1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic AliasAnalysis interface which is used as the 11 // common interface used by all clients and implementations of alias analysis. 12 // 13 // This file also implements the default version of the AliasAnalysis interface 14 // that is to be used when no other implementation is specified. This does some 15 // simple tests that detect obvious cases: two different global pointers cannot 16 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 17 // etc. 18 // 19 // This alias analysis implementation really isn't very good for anything, but 20 // it is very fast, and makes a nice clean default implementation. Because it 21 // handles lots of little corner cases, other, more complex, alias analysis 22 // implementations may choose to rely on this pass to resolve these simple and 23 // easy cases. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/BasicAliasAnalysis.h" 29 #include "llvm/Analysis/CFG.h" 30 #include "llvm/Analysis/CFLAliasAnalysis.h" 31 #include "llvm/Analysis/CaptureTracking.h" 32 #include "llvm/Analysis/GlobalsModRef.h" 33 #include "llvm/Analysis/ObjCARCAliasAnalysis.h" 34 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 35 #include "llvm/Analysis/ScopedNoAliasAA.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TypeBasedAliasAnalysis.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/IR/BasicBlock.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/Dominators.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/Pass.h" 48 using namespace llvm; 49 50 /// Allow disabling BasicAA from the AA results. This is particularly useful 51 /// when testing to isolate a single AA implementation. 52 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden, 53 cl::init(false)); 54 55 AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) { 56 for (auto &AA : AAs) 57 AA->setAAResults(this); 58 } 59 60 AAResults &AAResults::operator=(AAResults &&Arg) { 61 AAs = std::move(Arg.AAs); 62 for (auto &AA : AAs) 63 AA->setAAResults(this); 64 return *this; 65 } 66 67 AAResults::~AAResults() { 68 // FIXME; It would be nice to at least clear out the pointers back to this 69 // aggregation here, but we end up with non-nesting lifetimes in the legacy 70 // pass manager that prevent this from working. In the legacy pass manager 71 // we'll end up with dangling references here in some cases. 72 #if 0 73 for (auto &AA : AAs) 74 AA->setAAResults(nullptr); 75 #endif 76 } 77 78 //===----------------------------------------------------------------------===// 79 // Default chaining methods 80 //===----------------------------------------------------------------------===// 81 82 AliasResult AAResults::alias(const MemoryLocation &LocA, 83 const MemoryLocation &LocB) { 84 for (const auto &AA : AAs) { 85 auto Result = AA->alias(LocA, LocB); 86 if (Result != MayAlias) 87 return Result; 88 } 89 return MayAlias; 90 } 91 92 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc, 93 bool OrLocal) { 94 for (const auto &AA : AAs) 95 if (AA->pointsToConstantMemory(Loc, OrLocal)) 96 return true; 97 98 return false; 99 } 100 101 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 102 ModRefInfo Result = MRI_ModRef; 103 104 for (const auto &AA : AAs) { 105 Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx)); 106 107 // Early-exit the moment we reach the bottom of the lattice. 108 if (Result == MRI_NoModRef) 109 return Result; 110 } 111 112 return Result; 113 } 114 115 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) { 116 // We may have two calls 117 if (auto CS = ImmutableCallSite(I)) { 118 // Check if the two calls modify the same memory 119 return getModRefInfo(Call, CS); 120 } else { 121 // Otherwise, check if the call modifies or references the 122 // location this memory access defines. The best we can say 123 // is that if the call references what this instruction 124 // defines, it must be clobbered by this location. 125 const MemoryLocation DefLoc = MemoryLocation::get(I); 126 if (getModRefInfo(Call, DefLoc) != MRI_NoModRef) 127 return MRI_ModRef; 128 } 129 return MRI_NoModRef; 130 } 131 132 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS, 133 const MemoryLocation &Loc) { 134 ModRefInfo Result = MRI_ModRef; 135 136 for (const auto &AA : AAs) { 137 Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc)); 138 139 // Early-exit the moment we reach the bottom of the lattice. 140 if (Result == MRI_NoModRef) 141 return Result; 142 } 143 144 return Result; 145 } 146 147 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1, 148 ImmutableCallSite CS2) { 149 ModRefInfo Result = MRI_ModRef; 150 151 for (const auto &AA : AAs) { 152 Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2)); 153 154 // Early-exit the moment we reach the bottom of the lattice. 