1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic AliasAnalysis interface which is used as the 11 // common interface used by all clients and implementations of alias analysis. 12 // 13 // This file also implements the default version of the AliasAnalysis interface 14 // that is to be used when no other implementation is specified. This does some 15 // simple tests that detect obvious cases: two different global pointers cannot 16 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 17 // etc. 18 // 19 // This alias analysis implementation really isn't very good for anything, but 20 // it is very fast, and makes a nice clean default implementation. Because it 21 // handles lots of little corner cases, other, more complex, alias analysis 22 // implementations may choose to rely on this pass to resolve these simple and 23 // easy cases. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/MemoryLocation.h" 34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/ScopedNoAliasAA.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/Argument.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/CallSite.h" 44 #include "llvm/IR/Instruction.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/Module.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/AtomicOrdering.h" 51 #include "llvm/Support/Casting.h" 52 #include "llvm/Support/CommandLine.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <functional> 56 #include <iterator> 57 58 using namespace llvm; 59 60 /// Allow disabling BasicAA from the AA results. This is particularly useful 61 /// when testing to isolate a single AA implementation. 62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 63 cl::init(false)); 64 65 AAResults::AAResults(AAResults &&Arg) 66 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 67 for (auto &AA : AAs) 68 AA->setAAResults(this); 69 } 70 71 AAResults::~AAResults() { 72 // FIXME; It would be nice to at least clear out the pointers back to this 73 // aggregation here, but we end up with non-nesting lifetimes in the legacy 74 // pass manager that prevent this from working. In the legacy pass manager 75 // we'll end up with dangling references here in some cases. 76 #if 0 77 for (auto &AA : AAs) 78 AA->setAAResults(nullptr); 79 #endif 80 } 81 82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 83 FunctionAnalysisManager::Invalidator &Inv) { 84 // Check if the AA manager itself has been invalidated. 85 auto PAC = PA.getChecker<AAManager>(); 86 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 87 return true; // The manager needs to be blown away, clear everything. 88 89 // Check all of the dependencies registered. 90 for (AnalysisKey *ID : AADeps) 91 if (Inv.invalidate(ID, F, PA)) 92 return true; 93 94 // Everything we depend on is still fine, so are we. Nothing to invalidate. 95 return false; 96 } 97 98 //===----------------------------------------------------------------------===// 99 // Default chaining methods 100 //===----------------------------------------------------------------------===// 101 102 AliasResult AAResults::alias(const MemoryLocation &LocA, 103 const MemoryLocation &LocB) { 104 for (const auto &AA : AAs) { 105 auto Result = AA->alias(LocA, LocB); 106 if (Result != MayAlias) 107 return Result; 108 } 109 return MayAlias; 110 } 111 112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 113 bool OrLocal) { 114 for (const auto &AA : AAs) 115 if (AA->pointsToConstantMemory(Loc, OrLocal)) 116 return true; 117 118 return false; 119 } 120 121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 122 ModRefInfo Result = ModRefInfo::ModRef; 123 124 for (const auto &AA : AAs) { 125 Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx)); 126 127 // Early-exit the moment we reach the bottom of the lattice. 128 if (isNoModRef(Result)) 129 return ModRefInfo::NoModRef; 130 } 131 132 return Result; 133 } 134 135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { 136 // We may have two calls. 137 if (auto CS = ImmutableCallSite(I)) { 138 // Check if the two calls modify the same memory. 139 return getModRefInfo(CS, Call); 140 } else if (I->isFenceLike()) { 141 // If this is a fence, just return ModRef. 142 return ModRefInfo::ModRef; 143 } else { 144 // Otherwise, check if the call modifies or references the 145 // location this memory access defines. The best we can say 146 // is that if the call references what this instruction 147 // defines, it must be clobbered by this location. 148 const MemoryLocation DefLoc = MemoryLocation::get(I); 149 ModRefInfo MR = getModRefInfo(Call, DefLoc); 150 if (isModOrRefSet(MR)) 151 return setModAndRef(MR); 152 } 153 return ModRefInfo::NoModRef; 154 } 155 156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, 157 const MemoryLocation &Loc) { 158 ModRefInfo Result = ModRefInfo::ModRef; 159 160 for (const auto &AA : AAs) { 161 Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc)); 162 163 // Early-exit the moment we reach the bottom of the lattice. 