1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic AliasAnalysis interface which is used as the 11 // common interface used by all clients and implementations of alias analysis. 12 // 13 // This file also implements the default version of the AliasAnalysis interface 14 // that is to be used when no other implementation is specified. This does some 15 // simple tests that detect obvious cases: two different global pointers cannot 16 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 17 // etc. 18 // 19 // This alias analysis implementation really isn't very good for anything, but 20 // it is very fast, and makes a nice clean default implementation. Because it 21 // handles lots of little corner cases, other, more complex, alias analysis 22 // implementations may choose to rely on this pass to resolve these simple and 23 // easy cases. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CFG.h" 30 #include "llvm/Analysis/CFLAliasAnalysis.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/Pass.h" 48 using namespace llvm; 49 50 /// Allow disabling BasicAA from the AA results. This is particularly useful 51 /// when testing to isolate a single AA implementation. 52 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 53 cl::init(false)); 54 55 AAResults::AAResults(AAResults &&Arg) : TLI(Arg.TLI), AAs(std::move(Arg.AAs)) { 56 for (auto &AA : AAs) 57 AA->setAAResults(this); 58 } 59 60 AAResults::~AAResults() { 61 // FIXME; It would be nice to at least clear out the pointers back to this 62 // aggregation here, but we end up with non-nesting lifetimes in the legacy 63 // pass manager that prevent this from working. In the legacy pass manager 64 // we'll end up with dangling references here in some cases. 65 #if 0 66 for (auto &AA : AAs) 67 AA->setAAResults(nullptr); 68 #endif 69 } 70 71 //===----------------------------------------------------------------------===// 72 // Default chaining methods 73 //===----------------------------------------------------------------------===// 74 75 AliasResult AAResults::alias(const MemoryLocation &LocA, 76 const MemoryLocation &LocB) { 77 for (const auto &AA : AAs) { 78 auto Result = AA->alias(LocA, LocB); 79 if (Result != MayAlias) 80 return Result; 81 } 82 return MayAlias; 83 } 84 85 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 86 bool OrLocal) { 87 for (const auto &AA : AAs) 88 if (AA->pointsToConstantMemory(Loc, OrLocal)) 89 return true; 90 91 return false; 92 } 93 94 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 95 ModRefInfo Result = MRI_ModRef; 96 97 for (const auto &AA : AAs) { 98 Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); 99 100 // Early-exit the moment we reach the bottom of the lattice. 101 if (Result == MRI_NoModRef) 102 return Result; 103 } 104 105 return Result; 106 } 107 108 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { 109 // We may have two calls 110 if (auto CS = ImmutableCallSite(I)) { 111 // Check if the two calls modify the same memory 112 return getModRefInfo(Call, CS); 113 } else { 114 // Otherwise, check if the call modifies or references the 115 // location this memory access defines. The best we can say 116 // is that if the call references what this instruction 117 // defines, it must be clobbered by this location. 118 const MemoryLocation DefLoc = MemoryLocation::get(I); 119 if (getModRefInfo(Call, DefLoc) != MRI_NoModRef) 120 return MRI_ModRef; 121 } 122 return MRI_NoModRef; 123 } 124 125 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, 126 const MemoryLocation &Loc) { 127 ModRefInfo Result = MRI_ModRef; 128 129 for (const auto &AA : AAs) { 130 Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); 131 132 // Early-exit the moment we reach the bottom of the lattice. 133 if (Result == MRI_NoModRef) 134 return Result; 135 } 136 137 // Try to refine the mod-ref info further using other API entry points to the 138 // aggregate set of AA results. 139 auto MRB = getModRefBehavior(CS); 140 if (MRB == FMRB_DoesNotAccessMemory) 141 return MRI_NoModRef; 142 143 if (onlyReadsMemory(MRB)) 144 Result = ModRefInfo(Result & MRI_Ref); 145 146 if (onlyAccessesArgPointees(MRB)) { 147 bool DoesAlias = false; 148 ModRefInfo AllArgsMask = MRI_NoModRef; 149 if (doesAccessArgPointees(MRB)) { 150 for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { 151 const Value *Arg = *AI; 152 if (!Arg->getType()->isPointerTy()) 153 continue; 154 unsigned ArgIdx = std::distance(CS.arg_begin(), AI); 155 MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI); 156 AliasResult ArgAlias = alias(ArgLoc, Loc); 157 if (ArgAlias != NoAlias) { 158 ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx); 159 DoesAlias = true; 160 AllArgsMask = ModRefInfo(AllArgsMask | ArgMask); 161 } 162 } 163 } 164 if (!DoesAlias) 165 return MRI_NoModRef; 166 Result = ModRefInfo(Result & AllArgsMask); 167 } 168 169 // If Loc is a constant memory location, the call definitely could not 170 // modify the memory location. 