1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the generic AliasAnalysis interface which is used as the
10 // common interface used by all clients and implementations of alias analysis.
11 //
12 // This file also implements the default version of the AliasAnalysis interface
13 // that is to be used when no other implementation is specified.  This does some
14 // simple tests that detect obvious cases: two different global pointers cannot
15 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
16 // etc.
17 //
18 // This alias analysis implementation really isn't very good for anything, but
19 // it is very fast, and makes a nice clean default implementation.  Because it
20 // handles lots of little corner cases, other, more complex, alias analysis
21 // implementations may choose to rely on this pass to resolve these simple and
22 // easy cases.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/ADT/Statistic.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/Value.h"
48 #include "llvm/InitializePasses.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
57 
58 #define DEBUG_TYPE "aa"
59 
60 using namespace llvm;
61 
62 STATISTIC(NumNoAlias,   "Number of NoAlias results");
63 STATISTIC(NumMayAlias,  "Number of MayAlias results");
64 STATISTIC(NumMustAlias, "Number of MustAlias results");
65 
66 /// Allow disabling BasicAA from the AA results. This is particularly useful
67 /// when testing to isolate a single AA implementation.
68 cl::opt<bool> DisableBasicAA("disable-basic-aa", cl::Hidden, cl::init(false));
69 
70 #ifndef NDEBUG
71 /// Print a trace of alias analysis queries and their results.
72 static cl::opt<bool> EnableAATrace("aa-trace", cl::Hidden, cl::init(false));
73 #else
74 static const bool EnableAATrace = false;
75 #endif
76 
77 AAResults::AAResults(AAResults &&Arg)
78     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
79   for (auto &AA : AAs)
80     AA->setAAResults(this);
81 }
82 
83 AAResults::~AAResults() {
84 // FIXME; It would be nice to at least clear out the pointers back to this
85 // aggregation here, but we end up with non-nesting lifetimes in the legacy
86 // pass manager that prevent this from working. In the legacy pass manager
87 // we'll end up with dangling references here in some cases.
88 #if 0
89   for (auto &AA : AAs)
90     AA->setAAResults(nullptr);
91 #endif
92 }
93 
94 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
95                            FunctionAnalysisManager::Invalidator &Inv) {
96   // AAResults preserves the AAManager by default, due to the stateless nature
97   // of AliasAnalysis. There is no need to check whether it has been preserved
98   // explicitly. Check if any module dependency was invalidated and caused the
99   // AAManager to be invalidated. Invalidate ourselves in that case.
100   auto PAC = PA.getChecker<AAManager>();
101   if (!PAC.preservedWhenStateless())
102     return true;
103 
104   // Check if any of the function dependencies were invalidated, and invalidate
105   // ourselves in that case.
106   for (AnalysisKey *ID : AADeps)
107     if (Inv.invalidate(ID, F, PA))
108       return true;
109 
110   // Everything we depend on is still fine, so are we. Nothing to invalidate.
111   return false;
112 }
113 
114 //===----------------------------------------------------------------------===//
115 // Default chaining methods
116 //===----------------------------------------------------------------------===//
117 
118 AliasResult AAResults::alias(const MemoryLocation &LocA,
119                              const MemoryLocation &LocB) {
120   AAQueryInfo AAQIP;
121   return alias(LocA, LocB, AAQIP);
122 }
123 
124 AliasResult AAResults::alias(const MemoryLocation &LocA,
125                              const MemoryLocation &LocB, AAQueryInfo &AAQI) {
126   AliasResult Result = AliasResult::MayAlias;
127 
128   if (EnableAATrace) {
129     for (unsigned I = 0; I < AAQI.Depth; ++I)
130       dbgs() << "  ";
131     dbgs() << "Start " << *LocA.Ptr << " @ " << LocA.Size << ", "
132            << *LocB.Ptr << " @ " << LocB.Size << "\n";
133   }
134 
135   AAQI.Depth++;
136   for (const auto &AA : AAs) {
137     Result = AA->alias(LocA, LocB, AAQI);
138     if (Result != AliasResult::MayAlias)
139       break;
140   }
141   AAQI.Depth--;
142 
143   if (EnableAATrace) {
144     for (unsigned I = 0; I < AAQI.Depth; ++I)
145       dbgs() << "  ";
146     dbgs() << "End " << *LocA.Ptr << " @ " << LocA.Size << ", "
147            << *LocB.Ptr << " @ " << LocB.Size << " = " << Result << "\n";
148   }
149 
150   if (AAQI.Depth == 0) {
151     if (Result == AliasResult::NoAlias)
152       ++NumNoAlias;
153     else if (Result == AliasResult::MustAlias)
154       ++NumMustAlias;
155     else
156       ++NumMayAlias;
157   }
158   return Result;
159 }
160 
161 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
162                                        bool OrLocal) {
163   AAQueryInfo AAQIP;
164   return pointsToConstantMemory(Loc, AAQIP, OrLocal);
165 }
166 
167 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
168                                        AAQueryInfo &AAQI, bool OrLocal) {
169   for (const auto &AA : AAs)
170     if (AA->pointsToConstantMemory(Loc, AAQI, OrLocal))
171       return true;
172 
173   return false;
174 }
175 
176 ModRefInfo AAResults::getArgModRefInfo(const CallBase *Call, unsigned ArgIdx) {
177   ModRefInfo Result = ModRefInfo::ModRef;
178 
179   for (const auto &AA : AAs) {
180     Result = intersectModRef(Result, AA->getArgModRefInfo(Call, ArgIdx));
181 
182     // Early-exit the moment we reach the bottom of the lattice.