155 if (Result == MRI_NoModRef) 156 return Result; 157 } 158 159 return Result; 160 } 161 162 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) { 163 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 164 165 for (const auto &AA : AAs) { 166 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS)); 167 168 // Early-exit the moment we reach the bottom of the lattice. 169 if (Result == FMRB_DoesNotAccessMemory) 170 return Result; 171 } 172 173 return Result; 174 } 175 176 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) { 177 FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior; 178 179 for (const auto &AA : AAs) { 180 Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F)); 181 182 // Early-exit the moment we reach the bottom of the lattice. 183 if (Result == FMRB_DoesNotAccessMemory) 184 return Result; 185 } 186 187 return Result; 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Helper method implementation 192 //===----------------------------------------------------------------------===// 193 194 ModRefInfo AAResults::getModRefInfo(const LoadInst *L, 195 const MemoryLocation &Loc) { 196 // Be conservative in the face of volatile/atomic. 197 if (!L->isUnordered()) 198 return MRI_ModRef; 199 200 // If the load address doesn't alias the given address, it doesn't read 201 // or write the specified memory. 202 if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) 203 return MRI_NoModRef; 204 205 // Otherwise, a load just reads. 206 return MRI_Ref; 207 } 208 209 ModRefInfo AAResults::getModRefInfo(const StoreInst *S, 210 const MemoryLocation &Loc) { 211 // Be conservative in the face of volatile/atomic. 212 if (!S->isUnordered()) 213 return MRI_ModRef; 214 215 if (Loc.Ptr) { 216 // If the store address cannot alias the pointer in question, then the 217 // specified memory cannot be modified by the store. 218 if (!alias(MemoryLocation::get(S), Loc)) 219 return MRI_NoModRef; 220 221 // If the pointer is a pointer to constant memory, then it could not have 222 // been modified by this store. 223 if (pointsToConstantMemory(Loc)) 224 return MRI_NoModRef; 225 } 226 227 // Otherwise, a store just writes. 228 return MRI_Mod; 229 } 230 231 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V, 232 const MemoryLocation &Loc) { 233 234 if (Loc.Ptr) { 235 // If the va_arg address cannot alias the pointer in question, then the 236 // specified memory cannot be accessed by the va_arg. 237 if (!alias(MemoryLocation::get(V), Loc)) 238 return MRI_NoModRef; 239 240 // If the pointer is a pointer to constant memory, then it could not have 241 // been modified by this va_arg. 242 if (pointsToConstantMemory(Loc)) 243 return MRI_NoModRef; 244 } 245 246 // Otherwise, a va_arg reads and writes. 247 return MRI_ModRef; 248 } 249 250 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX, 251 const MemoryLocation &Loc) { 252 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 253 if (CX->getSuccessOrdering() > Monotonic) 254 return MRI_ModRef; 255 256 // If the cmpxchg address does not alias the location, it does not access it. 257 if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) 258 return MRI_NoModRef; 259 260 return MRI_ModRef; 261 } 262 263 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW, 264 const MemoryLocation &Loc) { 265 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 266 if (RMW->getOrdering() > Monotonic) 267 return MRI_ModRef; 268 269 // If the atomicrmw address does not alias the location, it does not access it. 270 if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) 271 return MRI_NoModRef; 272 273 return MRI_ModRef; 274 } 275 276 /// \brief Return information about whether a particular call site modifies 277 /// or reads the specified memory location \p MemLoc before instruction \p I 278 /// in a BasicBlock. A ordered basic block \p OBB can be used to speed up 279 /// instruction-ordering queries inside the BasicBlock containing \p I. 280 /// FIXME: this is really just shoring-up a deficiency in alias analysis. 