1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the generic AliasAnalysis interface which is used as the 10 // common interface used by all clients and implementations of alias analysis. 11 // 12 // This file also implements the default version of the AliasAnalysis interface 13 // that is to be used when no other implementation is specified. This does some 14 // simple tests that detect obvious cases: two different global pointers cannot 15 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 16 // etc. 17 // 18 // This alias analysis implementation really isn't very good for anything, but 19 // it is very fast, and makes a nice clean default implementation. Because it 20 // handles lots of little corner cases, other, more complex, alias analysis 21 // implementations may choose to rely on this pass to resolve these simple and 22 // easy cases. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BasicAliasAnalysis.h" 28 #include "llvm/Analysis/CFLAndersAliasAnalysis.h" 29 #include "llvm/Analysis/CFLSteensAliasAnalysis.h" 30 #include "llvm/Analysis/CaptureTracking.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/Argument.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/BasicBlock.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/InitializePasses.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/AtomicOrdering.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/CommandLine.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <functional> 55 #include <iterator> 56 57 using namespace llvm; 58 59 /// Allow disabling BasicAA from the AA results. This is particularly useful 60 /// when testing to isolate a single AA implementation. 61 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false)); 62 63 AAResults::AAResults(AAResults &&Arg) 64 : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) { 65 for (auto &AA : AAs) 66 AA->setAAResults(this); 67 } 68 69 AAResults::~AAResults() { 70 // FIXME; It would be nice to at least clear out the pointers back to this 71 // aggregation here, but we end up with non-nesting lifetimes in the legacy 72 // pass manager that prevent this from working. In the legacy pass manager 73 // we'll end up with dangling references here in some cases. 74 #if 0 75 for (auto &AA : AAs) 76 AA->setAAResults(nullptr); 77 #endif 78 } 79 80 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA, 81 FunctionAnalysisManager::Invalidator &Inv) { 82 // AAResults preserves the AAManager by default, due to the stateless nature 83 // of AliasAnalysis. There is no need to check whether it has been preserved 84 // explicitly. Check if any module dependency was invalidated and caused the 85 // AAManager to be invalidated. Invalidate ourselves in that case. 86 auto PAC = PA.getChecker<AAManager>(); 87 if (!PAC.preservedWhenStateless()) 88 return true; 89 90 // Check if any of the function dependencies were invalidated, and invalidate 91 // ourselves in that case. 92 for (AnalysisKey *ID : AADeps) 93 if (Inv.invalidate(ID, F, PA)) 94 return true; 95 96 // Everything we depend on is still fine, so are we. Nothing to invalidate. 97 return false; 98 } 99 100 //===----------------------------------------------------------------------===// 101 // Default chaining methods 102 //===----------------------------------------------------------------------===// 103 104 AliasResult AAResults::alias(const MemoryLocation &LocA, 105 const MemoryLocation &LocB) { 106 AAQueryInfo AAQIP; 107 return alias(LocA, LocB, AAQIP); 108 } 109 110 AliasResult AAResults::alias(const MemoryLocation &LocA, 111 const MemoryLocation &LocB, AAQueryInfo &AAQI) { 112 for (const auto &AA : AAs) { 113 auto Result = AA->alias(LocA, LocB, AAQI); 114 if (Result != MayAlias) 115 return Result; 116 } 117 return MayAlias; 118 } 119 120 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 121 bool OrLocal) { 122 AAQueryInfo AAQIP; 123 return pointsToConstantMemory(Loc, AAQIP, OrLocal); 124 } 125 126 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 127 AAQueryInfo &AAQI, bool OrLocal) { 128 for (const auto &AA : AAs) 129 if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal)) 130 return true; 131 132 return false; 133 } 134 135 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) { 136 ModRefInfo Result = ModRefInfo::ModRef; 137 138 for (const auto &AA : AAs) { 139 Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx)); 140 141 // Early-exit the moment we reach the bottom of the lattice. 