183     if (isNoModRef(Result))
184       return ModRefInfo::NoModRef;
185   }
186 
187   return Result;
188 }
189 
190 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2) {
191   AAQueryInfo AAQIP;
192   return getModRefInfo(I, Call2, AAQIP);
193 }
194 
195 ModRefInfo AAResults::getModRefInfo(Instruction *I, const CallBase *Call2,
196                                     AAQueryInfo &AAQI) {
197   // We may have two calls.
198   if (const auto *Call1 = dyn_cast<CallBase>(I)) {
199     // Check if the two calls modify the same memory.
200     return getModRefInfo(Call1, Call2, AAQI);
201   } else if (I->isFenceLike()) {
202     // If this is a fence, just return ModRef.
203     return ModRefInfo::ModRef;
204   } else {
205     // Otherwise, check if the call modifies or references the
206     // location this memory access defines.  The best we can say
207     // is that if the call references what this instruction
208     // defines, it must be clobbered by this location.
209     const MemoryLocation DefLoc = MemoryLocation::get(I);
210     ModRefInfo MR = getModRefInfo(Call2, DefLoc, AAQI);
211     if (isModOrRefSet(MR))
212       return setModAndRef(MR);
213   }
214   return ModRefInfo::NoModRef;
215 }
216 
217 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
218                                     const MemoryLocation &Loc) {
219   AAQueryInfo AAQIP;
220   return getModRefInfo(Call, Loc, AAQIP);
221 }
222 
223 ModRefInfo AAResults::getModRefInfo(const CallBase *Call,
224                                     const MemoryLocation &Loc,
225                                     AAQueryInfo &AAQI) {
226   ModRefInfo Result = ModRefInfo::ModRef;
227 
228   for (const auto &AA : AAs) {
229     Result = intersectModRef(Result, AA->getModRefInfo(Call, Loc, AAQI));
230 
231     // Early-exit the moment we reach the bottom of the lattice.
232     if (isNoModRef(Result))
233       return ModRefInfo::NoModRef;
234   }
235 
236   // Try to refine the mod-ref info further using other API entry points to the
237   // aggregate set of AA results.
238   auto MRB = getModRefBehavior(Call);
239   if (onlyAccessesInaccessibleMem(MRB))
240     return ModRefInfo::NoModRef;
241 
242   if (onlyReadsMemory(MRB))
243     Result = clearMod(Result);
244   else if (doesNotReadMemory(MRB))
245     Result = clearRef(Result);
246 
247   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
248     bool IsMustAlias = true;
249     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
250     if (doesAccessArgPointees(MRB)) {
251       for (auto AI = Call->arg_begin(), AE = Call->arg_end(); AI != AE; ++AI) {
252         const Value *Arg = *AI;
253         if (!Arg->getType()->isPointerTy())
254           continue;
255         unsigned ArgIdx = std::distance(Call->arg_begin(), AI);
256         MemoryLocation ArgLoc =
257             MemoryLocation::getForArgument(Call, ArgIdx, TLI);
258         AliasResult ArgAlias = alias(ArgLoc, Loc, AAQI);
259         if (ArgAlias != AliasResult::NoAlias) {
260           ModRefInfo ArgMask = getArgModRefInfo(Call, ArgIdx);
261           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
262         }
263         // Conservatively clear IsMustAlias unless only MustAlias is found.
