1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 30 #include "llvm/Analysis/CaptureTracking.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/AtomicOrdering.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/CommandLine.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <functional> 54 #include <iterator> 55 56 using namespace llvm; 57 58 /// Allow disabling BasicAA from the AA results. This is particularly useful 59 /// when testing to isolate a single AA implementation. 60 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 61 cl::init(false)); 62 63 AAResults::AAResults(AAResults &&Arg) 64 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 65 for (auto &AA : AAs) 66 AA->setAAResults(this); 67 } 68 69 AAResults::~AAResults() { 70 // FIXME; It would be nice to at least clear out the pointers back to this 71 // aggregation here, but we end up with non-nesting lifetimes in the legacy 72 // pass manager that prevent this from working. In the legacy pass manager 73 // we'll end up with dangling references here in some cases. 74 #if 0 75 for (auto &AA : AAs) 76 AA->setAAResults(nullptr); 77 #endif 78 } 79 80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 81 FunctionAnalysisManager::Invalidator &Inv) { 82 // Check if the AA manager itself has been invalidated. 83 auto PAC = PA.getChecker<AAManager>(); 84 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 85 return true; // The manager needs to be blown away, clear everything. 86 87 // Check all of the dependencies registered. 88 for (AnalysisKey *ID : AADeps) 89 if (Inv.invalidate(ID, F, PA)) 90 return true; 91 92 // Everything we depend on is still fine, so are we. Nothing to invalidate. 93 return false; 94 } 95 96 //===----------------------------------------------------------------------===// 97 // Default chaining methods 98 //===----------------------------------------------------------------------===// 99 100 AliasResult AAResults::alias(const MemoryLocation &LocA, 101 const MemoryLocation &LocB) { 102 AAQueryInfo AAQIP; 103 return alias(LocA, LocB, AAQIP); 104 } 105 106 AliasResult AAResults::alias(const MemoryLocation &LocA, 107 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 108 for (const auto &AA : AAs) { 109 auto Result = AA->alias(LocA, LocB, AAQI); 110 if (Result != MayAlias) 111 return Result; 112 } 113 return MayAlias; 114 } 115 116 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 117 bool OrLocal) { 118 AAQueryInfo AAQIP; 119 return pointsToConstantMemory(Loc, AAQIP, OrLocal); 120 } 121 122 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 123 AAQueryInfo &AAQI, bool OrLocal) { 124 for (const auto &AA : AAs) 125 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) 126 return true; 127 128 return false; 129 } 130 131 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 132 ModRefInfo Result = ModRefInfo::ModRef; 133 134 for (const auto &AA : AAs) { 135 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); 136 137 // Early-exit the moment we reach the bottom of the lattice. 138 if (isNoModRef(Result)) 139 return ModRefInfo::NoModRef; 140 } 141 142 return Result; 143 } 144 145 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { 146 AAQueryInfo AAQIP; 147 return getModRefInfo(I, Call2, AAQIP); 148 } 149 150 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, 151 AAQueryInfo &AAQI) { 152 // We may have two calls. 153 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 154 // Check if the two calls modify the same memory. 155 return getModRefInfo(Call1, Call2, AAQI); 156 } else if (I->isFenceLike()) { 157 // If this is a fence, just return ModRef. 158 return ModRefInfo::ModRef; 159 } else { 160 // Otherwise, check if the call modifies or references the 161 // location this memory access defines. The best we can say 162 // is that if the call references what this instruction 163 // defines, it must be clobbered by this location. 164 const MemoryLocation DefLoc = MemoryLocation::get(I); 165 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 166 if (isModOrRefSet(MR)) 167 return setModAndRef(MR); 168 } 169 return ModRefInfo::NoModRef; 170 } 171 172 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 173 const MemoryLocation &Loc) { 174 AAQueryInfo AAQIP; 175 return getModRefInfo(Call, Loc, AAQIP); 176 } 177 178 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 179 const MemoryLocation &Loc, 180 AAQueryInfo &AAQI) { 181 ModRefInfo Result = ModRefInfo::ModRef; 182 183 for (const auto &AA : AAs) { 184 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); 185 186 // Early-exit the moment we reach the bottom of the lattice. 187 if (isNoModRef(Result)) 188 return ModRefInfo::NoModRef; 189 } 190 191 // Try to refine the mod-ref info further using other API entry points to the 192 // aggregate set of AA results. 