
496 return ModRefInfo::Ref;
497 }
498
getModRefInfo(const StoreInst * S,const MemoryLocation & Loc)499 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
500 const MemoryLocation &Loc) {
501 SimpleAAQueryInfo AAQIP;
502 return getModRefInfo(S, Loc, AAQIP);
503 }
getModRefInfo(const StoreInst * S,const MemoryLocation & Loc,AAQueryInfo & AAQI)504 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
505 const MemoryLocation &Loc,
506 AAQueryInfo &AAQI) {
507 // Be conservative in the face of atomic.
508 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
509 return ModRefInfo::ModRef;
510
511 if (Loc.Ptr) {
512 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
513 // If the store address cannot alias the pointer in question, then the
514 // specified memory cannot be modified by the store.
515 if (AR == AliasResult::NoAlias)
516 return ModRefInfo::NoModRef;
517
518 // If the pointer is a pointer to constant memory, then it could not have
519 // been modified by this store.
520 if (pointsToConstantMemory(Loc, AAQI))
521 return ModRefInfo::NoModRef;
522
523 // If the store address aliases the pointer as must alias, set Must.
524 if (AR == AliasResult::MustAlias)
525 return ModRefInfo::MustMod;
526 }
527
528 // Otherwise, a store just writes.
529 return ModRefInfo::Mod;
530 }
531
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc)532 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
533 SimpleAAQueryInfo AAQIP;
534 return getModRefInfo(S, Loc, AAQIP);
535 }
536
getModRefInfo(const FenceInst * S,const MemoryLocation & Loc,AAQueryInfo & AAQI)537 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
538 const MemoryLocation &Loc,
539 AAQueryInfo &AAQI) {
540 // If we know that the location is a constant memory location, the fence
541 // cannot modify this location.
542 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
543 return ModRefInfo::Ref;
544 return ModRefInfo::ModRef;
545 }
546
getModRefInfo(const VAArgInst * V,const MemoryLocation & Loc)547 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
548 const MemoryLocation &Loc) {
549 SimpleAAQueryInfo AAQIP;
550 return getModRefInfo(V, Loc, AAQIP);
551 }
552
getModRefInfo(const VAArgInst * V,const MemoryLocation & Loc,AAQueryInfo & AAQI)553 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
554 const MemoryLocation &Loc,
555 AAQueryInfo &AAQI) {
556 if (Loc.Ptr) {
557 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
558 // If the va_arg address cannot alias the pointer in question, then the
559 // specified memory cannot be accessed by the va_arg.
560 if (AR == AliasResult::NoAlias)
561 return ModRefInfo::NoModRef;
562
563 // If the pointer is a pointer to constant memory, then it could not have
564 // been modified by this va_arg.
565 if (pointsToConstantMemory(Loc, AAQI))
566 return ModRefInfo::NoModRef;
567
568 // If the va_arg aliases the pointer as must alias, set Must.
569 if (AR == AliasResult::MustAlias)
570 return ModRefInfo::MustModRef;
571 }
572
573 // Otherwise, a va_arg reads and writes.
574 return ModRefInfo::ModRef;
575 }
576
getModRefInfo(const CatchPadInst * CatchPad,const MemoryLocation & Loc)577 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
578 const MemoryLocation &Loc) {
579 SimpleAAQueryInfo AAQIP;
580 return getModRefInfo(CatchPad, Loc, AAQIP);
581 }
582
getModRefInfo(const CatchPadInst * CatchPad,const MemoryLocation & Loc,AAQueryInfo & AAQI)583 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
584 const MemoryLocation &Loc,
585 AAQueryInfo &AAQI) {
586 if (Loc.Ptr) {
587 // If the pointer is a pointer to constant memory,
588 // then it could not have been modified by this catchpad.
589 if (pointsToConstantMemory(Loc, AAQI))
590 return ModRefInfo::NoModRef;
591 }
592
593 // Otherwise, a catchpad reads and writes.