264         IsMustAlias &= (ArgAlias == AliasResult::MustAlias);
265       }
266     }
267     // Return NoModRef if no alias found with any argument.
268     if (isNoModRef(AllArgsMask))
269       return ModRefInfo::NoModRef;
270     // Logical & between other AA analyses and argument analysis.
271     Result = intersectModRef(Result, AllArgsMask);
272     // If only MustAlias found above, set Must bit.
273     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
274   }
275 
276   // If Loc is a constant memory location, the call definitely could not
277   // modify the memory location.
278   if (isModSet(Result) && pointsToConstantMemory(Loc, AAQI, /*OrLocal*/ false))
279     Result = clearMod(Result);
280 
281   return Result;
282 }
283 
284 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
285                                     const CallBase *Call2) {
286   AAQueryInfo AAQIP;
287   return getModRefInfo(Call1, Call2, AAQIP);
288 }
289 
290 ModRefInfo AAResults::getModRefInfo(const CallBase *Call1,
291                                     const CallBase *Call2, AAQueryInfo &AAQI) {
292   ModRefInfo Result = ModRefInfo::ModRef;
293 
294   for (const auto &AA : AAs) {
295     Result = intersectModRef(Result, AA->getModRefInfo(Call1, Call2, AAQI));
296 
297     // Early-exit the moment we reach the bottom of the lattice.
298     if (isNoModRef(Result))
299       return ModRefInfo::NoModRef;
300   }
301 
302   // Try to refine the mod-ref info further using other API entry points to the
303   // aggregate set of AA results.
304 
305   // If Call1 or Call2 are readnone, they don't interact.
306   auto Call1B = getModRefBehavior(Call1);
307   if (Call1B == FMRB_DoesNotAccessMemory)
308     return ModRefInfo::NoModRef;
309 
310   auto Call2B = getModRefBehavior(Call2);
311   if (Call2B == FMRB_DoesNotAccessMemory)
312     return ModRefInfo::NoModRef;
313 
314   // If they both only read from memory, there is no dependence.
315   if (onlyReadsMemory(Call1B) && onlyReadsMemory(Call2B))
316     return ModRefInfo::NoModRef;
317 
318   // If Call1 only reads memory, the only dependence on Call2 can be
319   // from Call1 reading memory written by Call2.
320   if (onlyReadsMemory(Call1B))
321     Result = clearMod(Result);
322   else if (doesNotReadMemory(Call1B))
323     Result = clearRef(Result);
324 
325   // If Call2 only access memory through arguments, accumulate the mod/ref
326   // information from Call1's references to the memory referenced by
327   // Call2's arguments.
328   if (onlyAccessesArgPointees(Call2B)) {
329     if (!doesAccessArgPointees(Call2B))
330       return ModRefInfo::NoModRef;
331     ModRefInfo R = ModRefInfo::NoModRef;
332     bool IsMustAlias = true;
333     for (auto I = Call2->arg_begin(), E = Call2->arg_end(); I != E; ++I) {
334       const Value *Arg = *I;
335       if (!Arg->getType()->isPointerTy())
336         continue;
337       unsigned Call2ArgIdx = std::distance(Call2->arg_begin(), I);
338       auto Call2ArgLoc =
339           MemoryLocation::getForArgument(Call2, Call2ArgIdx, TLI);
340 
341       // ArgModRefC2 indicates what Call2 might do to Call2ArgLoc, and the
342       // dependence of Call1 on that location is the inverse:
343       // - If Call2 modifies location, dependence exists if Call1 reads or
344       //   writes.
345       // - If Call2 only reads location, dependence exists if Call1 writes.
346       ModRefInfo ArgModRefC2 = getArgModRefInfo(Call2, Call2ArgIdx);
347       ModRefInfo ArgMask = ModRefInfo::NoModRef;
348       if (isModSet(ArgModRefC2))
349         ArgMask = ModRefInfo::ModRef;
350       else if (isRefSet(ArgModRefC2))
351         ArgMask = ModRefInfo::Mod;
352 
353       // ModRefC1 indicates what Call1 might do to Call2ArgLoc, and we use
354       // above ArgMask to update dependence info.
355       ModRefInfo ModRefC1 = getModRefInfo(Call1, Call2ArgLoc, AAQI);
356       ArgMask = intersectModRef(ArgMask, ModRefC1);
357 
358       // Conservatively clear IsMustAlias unless only MustAlias is found.
