1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified.  This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation.  Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
57 
58 using namespace llvm;
59 
60 /// Allow disabling BasicAA from the AA results. This is particularly useful
61 /// when testing to isolate a single AA implementation.
62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
63                                     cl::init(false));
64 
65 AAResults::AAResults(AAResults &&Arg)
66     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
67   for (auto &AA : AAs)
68     AA->setAAResults(this);
69 }
70 
71 AAResults::~AAResults() {
72 // FIXME; It would be nice to at least clear out the pointers back to this
73 // aggregation here, but we end up with non-nesting lifetimes in the legacy
74 // pass manager that prevent this from working. In the legacy pass manager
75 // we'll end up with dangling references here in some cases.
76 #if 0
77   for (auto &AA : AAs)
78     AA->setAAResults(nullptr);
79 #endif
80 }
81 
82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
83                            FunctionAnalysisManager::Invalidator &Inv) {
84   // Check if the AA manager itself has been invalidated.
85   auto PAC = PA.getChecker<AAManager>();
86   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
87     return true; // The manager needs to be blown away, clear everything.
88 
89   // Check all of the dependencies registered.
90   for (AnalysisKey *ID : AADeps)
91     if (Inv.invalidate(ID, F, PA))
92       return true;
93 
94   // Everything we depend on is still fine, so are we. Nothing to invalidate.
95   return false;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 // Default chaining methods
100 //===----------------------------------------------------------------------===//
101 
102 AliasResult AAResults::alias(const MemoryLocation &LocA,
103                              const MemoryLocation &LocB) {
104   for (const auto &AA : AAs) {
105     auto Result = AA->alias(LocA, LocB);
106     if (Result != MayAlias)
107       return Result;
108   }
109   return MayAlias;
110 }
111 
112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
113                                        bool OrLocal) {
114   for (const auto &AA : AAs)
115     if (AA->pointsToConstantMemory(Loc, OrLocal))
116       return true;
117 
118   return false;
119 }
120 
121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
122   ModRefInfo Result = ModRefInfo::ModRef;
123 
124   for (const auto &AA : AAs) {
125     Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx));
126 
127     // Early-exit the moment we reach the bottom of the lattice.
128     if (isNoModRef(Result))
129       return ModRefInfo::NoModRef;
130   }
131 
132   return Result;
133 }
134 
135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
136   // We may have two calls.
137   if (auto CS = ImmutableCallSite(I)) {
138     // Check if the two calls modify the same memory.
139     return getModRefInfo(CS, Call);
140   } else if (I->isFenceLike()) {
141     // If this is a fence, just return ModRef.
142     return ModRefInfo::ModRef;
143   } else {
144     // Otherwise, check if the call modifies or references the
145     // location this memory access defines.  The best we can say
146     // is that if the call references what this instruction
147     // defines, it must be clobbered by this location.
148     const MemoryLocation DefLoc = MemoryLocation::get(I);
149     ModRefInfo MR = getModRefInfo(Call, DefLoc);
150     if (isModOrRefSet(MR))
151       return setModAndRef(MR);
152   }
153   return ModRefInfo::NoModRef;
154 }
155 
156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
157                                     const MemoryLocation &Loc) {
158   ModRefInfo Result = ModRefInfo::ModRef;
159 
160   for (const auto &AA : AAs) {
161     Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc));
162 
163     // Early-exit the moment we reach the bottom of the lattice.
164     if (isNoModRef(Result))
165       return ModRefInfo::NoModRef;
166   }
167 
168   // Try to refine the mod-ref info further using other API entry points to the
169   // aggregate set of AA results.
170   auto MRB = getModRefBehavior(CS);
171   if (MRB == FMRB_DoesNotAccessMemory ||
172       MRB == FMRB_OnlyAccessesInaccessibleMem)
173     return ModRefInfo::NoModRef;
174 
175   if (onlyReadsMemory(MRB))
176     Result = clearMod(Result);
177   else if (doesNotReadMemory(MRB))
178     Result = clearRef(Result);
179 
180   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
181     bool IsMustAlias = true;
182     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
183     if (doesAccessArgPointees(MRB)) {
184       for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
185         const Value *Arg = *AI;
186         if (!Arg->getType()->isPointerTy())
187           continue;
188         unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
189         MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
190         AliasResult ArgAlias = alias(ArgLoc, Loc);
191         if (ArgAlias != NoAlias) {
192           ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
193           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
194         }
195         // Conservatively clear IsMustAlias unless only MustAlias is found.