142 if (isNoModRef(Result)) 143 return ModRefInfo::NoModRef; 144 } 145 146 return Result; 147 } 148 149 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) { 150 AAQueryInfo AAQIP; 151 return getModRefInfo(I, Call2, AAQIP); 152 } 153 154 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2, 155 AAQueryInfo &AAQI) { 156 // We may have two calls. 157 if (const auto *Call1 = dyn_cast<CallBase>(I)) { 158 // Check if the two calls modify the same memory. 159 return getModRefInfo(Call1, Call2, AAQI); 160 } else if (I->isFenceLike()) { 161 // If this is a fence, just return ModRef. 162 return ModRefInfo::ModRef; 163 } else { 164 // Otherwise, check if the call modifies or references the 165 // location this memory access defines. The best we can say 166 // is that if the call references what this instruction 167 // defines, it must be clobbered by this location. 168 const MemoryLocation DefLoc = MemoryLocation::get(I); 169 ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI); 170 if (isModOrRefSet(MR)) 171 return setModAndRef(MR); 172 } 173 return ModRefInfo::NoModRef; 174 } 175 176 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 177 const MemoryLocation &Loc) { 178 AAQueryInfo AAQIP; 179 return getModRefInfo(Call, Loc, AAQIP); 180 } 181 182 ModRefInfo AAResults::getModRefInfo(const CallBase *Call, 183 const MemoryLocation &Loc, 184 AAQueryInfo &AAQI) { 185 ModRefInfo Result = ModRefInfo::ModRef; 186 187 for (const auto &AA : AAs) { 188 Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI)); 189 190 // Early-exit the moment we reach the bottom of the lattice. 191 if (isNoModRef(Result)) 192 return ModRefInfo::NoModRef; 193 } 194 195 // Try to refine the mod-ref info further using other API entry points to the 196 // aggregate set of AA results. 197 auto MRB = getModRefBehavior(Call); 198 if (onlyAccessesInaccessibleMem(MRB)) 199 return ModRefInfo::NoModRef; 200 201 if (onlyReadsMemory(MRB)) 202 Result = clearMod(Result); 203 else if (doesNotReadMemory(MRB)) 204 Result = clearRef(Result); 205 206 if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) { 207 bool IsMustAlias = true; 208 ModRefInfo AllArgsMask = ModRefInfo::NoModRef; 209 if (doesAccessArgPointees(MRB)) { 210 for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) { 211 const Value *Arg = *AI; 212 if (!Arg->getType()->isPointerTy()) 213 continue; 214 unsigned ArgIdx = std::distance(Call->arg_begin(), AI); 215 MemoryLocation ArgLoc = 216 MemoryLocation::getForArgument(Call, ArgIdx, TLI); 217 AliasResult ArgAlias = alias(ArgLoc, Loc); 218 if (ArgAlias != NoAlias) { 219 ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx); 220 AllArgsMask = unionModRef(AllArgsMask, ArgMask); 221 } 222 // Conservatively clear IsMustAlias unless only MustAlias is found. 223 IsMustAlias &= (ArgAlias == MustAlias); 224 } 225 } 226 // Return NoModRef if no alias found with any argument. 227 if (isNoModRef(AllArgsMask)) 228 return ModRefInfo::NoModRef; 229 // Logical & between other AA analyses and argument analysis. 230 Result = intersectModRef(Result, AllArgsMask); 231 // If only MustAlias found above, set Must bit. 232 Result = IsMustAlias ? setMust(Result) : clearMust(Result); 233 } 234 235 // If Loc is a constant memory location, the call definitely could not 236 // modify the memory location. 237 if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false)) 238 Result = clearMod(Result); 239 240 return Result; 241 } 242 243 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 244 const CallBase *Call2) { 245 AAQueryInfo AAQIP; 246 return getModRefInfo(Call1, Call2, AAQIP); 247 } 248 249 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1, 250 const CallBase *Call2, AAQueryInfo &AAQI) { 251 ModRefInfo Result = ModRefInfo::ModRef; 252 253 for (const auto &AA : AAs) { 254 Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI)); 255 256 // Early-exit the moment we reach the bottom of the lattice. 257 if (isNoModRef(Result)) 258 return ModRefInfo::NoModRef; 259 } 260 261 // Try to refine the mod-ref info further using other API entry points to the 262 // aggregate set of AA results. 263 264 // If Call1 or Call2 are readnone, they don't interact. 265 auto Call1B = getModRefBehavior(Call1); 266 if (Call1B == FMRB_DoesNotAccessMemory) 267 return ModRefInfo::NoModRef; 268 269 auto Call2B = getModRefBehavior(Call2); 270 if (Call2B == FMRB_DoesNotAccessMemory) 271 return ModRefInfo::NoModRef; 272 273 // If they both only read from memory, there is no dependence. 274 if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B)) 275 return ModRefInfo::NoModRef; 276 277 // If Call1 only reads memory, the only dependence on Call2 can be 278 // from Call1 reading memory written by Call2. 