171 if ((Result & MRI_Mod) && 172 pointsToConstantMemory(Loc, /*OrLocal*/ false)) 173 Result = ModRefInfo(Result & ~MRI_Mod); 174 175 return Result; 176 } 177 178 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, 179 ImmutableCallSite CS2) { 180 ModRefInfo Result = MRI_ModRef; 181 182 for (const auto &AA : AAs) { 183 Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); 184 185 // Early-exit the moment we reach the bottom of the lattice. 186 if (Result == MRI_NoModRef) 187 return Result; 188 } 189 190 // Try to refine the mod-ref info further using other API entry points to the 191 // aggregate set of AA results. 192 193 // If CS1 or CS2 are readnone, they don't interact. 194 auto CS1B = getModRefBehavior(CS1); 195 if (CS1B == FMRB_DoesNotAccessMemory) 196 return MRI_NoModRef; 197 198 auto CS2B = getModRefBehavior(CS2); 199 if (CS2B == FMRB_DoesNotAccessMemory) 200 return MRI_NoModRef; 201 202 // If they both only read from memory, there is no dependence. 203 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) 204 return MRI_NoModRef; 205 206 // If CS1 only reads memory, the only dependence on CS2 can be 207 // from CS1 reading memory written by CS2. 208 if (onlyReadsMemory(CS1B)) 209 Result = ModRefInfo(Result & MRI_Ref); 210 211 // If CS2 only access memory through arguments, accumulate the mod/ref 212 // information from CS1's references to the memory referenced by 213 // CS2's arguments. 214 if (onlyAccessesArgPointees(CS2B)) { 215 ModRefInfo R = MRI_NoModRef; 216 if (doesAccessArgPointees(CS2B)) { 217 for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { 218 const Value *Arg = *I; 219 if (!Arg->getType()->isPointerTy()) 220 continue; 221 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); 222 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI); 223 224 // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence 225 // of CS1 on that location is the inverse. 226 ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx); 227 if (ArgMask == MRI_Mod) 228 ArgMask = MRI_ModRef; 229 else if (ArgMask == MRI_Ref) 230 ArgMask = MRI_Mod; 231 232 ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc)); 233 234 R = ModRefInfo((R | ArgMask) & Result); 235 if (R == Result) 236 break; 237 } 238 } 239 return R; 240 } 241 242 // If CS1 only accesses memory through arguments, check if CS2 references 243 // any of the memory referenced by CS1's arguments. If not, return NoModRef. 244 if (onlyAccessesArgPointees(CS1B)) { 245 ModRefInfo R = MRI_NoModRef; 246 if (doesAccessArgPointees(CS1B)) { 247 for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { 248 const Value *Arg = *I; 249 if (!Arg->getType()->isPointerTy()) 250 continue; 251 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); 252 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI); 253 254 // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod 255 // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1 256 // might Ref, then we care only about a Mod by CS2. 257 ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx); 258 ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc); 259 if (((ArgMask & MRI_Mod) != MRI_NoModRef && 260 (ArgR & MRI_ModRef) != MRI_NoModRef) || 261 ((ArgMask & MRI_Ref) != MRI_NoModRef && 262 (ArgR & MRI_Mod) != MRI_NoModRef)) 263 R = ModRefInfo((R | ArgMask) & Result); 264 265 if (R == Result) 266 break; 267 } 268 } 269 return R; 270 } 271 272 return Result; 273 } 274 275 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { 276 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 277 278 for (const auto &AA : AAs) { 279 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); 280 281 // Early-exit the moment we reach the bottom of the lattice. 282 if (Result == FMRB_DoesNotAccessMemory) 283 return Result; 284 } 285 286 return Result; 287 } 288 289 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 290 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 291 292 for (const auto &AA : AAs) { 293 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 294 295 // Early-exit the moment we reach the bottom of the lattice. 296 if (Result == FMRB_DoesNotAccessMemory) 297 return Result; 298 } 299 300 return Result; 301 } 302 303 //===----------------------------------------------------------------------===// 304 // Helper method implementation 305 //===----------------------------------------------------------------------===// 306 307 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 308 const MemoryLocation &Loc) { 309 // Be conservative in the face of volatile/atomic. 