164 if (isNoModRef(Result)) 165 return ModRefInfo::NoModRef; 166 } 167 168 // Try to refine the mod-ref info further using other API entry points to the 169 // aggregate set of AA results. 170 auto MRB = getModRefBehavior(CS); 171 if (MRB == FMRB_DoesNotAccessMemory || 172 MRB == FMRB_OnlyAccessesInaccessibleMem) 173 return ModRefInfo::NoModRef; 174 175 if (onlyReadsMemory(MRB)) 176 Result = clearMod(Result); 177 else if (doesNotReadMemory(MRB)) 178 Result = clearRef(Result); 179 180 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 181 bool IsMustAlias = true; 182 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 183 if (doesAccessArgPointees(MRB)) { 184 for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { 185 const Value *Arg = *AI; 186 if (!Arg->getType()->isPointerTy()) 187 continue; 188 unsigned ArgIdx = std::distance(CS.arg_begin(), AI); 189 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI); 190 AliasResult ArgAlias = alias(ArgLoc, Loc); 191 if (ArgAlias != NoAlias) { 192 ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); 193 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 194 } 195 // Conservatively clear IsMustAlias unless only MustAlias is found. 196 IsMustAlias &= (ArgAlias == MustAlias); 197 } 198 } 199 // Return NoModRef if no alias found with any argument. 200 if (isNoModRef(AllArgsMask)) 201 return ModRefInfo::NoModRef; 202 // Logical & between other AA analyses and argument analysis. 203 Result = intersectModRef(Result, AllArgsMask); 204 // If only MustAlias found above, set Must bit. 205 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 206 } 207 208 // If Loc is a constant memory location, the call definitely could not 209 // modify the memory location. 210 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 211 Result = clearMod(Result); 212 213 return Result; 214 } 215 216 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, 217 ImmutableCallSite CS2) { 218 ModRefInfo Result = ModRefInfo::ModRef; 219 220 for (const auto &AA : AAs) { 221 Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2)); 222 223 // Early-exit the moment we reach the bottom of the lattice. 224 if (isNoModRef(Result)) 225 return ModRefInfo::NoModRef; 226 } 227 228 // Try to refine the mod-ref info further using other API entry points to the 229 // aggregate set of AA results. 230 231 // If CS1 or CS2 are readnone, they don't interact. 232 auto CS1B = getModRefBehavior(CS1); 233 if (CS1B == FMRB_DoesNotAccessMemory) 234 return ModRefInfo::NoModRef; 235 236 auto CS2B = getModRefBehavior(CS2); 237 if (CS2B == FMRB_DoesNotAccessMemory) 238 return ModRefInfo::NoModRef; 239 240 // If they both only read from memory, there is no dependence. 241 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) 242 return ModRefInfo::NoModRef; 243 244 // If CS1 only reads memory, the only dependence on CS2 can be 245 // from CS1 reading memory written by CS2. 246 if (onlyReadsMemory(CS1B)) 247 Result = clearMod(Result); 248 else if (doesNotReadMemory(CS1B)) 249 Result = clearRef(Result); 250 251 // If CS2 only access memory through arguments, accumulate the mod/ref 252 // information from CS1's references to the memory referenced by 253 // CS2's arguments. 254 if (onlyAccessesArgPointees(CS2B)) { 255 if (!doesAccessArgPointees(CS2B)) 256 return ModRefInfo::NoModRef; 257 ModRefInfo R = ModRefInfo::NoModRef; 258 bool IsMustAlias = true; 259 for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { 260 const Value *Arg = *I; 261 if (!Arg->getType()->isPointerTy()) 262 continue; 263 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); 264 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI); 265 266 // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the 267 // dependence of CS1 on that location is the inverse: 268 // - If CS2 modifies location, dependence exists if CS1 reads or writes. 269 // - If CS2 only reads location, dependence exists if CS1 writes. 270 ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx); 271 ModRefInfo ArgMask = ModRefInfo::NoModRef; 272 if (isModSet(ArgModRefCS2)) 273 ArgMask = ModRefInfo::ModRef; 274 else if (isRefSet(ArgModRefCS2)) 275 ArgMask = ModRefInfo::Mod; 276 277 // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use 278 // above ArgMask to update dependence info. 279 ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc); 280 ArgMask = intersectModRef(ArgMask, ModRefCS1); 281 282 // Conservatively clear IsMustAlias unless only MustAlias is found. 