359       IsMustAlias &= isMustSet(ModRefC1);
360 
361       R = intersectModRef(unionModRef(R, ArgMask), Result);
362       if (R == Result) {
363         // On early exit, not all args were checked, cannot set Must.
364         if (I + 1 != E)
365           IsMustAlias = false;
366         break;
367       }
368     }
369 
370     if (isNoModRef(R))
371       return ModRefInfo::NoModRef;
372 
373     // If MustAlias found above, set Must bit.
374     return IsMustAlias ? setMust(R) : clearMust(R);
375   }
376 
377   // If Call1 only accesses memory through arguments, check if Call2 references
378   // any of the memory referenced by Call1's arguments. If not, return NoModRef.
379   if (onlyAccessesArgPointees(Call1B)) {
380     if (!doesAccessArgPointees(Call1B))
381       return ModRefInfo::NoModRef;
382     ModRefInfo R = ModRefInfo::NoModRef;
383     bool IsMustAlias = true;
384     for (auto I = Call1->arg_begin(), E = Call1->arg_end(); I != E; ++I) {
385       const Value *Arg = *I;
386       if (!Arg->getType()->isPointerTy())
387         continue;
388       unsigned Call1ArgIdx = std::distance(Call1->arg_begin(), I);
389       auto Call1ArgLoc =
390           MemoryLocation::getForArgument(Call1, Call1ArgIdx, TLI);
391 
392       // ArgModRefC1 indicates what Call1 might do to Call1ArgLoc; if Call1
393       // might Mod Call1ArgLoc, then we care about either a Mod or a Ref by
394       // Call2. If Call1 might Ref, then we care only about a Mod by Call2.
395       ModRefInfo ArgModRefC1 = getArgModRefInfo(Call1, Call1ArgIdx);
396       ModRefInfo ModRefC2 = getModRefInfo(Call2, Call1ArgLoc, AAQI);
397       if ((isModSet(ArgModRefC1) && isModOrRefSet(ModRefC2)) ||
398           (isRefSet(ArgModRefC1) && isModSet(ModRefC2)))
399         R = intersectModRef(unionModRef(R, ArgModRefC1), Result);
400 
401       // Conservatively clear IsMustAlias unless only MustAlias is found.
402       IsMustAlias &= isMustSet(ModRefC2);
403 
404       if (R == Result) {
405         // On early exit, not all args were checked, cannot set Must.
406         if (I + 1 != E)
407           IsMustAlias = false;
408         break;
409       }
410     }
411 
412     if (isNoModRef(R))
413       return ModRefInfo::NoModRef;
414 
415     // If MustAlias found above, set Must bit.
416     return IsMustAlias ? setMust(R) : clearMust(R);
417   }
418 
419   return Result;
420 }
421 
422 FunctionModRefBehavior AAResults::getModRefBehavior(const CallBase *Call) {
423   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
424 
425   for (const auto &AA : AAs) {
426     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(Call));
427 
428     // Early-exit the moment we reach the bottom of the lattice.
429     if (Result == FMRB_DoesNotAccessMemory)
430       return Result;
431   }
432 
433   return Result;
434 }
435 
436 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
437   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
438 
439   for (const auto &AA : AAs) {
440     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
441 
442     // Early-exit the moment we reach the bottom of the lattice.
443     if (Result == FMRB_DoesNotAccessMemory)
444       return Result;
445   }
446 
447   return Result;
448 }
449 
450 raw_ostream &llvm::operator<<(raw_ostream &OS, AliasResult AR) {
451   switch (AR) {
452   case AliasResult::NoAlias:
453     OS << "NoAlias";
454     break;
455   case AliasResult::MustAlias:
456     OS << "MustAlias";
457     break;
458   case AliasResult::MayAlias:
459     OS << "MayAlias";
460     break;
461   case AliasResult::PartialAlias:
462     OS << "PartialAlias";
463     break;
464   }
465   return OS;
466 }
467 
468 //===----------------------------------------------------------------------===//
469 // Helper method implementation
470 //===----------------------------------------------------------------------===//
471 
472 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
473                                     const MemoryLocation &Loc) {
474   AAQueryInfo AAQIP;
475   return getModRefInfo(L, Loc, AAQIP);
476 }
477 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
478                                     const MemoryLocation &Loc,
479                                     AAQueryInfo &AAQI) {
480   // Be conservative in the face of atomic.
481   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
482     return ModRefInfo::ModRef;
483 
484   // If the load address doesn't alias the given address, it doesn't read
485   // or write the specified memory.