279 if (onlyReadsMemory(Call1B)) 280 Result = clearMod(Result); 281 else if (doesNotReadMemory(Call1B)) 282 Result = clearRef(Result); 283 284 // If Call2 only access memory through arguments, accumulate the mod/ref 285 // information from Call1's references to the memory referenced by 286 // Call2's arguments. 287 if (onlyAccessesArgPointees(Call2B)) { 288 if (!doesAccessArgPointees(Call2B)) 289 return ModRefInfo::NoModRef; 290 ModRefInfo R = ModRefInfo::NoModRef; 291 bool IsMustAlias = true; 292 for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) { 293 const Value *Arg = *I; 294 if (!Arg->getType()->isPointerTy()) 295 continue; 296 unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I); 297 auto Call2ArgLoc = 298 MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI); 299 300 // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the 301 // dependence of Call1 on that location is the inverse: 302 // - If Call2 modifies location, dependence exists if Call1 reads or 303 // writes. 304 // - If Call2 only reads location, dependence exists if Call1 writes. 305 ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx); 306 ModRefInfo ArgMask = ModRefInfo::NoModRef; 307 if (isModSet(ArgModRefC2)) 308 ArgMask = ModRefInfo::ModRef; 309 else if (isRefSet(ArgModRefC2)) 310 ArgMask = ModRefInfo::Mod; 311 312 // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use 313 // above ArgMask to update dependence info. 314 ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc); 315 ArgMask = intersectModRef(ArgMask, ModRefC1); 316 317 // Conservatively clear IsMustAlias unless only MustAlias is found. 318 IsMustAlias &= isMustSet(ModRefC1); 319 320 R = intersectModRef(unionModRef(R, ArgMask), Result); 321 if (R == Result) { 322 // On early exit, not all args were checked, cannot set Must. 323 if (I + 1 != E) 324 IsMustAlias = false; 325 break; 326 } 327 } 328 329 if (isNoModRef(R)) 330 return ModRefInfo::NoModRef; 331 332 // If MustAlias found above, set Must bit. 333 return IsMustAlias ? setMust(R) : clearMust(R); 334 } 335 336 // If Call1 only accesses memory through arguments, check if Call2 references 337 // any of the memory referenced by Call1's arguments. If not, return NoModRef. 338 if (onlyAccessesArgPointees(Call1B)) { 339 if (!doesAccessArgPointees(Call1B)) 340 return ModRefInfo::NoModRef; 341 ModRefInfo R = ModRefInfo::NoModRef; 342 bool IsMustAlias = true; 343 for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) { 344 const Value *Arg = *I; 345 if (!Arg->getType()->isPointerTy()) 346 continue; 347 unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I); 348 auto Call1ArgLoc = 349 MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI); 350 351 // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1 352 // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by 353 // Call2. If Call1 might Ref, then we care only about a Mod by Call2. 354 ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx); 355 ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc); 356 if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) || 357 (isRefSet(ArgModRefC1) && isModSet(ModRefC2))) 358 R = intersectModRef(unionModRef(R, ArgModRefC1), Result); 359 360 // Conservatively clear IsMustAlias unless only MustAlias is found. 361 IsMustAlias &= isMustSet(ModRefC2); 362 363 if (R == Result) { 364 // On early exit, not all args were checked, cannot set Must. 365 if (I + 1 != E) 366 IsMustAlias = false; 367 break; 368 } 369 } 370 371 if (isNoModRef(R)) 372 return ModRefInfo::NoModRef; 373 374 // If MustAlias found above, set Must bit. 375 return IsMustAlias ? setMust(R) : clearMust(R); 376 } 377 378 return Result; 379 } 380 381 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) { 382 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 383 384 for (const auto &AA : AAs) { 385 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call)); 386 387 // Early-exit the moment we reach the bottom of the lattice. 388 if (Result == FMRB_DoesNotAccessMemory) 389 return Result; 390 } 391 392 return Result; 393 } 394 395 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 396 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 397 398 for (const auto &AA : AAs) { 399 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 400 401 // Early-exit the moment we reach the bottom of the lattice. 