594 return ModRefInfo::ModRef;
595 }
596
getModRefInfo(const CatchReturnInst * CatchRet,const MemoryLocation & Loc)597 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
598 const MemoryLocation &Loc) {
599 SimpleAAQueryInfo AAQIP;
600 return getModRefInfo(CatchRet, Loc, AAQIP);
601 }
602
getModRefInfo(const CatchReturnInst * CatchRet,const MemoryLocation & Loc,AAQueryInfo & AAQI)603 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
604 const MemoryLocation &Loc,
605 AAQueryInfo &AAQI) {
606 if (Loc.Ptr) {
607 // If the pointer is a pointer to constant memory,
608 // then it could not have been modified by this catchpad.
609 if (pointsToConstantMemory(Loc, AAQI))
610 return ModRefInfo::NoModRef;
611 }
612
613 // Otherwise, a catchret reads and writes.
614 return ModRefInfo::ModRef;
615 }
616
getModRefInfo(const AtomicCmpXchgInst * CX,const MemoryLocation & Loc)617 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
618 const MemoryLocation &Loc) {
619 SimpleAAQueryInfo AAQIP;
620 return getModRefInfo(CX, Loc, AAQIP);
621 }
622
getModRefInfo(const AtomicCmpXchgInst * CX,const MemoryLocation & Loc,AAQueryInfo & AAQI)623 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
624 const MemoryLocation &Loc,
625 AAQueryInfo &AAQI) {
626 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
627 if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
628 return ModRefInfo::ModRef;
629
630 if (Loc.Ptr) {
631 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
632 // If the cmpxchg address does not alias the location, it does not access
633 // it.
634 if (AR == AliasResult::NoAlias)
635 return ModRefInfo::NoModRef;
636
637 // If the cmpxchg address aliases the pointer as must alias, set Must.
638 if (AR == AliasResult::MustAlias)
639 return ModRefInfo::MustModRef;
640 }
641
642 return ModRefInfo::ModRef;
643 }
644
getModRefInfo(const AtomicRMWInst * RMW,const MemoryLocation & Loc)645 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
646 const MemoryLocation &Loc) {
647 SimpleAAQueryInfo AAQIP;
648 return getModRefInfo(RMW, Loc, AAQIP);
649 }
650
getModRefInfo(const AtomicRMWInst * RMW,const MemoryLocation & Loc,AAQueryInfo & AAQI)651 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
652 const MemoryLocation &Loc,
653 AAQueryInfo &AAQI) {
654 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
655 if (isStrongerThanMonotonic(RMW->getOrdering()))
656 return ModRefInfo::ModRef;
657
658 if (Loc.Ptr) {
659 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
660 // If the atomicrmw address does not alias the location, it does not access
661 // it.
662 if (AR == AliasResult::NoAlias)
663 return ModRefInfo::NoModRef;
664
665 // If the atomicrmw address aliases the pointer as must alias, set Must.
666 if (AR == AliasResult::MustAlias)
667 return ModRefInfo::MustModRef;
668 }
669
670 return ModRefInfo::ModRef;
671 }
672
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc,AAQueryInfo & AAQIP)673 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
674 const Optional<MemoryLocation> &OptLoc,
675 AAQueryInfo &AAQIP) {
676 if (OptLoc == None) {
677 if (const auto *Call = dyn_cast<CallBase>(I)) {
678 return createModRefInfo(getModRefBehavior(Call));
679 }
680 }
681
682 const MemoryLocation &Loc = OptLoc.value_or(MemoryLocation());
683
684 switch (I->getOpcode()) {
685 case Instruction::VAArg:
686 return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
687 case Instruction::Load:
688 return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
689 case Instruction::Store:
690 return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
691 case Instruction::Fence:
692 return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
693 case Instruction::AtomicCmpXchg:
694 return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
695 case Instruction::AtomicRMW:
696 return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
697 case Instruction::Call:
698 case Instruction::CallBr:
699 case Instruction::Invoke:
700 return getModRefInfo((const CallBase *)I, Loc, AAQIP);
701 case Instruction::CatchPad:
702 return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
703 case Instruction::CatchRet:
704 return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
705 default:
706 assert(!I->mayReadOrWriteMemory() &&
707 "Unhandled memory access instruction!");
708 return ModRefInfo::NoModRef;
709 }
710 }
711
712 /// Return information about whether a particular call site modifies
713 /// or reads the specified memory location \p MemLoc before instruction \p I
714 /// in a BasicBlock.