283 IsMustAlias &= isMustSet(ModRefCS1); 284 285 R = intersectModRef(unionModRef(R, ArgMask), Result); 286 if (R == Result) { 287 // On early exit, not all args were checked, cannot set Must. 288 if (I + 1 != E) 289 IsMustAlias = false; 290 break; 291 } 292 } 293 294 if (isNoModRef(R)) 295 return ModRefInfo::NoModRef; 296 297 // If MustAlias found above, set Must bit. 298 return IsMustAlias ? setMust(R) : clearMust(R); 299 } 300 301 // If CS1 only accesses memory through arguments, check if CS2 references 302 // any of the memory referenced by CS1's arguments. If not, return NoModRef. 303 if (onlyAccessesArgPointees(CS1B)) { 304 if (!doesAccessArgPointees(CS1B)) 305 return ModRefInfo::NoModRef; 306 ModRefInfo R = ModRefInfo::NoModRef; 307 bool IsMustAlias = true; 308 for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { 309 const Value *Arg = *I; 310 if (!Arg->getType()->isPointerTy()) 311 continue; 312 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); 313 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI); 314 315 // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might 316 // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If 317 // CS1 might Ref, then we care only about a Mod by CS2. 318 ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx); 319 ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc); 320 if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) || 321 (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2))) 322 R = intersectModRef(unionModRef(R, ArgModRefCS1), Result); 323 324 // Conservatively clear IsMustAlias unless only MustAlias is found. 325 IsMustAlias &= isMustSet(ModRefCS2); 326 327 if (R == Result) { 328 // On early exit, not all args were checked, cannot set Must. 329 if (I + 1 != E) 330 IsMustAlias = false; 331 break; 332 } 333 } 334 335 if (isNoModRef(R)) 336 return ModRefInfo::NoModRef; 337 338 // If MustAlias found above, set Must bit. 339 return IsMustAlias ? setMust(R) : clearMust(R); 340 } 341 342 return Result; 343 } 344 345 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { 346 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 347 348 for (const auto &AA : AAs) { 349 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); 350 351 // Early-exit the moment we reach the bottom of the lattice. 352 if (Result == FMRB_DoesNotAccessMemory) 353 return Result; 354 } 355 356 return Result; 357 } 358 359 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 360 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 361 362 for (const auto &AA : AAs) { 363 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 364 365 // Early-exit the moment we reach the bottom of the lattice. 366 if (Result == FMRB_DoesNotAccessMemory) 367 return Result; 368 } 369 370 return Result; 371 } 372 373 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 374 switch (AR) { 375 case NoAlias: 376 OS << "NoAlias"; 377 break; 378 case MustAlias: 379 OS << "MustAlias"; 380 break; 381 case MayAlias: 382 OS << "MayAlias"; 383 break; 384 case PartialAlias: 385 OS << "PartialAlias"; 386 break; 387 } 388 return OS; 389 } 390 391 //===----------------------------------------------------------------------===// 392 // Helper method implementation 393 //===----------------------------------------------------------------------===// 394 395 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 396 const MemoryLocation &Loc) { 397 // Be conservative in the face of atomic. 398 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 399 return ModRefInfo::ModRef; 400 401 // If the load address doesn't alias the given address, it doesn't read 402 // or write the specified memory. 403 if (Loc.Ptr) { 404 AliasResult AR = alias(MemoryLocation::get(L), Loc); 405 if (AR == NoAlias) 406 return ModRefInfo::NoModRef; 407 if (AR == MustAlias) 408 return ModRefInfo::MustRef; 409 } 410 // Otherwise, a load just reads. 411 return ModRefInfo::Ref; 412 } 413 414 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 415 const MemoryLocation &Loc) { 416 // Be conservative in the face of atomic. 417 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 418 return ModRefInfo::ModRef; 419 420 if (Loc.Ptr) { 421 AliasResult AR = alias(MemoryLocation::get(S), Loc); 422 // If the store address cannot alias the pointer in question, then the 423 // specified memory cannot be modified by the store. 424 if (AR == NoAlias) 425 return ModRefInfo::NoModRef; 426 427 // If the pointer is a pointer to constant memory, then it could not have 428 // been modified by this store. 429 if (pointsToConstantMemory(Loc)) 430 return ModRefInfo::NoModRef; 431 432 // If the store address aliases the pointer as must alias, set Must. 433 if (AR == MustAlias) 434 return ModRefInfo::MustMod; 435 } 436 437 // Otherwise, a store just writes. 