310 if (!L->isUnordered()) 311 return MRI_ModRef; 312 313 // If the load address doesn't alias the given address, it doesn't read 314 // or write the specified memory. 315 if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) 316 return MRI_NoModRef; 317 318 // Otherwise, a load just reads. 319 return MRI_Ref; 320 } 321 322 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 323 const MemoryLocation &Loc) { 324 // Be conservative in the face of volatile/atomic. 325 if (!S->isUnordered()) 326 return MRI_ModRef; 327 328 if (Loc.Ptr) { 329 // If the store address cannot alias the pointer in question, then the 330 // specified memory cannot be modified by the store. 331 if (!alias(MemoryLocation::get(S), Loc)) 332 return MRI_NoModRef; 333 334 // If the pointer is a pointer to constant memory, then it could not have 335 // been modified by this store. 336 if (pointsToConstantMemory(Loc)) 337 return MRI_NoModRef; 338 } 339 340 // Otherwise, a store just writes. 341 return MRI_Mod; 342 } 343 344 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 345 const MemoryLocation &Loc) { 346 347 if (Loc.Ptr) { 348 // If the va_arg address cannot alias the pointer in question, then the 349 // specified memory cannot be accessed by the va_arg. 350 if (!alias(MemoryLocation::get(V), Loc)) 351 return MRI_NoModRef; 352 353 // If the pointer is a pointer to constant memory, then it could not have 354 // been modified by this va_arg. 355 if (pointsToConstantMemory(Loc)) 356 return MRI_NoModRef; 357 } 358 359 // Otherwise, a va_arg reads and writes. 360 return MRI_ModRef; 361 } 362 363 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 364 const MemoryLocation &Loc) { 365 if (Loc.Ptr) { 366 // If the pointer is a pointer to constant memory, 367 // then it could not have been modified by this catchpad. 368 if (pointsToConstantMemory(Loc)) 369 return MRI_NoModRef; 370 } 371 372 // Otherwise, a catchpad reads and writes. 373 return MRI_ModRef; 374 } 375 376 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 377 const MemoryLocation &Loc) { 378 if (Loc.Ptr) { 379 // If the pointer is a pointer to constant memory, 380 // then it could not have been modified by this catchpad. 381 if (pointsToConstantMemory(Loc)) 382 return MRI_NoModRef; 383 } 384 385 // Otherwise, a catchret reads and writes. 386 return MRI_ModRef; 387 } 388 389 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 390 const MemoryLocation &Loc) { 391 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 392 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 393 return MRI_ModRef; 394 395 // If the cmpxchg address does not alias the location, it does not access it. 396 if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) 397 return MRI_NoModRef; 398 399 return MRI_ModRef; 400 } 401 402 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 403 const MemoryLocation &Loc) { 404 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 405 if (isStrongerThanMonotonic(RMW->getOrdering())) 406 return MRI_ModRef; 407 408 // If the atomicrmw address does not alias the location, it does not access it. 409 if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) 410 return MRI_NoModRef; 411 412 return MRI_ModRef; 413 } 414 415 /// \brief Return information about whether a particular call site modifies 416 /// or reads the specified memory location \p MemLoc before instruction \p I 417 /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up 418 /// instruction-ordering queries inside the BasicBlock containing \p I. 419 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 420 /// BasicAA isn't willing to spend linear time determining whether an alloca 421 /// was captured before or after this particular call, while we are. However, 422 /// with a smarter AA in place, this test is just wasting compile time. 423 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 424 const MemoryLocation &MemLoc, 425 DominatorTree *DT, 426 OrderedBasicBlock *OBB) { 427 if (!DT) 428 return MRI_ModRef; 429 430 const Value *Object = 431 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 432 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 433 isa<Constant>(Object)) 434 return MRI_ModRef; 435 436 ImmutableCallSite CS(I); 437 if (!CS.getInstruction() || CS.getInstruction() == Object) 438 return MRI_ModRef; 439 440 if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 441 /* StoreCaptures */ true, I, DT, 442 /* include Object */ true, 443 /* OrderedBasicBlock */ OBB)) 444 return MRI_ModRef; 445 446 unsigned ArgNo = 0; 447 ModRefInfo R = MRI_NoModRef; 448 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 449 CI != CE; ++CI, ++ArgNo) { 450 // Only look at the no-capture or byval pointer arguments. If this 451 // pointer were passed to arguments that were neither of these, then it 452 // couldn't be no-capture. 