281 /// BasicAA isn't willing to spend linear time determining whether an alloca 282 /// was captured before or after this particular call, while we are. However, 283 /// with a smarter AA in place, this test is just wasting compile time. 284 ModRefInfo AAResults::callCapturesBefore(const Instruction *I, 285 const MemoryLocation &MemLoc, 286 DominatorTree *DT, 287 OrderedBasicBlock *OBB) { 288 if (!DT) 289 return MRI_ModRef; 290 291 const Value *Object = 292 GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout()); 293 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 294 isa<Constant>(Object)) 295 return MRI_ModRef; 296 297 ImmutableCallSite CS(I); 298 if (!CS.getInstruction() || CS.getInstruction() == Object) 299 return MRI_ModRef; 300 301 if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 302 /* StoreCaptures */ true, I, DT, 303 /* include Object */ true, 304 /* OrderedBasicBlock */ OBB)) 305 return MRI_ModRef; 306 307 unsigned ArgNo = 0; 308 ModRefInfo R = MRI_NoModRef; 309 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 310 CI != CE; ++CI, ++ArgNo) { 311 // Only look at the no-capture or byval pointer arguments. If this 312 // pointer were passed to arguments that were neither of these, then it 313 // couldn't be no-capture. 314 if (!(*CI)->getType()->isPointerTy() || 315 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 316 continue; 317 318 // If this is a no-capture pointer argument, see if we can tell that it 319 // is impossible to alias the pointer we're checking. If not, we have to 320 // assume that the call could touch the pointer, even though it doesn't 321 // escape. 322 if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) 323 continue; 324 if (CS.doesNotAccessMemory(ArgNo)) 325 continue; 326 if (CS.onlyReadsMemory(ArgNo)) { 327 R = MRI_Ref; 328 continue; 329 } 330 return MRI_ModRef; 331 } 332 return R; 333 } 334 335 /// canBasicBlockModify - Return true if it is possible for execution of the 336 /// specified basic block to modify the location Loc. 337 /// 338 bool AAResults::canBasicBlockModify(const BasicBlock &BB, 339 const MemoryLocation &Loc) { 340 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod); 341 } 342 343 /// canInstructionRangeModRef - Return true if it is possible for the 344 /// execution of the specified instructions to mod\ref (according to the 345 /// mode) the location Loc. The instructions to consider are all 346 /// of the instructions in the range of [I1,I2] INCLUSIVE. 347 /// I1 and I2 must be in the same basic block. 348 bool AAResults::canInstructionRangeModRef(const Instruction &I1, 349 const Instruction &I2, 350 const MemoryLocation &Loc, 351 const ModRefInfo Mode) { 352 assert(I1.getParent() == I2.getParent() && 353 "Instructions not in same basic block!"); 354 BasicBlock::const_iterator I = &I1; 355 BasicBlock::const_iterator E = &I2; 356 ++E; // Convert from inclusive to exclusive range. 357 358 for (; I != E; ++I) // Check every instruction in range 359 if (getModRefInfo(I, Loc) & Mode) 360 return true; 361 return false; 362 } 363 364 // Provide a definition for the root virtual destructor. 365 AAResults::Concept::~Concept() {} 366 367 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) { 368 initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry()); 369 } 370 371 char AAResultsWrapperPass::ID = 0; 372 373 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa", 374 "Function Alias Analysis Results", false, true) 375 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 376 INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass) 377 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 378 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass) 379 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 380 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass) 381 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass) 382 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa", 383 "Function Alias Analysis Results", false, true) 384 385 FunctionPass *llvm::createAAResultsWrapperPass() { 386 return new AAResultsWrapperPass(); 387 } 388 389 /// Run the wrapper pass to rebuild an aggregation over known AA passes. 390 /// 391 /// This is the legacy pass manager's interface to the new-style AA results 392 /// aggregation object. Because this is somewhat shoe-horned into the legacy 393 /// pass manager, we hard code all the specific alias analyses available into 394 /// it. While the particular set enabled is configured via commandline flags, 395 /// adding a new alias analysis to LLVM will require adding support for it to 396 /// this list. 397 bool AAResultsWrapperPass::runOnFunction(Function &F) { 398 // NB! This *must* be reset before adding new AA results to the new 399 // AAResults object because in the legacy pass manager, each instance 400 // of these will refer to the *same* immutable analyses, registering and 401 // unregistering themselves with them. We need to carefully tear down the 402 // previous object first, in this case replacing it with an empty one, before 403 // registering new results. 