715 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
716 /// BasicAA isn't willing to spend linear time determining whether an alloca
717 /// was captured before or after this particular call, while we are. However,
718 /// with a smarter AA in place, this test is just wasting compile time.
callCapturesBefore(const Instruction * I,const MemoryLocation & MemLoc,DominatorTree * DT,AAQueryInfo & AAQI)719 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
720 const MemoryLocation &MemLoc,
721 DominatorTree *DT,
722 AAQueryInfo &AAQI) {
723 if (!DT)
724 return ModRefInfo::ModRef;
725
726 const Value *Object = getUnderlyingObject(MemLoc.Ptr);
727 if (!isIdentifiedFunctionLocal(Object))
728 return ModRefInfo::ModRef;
729
730 const auto *Call = dyn_cast<CallBase>(I);
731 if (!Call || Call == Object)
732 return ModRefInfo::ModRef;
733
734 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
735 /* StoreCaptures */ true, I, DT,
736 /* include Object */ true))
737 return ModRefInfo::ModRef;
738
739 unsigned ArgNo = 0;
740 ModRefInfo R = ModRefInfo::NoModRef;
741 bool IsMustAlias = true;
742 // Set flag only if no May found and all operands processed.
743 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
744 CI != CE; ++CI, ++ArgNo) {
745 // Only look at the no-capture or byval pointer arguments. If this
746 // pointer were passed to arguments that were neither of these, then it
747 // couldn't be no-capture.
748 if (!(*CI)->getType()->isPointerTy() ||
749 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->arg_size() &&
750 !Call->isByValArgument(ArgNo)))
751 continue;
752
753 AliasResult AR = alias(
754 MemoryLocation::getBeforeOrAfter(*CI),
755 MemoryLocation::getBeforeOrAfter(Object), AAQI);
756 // If this is a no-capture pointer argument, see if we can tell that it
757 // is impossible to alias the pointer we're checking. If not, we have to
758 // assume that the call could touch the pointer, even though it doesn't
759 // escape.
760 if (AR != AliasResult::MustAlias)
761 IsMustAlias = false;
762 if (AR == AliasResult::NoAlias)
763 continue;
764 if (Call->doesNotAccessMemory(ArgNo))
765 continue;
766 if (Call->onlyReadsMemory(ArgNo)) {
767 R = ModRefInfo::Ref;
768 continue;
769 }
770 // Not returning MustModRef since we have not seen all the arguments.
771 return ModRefInfo::ModRef;
772 }
773 return IsMustAlias ? setMust(R) : clearMust(R);
774 }
775
776 /// canBasicBlockModify - Return true if it is possible for execution of the
777 /// specified basic block to modify the location Loc.
778 ///
canBasicBlockModify(const BasicBlock & BB,const MemoryLocation & Loc)779 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
780 const MemoryLocation &Loc) {
781 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
782 }
783
784 /// canInstructionRangeModRef - Return true if it is possible for the
785 /// execution of the specified instructions to mod\ref (according to the
786 /// mode) the location Loc. The instructions to consider are all
787 /// of the instructions in the range of [I1,I2] INCLUSIVE.
788 /// I1 and I2 must be in the same basic block.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const MemoryLocation & Loc,const ModRefInfo Mode)789 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
790 const Instruction &I2,
791 const MemoryLocation &Loc,
792 const ModRefInfo Mode) {
793 assert(I1.getParent() == I2.getParent() &&
794 "Instructions not in same basic block!");
795 BasicBlock::const_iterator I = I1.getIterator();
796 BasicBlock::const_iterator E = I2.getIterator();
797 ++E; // Convert from inclusive to exclusive range.
798
799 for (; I != E; ++I) // Check every instruction in range
800 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
801 return true;
802 return false;
803 }
804
805 // Provide a definition for the root virtual destructor.