453 if (!(*CI)->getType()->isPointerTy() || 454 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 455 continue; 456 457 // If this is a no-capture pointer argument, see if we can tell that it 458 // is impossible to alias the pointer we're checking. If not, we have to 459 // assume that the call could touch the pointer, even though it doesn't 460 // escape. 461 if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) 462 continue; 463 if (CS.doesNotAccessMemory(ArgNo)) 464 continue; 465 if (CS.onlyReadsMemory(ArgNo)) { 466 R = MRI_Ref; 467 continue; 468 } 469 return MRI_ModRef; 470 } 471 return R; 472 } 473 474 /// canBasicBlockModify - Return true if it is possible for execution of the 475 /// specified basic block to modify the location Loc. 476 /// 477 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 478 const MemoryLocation &Loc) { 479 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); 480 } 481 482 /// canInstructionRangeModRef - Return true if it is possible for the 483 /// execution of the specified instructions to mod\ref (according to the 484 /// mode) the location Loc. The instructions to consider are all 485 /// of the instructions in the range of [I1,I2] INCLUSIVE. 486 /// I1 and I2 must be in the same basic block. 487 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 488 const Instruction &I2, 489 const MemoryLocation &Loc, 490 const ModRefInfo Mode) { 491 assert(I1.getParent() == I2.getParent() && 492 "Instructions not in same basic block!"); 493 BasicBlock::const_iterator I = I1.getIterator(); 494 BasicBlock::const_iterator E = I2.getIterator(); 495 ++E; // Convert from inclusive to exclusive range. 496 497 for (; I != E; ++I) // Check every instruction in range 498 if (getModRefInfo(&*I, Loc) & Mode) 499 return true; 500 return false; 501 } 502 503 // Provide a definition for the root virtual destructor. 504 AAResults::Concept::~Concept() {} 505 506 // Provide a definition for the static object used to identify passes. 507 char AAManager::PassID; 508 509 namespace { 510 /// A wrapper pass for external alias analyses. This just squirrels away the 511 /// callback used to run any analyses and register their results. 512 struct ExternalAAWrapperPass : ImmutablePass { 513 typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT; 514 515 CallbackT CB; 516 517 static char ID; 518 519 ExternalAAWrapperPass() : ImmutablePass(ID) { 520 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 521 } 522 explicit ExternalAAWrapperPass(CallbackT CB) 523 : ImmutablePass(ID), CB(std::move(CB)) { 524 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 525 } 526 527 void getAnalysisUsage(AnalysisUsage &AU) const override { 528 AU.setPreservesAll(); 529 } 530 }; 531 } 532 533 char ExternalAAWrapperPass::ID = 0; 534 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 535 false, true) 536 537 ImmutablePass * 538 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 539 return new ExternalAAWrapperPass(std::move(Callback)); 540 } 541 542 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 543 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 544 } 545 546 char AAResultsWrapperPass::ID = 0; 547 548 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 549 "Function Alias Analysis Results", false, true) 550 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 551 INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass) 552 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 553 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 554 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 555 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 556 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 557 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 558 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 559 "Function Alias Analysis Results", false, true) 560 561 FunctionPass *llvm::createAAResultsWrapperPass() { 562 return new AAResultsWrapperPass(); 563 } 564 565 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 566 /// 567 /// This is the legacy pass manager's interface to the new-style AA results 568 /// aggregation object. Because this is somewhat shoe-horned into the legacy 569 /// pass manager, we hard code all the specific alias analyses available into 570 /// it. While the particular set enabled is configured via commandline flags, 571 /// adding a new alias analysis to LLVM will require adding support for it to 572 /// this list. 573 bool AAResultsWrapperPass::runOnFunction(Function &F) { 574 // NB! This *must* be reset before adding new AA results to the new 575 // AAResults object because in the legacy pass manager, each instance 576 // of these will refer to the *same* immutable analyses, registering and 577 // unregistering themselves with them. We need to carefully tear down the 578 // previous object first, in this case replacing it with an empty one, before 579 // registering new results. 