402 if (Result == FMRB_DoesNotAccessMemory) 403 return Result; 404 } 405 406 return Result; 407 } 408 409 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) { 410 switch (AR) { 411 case NoAlias: 412 OS << "NoAlias"; 413 break; 414 case MustAlias: 415 OS << "MustAlias"; 416 break; 417 case MayAlias: 418 OS << "MayAlias"; 419 break; 420 case PartialAlias: 421 OS << "PartialAlias"; 422 break; 423 } 424 return OS; 425 } 426 427 //===----------------------------------------------------------------------===// 428 // Helper method implementation 429 //===----------------------------------------------------------------------===// 430 431 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 432 const MemoryLocation &Loc) { 433 AAQueryInfo AAQIP; 434 return getModRefInfo(L, Loc, AAQIP); 435 } 436 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 437 const MemoryLocation &Loc, 438 AAQueryInfo &AAQI) { 439 // Be conservative in the face of atomic. 440 if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered)) 441 return ModRefInfo::ModRef; 442 443 // If the load address doesn't alias the given address, it doesn't read 444 // or write the specified memory. 445 if (Loc.Ptr) { 446 AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI); 447 if (AR == NoAlias) 448 return ModRefInfo::NoModRef; 449 if (AR == MustAlias) 450 return ModRefInfo::MustRef; 451 } 452 // Otherwise, a load just reads. 453 return ModRefInfo::Ref; 454 } 455 456 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 457 const MemoryLocation &Loc) { 458 AAQueryInfo AAQIP; 459 return getModRefInfo(S, Loc, AAQIP); 460 } 461 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 462 const MemoryLocation &Loc, 463 AAQueryInfo &AAQI) { 464 // Be conservative in the face of atomic. 465 if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered)) 466 return ModRefInfo::ModRef; 467 468 if (Loc.Ptr) { 469 AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI); 470 // If the store address cannot alias the pointer in question, then the 471 // specified memory cannot be modified by the store. 472 if (AR == NoAlias) 473 return ModRefInfo::NoModRef; 474 475 // If the pointer is a pointer to constant memory, then it could not have 476 // been modified by this store. 477 if (pointsToConstantMemory(Loc, AAQI)) 478 return ModRefInfo::NoModRef; 479 480 // If the store address aliases the pointer as must alias, set Must. 481 if (AR == MustAlias) 482 return ModRefInfo::MustMod; 483 } 484 485 // Otherwise, a store just writes. 486 return ModRefInfo::Mod; 487 } 488 489 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) { 490 AAQueryInfo AAQIP; 491 return getModRefInfo(S, Loc, AAQIP); 492 } 493 494 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, 495 const MemoryLocation &Loc, 496 AAQueryInfo &AAQI) { 497 // If we know that the location is a constant memory location, the fence 498 // cannot modify this location. 499 if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI)) 500 return ModRefInfo::Ref; 501 return ModRefInfo::ModRef; 502 } 503 504 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 505 const MemoryLocation &Loc) { 506 AAQueryInfo AAQIP; 507 return getModRefInfo(V, Loc, AAQIP); 508 } 509 510 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 511 const MemoryLocation &Loc, 512 AAQueryInfo &AAQI) { 513 if (Loc.Ptr) { 514 AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI); 515 // If the va_arg address cannot alias the pointer in question, then the 516 // specified memory cannot be accessed by the va_arg. 517 if (AR == NoAlias) 518 return ModRefInfo::NoModRef; 519 520 // If the pointer is a pointer to constant memory, then it could not have 521 // been modified by this va_arg. 522 if (pointsToConstantMemory(Loc, AAQI)) 523 return ModRefInfo::NoModRef; 524 525 // If the va_arg aliases the pointer as must alias, set Must. 526 if (AR == MustAlias) 527 return ModRefInfo::MustModRef; 528 } 529 530 // Otherwise, a va_arg reads and writes. 531 return ModRefInfo::ModRef; 532 } 533 534 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 535 const MemoryLocation &Loc) { 536 AAQueryInfo AAQIP; 537 return getModRefInfo(CatchPad, Loc, AAQIP); 538 } 539 540 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad, 541 const MemoryLocation &Loc, 542 AAQueryInfo &AAQI) { 543 if (Loc.Ptr) { 544 // If the pointer is a pointer to constant memory, 545 // then it could not have been modified by this catchpad. 546 if (pointsToConstantMemory(Loc, AAQI)) 547 return ModRefInfo::NoModRef; 548 } 549 550 // Otherwise, a catchpad reads and writes. 551 return ModRefInfo::ModRef; 552 } 553 554 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 555 const MemoryLocation &Loc) { 556 AAQueryInfo AAQIP; 557 return getModRefInfo(CatchRet, Loc, AAQIP); 558 } 559 560 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet, 561 const MemoryLocation &Loc, 562 AAQueryInfo &AAQI) { 563 if (Loc.Ptr) { 564 // If the pointer is a pointer to constant memory, 565 // then it could not have been modified by this catchpad. 