196         IsMustAlias &= (ArgAlias == MustAlias);
197       }
198     }
199     // Return NoModRef if no alias found with any argument.
200     if (isNoModRef(AllArgsMask))
201       return ModRefInfo::NoModRef;
202     // Logical & between other AA analyses and argument analysis.
203     Result = intersectModRef(Result, AllArgsMask);
204     // If only MustAlias found above, set Must bit.
205     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
206   }
207 
208   // If Loc is a constant memory location, the call definitely could not
209   // modify the memory location.
210   if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
211     Result = clearMod(Result);
212 
213   return Result;
214 }
215 
216 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
217                                     ImmutableCallSite CS2) {
218   ModRefInfo Result = ModRefInfo::ModRef;
219 
220   for (const auto &AA : AAs) {
221     Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2));
222 
223     // Early-exit the moment we reach the bottom of the lattice.
224     if (isNoModRef(Result))
225       return ModRefInfo::NoModRef;
226   }
227 
228   // Try to refine the mod-ref info further using other API entry points to the
229   // aggregate set of AA results.
230 
231   // If CS1 or CS2 are readnone, they don't interact.
232   auto CS1B = getModRefBehavior(CS1);
233   if (CS1B == FMRB_DoesNotAccessMemory)
234     return ModRefInfo::NoModRef;
235 
236   auto CS2B = getModRefBehavior(CS2);
237   if (CS2B == FMRB_DoesNotAccessMemory)
238     return ModRefInfo::NoModRef;
239 
240   // If they both only read from memory, there is no dependence.
241   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
242     return ModRefInfo::NoModRef;
243 
244   // If CS1 only reads memory, the only dependence on CS2 can be
245   // from CS1 reading memory written by CS2.
246   if (onlyReadsMemory(CS1B))
247     Result = clearMod(Result);
248   else if (doesNotReadMemory(CS1B))
249     Result = clearRef(Result);
250 
251   // If CS2 only access memory through arguments, accumulate the mod/ref
252   // information from CS1's references to the memory referenced by
253   // CS2's arguments.
254   if (onlyAccessesArgPointees(CS2B)) {
255     if (!doesAccessArgPointees(CS2B))
256       return ModRefInfo::NoModRef;
257     ModRefInfo R = ModRefInfo::NoModRef;
258     bool IsMustAlias = true;
259     for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
260       const Value *Arg = *I;
261       if (!Arg->getType()->isPointerTy())
262         continue;
263       unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
264       auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
265 
266       // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
267       // dependence of CS1 on that location is the inverse:
268       // - If CS2 modifies location, dependence exists if CS1 reads or writes.
269       // - If CS2 only reads location, dependence exists if CS1 writes.
270       ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx);
271       ModRefInfo ArgMask = ModRefInfo::NoModRef;
272       if (isModSet(ArgModRefCS2))
273         ArgMask = ModRefInfo::ModRef;
274       else if (isRefSet(ArgModRefCS2))
275         ArgMask = ModRefInfo::Mod;
276 
277       // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
278       // above ArgMask to update dependence info.
279       ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc);
280       ArgMask = intersectModRef(ArgMask, ModRefCS1);
281 
282       // Conservatively clear IsMustAlias unless only MustAlias is found.
283       IsMustAlias &= isMustSet(ModRefCS1);
284 
285       R = intersectModRef(unionModRef(R, ArgMask), Result);
286       if (R == Result) {
287         // On early exit, not all args were checked, cannot set Must.
288         if (I + 1 != E)
289           IsMustAlias = false;
290         break;
291       }
292     }
293 
294     if (isNoModRef(R))
295       return ModRefInfo::NoModRef;
296 
297     // If MustAlias found above, set Must bit.