193 auto MRB = getModRefBehavior(Call); 194 if (MRB == FMRB_DoesNotAccessMemory || 195 MRB == FMRB_OnlyAccessesInaccessibleMem) 196 return ModRefInfo::NoModRef; 197 198 if (onlyReadsMemory(MRB)) 199 Result = clearMod(Result); 200 else if (doesNotReadMemory(MRB)) 201 Result = clearRef(Result); 202 203 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 204 bool IsMustAlias = true; 205 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 206 if (doesAccessArgPointees(MRB)) { 207 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { 208 const Value *Arg = *AI; 209 if (!Arg->getType()->isPointerTy()) 210 continue; 211 unsigned ArgIdx = std::distance(Call->arg_begin(), AI); 212 MemoryLocation ArgLoc = 213 MemoryLocation::getForArgument(Call, ArgIdx, TLI); 214 AliasResult ArgAlias = alias(ArgLoc, Loc); 215 if (ArgAlias != NoAlias) { 216 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); 217 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 218 } 219 // Conservatively clear IsMustAlias unless only MustAlias is found. 220 IsMustAlias &= (ArgAlias == MustAlias); 221 } 222 } 223 // Return NoModRef if no alias found with any argument. 224 if (isNoModRef(AllArgsMask)) 225 return ModRefInfo::NoModRef; 226 // Logical & between other AA analyses and argument analysis. 227 Result = intersectModRef(Result, AllArgsMask); 228 // If only MustAlias found above, set Must bit. 229 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 230 } 231 232 // If Loc is a constant memory location, the call definitely could not 233 // modify the memory location. 234 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 235 Result = clearMod(Result); 236 237 return Result; 238 } 239 240 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 241 const CallBase *Call2) { 242 AAQueryInfo AAQIP; 243 return getModRefInfo(Call1, Call2, AAQIP); 244 } 245 246 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 247 const CallBase *Call2, AAQueryInfo &AAQI) { 248 ModRefInfo Result = ModRefInfo::ModRef; 249 250 for (const auto &AA : AAs) { 251 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); 252 253 // Early-exit the moment we reach the bottom of the lattice. 254 if (isNoModRef(Result)) 255 return ModRefInfo::NoModRef; 256 } 257 258 // Try to refine the mod-ref info further using other API entry points to the 259 // aggregate set of AA results. 260 261 // If Call1 or Call2 are readnone, they don't interact. 262 auto Call1B = getModRefBehavior(Call1); 263 if (Call1B == FMRB_DoesNotAccessMemory) 264 return ModRefInfo::NoModRef; 265 266 auto Call2B = getModRefBehavior(Call2); 267 if (Call2B == FMRB_DoesNotAccessMemory) 268 return ModRefInfo::NoModRef; 269 270 // If they both only read from memory, there is no dependence. 271 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) 272 return ModRefInfo::NoModRef; 273 274 // If Call1 only reads memory, the only dependence on Call2 can be 275 // from Call1 reading memory written by Call2. 276 if (onlyReadsMemory(Call1B)) 277 Result = clearMod(Result); 278 else if (doesNotReadMemory(Call1B)) 279 Result = clearRef(Result); 280 281 // If Call2 only access memory through arguments, accumulate the mod/ref 282 // information from Call1's references to the memory referenced by 283 // Call2's arguments. 284 if (onlyAccessesArgPointees(Call2B)) { 285 if (!doesAccessArgPointees(Call2B)) 286 return ModRefInfo::NoModRef; 287 ModRefInfo R = ModRefInfo::NoModRef; 288 bool IsMustAlias = true; 289 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 290 const Value *Arg = *I; 291 if (!Arg->getType()->isPointerTy()) 292 continue; 293 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 294 auto Call2ArgLoc = 295 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 296 297 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 298 // dependence of Call1 on that location is the inverse: 299 // - If Call2 modifies location, dependence exists if Call1 reads or 300 // writes. 301 // - If Call2 only reads location, dependence exists if Call1 writes. 302 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 303 ModRefInfo ArgMask = ModRefInfo::NoModRef; 304 if (isModSet(ArgModRefC2)) 305 ArgMask = ModRefInfo::ModRef; 306 else if (isRefSet(ArgModRefC2)) 307 ArgMask = ModRefInfo::Mod; 308 309 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 310 // above ArgMask to update dependence info. 311 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc); 312 ArgMask = intersectModRef(ArgMask, ModRefC1); 313 314 // Conservatively clear IsMustAlias unless only MustAlias is found. 