580 AAR.reset( 581 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); 582 583 // BasicAA is always available for function analyses. Also, we add it first 584 // so that it can trump TBAA results when it proves MustAlias. 585 // FIXME: TBAA should have an explicit mode to support this and then we 586 // should reconsider the ordering here. 587 if (!DisableBasicAA) 588 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 589 590 // Populate the results with the currently available AAs. 591 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 592 AAR->addAAResult(WrapperPass->getResult()); 593 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 594 AAR->addAAResult(WrapperPass->getResult()); 595 if (auto *WrapperPass = 596 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 597 AAR->addAAResult(WrapperPass->getResult()); 598 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 599 AAR->addAAResult(WrapperPass->getResult()); 600 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 601 AAR->addAAResult(WrapperPass->getResult()); 602 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>()) 603 AAR->addAAResult(WrapperPass->getResult()); 604 605 // If available, run an external AA providing callback over the results as 606 // well. 607 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 608 if (WrapperPass->CB) 609 WrapperPass->CB(*this, F, *AAR); 610 611 // Analyses don't mutate the IR, so return false. 612 return false; 613 } 614 615 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 616 AU.setPreservesAll(); 617 AU.addRequired<BasicAAWrapperPass>(); 618 AU.addRequired<TargetLibraryInfoWrapperPass>(); 619 620 // We also need to mark all the alias analysis passes we will potentially 621 // probe in runOnFunction as used here to ensure the legacy pass manager 622 // preserves them. This hard coding of lists of alias analyses is specific to 623 // the legacy pass manager. 624 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 625 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 626 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 627 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 628 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 629 AU.addUsedIfAvailable<CFLAAWrapperPass>(); 630 } 631 632 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 633 BasicAAResult &BAR) { 634 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 635 636 // Add in our explicitly constructed BasicAA results. 637 if (!DisableBasicAA) 638 AAR.addAAResult(BAR); 639 640 // Populate the results with the other currently available AAs. 641 if (auto *WrapperPass = 642 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 643 AAR.addAAResult(WrapperPass->getResult()); 644 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 645 AAR.addAAResult(WrapperPass->getResult()); 646 if (auto *WrapperPass = 647 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 648 AAR.addAAResult(WrapperPass->getResult()); 649 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 650 AAR.addAAResult(WrapperPass->getResult()); 651 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>()) 652 AAR.addAAResult(WrapperPass->getResult()); 653 654 return AAR; 655 } 656 657 bool llvm::isNoAliasCall(const Value *V) { 658 if (auto CS = ImmutableCallSite(V)) 659 return CS.paramHasAttr(0, Attribute::NoAlias); 660 return false; 661 } 662 663 bool llvm::isNoAliasArgument(const Value *V) { 664 if (const Argument *A = dyn_cast<Argument>(V)) 665 return A->hasNoAliasAttr(); 666 return false; 667 } 668 669 bool llvm::isIdentifiedObject(const Value *V) { 670 if (isa<AllocaInst>(V)) 671 return true; 672 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 673 return true; 674 if (isNoAliasCall(V)) 675 return true; 676 if (const Argument *A = dyn_cast<Argument>(V)) 677 return A->hasNoAliasAttr() || A->hasByValAttr(); 678 return false; 679 } 680 681 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 682 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 683 } 684 685 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 686 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 687 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 688 // to be added here also. 689 AU.addRequired<TargetLibraryInfoWrapperPass>(); 690 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 691 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 692 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 693 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 694 AU.addUsedIfAvailable<CFLAAWrapperPass>(); 695 } 696