298     return IsMustAlias ? setMust(R) : clearMust(R);
299   }
300 
301   // If CS1 only accesses memory through arguments, check if CS2 references
302   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
303   if (onlyAccessesArgPointees(CS1B)) {
304     if (!doesAccessArgPointees(CS1B))
305       return ModRefInfo::NoModRef;
306     ModRefInfo R = ModRefInfo::NoModRef;
307     bool IsMustAlias = true;
308     for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
309       const Value *Arg = *I;
310       if (!Arg->getType()->isPointerTy())
311         continue;
312       unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
313       auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
314 
315       // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
316       // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
317       // CS1 might Ref, then we care only about a Mod by CS2.
318       ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx);
319       ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc);
320       if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) ||
321           (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2)))
322         R = intersectModRef(unionModRef(R, ArgModRefCS1), Result);
323 
324       // Conservatively clear IsMustAlias unless only MustAlias is found.
325       IsMustAlias &= isMustSet(ModRefCS2);
326 
327       if (R == Result) {
328         // On early exit, not all args were checked, cannot set Must.
329         if (I + 1 != E)
330           IsMustAlias = false;
331         break;
332       }
333     }
334 
335     if (isNoModRef(R))
336       return ModRefInfo::NoModRef;
337 
338     // If MustAlias found above, set Must bit.
339     return IsMustAlias ? setMust(R) : clearMust(R);
340   }
341 
342   return Result;
343 }
344 
345 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
346   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
347 
348   for (const auto &AA : AAs) {
349     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
350 
351     // Early-exit the moment we reach the bottom of the lattice.
352     if (Result == FMRB_DoesNotAccessMemory)
353       return Result;
354   }
355 
356   return Result;
357 }
358 
359 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
360   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
361 
362   for (const auto &AA : AAs) {
363     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
364 
365     // Early-exit the moment we reach the bottom of the lattice.
366     if (Result == FMRB_DoesNotAccessMemory)
367       return Result;
368   }
369 
370   return Result;
371 }
372 
373 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
374   switch (AR) {
375   case NoAlias:
376     OS << "NoAlias";
377     break;
378   case MustAlias:
379     OS << "MustAlias";
380     break;
381   case MayAlias:
382     OS << "MayAlias";
383     break;
384   case PartialAlias:
385     OS << "PartialAlias";
386     break;
387   }
388   return OS;
389 }
390 
391 //===----------------------------------------------------------------------===//
392 // Helper method implementation
393 //===----------------------------------------------------------------------===//
394 
395 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
396                                     const MemoryLocation &Loc) {
397   // Be conservative in the face of atomic.
398   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
399     return ModRefInfo::ModRef;
400 
401   // If the load address doesn't alias the given address, it doesn't read
402   // or write the specified memory.
403   if (Loc.Ptr) {
404     AliasResult AR = alias(MemoryLocation::get(L), Loc);
405     if (AR == NoAlias)
406       return ModRefInfo::NoModRef;
407     if (AR == MustAlias)
408       return ModRefInfo::MustRef;
409   }
410   // Otherwise, a load just reads.
411   return ModRefInfo::Ref;
412 }
413 
414 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
415                                     const MemoryLocation &Loc) {
416   // Be conservative in the face of atomic.
417   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
418     return ModRefInfo::ModRef;
419 
420   if (Loc.Ptr) {
421     AliasResult AR = alias(MemoryLocation::get(S), Loc);
422     // If the store address cannot alias the pointer in question, then the
423     // specified memory cannot be modified by the store.
424     if (AR == NoAlias)
425       return ModRefInfo::NoModRef;
426 
427     // If the pointer is a pointer to constant memory, then it could not have
428     // been modified by this store.
429     if (pointsToConstantMemory(Loc))
430       return ModRefInfo::NoModRef;
431 
432     // If the store address aliases the pointer as must alias, set Must.
433     if (AR == MustAlias)
434       return ModRefInfo::MustMod;
435   }
436 
437   // Otherwise, a store just writes.