315 IsMustAlias &= isMustSet(ModRefC1); 316 317 R = intersectModRef(unionModRef(R, ArgMask), Result); 318 if (R == Result) { 319 // On early exit, not all args were checked, cannot set Must. 320 if (I + 1 != E) 321 IsMustAlias = false; 322 break; 323 } 324 } 325 326 if (isNoModRef(R)) 327 return ModRefInfo::NoModRef; 328 329 // If MustAlias found above, set Must bit. 330 return IsMustAlias ? setMust(R) : clearMust(R); 331 } 332 333 // If Call1 only accesses memory through arguments, check if Call2 references 334 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 335 if (onlyAccessesArgPointees(Call1B)) { 336 if (!doesAccessArgPointees(Call1B)) 337 return ModRefInfo::NoModRef; 338 ModRefInfo R = ModRefInfo::NoModRef; 339 bool IsMustAlias = true; 340 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 341 const Value *Arg = *I; 342 if (!Arg->getType()->isPointerTy()) 343 continue; 344 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 345 auto Call1ArgLoc = 346 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 347 348 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 349 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 350 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 351 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 352 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc); 353 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 354 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 355 R = intersectModRef(unionModRef(R, ArgModRefC1), Result); 356 357 // Conservatively clear IsMustAlias unless only MustAlias is found. 358 IsMustAlias &= isMustSet(ModRefC2); 359 360 if (R == Result) { 361 // On early exit, not all args were checked, cannot set Must. 362 if (I + 1 != E) 363 IsMustAlias = false; 364 break; 365 } 366 } 367 368 if (isNoModRef(R)) 369 return ModRefInfo::NoModRef; 370 371 // If MustAlias found above, set Must bit. 372 return IsMustAlias ? setMust(R) : clearMust(R); 373 } 374 375 return Result; 376 } 377 378 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { 379 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 380 381 for (const auto &AA : AAs) { 382 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); 383 384 // Early-exit the moment we reach the bottom of the lattice. 385 if (Result == FMRB_DoesNotAccessMemory) 386 return Result; 387 } 388 389 return Result; 390 } 391 392 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 393 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 394 395 for (const auto &AA : AAs) { 396 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 397 398 // Early-exit the moment we reach the bottom of the lattice. 399 if (Result == FMRB_DoesNotAccessMemory) 400 return Result; 401 } 402 403 return Result; 404 } 405 406 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 407 switch (AR) { 408 case NoAlias: 409 OS << "NoAlias"; 410 break; 411 case MustAlias: 412 OS << "MustAlias"; 413 break; 414 case MayAlias: 415 OS << "MayAlias"; 416 break; 417 case PartialAlias: 418 OS << "PartialAlias"; 419 break; 420 } 421 return OS; 422 } 423 424 //===----------------------------------------------------------------------===// 425 // Helper method implementation 426 //===----------------------------------------------------------------------===// 427 428 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 429 const MemoryLocation &Loc) { 430 AAQueryInfo AAQIP; 431 return getModRefInfo(L, Loc, AAQIP); 432 } 433 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 434 const MemoryLocation &Loc, 435 AAQueryInfo &AAQI) { 436 // Be conservative in the face of atomic. 437 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 438 return ModRefInfo::ModRef; 439 440 // If the load address doesn't alias the given address, it doesn't read 441 // or write the specified memory. 442 if (Loc.Ptr) { 443 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 444 if (AR == NoAlias) 445 return ModRefInfo::NoModRef; 446 if (AR == MustAlias) 447 return ModRefInfo::MustRef; 448 } 449 // Otherwise, a load just reads. 450 return ModRefInfo::Ref; 451 } 452 453 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 454 const MemoryLocation &Loc) { 455 AAQueryInfo AAQIP; 456 return getModRefInfo(S, Loc, AAQIP); 457 } 458 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 459 const MemoryLocation &Loc, 460 AAQueryInfo &AAQI) { 461 // Be conservative in the face of atomic. 462 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 463 return ModRefInfo::ModRef; 464 465 if (Loc.Ptr) { 466 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 467 // If the store address cannot alias the pointer in question, then the 468 // specified memory cannot be modified by the store. 469 if (AR == NoAlias) 470 return ModRefInfo::NoModRef; 471 472 // If the pointer is a pointer to constant memory, then it could not have 473 // been modified by this store. 474 if (pointsToConstantMemory(Loc, AAQI)) 475 return ModRefInfo::NoModRef; 476 477 // If the store address aliases the pointer as must alias, set Must. 478 if (AR == MustAlias) 479 return ModRefInfo::MustMod; 480 } 481 482 // Otherwise, a store just writes. 483 return ModRefInfo::Mod; 484 } 485 486 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 487 AAQueryInfo AAQIP; 488 return getModRefInfo(S, Loc, AAQIP); 489 } 490 491 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 492 const MemoryLocation &Loc, 493 AAQueryInfo &AAQI) { 494 // If we know that the location is a constant memory location, the fence 495 // cannot modify this location. 