566 if (pointsToConstantMemory(Loc, AAQI)) 567 return ModRefInfo::NoModRef; 568 } 569 570 // Otherwise, a catchret reads and writes. 571 return ModRefInfo::ModRef; 572 } 573 574 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 575 const MemoryLocation &Loc) { 576 AAQueryInfo AAQIP; 577 return getModRefInfo(CX, Loc, AAQIP); 578 } 579 580 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 581 const MemoryLocation &Loc, 582 AAQueryInfo &AAQI) { 583 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 584 if (isStrongerThanMonotonic(CX->getSuccessOrdering())) 585 return ModRefInfo::ModRef; 586 587 if (Loc.Ptr) { 588 AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI); 589 // If the cmpxchg address does not alias the location, it does not access 590 // it. 591 if (AR == NoAlias) 592 return ModRefInfo::NoModRef; 593 594 // If the cmpxchg address aliases the pointer as must alias, set Must. 595 if (AR == MustAlias) 596 return ModRefInfo::MustModRef; 597 } 598 599 return ModRefInfo::ModRef; 600 } 601 602 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 603 const MemoryLocation &Loc) { 604 AAQueryInfo AAQIP; 605 return getModRefInfo(RMW, Loc, AAQIP); 606 } 607 608 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 609 const MemoryLocation &Loc, 610 AAQueryInfo &AAQI) { 611 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 612 if (isStrongerThanMonotonic(RMW->getOrdering())) 613 return ModRefInfo::ModRef; 614 615 if (Loc.Ptr) { 616 AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI); 617 // If the atomicrmw address does not alias the location, it does not access 618 // it. 619 if (AR == NoAlias) 620 return ModRefInfo::NoModRef; 621 622 // If the atomicrmw address aliases the pointer as must alias, set Must. 623 if (AR == MustAlias) 624 return ModRefInfo::MustModRef; 625 } 626 627 return ModRefInfo::ModRef; 628 } 629 630 /// Return information about whether a particular call site modifies 631 /// or reads the specified memory location \p MemLoc before instruction \p I 632 /// in a BasicBlock. 633 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 634 /// BasicAA isn't willing to spend linear time determining whether an alloca 635 /// was captured before or after this particular call, while we are. However, 636 /// with a smarter AA in place, this test is just wasting compile time. 637 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 638 const MemoryLocation &MemLoc, 639 DominatorTree *DT) { 640 if (!DT) 641 return ModRefInfo::ModRef; 642 643 const Value *Object = getUnderlyingObject(MemLoc.Ptr); 644 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 645 isa<Constant>(Object)) 646 return ModRefInfo::ModRef; 647 648 const auto *Call = dyn_cast<CallBase>(I); 649 if (!Call || Call == Object) 650 return ModRefInfo::ModRef; 651 652 if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 653 /* StoreCaptures */ true, I, DT, 654 /* include Object */ true)) 655 return ModRefInfo::ModRef; 656 657 unsigned ArgNo = 0; 658 ModRefInfo R = ModRefInfo::NoModRef; 659 bool IsMustAlias = true; 660 // Set flag only if no May found and all operands processed. 661 for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); 662 CI != CE; ++CI, ++ArgNo) { 663 // Only look at the no-capture or byval pointer arguments. If this 664 // pointer were passed to arguments that were neither of these, then it 665 // couldn't be no-capture. 666 if (!(*CI)->getType()->isPointerTy() || 667 (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() && 668 !Call->isByValArgument(ArgNo))) 669 continue; 670 671 AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object)); 672 // If this is a no-capture pointer argument, see if we can tell that it 673 // is impossible to alias the pointer we're checking. If not, we have to 674 // assume that the call could touch the pointer, even though it doesn't 675 // escape. 676 if (AR != MustAlias) 677 IsMustAlias = false; 678 if (AR == NoAlias) 679 continue; 680 if (Call->doesNotAccessMemory(ArgNo)) 681 continue; 682 if (Call->onlyReadsMemory(ArgNo)) { 683 R = ModRefInfo::Ref; 684 continue; 685 } 686 // Not returning MustModRef since we have not seen all the arguments. 