1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the generic AliasAnalysis interface which is used as the 11 // common interface used by all clients and implementations of alias analysis. 12 // 13 // This file also implements the default version of the AliasAnalysis interface 14 // that is to be used when no other implementation is specified. This does some 15 // simple tests that detect obvious cases: two different global pointers cannot 16 // alias, a global cannot alias a malloc, two different mallocs cannot alias, 17 // etc. 18 // 19 // This alias analysis implementation really isn't very good for anything, but 20 // it is very fast, and makes a nice clean default implementation. Because it 21 // handles lots of little corner cases, other, more complex, alias analysis 22 // implementations may choose to rely on this pass to resolve these simple and 23 // easy cases. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/Analysis/CaptureTracking.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Analysis/ValueTracking.h" 32 #include "llvm/IR/BasicBlock.h" 33 #include "llvm/IR/DataLayout.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/Type.h" 40 #include "llvm/Pass.h" 41 using namespace llvm; 42 43 // Register the AliasAnalysis interface, providing a nice name to refer to. 44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA) 45 char AliasAnalysis::ID = 0; 46 47 //===----------------------------------------------------------------------===// 48 // Default chaining methods 49 //===----------------------------------------------------------------------===// 50 51 AliasResult AliasAnalysis::alias(const MemoryLocation &LocA, 52 const MemoryLocation &LocB) { 53 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 54 return AA->alias(LocA, LocB); 55 } 56 57 bool AliasAnalysis::pointsToConstantMemory(const MemoryLocation &Loc, 58 bool OrLocal) { 59 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 60 return AA->pointsToConstantMemory(Loc, OrLocal); 61 } 62 63 AliasAnalysis::ModRefResult 64 AliasAnalysis::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) { 65 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 66 return AA->getArgModRefInfo(CS, ArgIdx); 67 } 68 69 void AliasAnalysis::deleteValue(Value *V) { 70 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 71 AA->deleteValue(V); 72 } 73 74 void AliasAnalysis::copyValue(Value *From, Value *To) { 75 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 76 AA->copyValue(From, To); 77 } 78 79 void AliasAnalysis::addEscapingUse(Use &U) { 80 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 81 AA->addEscapingUse(U); 82 } 83 84 AliasAnalysis::ModRefResult 85 AliasAnalysis::getModRefInfo(Instruction *I, ImmutableCallSite Call) { 86 // We may have two calls 87 if (auto CS = ImmutableCallSite(I)) { 88 // Check if the two calls modify the same memory 89 return getModRefInfo(Call, CS); 90 } else { 91 // Otherwise, check if the call modifies or references the 92 // location this memory access defines. The best we can say 93 // is that if the call references what this instruction 94 // defines, it must be clobbered by this location. 95 const MemoryLocation DefLoc = MemoryLocation::get(I); 96 if (getModRefInfo(Call, DefLoc) != AliasAnalysis::NoModRef) 97 return AliasAnalysis::ModRef; 98 } 99 return AliasAnalysis::NoModRef; 100 } 101 102 AliasAnalysis::ModRefResult 103 AliasAnalysis::getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) { 104 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 105 106 ModRefBehavior MRB = getModRefBehavior(CS); 107 if (MRB == DoesNotAccessMemory) 108 return NoModRef; 109 110 ModRefResult Mask = ModRef; 111 if (onlyReadsMemory(MRB)) 112 Mask = Ref; 113 114 if (onlyAccessesArgPointees(MRB)) { 115 bool doesAlias = false; 116 ModRefResult AllArgsMask = NoModRef; 117 if (doesAccessArgPointees(MRB)) { 118 for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); 119 AI != AE; ++AI) { 120 const Value *Arg = *AI; 121 if (!Arg->getType()->isPointerTy()) 122 continue; 123 unsigned ArgIdx = std::distance(CS.arg_begin(), AI); 124 MemoryLocation ArgLoc = 125 MemoryLocation::getForArgument(CS, ArgIdx, *TLI); 126 if (!isNoAlias(ArgLoc, Loc)) { 127 ModRefResult ArgMask = getArgModRefInfo(CS, ArgIdx); 128 doesAlias = true; 129 AllArgsMask = ModRefResult(AllArgsMask | ArgMask); 130 } 131 } 132 } 133 if (!doesAlias) 134 return NoModRef; 135 Mask = ModRefResult(Mask & AllArgsMask); 136 } 137 138 // If Loc is a constant memory location, the call definitely could not 139 // modify the memory location. 140 if ((Mask & Mod) && pointsToConstantMemory(Loc)) 141 Mask = ModRefResult(Mask & ~Mod); 142 143 // If this is the end of the chain, don't forward. 144 if (!AA) return Mask; 145 146 // Otherwise, fall back to the next AA in the chain. But we can merge 147 // in any mask we've managed to compute. 148 return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask); 149 } 150 151 AliasAnalysis::ModRefResult 152 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { 153 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 154 155 // If CS1 or CS2 are readnone, they don't interact. 156 ModRefBehavior CS1B = getModRefBehavior(CS1); 157 if (CS1B == DoesNotAccessMemory) return NoModRef; 158 159 ModRefBehavior CS2B = getModRefBehavior(CS2); 160 if (CS2B == DoesNotAccessMemory) return NoModRef; 161 162 // If they both only read from memory, there is no dependence. 