496 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) 497 return ModRefInfo::Ref; 498 return ModRefInfo::ModRef; 499 } 500 501 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 502 const MemoryLocation &Loc) { 503 AAQueryInfo AAQIP; 504 return getModRefInfo(V, Loc, AAQIP); 505 } 506 507 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 508 const MemoryLocation &Loc, 509 AAQueryInfo &AAQI) { 510 if (Loc.Ptr) { 511 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 512 // If the va_arg address cannot alias the pointer in question, then the 513 // specified memory cannot be accessed by the va_arg. 514 if (AR == NoAlias) 515 return ModRefInfo::NoModRef; 516 517 // If the pointer is a pointer to constant memory, then it could not have 518 // been modified by this va_arg. 519 if (pointsToConstantMemory(Loc, AAQI)) 520 return ModRefInfo::NoModRef; 521 522 // If the va_arg aliases the pointer as must alias, set Must. 523 if (AR == MustAlias) 524 return ModRefInfo::MustModRef; 525 } 526 527 // Otherwise, a va_arg reads and writes. 528 return ModRefInfo::ModRef; 529 } 530 531 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 532 const MemoryLocation &Loc) { 533 AAQueryInfo AAQIP; 534 return getModRefInfo(CatchPad, Loc, AAQIP); 535 } 536 537 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 538 const MemoryLocation &Loc, 539 AAQueryInfo &AAQI) { 540 if (Loc.Ptr) { 541 // If the pointer is a pointer to constant memory, 542 // then it could not have been modified by this catchpad. 543 if (pointsToConstantMemory(Loc, AAQI)) 544 return ModRefInfo::NoModRef; 545 } 546 547 // Otherwise, a catchpad reads and writes. 548 return ModRefInfo::ModRef; 549 } 550 551 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 552 const MemoryLocation &Loc) { 553 AAQueryInfo AAQIP; 554 return getModRefInfo(CatchRet, Loc, AAQIP); 555 } 556 557 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 558 const MemoryLocation &Loc, 559 AAQueryInfo &AAQI) { 560 if (Loc.Ptr) { 561 // If the pointer is a pointer to constant memory, 562 // then it could not have been modified by this catchpad. 563 if (pointsToConstantMemory(Loc, AAQI)) 564 return ModRefInfo::NoModRef; 565 } 566 567 // Otherwise, a catchret reads and writes. 568 return ModRefInfo::ModRef; 569 } 570 571 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 572 const MemoryLocation &Loc) { 573 AAQueryInfo AAQIP; 574 return getModRefInfo(CX, Loc, AAQIP); 575 } 576 577 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 578 const MemoryLocation &Loc, 579 AAQueryInfo &AAQI) { 580 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 581 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 582 return ModRefInfo::ModRef; 583 584 if (Loc.Ptr) { 585 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 586 // If the cmpxchg address does not alias the location, it does not access 587 // it. 588 if (AR == NoAlias) 589 return ModRefInfo::NoModRef; 590 591 // If the cmpxchg address aliases the pointer as must alias, set Must. 592 if (AR == MustAlias) 593 return ModRefInfo::MustModRef; 594 } 595 596 return ModRefInfo::ModRef; 597 } 598 599 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 600 const MemoryLocation &Loc) { 601 AAQueryInfo AAQIP; 602 return getModRefInfo(RMW, Loc, AAQIP); 603 } 604 605 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 606 const MemoryLocation &Loc, 607 AAQueryInfo &AAQI) { 608 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 609 if (isStrongerThanMonotonic(RMW->getOrdering())) 610 return ModRefInfo::ModRef; 611 612 if (Loc.Ptr) { 613 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 614 // If the atomicrmw address does not alias the location, it does not access 615 // it. 616 if (AR == NoAlias) 617 return ModRefInfo::NoModRef; 618 619 // If the atomicrmw address aliases the pointer as must alias, set Must. 620 if (AR == MustAlias) 621 return ModRefInfo::MustModRef; 622 } 623 624 return ModRefInfo::ModRef; 625 } 626 627 /// Return information about whether a particular call site modifies 628 /// or reads the specified memory location \p MemLoc before instruction \p I 629 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up 630 /// instruction-ordering queries inside the BasicBlock containing \p I. 631 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 632 /// BasicAA isn't willing to spend linear time determining whether an alloca 633 /// was captured before or after this particular call, while we are. However, 634 /// with a smarter AA in place, this test is just wasting compile time. 635 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 636 const MemoryLocation &MemLoc, 637 DominatorTree *DT, 638 OrderedBasicBlock *OBB) { 639 if (!DT) 640 return ModRefInfo::ModRef; 641 642 const Value *Object = 643 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 644 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 645 isa<Constant>(Object)) 646 return ModRefInfo::ModRef; 647 648 const auto *Call = dyn_cast<CallBase>(I); 649 if (!Call || Call == Object) 650 return ModRefInfo::ModRef; 651 652 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 653 /* StoreCaptures */ true, I, DT, 654 /* include Object */ true, 655 /* OrderedBasicBlock */ OBB)) 656 return ModRefInfo::ModRef; 657 658 unsigned ArgNo = 0; 659 ModRefInfo R = ModRefInfo::NoModRef; 660 bool IsMustAlias = true; 661 // Set flag only if no May found and all operands processed. 