438 return ModRefInfo::Mod; 439 } 440 441 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 442 // If we know that the location is a constant memory location, the fence 443 // cannot modify this location. 444 if (Loc.Ptr && pointsToConstantMemory(Loc)) 445 return ModRefInfo::Ref; 446 return ModRefInfo::ModRef; 447 } 448 449 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 450 const MemoryLocation &Loc) { 451 if (Loc.Ptr) { 452 AliasResult AR = alias(MemoryLocation::get(V), Loc); 453 // If the va_arg address cannot alias the pointer in question, then the 454 // specified memory cannot be accessed by the va_arg. 455 if (AR == NoAlias) 456 return ModRefInfo::NoModRef; 457 458 // If the pointer is a pointer to constant memory, then it could not have 459 // been modified by this va_arg. 460 if (pointsToConstantMemory(Loc)) 461 return ModRefInfo::NoModRef; 462 463 // If the va_arg aliases the pointer as must alias, set Must. 464 if (AR == MustAlias) 465 return ModRefInfo::MustModRef; 466 } 467 468 // Otherwise, a va_arg reads and writes. 469 return ModRefInfo::ModRef; 470 } 471 472 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 473 const MemoryLocation &Loc) { 474 if (Loc.Ptr) { 475 // If the pointer is a pointer to constant memory, 476 // then it could not have been modified by this catchpad. 477 if (pointsToConstantMemory(Loc)) 478 return ModRefInfo::NoModRef; 479 } 480 481 // Otherwise, a catchpad reads and writes. 482 return ModRefInfo::ModRef; 483 } 484 485 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 486 const MemoryLocation &Loc) { 487 if (Loc.Ptr) { 488 // If the pointer is a pointer to constant memory, 489 // then it could not have been modified by this catchpad. 490 if (pointsToConstantMemory(Loc)) 491 return ModRefInfo::NoModRef; 492 } 493 494 // Otherwise, a catchret reads and writes. 495 return ModRefInfo::ModRef; 496 } 497 498 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 499 const MemoryLocation &Loc) { 500 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 501 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 502 return ModRefInfo::ModRef; 503 504 if (Loc.Ptr) { 505 AliasResult AR = alias(MemoryLocation::get(CX), Loc); 506 // If the cmpxchg address does not alias the location, it does not access 507 // it. 508 if (AR == NoAlias) 509 return ModRefInfo::NoModRef; 510 511 // If the cmpxchg address aliases the pointer as must alias, set Must. 512 if (AR == MustAlias) 513 return ModRefInfo::MustModRef; 514 } 515 516 return ModRefInfo::ModRef; 517 } 518 519 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 520 const MemoryLocation &Loc) { 521 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 522 if (isStrongerThanMonotonic(RMW->getOrdering())) 523 return ModRefInfo::ModRef; 524 525 if (Loc.Ptr) { 526 AliasResult AR = alias(MemoryLocation::get(RMW), Loc); 527 // If the atomicrmw address does not alias the location, it does not access 528 // it. 529 if (AR == NoAlias) 530 return ModRefInfo::NoModRef; 531 532 // If the atomicrmw address aliases the pointer as must alias, set Must. 533 if (AR == MustAlias) 534 return ModRefInfo::MustModRef; 535 } 536 537 return ModRefInfo::ModRef; 538 } 539 540 /// Return information about whether a particular call site modifies 541 /// or reads the specified memory location \p MemLoc before instruction \p I 542 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up 543 /// instruction-ordering queries inside the BasicBlock containing \p I. 544 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 545 /// BasicAA isn't willing to spend linear time determining whether an alloca 546 /// was captured before or after this particular call, while we are. However, 547 /// with a smarter AA in place, this test is just wasting compile time. 548 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 549 const MemoryLocation &MemLoc, 550 DominatorTree *DT, 551 OrderedBasicBlock *OBB) { 552 if (!DT) 553 return ModRefInfo::ModRef; 554 555 const Value *Object = 556 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 557 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 558 isa<Constant>(Object)) 559 return ModRefInfo::ModRef; 560 561 ImmutableCallSite CS(I); 562 if (!CS.getInstruction() || CS.getInstruction() == Object) 563 return ModRefInfo::ModRef; 564 565 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 566 /* StoreCaptures */ true, I, DT, 567 /* include Object */ true, 568 /* OrderedBasicBlock */ OBB)) 569 return ModRefInfo::ModRef; 570 571 unsigned ArgNo = 0; 572 ModRefInfo R = ModRefInfo::NoModRef; 573 bool IsMustAlias = true; 574 // Set flag only if no May found and all operands processed. 575 for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end(); 576 CI != CE; ++CI, ++ArgNo) { 577 // Only look at the no-capture or byval pointer arguments. If this 578 // pointer were passed to arguments that were neither of these, then it 579 // couldn't be no-capture. 