486   if (Loc.Ptr) {
487     AliasResult AR = alias(MemoryLocation::get(L), Loc, AAQI);
488     if (AR == AliasResult::NoAlias)
489       return ModRefInfo::NoModRef;
490     if (AR == AliasResult::MustAlias)
491       return ModRefInfo::MustRef;
492   }
493   // Otherwise, a load just reads.
494   return ModRefInfo::Ref;
495 }
496 
497 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
498                                     const MemoryLocation &Loc) {
499   AAQueryInfo AAQIP;
500   return getModRefInfo(S, Loc, AAQIP);
501 }
502 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
503                                     const MemoryLocation &Loc,
504                                     AAQueryInfo &AAQI) {
505   // Be conservative in the face of atomic.
506   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
507     return ModRefInfo::ModRef;
508 
509   if (Loc.Ptr) {
510     AliasResult AR = alias(MemoryLocation::get(S), Loc, AAQI);
511     // If the store address cannot alias the pointer in question, then the
512     // specified memory cannot be modified by the store.
513     if (AR == AliasResult::NoAlias)
514       return ModRefInfo::NoModRef;
515 
516     // If the pointer is a pointer to constant memory, then it could not have
517     // been modified by this store.
518     if (pointsToConstantMemory(Loc, AAQI))
519       return ModRefInfo::NoModRef;
520 
521     // If the store address aliases the pointer as must alias, set Must.
522     if (AR == AliasResult::MustAlias)
523       return ModRefInfo::MustMod;
524   }
525 
526   // Otherwise, a store just writes.
527   return ModRefInfo::Mod;
528 }
529 
530 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
531   AAQueryInfo AAQIP;
532   return getModRefInfo(S, Loc, AAQIP);
533 }
534 
535 ModRefInfo AAResults::getModRefInfo(const FenceInst *S,
536                                     const MemoryLocation &Loc,
537                                     AAQueryInfo &AAQI) {
538   // If we know that the location is a constant memory location, the fence
539   // cannot modify this location.
540   if (Loc.Ptr && pointsToConstantMemory(Loc, AAQI))
541     return ModRefInfo::Ref;
542   return ModRefInfo::ModRef;
543 }
544 
545 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
546                                     const MemoryLocation &Loc) {
547   AAQueryInfo AAQIP;
548   return getModRefInfo(V, Loc, AAQIP);
549 }
550 
551 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
552                                     const MemoryLocation &Loc,
553                                     AAQueryInfo &AAQI) {
554   if (Loc.Ptr) {
555     AliasResult AR = alias(MemoryLocation::get(V), Loc, AAQI);
556     // If the va_arg address cannot alias the pointer in question, then the
557     // specified memory cannot be accessed by the va_arg.
558     if (AR == AliasResult::NoAlias)
559       return ModRefInfo::NoModRef;
560 
561     // If the pointer is a pointer to constant memory, then it could not have
562     // been modified by this va_arg.
563     if (pointsToConstantMemory(Loc, AAQI))
564       return ModRefInfo::NoModRef;
565 
566     // If the va_arg aliases the pointer as must alias, set Must.
567     if (AR == AliasResult::MustAlias)
568       return ModRefInfo::MustModRef;
569   }
570 
571   // Otherwise, a va_arg reads and writes.
572   return ModRefInfo::ModRef;
573 }
574 
575 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
576                                     const MemoryLocation &Loc) {
577   AAQueryInfo AAQIP;
578   return getModRefInfo(CatchPad, Loc, AAQIP);
579 }
580 
581 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
582                                     const MemoryLocation &Loc,
583                                     AAQueryInfo &AAQI) {
584   if (Loc.Ptr) {
585     // If the pointer is a pointer to constant memory,
586     // then it could not have been modified by this catchpad.
587     if (pointsToConstantMemory(Loc, AAQI))
588       return ModRefInfo::NoModRef;
589   }
590 
591   // Otherwise, a catchpad reads and writes.
592   return ModRefInfo::ModRef;
593 }
594 
595 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
596                                     const MemoryLocation &Loc) {
597   AAQueryInfo AAQIP;
598   return getModRefInfo(CatchRet, Loc, AAQIP);
599 }
600 
601 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
602                                     const MemoryLocation &Loc,
603                                     AAQueryInfo &AAQI) {
604   if (Loc.Ptr) {
605     // If the pointer is a pointer to constant memory,
606     // then it could not have been modified by this catchpad.
607     if (pointsToConstantMemory(Loc, AAQI))
608       return ModRefInfo::NoModRef;
609   }
610 
611   // Otherwise, a catchret reads and writes.