687 return ModRefInfo::ModRef; 688 } 689 return IsMustAlias ? setMust(R) : clearMust(R); 690 } 691 692 /// canBasicBlockModify - Return true if it is possible for execution of the 693 /// specified basic block to modify the location Loc. 694 /// 695 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 696 const MemoryLocation &Loc) { 697 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod); 698 } 699 700 /// canInstructionRangeModRef - Return true if it is possible for the 701 /// execution of the specified instructions to mod\ref (according to the 702 /// mode) the location Loc. The instructions to consider are all 703 /// of the instructions in the range of [I1,I2] INCLUSIVE. 704 /// I1 and I2 must be in the same basic block. 705 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 706 const Instruction &I2, 707 const MemoryLocation &Loc, 708 const ModRefInfo Mode) { 709 assert(I1.getParent() == I2.getParent() && 710 "Instructions not in same basic block!"); 711 BasicBlock::const_iterator I = I1.getIterator(); 712 BasicBlock::const_iterator E = I2.getIterator(); 713 ++E; // Convert from inclusive to exclusive range. 714 715 for (; I != E; ++I) // Check every instruction in range 716 if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode))) 717 return true; 718 return false; 719 } 720 721 // Provide a definition for the root virtual destructor. 722 AAResults::Concept::~Concept() = default; 723 724 // Provide a definition for the static object used to identify passes. 725 AnalysisKey AAManager::Key; 726 727 namespace { 728 729 730 } // end anonymous namespace 731 732 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) { 733 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 734 } 735 736 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB) 737 : ImmutablePass(ID), CB(std::move(CB)) { 738 initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry()); 739 } 740 741 char ExternalAAWrapperPass::ID = 0; 742 743 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis", 744 false, true) 745 746 ImmutablePass * 747 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) { 748 return new ExternalAAWrapperPass(std::move(Callback)); 749 } 750 751 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 752 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 753 } 754 755 char AAResultsWrapperPass::ID = 0; 756 757 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 758 "Function Alias Analysis Results", false, true) 759 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 760 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass) 761 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass) 762 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass) 763 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 764 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 765 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 766 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 767 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 768 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 769 "Function Alias Analysis Results", false, true) 770 771 FunctionPass *llvm::createAAResultsWrapperPass() { 772 return new AAResultsWrapperPass(); 773 } 774 775 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 776 /// 777 /// This is the legacy pass manager's interface to the new-style AA results 778 /// aggregation object. Because this is somewhat shoe-horned into the legacy 779 /// pass manager, we hard code all the specific alias analyses available into 780 /// it. While the particular set enabled is configured via commandline flags, 781 /// adding a new alias analysis to LLVM will require adding support for it to 782 /// this list. 783 bool AAResultsWrapperPass::runOnFunction(Function &F) { 784 // NB! This *must* be reset before adding new AA results to the new 785 // AAResults object because in the legacy pass manager, each instance 786 // of these will refer to the *same* immutable analyses, registering and 787 // unregistering themselves with them. We need to carefully tear down the 788 // previous object first, in this case replacing it with an empty one, before 789 // registering new results. 790 AAR.reset( 791 new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F))); 792 793 // BasicAA is always available for function analyses. Also, we add it first 794 // so that it can trump TBAA results when it proves MustAlias. 