580 if (!(*CI)->getType()->isPointerTy() || 581 (!CS.doesNotCapture(ArgNo) && 582 ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo))) 583 continue; 584 585 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); 586 // If this is a no-capture pointer argument, see if we can tell that it 587 // is impossible to alias the pointer we're checking. If not, we have to 588 // assume that the call could touch the pointer, even though it doesn't 589 // escape. 590 if (AR != MustAlias) 591 IsMustAlias = false; 592 if (AR == NoAlias) 593 continue; 594 if (CS.doesNotAccessMemory(ArgNo)) 595 continue; 596 if (CS.onlyReadsMemory(ArgNo)) { 597 R = ModRefInfo::Ref; 598 continue; 599 } 600 // Not returning MustModRef since we have not seen all the arguments. 601 return ModRefInfo::ModRef; 602 } 603 return IsMustAlias ? setMust(R) : clearMust(R); 604 } 605 606 /// canBasicBlockModify - Return true if it is possible for execution of the 607 /// specified basic block to modify the location Loc. 608 /// 609 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 610 const MemoryLocation &Loc) { 611 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 612 } 613 614 /// canInstructionRangeModRef - Return true if it is possible for the 615 /// execution of the specified instructions to mod\ref (according to the 616 /// mode) the location Loc. The instructions to consider are all 617 /// of the instructions in the range of [I1,I2] INCLUSIVE. 618 /// I1 and I2 must be in the same basic block. 619 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 620 const Instruction &I2, 621 const MemoryLocation &Loc, 622 const ModRefInfo Mode) { 623 assert(I1.getParent() == I2.getParent() && 624 "Instructions not in same basic block!"); 625 BasicBlock::const_iterator I = I1.getIterator(); 626 BasicBlock::const_iterator E = I2.getIterator(); 627 ++E; // Convert from inclusive to exclusive range. 628 629 for (; I != E; ++I) // Check every instruction in range 630 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 631 return true; 632 return false; 633 } 634 635 // Provide a definition for the root virtual destructor. 636 AAResults::Concept::~Concept() = default; 637 638 // Provide a definition for the static object used to identify passes. 639 AnalysisKey AAManager::Key; 640 641 namespace { 642 643 644 } // end anonymous namespace 645 646 char ExternalAAWrapperPass::ID = 0; 647 648 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 649 false, true) 650 651 ImmutablePass * 652 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 653 return new ExternalAAWrapperPass(std::move(Callback)); 654 } 655 656 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 657 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 658 } 659 660 char AAResultsWrapperPass::ID = 0; 661 662 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 663 "Function Alias Analysis Results", false, true) 664 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 665 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 666 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 667 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 668 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 669 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 670 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 671 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 672 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 673 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 674 "Function Alias Analysis Results", false, true) 675 676 FunctionPass *llvm::createAAResultsWrapperPass() { 677 return new AAResultsWrapperPass(); 678 } 679 680 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 681 /// 682 /// This is the legacy pass manager's interface to the new-style AA results 683 /// aggregation object. Because this is somewhat shoe-horned into the legacy 684 /// pass manager, we hard code all the specific alias analyses available into 685 /// it. While the particular set enabled is configured via commandline flags, 686 /// adding a new alias analysis to LLVM will require adding support for it to 687 /// this list. 688 bool AAResultsWrapperPass::runOnFunction(Function &F) { 689 // NB! This *must* be reset before adding new AA results to the new 690 // AAResults object because in the legacy pass manager, each instance 691 // of these will refer to the *same* immutable analyses, registering and 692 // unregistering themselves with them. We need to carefully tear down the 693 // previous object first, in this case replacing it with an empty one, before 694 // registering new results. 