806 AAResults::Concept::~Concept() = default;
807
808 // Provide a definition for the static object used to identify passes.
809 AnalysisKey AAManager::Key;
810
ExternalAAWrapperPass()811 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
812 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
813 }
814
ExternalAAWrapperPass(CallbackT CB)815 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
816 : ImmutablePass(ID), CB(std::move(CB)) {
817 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
818 }
819
820 char ExternalAAWrapperPass::ID = 0;
821
822 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
823 false, true)
824
825 ImmutablePass *
createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback)826 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
827 return new ExternalAAWrapperPass(std::move(Callback));
828 }
829
AAResultsWrapperPass()830 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
831 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
832 }
833
834 char AAResultsWrapperPass::ID = 0;
835
836 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
837 "Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)838 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
839 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
840 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
841 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
842 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
843 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
844 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
845 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
846 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
847 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
848 "Function Alias Analysis Results", false, true)
849
850 FunctionPass *llvm::createAAResultsWrapperPass() {
851 return new AAResultsWrapperPass();
852 }
853
854 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
855 ///
856 /// This is the legacy pass manager's interface to the new-style AA results
857 /// aggregation object. Because this is somewhat shoe-horned into the legacy
858 /// pass manager, we hard code all the specific alias analyses available into
859 /// it. While the particular set enabled is configured via commandline flags,
860 /// adding a new alias analysis to LLVM will require adding support for it to
861 /// this list.
runOnFunction(Function & F)862 bool AAResultsWrapperPass::runOnFunction(Function &F) {
863 // NB! This *must* be reset before adding new AA results to the new
864 // AAResults object because in the legacy pass manager, each instance
865 // of these will refer to the *same* immutable analyses, registering and
866 // unregistering themselves with them. We need to carefully tear down the
867 // previous object first, in this case replacing it with an empty one, before
868 // registering new results.
869 AAR.reset(
870 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
871
872 // BasicAA is always available for function analyses. Also, we add it first
873 // so that it can trump TBAA results when it proves MustAlias.
874 // FIXME: TBAA should have an explicit mode to support this and then we
875 // should reconsider the ordering here.
876 if (!DisableBasicAA)
877 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
878
879 // Populate the results with the currently available AAs.
880 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
881 AAR->addAAResult(WrapperPass->getResult());
882 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
883 AAR->addAAResult(WrapperPass->getResult());
884 if (auto *WrapperPass =
885 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
886 AAR->addAAResult(WrapperPass->getResult());
887 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
888 AAR->addAAResult(WrapperPass->getResult());
889 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
890 AAR->addAAResult(WrapperPass->getResult());
891 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
892 AAR->addAAResult(WrapperPass->getResult());
893 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
894 AAR->addAAResult(WrapperPass->getResult());
895
896 // If available, run an external AA providing callback over the results as
897 // well.
898 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
899 if (WrapperPass->CB)
900 WrapperPass->CB(*this, F, *AAR);
901
902 // Analyses don't mutate the IR, so return false.
903 return false;
904 }
905
getAnalysisUsage(AnalysisUsage & AU) const906 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
907 AU.setPreservesAll();
908 AU.addRequiredTransitive<BasicAAWrapperPass>();
909 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
910
911 // We also need to mark all the alias analysis passes we will potentially
912 // probe in runOnFunction as used here to ensure the legacy pass manager
913 // preserves them. This hard coding of lists of alias analyses is specific to
914 // the legacy pass manager.
915 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
916 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
917 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
918 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
919 AU.addUsedIfAvailable<SCEVAAWrapperPass>();
920 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
921 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
922 AU.addUsedIfAvailable<ExternalAAWrapperPass>();
923 }
924
run(Function & F,FunctionAnalysisManager & AM)925 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
926 Result R(AM.getResult<TargetLibraryAnalysis>(F));
927 for (auto &Getter : ResultGetters)
928 (*Getter)(F, AM, R);
929 return R;
930 }
931
createLegacyPMAAResults(Pass & P,Function & F,BasicAAResult & BAR)932 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
933 BasicAAResult &BAR) {
934 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
935
936 // Add in our explicitly constructed BasicAA results.