662 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 663 CI != CE; ++CI, ++ArgNo) { 664 // Only look at the no-capture or byval pointer arguments. If this 665 // pointer were passed to arguments that were neither of these, then it 666 // couldn't be no-capture. 667 if (!(*CI)->getType()->isPointerTy() || 668 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && 669 !Call->isByValArgument(ArgNo))) 670 continue; 671 672 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); 673 // If this is a no-capture pointer argument, see if we can tell that it 674 // is impossible to alias the pointer we're checking. If not, we have to 675 // assume that the call could touch the pointer, even though it doesn't 676 // escape. 677 if (AR != MustAlias) 678 IsMustAlias = false; 679 if (AR == NoAlias) 680 continue; 681 if (Call->doesNotAccessMemory(ArgNo)) 682 continue; 683 if (Call->onlyReadsMemory(ArgNo)) { 684 R = ModRefInfo::Ref; 685 continue; 686 } 687 // Not returning MustModRef since we have not seen all the arguments. 688 return ModRefInfo::ModRef; 689 } 690 return IsMustAlias ? setMust(R) : clearMust(R); 691 } 692 693 /// canBasicBlockModify - Return true if it is possible for execution of the 694 /// specified basic block to modify the location Loc. 695 /// 696 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 697 const MemoryLocation &Loc) { 698 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 699 } 700 701 /// canInstructionRangeModRef - Return true if it is possible for the 702 /// execution of the specified instructions to mod\ref (according to the 703 /// mode) the location Loc. The instructions to consider are all 704 /// of the instructions in the range of [I1,I2] INCLUSIVE. 705 /// I1 and I2 must be in the same basic block. 706 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 707 const Instruction &I2, 708 const MemoryLocation &Loc, 709 const ModRefInfo Mode) { 710 assert(I1.getParent() == I2.getParent() && 711 "Instructions not in same basic block!"); 712 BasicBlock::const_iterator I = I1.getIterator(); 713 BasicBlock::const_iterator E = I2.getIterator(); 714 ++E; // Convert from inclusive to exclusive range. 715 716 for (; I != E; ++I) // Check every instruction in range 717 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 718 return true; 719 return false; 720 } 721 722 // Provide a definition for the root virtual destructor. 723 AAResults::Concept::~Concept() = default; 724 725 // Provide a definition for the static object used to identify passes. 726 AnalysisKey AAManager::Key; 727 728 namespace { 729 730 731 } // end anonymous namespace 732 733 char ExternalAAWrapperPass::ID = 0; 734 735 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 736 false, true) 737 738 ImmutablePass * 739 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 740 return new ExternalAAWrapperPass(std::move(Callback)); 741 } 742 743 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 744 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 745 } 746 747 char AAResultsWrapperPass::ID = 0; 748 749 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 750 "Function Alias Analysis Results", false, true) 751 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 752 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 753 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 754 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 755 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 756 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 757 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 758 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 759 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 760 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 761 "Function Alias Analysis Results", false, true) 762 763 FunctionPass *llvm::createAAResultsWrapperPass() { 764 return new AAResultsWrapperPass(); 765 } 766 767 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 768 /// 769 /// This is the legacy pass manager's interface to the new-style AA results 770 /// aggregation object. Because this is somewhat shoe-horned into the legacy 771 /// pass manager, we hard code all the specific alias analyses available into 772 /// it. While the particular set enabled is configured via commandline flags, 773 /// adding a new alias analysis to LLVM will require adding support for it to 774 /// this list. 775 bool AAResultsWrapperPass::runOnFunction(Function &F) { 776 // NB! This *must* be reset before adding new AA results to the new 777 // AAResults object because in the legacy pass manager, each instance 778 // of these will refer to the *same* immutable analyses, registering and 779 // unregistering themselves with them. We need to carefully tear down the 780 // previous object first, in this case replacing it with an empty one, before 781 // registering new results. 