612   return ModRefInfo::ModRef;
613 }
614 
615 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
616                                     const MemoryLocation &Loc) {
617   AAQueryInfo AAQIP;
618   return getModRefInfo(CX, Loc, AAQIP);
619 }
620 
621 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
622                                     const MemoryLocation &Loc,
623                                     AAQueryInfo &AAQI) {
624   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
625   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
626     return ModRefInfo::ModRef;
627 
628   if (Loc.Ptr) {
629     AliasResult AR = alias(MemoryLocation::get(CX), Loc, AAQI);
630     // If the cmpxchg address does not alias the location, it does not access
631     // it.
632     if (AR == AliasResult::NoAlias)
633       return ModRefInfo::NoModRef;
634 
635     // If the cmpxchg address aliases the pointer as must alias, set Must.
636     if (AR == AliasResult::MustAlias)
637       return ModRefInfo::MustModRef;
638   }
639 
640   return ModRefInfo::ModRef;
641 }
642 
643 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
644                                     const MemoryLocation &Loc) {
645   AAQueryInfo AAQIP;
646   return getModRefInfo(RMW, Loc, AAQIP);
647 }
648 
649 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
650                                     const MemoryLocation &Loc,
651                                     AAQueryInfo &AAQI) {
652   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
653   if (isStrongerThanMonotonic(RMW->getOrdering()))
654     return ModRefInfo::ModRef;
655 
656   if (Loc.Ptr) {
657     AliasResult AR = alias(MemoryLocation::get(RMW), Loc, AAQI);
658     // If the atomicrmw address does not alias the location, it does not access
659     // it.
660     if (AR == AliasResult::NoAlias)
661       return ModRefInfo::NoModRef;
662 
663     // If the atomicrmw address aliases the pointer as must alias, set Must.
664     if (AR == AliasResult::MustAlias)
665       return ModRefInfo::MustModRef;
666   }
667 
668   return ModRefInfo::ModRef;
669 }
670 
671 ModRefInfo AAResults::getModRefInfo(const Instruction *I,
672                                     const Optional<MemoryLocation> &OptLoc,
673                                     AAQueryInfo &AAQIP) {
674   if (OptLoc == None) {
675     if (const auto *Call = dyn_cast<CallBase>(I)) {
676       return createModRefInfo(getModRefBehavior(Call));
677     }
678   }
679 
680   const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
681 
682   switch (I->getOpcode()) {
683   case Instruction::VAArg:
684     return getModRefInfo((const VAArgInst *)I, Loc, AAQIP);
685   case Instruction::Load:
686     return getModRefInfo((const LoadInst *)I, Loc, AAQIP);
687   case Instruction::Store:
688     return getModRefInfo((const StoreInst *)I, Loc, AAQIP);
689   case Instruction::Fence:
690     return getModRefInfo((const FenceInst *)I, Loc, AAQIP);
691   case Instruction::AtomicCmpXchg:
692     return getModRefInfo((const AtomicCmpXchgInst *)I, Loc, AAQIP);
693   case Instruction::AtomicRMW:
694     return getModRefInfo((const AtomicRMWInst *)I, Loc, AAQIP);
695   case Instruction::Call:
696     return getModRefInfo((const CallInst *)I, Loc, AAQIP);
697   case Instruction::Invoke:
698     return getModRefInfo((const InvokeInst *)I, Loc, AAQIP);
699   case Instruction::CatchPad:
700     return getModRefInfo((const CatchPadInst *)I, Loc, AAQIP);
701   case Instruction::CatchRet:
702     return getModRefInfo((const CatchReturnInst *)I, Loc, AAQIP);
703   default:
704     return ModRefInfo::NoModRef;
705   }
706 }
707 
708 /// Return information about whether a particular call site modifies
709 /// or reads the specified memory location \p MemLoc before instruction \p I
710 /// in a BasicBlock.
711 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
712 /// BasicAA isn't willing to spend linear time determining whether an alloca
713 /// was captured before or after this particular call, while we are. However,
714 /// with a smarter AA in place, this test is just wasting compile time.