937 if (!DisableBasicAA)
938 AAR.addAAResult(BAR);
939
940 // Populate the results with the other currently available AAs.
941 if (auto *WrapperPass =
942 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
943 AAR.addAAResult(WrapperPass->getResult());
944 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
945 AAR.addAAResult(WrapperPass->getResult());
946 if (auto *WrapperPass =
947 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
948 AAR.addAAResult(WrapperPass->getResult());
949 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
950 AAR.addAAResult(WrapperPass->getResult());
951 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
952 AAR.addAAResult(WrapperPass->getResult());
953 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
954 AAR.addAAResult(WrapperPass->getResult());
955 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
956 if (WrapperPass->CB)
957 WrapperPass->CB(P, F, AAR);
958
959 return AAR;
960 }
961
isNoAliasCall(const Value * V)962 bool llvm::isNoAliasCall(const Value *V) {
963 if (const auto *Call = dyn_cast<CallBase>(V))
964 return Call->hasRetAttr(Attribute::NoAlias);
965 return false;
966 }
967
isNoAliasOrByValArgument(const Value * V)968 static bool isNoAliasOrByValArgument(const Value *V) {
969 if (const Argument *A = dyn_cast<Argument>(V))
970 return A->hasNoAliasAttr() || A->hasByValAttr();
971 return false;
972 }
973
isIdentifiedObject(const Value * V)974 bool llvm::isIdentifiedObject(const Value *V) {
975 if (isa<AllocaInst>(V))
976 return true;
977 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
978 return true;
979 if (isNoAliasCall(V))
980 return true;
981 if (isNoAliasOrByValArgument(V))
982 return true;
983 return false;
984 }
985
isIdentifiedFunctionLocal(const Value * V)986 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
987 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
988 }
989
isEscapeSource(const Value * V)990 bool llvm::isEscapeSource(const Value *V) {
991 if (auto *CB = dyn_cast<CallBase>(V))
992 return !isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CB,
993 true);
994
995 // The load case works because isNonEscapingLocalObject considers all
996 // stores to be escapes (it passes true for the StoreCaptures argument
997 // to PointerMayBeCaptured).
998 if (isa<LoadInst>(V))
999 return true;
1000
1001 // The inttoptr case works because isNonEscapingLocalObject considers all
1002 // means of converting or equating a pointer to an int (ptrtoint, ptr store
1003 // which could be followed by an integer load, ptr<->int compare) as
1004 // escaping, and objects located at well-known addresses via platform-specific
1005 // means cannot be considered non-escaping local objects.
1006 if (isa<IntToPtrInst>(V))
1007 return true;
1008
1009 return false;
1010 }
1011
isNotVisibleOnUnwind(const Value * Object,bool & RequiresNoCaptureBeforeUnwind)1012 bool llvm::isNotVisibleOnUnwind(const Value *Object,
1013 bool &RequiresNoCaptureBeforeUnwind) {
1014 RequiresNoCaptureBeforeUnwind = false;
1015
1016 // Alloca goes out of scope on unwind.
1017 if (isa<AllocaInst>(Object))
1018 return true;
1019
1020 // Byval goes out of scope on unwind.
1021 if (auto *A = dyn_cast<Argument>(Object))
1022 return A->hasByValAttr();
1023
1024 // A noalias return is not accessible from any other code. If the pointer
1025 // does not escape prior to the unwind, then the caller cannot access the
1026 // memory either.
1027 if (isNoAliasCall(Object)) {
1028 RequiresNoCaptureBeforeUnwind = true;
1029 return true;
1030 }
1031
1032 return false;
1033 }
1034
getAAResultsAnalysisUsage(AnalysisUsage & AU)1035 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
1036 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
1037 // more alias analyses are added to llvm::createLegacyPMAAResults, they need
1038 // to be added here also.
1039 AU.addRequired<TargetLibraryInfoWrapperPass>();
1040 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
1041 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
1042 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
1043 AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
1044 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
1045 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
1046 AU.addUsedIfAvailable<ExternalAAWrapperPass>();
1047 }
1048