438   return ModRefInfo::Mod;
439 }
440 
441 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
442   // If we know that the location is a constant memory location, the fence
443   // cannot modify this location.
444   if (Loc.Ptr && pointsToConstantMemory(Loc))
445     return ModRefInfo::Ref;
446   return ModRefInfo::ModRef;
447 }
448 
449 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
450                                     const MemoryLocation &Loc) {
451   if (Loc.Ptr) {
452     AliasResult AR = alias(MemoryLocation::get(V), Loc);
453     // If the va_arg address cannot alias the pointer in question, then the
454     // specified memory cannot be accessed by the va_arg.
455     if (AR == NoAlias)
456       return ModRefInfo::NoModRef;
457 
458     // If the pointer is a pointer to constant memory, then it could not have
459     // been modified by this va_arg.
460     if (pointsToConstantMemory(Loc))
461       return ModRefInfo::NoModRef;
462 
463     // If the va_arg aliases the pointer as must alias, set Must.
464     if (AR == MustAlias)
465       return ModRefInfo::MustModRef;
466   }
467 
468   // Otherwise, a va_arg reads and writes.
469   return ModRefInfo::ModRef;
470 }
471 
472 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
473                                     const MemoryLocation &Loc) {
474   if (Loc.Ptr) {
475     // If the pointer is a pointer to constant memory,
476     // then it could not have been modified by this catchpad.
477     if (pointsToConstantMemory(Loc))
478       return ModRefInfo::NoModRef;
479   }
480 
481   // Otherwise, a catchpad reads and writes.
482   return ModRefInfo::ModRef;
483 }
484 
485 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
486                                     const MemoryLocation &Loc) {
487   if (Loc.Ptr) {
488     // If the pointer is a pointer to constant memory,
489     // then it could not have been modified by this catchpad.
490     if (pointsToConstantMemory(Loc))
491       return ModRefInfo::NoModRef;
492   }
493 
494   // Otherwise, a catchret reads and writes.
495   return ModRefInfo::ModRef;
496 }
497 
498 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
499                                     const MemoryLocation &Loc) {
500   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
501   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
502     return ModRefInfo::ModRef;
503 
504   if (Loc.Ptr) {
505     AliasResult AR = alias(MemoryLocation::get(CX), Loc);
506     // If the cmpxchg address does not alias the location, it does not access
507     // it.
508     if (AR == NoAlias)
509       return ModRefInfo::NoModRef;
510 
511     // If the cmpxchg address aliases the pointer as must alias, set Must.
512     if (AR == MustAlias)
513       return ModRefInfo::MustModRef;
514   }
515 
516   return ModRefInfo::ModRef;
517 }
518 
519 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
520                                     const MemoryLocation &Loc) {
521   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
522   if (isStrongerThanMonotonic(RMW->getOrdering()))
523     return ModRefInfo::ModRef;
524 
525   if (Loc.Ptr) {
526     AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
527     // If the atomicrmw address does not alias the location, it does not access
528     // it.
529     if (AR == NoAlias)
530       return ModRefInfo::NoModRef;
531 
532     // If the atomicrmw address aliases the pointer as must alias, set Must.
533     if (AR == MustAlias)
534       return ModRefInfo::MustModRef;
535   }
536 
537   return ModRefInfo::ModRef;
538 }
539 
540 /// Return information about whether a particular call site modifies
541 /// or reads the specified memory location \p MemLoc before instruction \p I
542 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
543 /// instruction-ordering queries inside the BasicBlock containing \p I.
544 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
545 /// BasicAA isn't willing to spend linear time determining whether an alloca
546 /// was captured before or after this particular call, while we are. However,
547 /// with a smarter AA in place, this test is just wasting compile time.