715 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
716                                          const MemoryLocation &MemLoc,
717                                          DominatorTree *DT) {
718   if (!DT)
719     return ModRefInfo::ModRef;
720 
721   const Value *Object = getUnderlyingObject(MemLoc.Ptr);
722   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
723       isa<Constant>(Object))
724     return ModRefInfo::ModRef;
725 
726   const auto *Call = dyn_cast<CallBase>(I);
727   if (!Call || Call == Object)
728     return ModRefInfo::ModRef;
729 
730   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
731                                  /* StoreCaptures */ true, I, DT,
732                                  /* include Object */ true))
733     return ModRefInfo::ModRef;
734 
735   unsigned ArgNo = 0;
736   ModRefInfo R = ModRefInfo::NoModRef;
737   bool IsMustAlias = true;
738   // Set flag only if no May found and all operands processed.
739   for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end();
740        CI != CE; ++CI, ++ArgNo) {
741     // Only look at the no-capture or byval pointer arguments.  If this
742     // pointer were passed to arguments that were neither of these, then it
743     // couldn't be no-capture.
744     if (!(*CI)->getType()->isPointerTy() ||
745         (!Call->doesNotCapture(ArgNo) && ArgNo < Call->getNumArgOperands() &&
746          !Call->isByValArgument(ArgNo)))
747       continue;
748 
749     AliasResult AR = alias(*CI, Object);
750     // If this is a no-capture pointer argument, see if we can tell that it
751     // is impossible to alias the pointer we're checking.  If not, we have to
752     // assume that the call could touch the pointer, even though it doesn't
753     // escape.
754     if (AR != AliasResult::MustAlias)
755       IsMustAlias = false;
756     if (AR == AliasResult::NoAlias)
757       continue;
758     if (Call->doesNotAccessMemory(ArgNo))
759       continue;
760     if (Call->onlyReadsMemory(ArgNo)) {
761       R = ModRefInfo::Ref;
762       continue;
763     }
764     // Not returning MustModRef since we have not seen all the arguments.
765     return ModRefInfo::ModRef;
766   }
767   return IsMustAlias ? setMust(R) : clearMust(R);
768 }
769 
770 /// canBasicBlockModify - Return true if it is possible for execution of the
771 /// specified basic block to modify the location Loc.
772 ///
773 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
774                                     const MemoryLocation &Loc) {
775   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
776 }
777 
778 /// canInstructionRangeModRef - Return true if it is possible for the
779 /// execution of the specified instructions to mod\ref (according to the
780 /// mode) the location Loc. The instructions to consider are all
781 /// of the instructions in the range of [I1,I2] INCLUSIVE.
782 /// I1 and I2 must be in the same basic block.
783 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
784                                           const Instruction &I2,
785                                           const MemoryLocation &Loc,
786                                           const ModRefInfo Mode) {
787   assert(I1.getParent() == I2.getParent() &&
788          "Instructions not in same basic block!");
789   BasicBlock::const_iterator I = I1.getIterator();
790   BasicBlock::const_iterator E = I2.getIterator();
791   ++E;  // Convert from inclusive to exclusive range.
792 
793   for (; I != E; ++I) // Check every instruction in range
794     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
795       return true;
796   return false;
797 }
798 
799 // Provide a definition for the root virtual destructor.
800 AAResults::Concept::~Concept() = default;
801 
802 // Provide a definition for the static object used to identify passes.
803 AnalysisKey AAManager::Key;
804 
805 namespace {
806 
807 
808 } // end anonymous namespace
809 
810 ExternalAAWrapperPass::ExternalAAWrapperPass() : ImmutablePass(ID) {
811   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
812 }
813 
814 ExternalAAWrapperPass::ExternalAAWrapperPass(CallbackT CB)
815     : ImmutablePass(ID), CB(std::move(CB)) {
816   initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
817 }
818 
819 char ExternalAAWrapperPass::ID = 0;
820 
821 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
822                 false, true)
823 
824 ImmutablePass *
825 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
826   return new ExternalAAWrapperPass(std::move(Callback));
827 }
828 
829 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
830   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
831 }
832 
833 char AAResultsWrapperPass::ID = 0;
834 
835 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
836                       "Function Alias Analysis Results", false, true)
837 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
838 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
839 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
840 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
841 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
842 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
843 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
844 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
845 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
846 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
847                     "Function Alias Analysis Results", false, true)
848 
849 FunctionPass *llvm::createAAResultsWrapperPass() {
850   return new AAResultsWrapperPass();
851 }
852 
853 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
854 ///
855 /// This is the legacy pass manager's interface to the new-style AA results
856 /// aggregation object. Because this is somewhat shoe-horned into the legacy
857 /// pass manager, we hard code all the specific alias analyses available into
858 /// it. While the particular set enabled is configured via commandline flags,
859 /// adding a new alias analysis to LLVM will require adding support for it to
860 /// this list.