695 AAR.reset( 696 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); 697 698 // BasicAA is always available for function analyses. Also, we add it first 699 // so that it can trump TBAA results when it proves MustAlias. 700 // FIXME: TBAA should have an explicit mode to support this and then we 701 // should reconsider the ordering here. 702 if (!DisableBasicAA) 703 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 704 705 // Populate the results with the currently available AAs. 706 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 707 AAR->addAAResult(WrapperPass->getResult()); 708 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 709 AAR->addAAResult(WrapperPass->getResult()); 710 if (auto *WrapperPass = 711 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 712 AAR->addAAResult(WrapperPass->getResult()); 713 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 714 AAR->addAAResult(WrapperPass->getResult()); 715 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 716 AAR->addAAResult(WrapperPass->getResult()); 717 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 718 AAR->addAAResult(WrapperPass->getResult()); 719 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 720 AAR->addAAResult(WrapperPass->getResult()); 721 722 // If available, run an external AA providing callback over the results as 723 // well. 724 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 725 if (WrapperPass->CB) 726 WrapperPass->CB(*this, F, *AAR); 727 728 // Analyses don't mutate the IR, so return false. 729 return false; 730 } 731 732 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 733 AU.setPreservesAll(); 734 AU.addRequired<BasicAAWrapperPass>(); 735 AU.addRequired<TargetLibraryInfoWrapperPass>(); 736 737 // We also need to mark all the alias analysis passes we will potentially 738 // probe in runOnFunction as used here to ensure the legacy pass manager 739 // preserves them. This hard coding of lists of alias analyses is specific to 740 // the legacy pass manager. 741 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 742 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 743 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 744 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 745 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 746 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 747 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 748 } 749 750 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 751 BasicAAResult &BAR) { 752 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 753 754 // Add in our explicitly constructed BasicAA results. 755 if (!DisableBasicAA) 756 AAR.addAAResult(BAR); 757 758 // Populate the results with the other currently available AAs. 759 if (auto *WrapperPass = 760 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 761 AAR.addAAResult(WrapperPass->getResult()); 762 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 763 AAR.addAAResult(WrapperPass->getResult()); 764 if (auto *WrapperPass = 765 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 766 AAR.addAAResult(WrapperPass->getResult()); 767 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 768 AAR.addAAResult(WrapperPass->getResult()); 769 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 770 AAR.addAAResult(WrapperPass->getResult()); 771 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 772 AAR.addAAResult(WrapperPass->getResult()); 773 774 return AAR; 775 } 776 777 bool llvm::isNoAliasCall(const Value *V) { 778 if (auto CS = ImmutableCallSite(V)) 779 return CS.hasRetAttr(Attribute::NoAlias); 780 return false; 781 } 782 783 bool llvm::isNoAliasArgument(const Value *V) { 784 if (const Argument *A = dyn_cast<Argument>(V)) 785 return A->hasNoAliasAttr(); 786 return false; 787 } 788 789 bool llvm::isIdentifiedObject(const Value *V) { 790 if (isa<AllocaInst>(V)) 791 return true; 792 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 793 return true; 794 if (isNoAliasCall(V)) 795 return true; 796 if (const Argument *A = dyn_cast<Argument>(V)) 797 return A->hasNoAliasAttr() || A->hasByValAttr(); 798 return false; 799 } 800 801 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 802 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 803 } 804 805 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 806 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 807 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 808 // to be added here also. 809 AU.addRequired<TargetLibraryInfoWrapperPass>(); 810 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 811 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 812 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 813 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 814 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 815 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 816 } 817