548 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
549                                          const MemoryLocation &MemLoc,
550                                          DominatorTree *DT,
551                                          OrderedBasicBlock *OBB) {
552   if (!DT)
553     return ModRefInfo::ModRef;
554 
555   const Value *Object =
556       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
557   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
558       isa<Constant>(Object))
559     return ModRefInfo::ModRef;
560 
561   ImmutableCallSite CS(I);
562   if (!CS.getInstruction() || CS.getInstruction() == Object)
563     return ModRefInfo::ModRef;
564 
565   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
566                                  /* StoreCaptures */ true, I, DT,
567                                  /* include Object */ true,
568                                  /* OrderedBasicBlock */ OBB))
569     return ModRefInfo::ModRef;
570 
571   unsigned ArgNo = 0;
572   ModRefInfo R = ModRefInfo::NoModRef;
573   bool IsMustAlias = true;
574   // Set flag only if no May found and all operands processed.
575   for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
576        CI != CE; ++CI, ++ArgNo) {
577     // Only look at the no-capture or byval pointer arguments.  If this
578     // pointer were passed to arguments that were neither of these, then it
579     // couldn't be no-capture.
580     if (!(*CI)->getType()->isPointerTy() ||
581         (!CS.doesNotCapture(ArgNo) &&
582          ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
583       continue;
584 
585     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
586     // If this is a no-capture pointer argument, see if we can tell that it
587     // is impossible to alias the pointer we're checking.  If not, we have to
588     // assume that the call could touch the pointer, even though it doesn't
589     // escape.
590     if (AR != MustAlias)
591       IsMustAlias = false;
592     if (AR == NoAlias)
593       continue;
594     if (CS.doesNotAccessMemory(ArgNo))
595       continue;
596     if (CS.onlyReadsMemory(ArgNo)) {
597       R = ModRefInfo::Ref;
598       continue;
599     }
600     // Not returning MustModRef since we have not seen all the arguments.
601     return ModRefInfo::ModRef;
602   }
603   return IsMustAlias ? setMust(R) : clearMust(R);
604 }
605 
606 /// canBasicBlockModify - Return true if it is possible for execution of the
607 /// specified basic block to modify the location Loc.
608 ///
609 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
610                                     const MemoryLocation &Loc) {
611   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
612 }
613 
614 /// canInstructionRangeModRef - Return true if it is possible for the
615 /// execution of the specified instructions to mod\ref (according to the
616 /// mode) the location Loc. The instructions to consider are all
617 /// of the instructions in the range of [I1,I2] INCLUSIVE.
618 /// I1 and I2 must be in the same basic block.
619 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
620                                           const Instruction &I2,
621                                           const MemoryLocation &Loc,
622                                           const ModRefInfo Mode) {
623   assert(I1.getParent() == I2.getParent() &&
624          "Instructions not in same basic block!");
625   BasicBlock::const_iterator I = I1.getIterator();
626   BasicBlock::const_iterator E = I2.getIterator();
627   ++E;  // Convert from inclusive to exclusive range.
628 
629   for (; I != E; ++I) // Check every instruction in range
630     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
631       return true;
632   return false;
633 }
634 
635 // Provide a definition for the root virtual destructor.
636 AAResults::Concept::~Concept() = default;
637 
638 // Provide a definition for the static object used to identify passes.
639 AnalysisKey AAManager::Key;
640 
641 namespace {
642 
643 
644 } // end anonymous namespace
645 
646 char ExternalAAWrapperPass::ID = 0;
647 
648 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
649                 false, true)
650 
651 ImmutablePass *
652 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
653   return new ExternalAAWrapperPass(std::move(Callback));
654 }
655 
656 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
657   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
658 }
659 
660 char AAResultsWrapperPass::ID = 0;
661 
662 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
663                       "Function Alias Analysis Results", false, true)
664 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
665 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
666 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
667 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
668 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
669 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
670 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
671 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
672 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
673 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
674                     "Function Alias Analysis Results", false, true)
675 
676 FunctionPass *llvm::createAAResultsWrapperPass() {
677   return new AAResultsWrapperPass();
678 }
679 
680 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
681 ///
682 /// This is the legacy pass manager's interface to the new-style AA results
683 /// aggregation object. Because this is somewhat shoe-horned into the legacy
684 /// pass manager, we hard code all the specific alias analyses available into
685 /// it. While the particular set enabled is configured via commandline flags,
686 /// adding a new alias analysis to LLVM will require adding support for it to
687 /// this list.