782 AAR.reset( 783 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); 784 785 // BasicAA is always available for function analyses. Also, we add it first 786 // so that it can trump TBAA results when it proves MustAlias. 787 // FIXME: TBAA should have an explicit mode to support this and then we 788 // should reconsider the ordering here. 789 if (!DisableBasicAA) 790 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 791 792 // Populate the results with the currently available AAs. 793 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 794 AAR->addAAResult(WrapperPass->getResult()); 795 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 796 AAR->addAAResult(WrapperPass->getResult()); 797 if (auto *WrapperPass = 798 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 799 AAR->addAAResult(WrapperPass->getResult()); 800 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 801 AAR->addAAResult(WrapperPass->getResult()); 802 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 803 AAR->addAAResult(WrapperPass->getResult()); 804 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 805 AAR->addAAResult(WrapperPass->getResult()); 806 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 807 AAR->addAAResult(WrapperPass->getResult()); 808 809 // If available, run an external AA providing callback over the results as 810 // well. 811 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 812 if (WrapperPass->CB) 813 WrapperPass->CB(*this, F, *AAR); 814 815 // Analyses don't mutate the IR, so return false. 816 return false; 817 } 818 819 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 820 AU.setPreservesAll(); 821 AU.addRequired<BasicAAWrapperPass>(); 822 AU.addRequired<TargetLibraryInfoWrapperPass>(); 823 824 // We also need to mark all the alias analysis passes we will potentially 825 // probe in runOnFunction as used here to ensure the legacy pass manager 826 // preserves them. This hard coding of lists of alias analyses is specific to 827 // the legacy pass manager. 828 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 829 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 830 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 831 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 832 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 833 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 834 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 835 } 836 837 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 838 BasicAAResult &BAR) { 839 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()); 840 841 // Add in our explicitly constructed BasicAA results. 842 if (!DisableBasicAA) 843 AAR.addAAResult(BAR); 844 845 // Populate the results with the other currently available AAs. 846 if (auto *WrapperPass = 847 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 848 AAR.addAAResult(WrapperPass->getResult()); 849 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 850 AAR.addAAResult(WrapperPass->getResult()); 851 if (auto *WrapperPass = 852 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 853 AAR.addAAResult(WrapperPass->getResult()); 854 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 855 AAR.addAAResult(WrapperPass->getResult()); 856 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 857 AAR.addAAResult(WrapperPass->getResult()); 858 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 859 AAR.addAAResult(WrapperPass->getResult()); 860 861 return AAR; 862 } 863 864 bool llvm::isNoAliasCall(const Value *V) { 865 if (const auto *Call = dyn_cast<CallBase>(V)) 866 return Call->hasRetAttr(Attribute::NoAlias); 867 return false; 868 } 869 870 bool llvm::isNoAliasArgument(const Value *V) { 871 if (const Argument *A = dyn_cast<Argument>(V)) 872 return A->hasNoAliasAttr(); 873 return false; 874 } 875 876 bool llvm::isIdentifiedObject(const Value *V) { 877 if (isa<AllocaInst>(V)) 878 return true; 879 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 880 return true; 881 if (isNoAliasCall(V)) 882 return true; 883 if (const Argument *A = dyn_cast<Argument>(V)) 884 return A->hasNoAliasAttr() || A->hasByValAttr(); 885 return false; 886 } 887 888 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 889 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 890 } 891 892 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 893 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 894 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 895 // to be added here also. 896 AU.addRequired<TargetLibraryInfoWrapperPass>(); 897 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 898 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 899 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 900 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 901 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 902 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 903 } 904