795 // FIXME: TBAA should have an explicit mode to support this and then we 796 // should reconsider the ordering here. 797 if (!DisableBasicAA) 798 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 799 800 // Populate the results with the currently available AAs. 801 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 802 AAR->addAAResult(WrapperPass->getResult()); 803 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 804 AAR->addAAResult(WrapperPass->getResult()); 805 if (auto *WrapperPass = 806 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 807 AAR->addAAResult(WrapperPass->getResult()); 808 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 809 AAR->addAAResult(WrapperPass->getResult()); 810 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 811 AAR->addAAResult(WrapperPass->getResult()); 812 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 813 AAR->addAAResult(WrapperPass->getResult()); 814 if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 815 AAR->addAAResult(WrapperPass->getResult()); 816 817 // If available, run an external AA providing callback over the results as 818 // well. 819 if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>()) 820 if (WrapperPass->CB) 821 WrapperPass->CB(*this, F, *AAR); 822 823 // Analyses don't mutate the IR, so return false. 824 return false; 825 } 826 827 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 828 AU.setPreservesAll(); 829 AU.addRequired<BasicAAWrapperPass>(); 830 AU.addRequired<TargetLibraryInfoWrapperPass>(); 831 832 // We also need to mark all the alias analysis passes we will potentially 833 // probe in runOnFunction as used here to ensure the legacy pass manager 834 // preserves them. This hard coding of lists of alias analyses is specific to 835 // the legacy pass manager. 836 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 837 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 838 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 839 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 840 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 841 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 842 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 843 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 844 } 845 846 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 847 BasicAAResult &BAR) { 848 AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); 849 850 // Add in our explicitly constructed BasicAA results. 851 if (!DisableBasicAA) 852 AAR.addAAResult(BAR); 853 854 // Populate the results with the other currently available AAs. 855 if (auto *WrapperPass = 856 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 857 AAR.addAAResult(WrapperPass->getResult()); 858 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 859 AAR.addAAResult(WrapperPass->getResult()); 860 if (auto *WrapperPass = 861 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 862 AAR.addAAResult(WrapperPass->getResult()); 863 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 864 AAR.addAAResult(WrapperPass->getResult()); 865 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>()) 866 AAR.addAAResult(WrapperPass->getResult()); 867 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>()) 868 AAR.addAAResult(WrapperPass->getResult()); 869 if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>()) 870 if (WrapperPass->CB) 871 WrapperPass->CB(P, F, AAR); 872 873 return AAR; 874 } 875 876 bool llvm::isNoAliasCall(const Value *V) { 877 if (const auto *Call = dyn_cast<CallBase>(V)) 878 return Call->hasRetAttr(Attribute::NoAlias); 879 return false; 880 } 881 882 bool llvm::isNoAliasArgument(const Value *V) { 883 if (const Argument *A = dyn_cast<Argument>(V)) 884 return A->hasNoAliasAttr(); 885 return false; 886 } 887 888 bool llvm::isIdentifiedObject(const Value *V) { 889 if (isa<AllocaInst>(V)) 890 return true; 891 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 892 return true; 893 if (isNoAliasCall(V)) 894 return true; 895 if (const Argument *A = dyn_cast<Argument>(V)) 896 return A->hasNoAliasAttr() || A->hasByValAttr(); 897 return false; 898 } 899 900 bool llvm::isIdentifiedFunctionLocal(const Value *V) { 901 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 902 } 903 904 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) { 905 // This function needs to be in sync with llvm::createLegacyPMAAResults -- if 906 // more alias analyses are added to llvm::createLegacyPMAAResults, they need 907 // to be added here also. 908 AU.addRequired<TargetLibraryInfoWrapperPass>(); 909 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 910 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 911 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 912 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 913 AU.addUsedIfAvailable<CFLAndersAAWrapperPass>(); 914 AU.addUsedIfAvailable<CFLSteensAAWrapperPass>(); 915 AU.addUsedIfAvailable<ExternalAAWrapperPass>(); 916 } 917