688 bool AAResultsWrapperPass::runOnFunction(Function &F) {
689   // NB! This *must* be reset before adding new AA results to the new
690   // AAResults object because in the legacy pass manager, each instance
691   // of these will refer to the *same* immutable analyses, registering and
692   // unregistering themselves with them. We need to carefully tear down the
693   // previous object first, in this case replacing it with an empty one, before
694   // registering new results.
695   AAR.reset(
696       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
697 
698   // BasicAA is always available for function analyses. Also, we add it first
699   // so that it can trump TBAA results when it proves MustAlias.
700   // FIXME: TBAA should have an explicit mode to support this and then we
701   // should reconsider the ordering here.
702   if (!DisableBasicAA)
703     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
704 
705   // Populate the results with the currently available AAs.
706   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
707     AAR->addAAResult(WrapperPass->getResult());
708   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
709     AAR->addAAResult(WrapperPass->getResult());
710   if (auto *WrapperPass =
711           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
712     AAR->addAAResult(WrapperPass->getResult());
713   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
714     AAR->addAAResult(WrapperPass->getResult());
715   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
716     AAR->addAAResult(WrapperPass->getResult());
717   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
718     AAR->addAAResult(WrapperPass->getResult());
719   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
720     AAR->addAAResult(WrapperPass->getResult());
721 
722   // If available, run an external AA providing callback over the results as
723   // well.
724   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
725     if (WrapperPass->CB)
726       WrapperPass->CB(*this, F, *AAR);
727 
728   // Analyses don't mutate the IR, so return false.
729   return false;
730 }
731 
732 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
733   AU.setPreservesAll();
734   AU.addRequired<BasicAAWrapperPass>();
735   AU.addRequired<TargetLibraryInfoWrapperPass>();
736 
737   // We also need to mark all the alias analysis passes we will potentially
738   // probe in runOnFunction as used here to ensure the legacy pass manager
739   // preserves them. This hard coding of lists of alias analyses is specific to
740   // the legacy pass manager.
741   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
742   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
743   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
744   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
745   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
746   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
747   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
748 }
749 
750 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
751                                         BasicAAResult &BAR) {
752   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
753 
754   // Add in our explicitly constructed BasicAA results.
755   if (!DisableBasicAA)
756     AAR.addAAResult(BAR);
757 
758   // Populate the results with the other currently available AAs.
759   if (auto *WrapperPass =
760           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
761     AAR.addAAResult(WrapperPass->getResult());
762   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
763     AAR.addAAResult(WrapperPass->getResult());
764   if (auto *WrapperPass =
765           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
766     AAR.addAAResult(WrapperPass->getResult());
767   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
768     AAR.addAAResult(WrapperPass->getResult());
769   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
770     AAR.addAAResult(WrapperPass->getResult());
771   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
772     AAR.addAAResult(WrapperPass->getResult());
773 
774   return AAR;
775 }
776 
777 bool llvm::isNoAliasCall(const Value *V) {
778   if (auto CS = ImmutableCallSite(V))
779     return CS.hasRetAttr(Attribute::NoAlias);
780   return false;
781 }
782 
783 bool llvm::isNoAliasArgument(const Value *V) {
784   if (const Argument *A = dyn_cast<Argument>(V))
785     return A->hasNoAliasAttr();
786   return false;
787 }
788 
789 bool llvm::isIdentifiedObject(const Value *V) {
790   if (isa<AllocaInst>(V))
791     return true;
792   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
793     return true;
794   if (isNoAliasCall(V))
795     return true;
796   if (const Argument *A = dyn_cast<Argument>(V))
797     return A->hasNoAliasAttr() || A->hasByValAttr();
798   return false;
799 }
800 
801 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
802   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
803 }
804 
805 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
806   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
807   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
808   // to be added here also.
809   AU.addRequired<TargetLibraryInfoWrapperPass>();
810   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
811   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
812   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
813   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
814   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
815   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
816 }
817