861 bool AAResultsWrapperPass::runOnFunction(Function &F) {
862   // NB! This *must* be reset before adding new AA results to the new
863   // AAResults object because in the legacy pass manager, each instance
864   // of these will refer to the *same* immutable analyses, registering and
865   // unregistering themselves with them. We need to carefully tear down the
866   // previous object first, in this case replacing it with an empty one, before
867   // registering new results.
868   AAR.reset(
869       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)));
870 
871   // BasicAA is always available for function analyses. Also, we add it first
872   // so that it can trump TBAA results when it proves MustAlias.
873   // FIXME: TBAA should have an explicit mode to support this and then we
874   // should reconsider the ordering here.
875   if (!DisableBasicAA)
876     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
877 
878   // Populate the results with the currently available AAs.
879   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
880     AAR->addAAResult(WrapperPass->getResult());
881   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
882     AAR->addAAResult(WrapperPass->getResult());
883   if (auto *WrapperPass =
884           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
885     AAR->addAAResult(WrapperPass->getResult());
886   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
887     AAR->addAAResult(WrapperPass->getResult());
888   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
889     AAR->addAAResult(WrapperPass->getResult());
890   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
891     AAR->addAAResult(WrapperPass->getResult());
892   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
893     AAR->addAAResult(WrapperPass->getResult());
894 
895   // If available, run an external AA providing callback over the results as
896   // well.
897   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
898     if (WrapperPass->CB)
899       WrapperPass->CB(*this, F, *AAR);
900 
901   // Analyses don't mutate the IR, so return false.
902   return false;
903 }
904 
905 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
906   AU.setPreservesAll();
907   AU.addRequiredTransitive<BasicAAWrapperPass>();
908   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
909 
910   // We also need to mark all the alias analysis passes we will potentially
911   // probe in runOnFunction as used here to ensure the legacy pass manager
912   // preserves them. This hard coding of lists of alias analyses is specific to
913   // the legacy pass manager.
914   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
915   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
916   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
917   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
918   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
919   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
920   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
921   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
922 }
923 
924 AAManager::Result AAManager::run(Function &F, FunctionAnalysisManager &AM) {
925   Result R(AM.getResult<TargetLibraryAnalysis>(F));
926   for (auto &Getter : ResultGetters)
927     (*Getter)(F, AM, R);
928   return R;
929 }
930 
931 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
932                                         BasicAAResult &BAR) {
933   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F));
934 
935   // Add in our explicitly constructed BasicAA results.
936   if (!DisableBasicAA)
937     AAR.addAAResult(BAR);
938 
939   // Populate the results with the other currently available AAs.
940   if (auto *WrapperPass =
941           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
942     AAR.addAAResult(WrapperPass->getResult());
943   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
944     AAR.addAAResult(WrapperPass->getResult());
945   if (auto *WrapperPass =
946           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
947     AAR.addAAResult(WrapperPass->getResult());
948   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
949     AAR.addAAResult(WrapperPass->getResult());
950   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
951     AAR.addAAResult(WrapperPass->getResult());
952   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
953     AAR.addAAResult(WrapperPass->getResult());
954   if (auto *WrapperPass = P.getAnalysisIfAvailable<ExternalAAWrapperPass>())
955     if (WrapperPass->CB)
956       WrapperPass->CB(P, F, AAR);
957 
958   return AAR;
959 }
960 
961 bool llvm::isNoAliasCall(const Value *V) {
962   if (const auto *Call = dyn_cast<CallBase>(V))
963     return Call->hasRetAttr(Attribute::NoAlias);
964   return false;
965 }
966 
967 static bool isNoAliasOrByValArgument(const Value *V) {
968   if (const Argument *A = dyn_cast<Argument>(V))
969     return A->hasNoAliasAttr() || A->hasByValAttr();
970   return false;
971 }
972 
973 bool llvm::isIdentifiedObject(const Value *V) {
974   if (isa<AllocaInst>(V))
975     return true;
976   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
977     return true;
978   if (isNoAliasCall(V))
979     return true;
980   if (isNoAliasOrByValArgument(V))
981     return true;
982   return false;
983 }
984 
985 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
986   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasOrByValArgument(V);
987 }
988 
989 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
990   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
991   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
992   // to be added here also.
993   AU.addRequired<TargetLibraryInfoWrapperPass>();
994   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
995   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
996   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
997   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
998   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
999   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
1000   AU.addUsedIfAvailable<ExternalAAWrapperPass>();
1001 }
1002