404 AAR.reset(new AAResults()); 405 406 // BasicAA is always available for function analyses. Also, we add it first 407 // so that it can trump TBAA results when it proves MustAlias. 408 // FIXME: TBAA should have an explicit mode to support this and then we 409 // should reconsider the ordering here. 410 if (!DisableBasicAA) 411 AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult()); 412 413 // Populate the results with the currently available AAs. 414 if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 415 AAR->addAAResult(WrapperPass->getResult()); 416 if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 417 AAR->addAAResult(WrapperPass->getResult()); 418 if (auto *WrapperPass = 419 getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 420 AAR->addAAResult(WrapperPass->getResult()); 421 if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 422 AAR->addAAResult(WrapperPass->getResult()); 423 if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>()) 424 AAR->addAAResult(WrapperPass->getResult()); 425 if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>()) 426 AAR->addAAResult(WrapperPass->getResult()); 427 428 // Analyses don't mutate the IR, so return false. 429 return false; 430 } 431 432 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 433 AU.setPreservesAll(); 434 AU.addRequired<BasicAAWrapperPass>(); 435 436 // We also need to mark all the alias analysis passes we will potentially 437 // probe in runOnFunction as used here to ensure the legacy pass manager 438 // preserves them. This hard coding of lists of alias analyses is specific to 439 // the legacy pass manager. 440 AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>(); 441 AU.addUsedIfAvailable<TypeBasedAAWrapperPass>(); 442 AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>(); 443 AU.addUsedIfAvailable<GlobalsAAWrapperPass>(); 444 AU.addUsedIfAvailable<SCEVAAWrapperPass>(); 445 AU.addUsedIfAvailable<CFLAAWrapperPass>(); 446 } 447 448 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F, 449 BasicAAResult &BAR) { 450 AAResults AAR; 451 452 // Add in our explicitly constructed BasicAA results. 453 if (!DisableBasicAA) 454 AAR.addAAResult(BAR); 455 456 // Populate the results with the other currently available AAs. 457 if (auto *WrapperPass = 458 P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>()) 459 AAR.addAAResult(WrapperPass->getResult()); 460 if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>()) 461 AAR.addAAResult(WrapperPass->getResult()); 462 if (auto *WrapperPass = 463 P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>()) 464 AAR.addAAResult(WrapperPass->getResult()); 465 if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>()) 466 AAR.addAAResult(WrapperPass->getResult()); 467 if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>()) 468 AAR.addAAResult(WrapperPass->getResult()); 469 if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>()) 470 AAR.addAAResult(WrapperPass->getResult()); 471 472 return AAR; 473 } 474 475 /// isNoAliasCall - Return true if this pointer is returned by a noalias 476 /// function. 477 bool llvm::isNoAliasCall(const Value *V) { 478 if (auto CS = ImmutableCallSite(V)) 479 return CS.paramHasAttr(0, Attribute::NoAlias); 480 return false; 481 } 482 483 /// isNoAliasArgument - Return true if this is an argument with the noalias 484 /// attribute. 485 bool llvm::isNoAliasArgument(const Value *V) 486 { 487 if (const Argument *A = dyn_cast<Argument>(V)) 488 return A->hasNoAliasAttr(); 489 return false; 490 } 491 492 /// isIdentifiedObject - Return true if this pointer refers to a distinct and 493 /// identifiable object. This returns true for: 494 /// Global Variables and Functions (but not Global Aliases) 495 /// Allocas and Mallocs 496 /// ByVal and NoAlias Arguments 497 /// NoAlias returns 498 /// 499 bool llvm::isIdentifiedObject(const Value *V) { 500 if (isa<AllocaInst>(V)) 501 return true; 502 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 503 return true; 504 if (isNoAliasCall(V)) 505 return true; 506 if (const Argument *A = dyn_cast<Argument>(V)) 507 return A->hasNoAliasAttr() || A->hasByValAttr(); 508 return false; 509 } 510 511 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 512 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 513 /// Further, an IdentifiedFunctionLocal can not alias with any function 514 /// arguments other than itself, which is not necessarily true for 515 /// IdentifiedObjects. 516 bool llvm::isIdentifiedFunctionLocal(const Value *V) 517 { 518 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 519 } 520