163 if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) 164 return NoModRef; 165 166 AliasAnalysis::ModRefResult Mask = ModRef; 167 168 // If CS1 only reads memory, the only dependence on CS2 can be 169 // from CS1 reading memory written by CS2. 170 if (onlyReadsMemory(CS1B)) 171 Mask = ModRefResult(Mask & Ref); 172 173 // If CS2 only access memory through arguments, accumulate the mod/ref 174 // information from CS1's references to the memory referenced by 175 // CS2's arguments. 176 if (onlyAccessesArgPointees(CS2B)) { 177 AliasAnalysis::ModRefResult R = NoModRef; 178 if (doesAccessArgPointees(CS2B)) { 179 for (ImmutableCallSite::arg_iterator 180 I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { 181 const Value *Arg = *I; 182 if (!Arg->getType()->isPointerTy()) 183 continue; 184 unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I); 185 auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, *TLI); 186 187 // ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence of 188 // CS1 on that location is the inverse. 189 ModRefResult ArgMask = getArgModRefInfo(CS2, CS2ArgIdx); 190 if (ArgMask == Mod) 191 ArgMask = ModRef; 192 else if (ArgMask == Ref) 193 ArgMask = Mod; 194 195 R = ModRefResult((R | (getModRefInfo(CS1, CS2ArgLoc) & ArgMask)) & Mask); 196 if (R == Mask) 197 break; 198 } 199 } 200 return R; 201 } 202 203 // If CS1 only accesses memory through arguments, check if CS2 references 204 // any of the memory referenced by CS1's arguments. If not, return NoModRef. 205 if (onlyAccessesArgPointees(CS1B)) { 206 AliasAnalysis::ModRefResult R = NoModRef; 207 if (doesAccessArgPointees(CS1B)) { 208 for (ImmutableCallSite::arg_iterator 209 I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { 210 const Value *Arg = *I; 211 if (!Arg->getType()->isPointerTy()) 212 continue; 213 unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I); 214 auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, *TLI); 215 216 // ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod 217 // CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1 218 // might Ref, then we care only about a Mod by CS2. 219 ModRefResult ArgMask = getArgModRefInfo(CS1, CS1ArgIdx); 220 ModRefResult ArgR = getModRefInfo(CS2, CS1ArgLoc); 221 if (((ArgMask & Mod) != NoModRef && (ArgR & ModRef) != NoModRef) || 222 ((ArgMask & Ref) != NoModRef && (ArgR & Mod) != NoModRef)) 223 R = ModRefResult((R | ArgMask) & Mask); 224 225 if (R == Mask) 226 break; 227 } 228 } 229 return R; 230 } 231 232 // If this is the end of the chain, don't forward. 233 if (!AA) return Mask; 234 235 // Otherwise, fall back to the next AA in the chain. But we can merge 236 // in any mask we've managed to compute. 237 return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask); 238 } 239 240 AliasAnalysis::ModRefBehavior 241 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { 242 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 243 244 ModRefBehavior Min = UnknownModRefBehavior; 245 246 // Call back into the alias analysis with the other form of getModRefBehavior 247 // to see if it can give a better response. 248 if (const Function *F = CS.getCalledFunction()) 249 Min = getModRefBehavior(F); 250 251 // If this is the end of the chain, don't forward. 252 if (!AA) return Min; 253 254 // Otherwise, fall back to the next AA in the chain. But we can merge 255 // in any result we've managed to compute. 256 return ModRefBehavior(AA->getModRefBehavior(CS) & Min); 257 } 258 259 AliasAnalysis::ModRefBehavior 260 AliasAnalysis::getModRefBehavior(const Function *F) { 261 assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); 262 return AA->getModRefBehavior(F); 263 } 264 265 //===----------------------------------------------------------------------===// 266 // AliasAnalysis non-virtual helper method implementation 267 //===----------------------------------------------------------------------===// 268 269 AliasAnalysis::ModRefResult 270 AliasAnalysis::getModRefInfo(const LoadInst *L, const MemoryLocation &Loc) { 271 // Be conservative in the face of volatile/atomic. 272 if (!L->isUnordered()) 273 return ModRef; 274 275 // If the load address doesn't alias the given address, it doesn't read 276 // or write the specified memory. 277 if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc)) 278 return NoModRef; 279 280 // Otherwise, a load just reads. 281 return Ref; 282 } 283 284 AliasAnalysis::ModRefResult 285 AliasAnalysis::getModRefInfo(const StoreInst *S, const MemoryLocation &Loc) { 286 // Be conservative in the face of volatile/atomic. 287 if (!S->isUnordered()) 288 return ModRef; 289 290 if (Loc.Ptr) { 291 // If the store address cannot alias the pointer in question, then the 292 // specified memory cannot be modified by the store. 293 if (!alias(MemoryLocation::get(S), Loc)) 294 return NoModRef; 295 296 // If the pointer is a pointer to constant memory, then it could not have 297 // been modified by this store. 298 if (pointsToConstantMemory(Loc)) 299 return NoModRef; 300 301 } 302 303 // Otherwise, a store just writes. 304 return Mod; 305 } 306 307 AliasAnalysis::ModRefResult 308 AliasAnalysis::getModRefInfo(const VAArgInst *V, const MemoryLocation &Loc) { 309 310 if (Loc.Ptr) { 311 // If the va_arg address cannot alias the pointer in question, then the 312 // specified memory cannot be accessed by the va_arg. 313 if (!alias(MemoryLocation::get(V), Loc)) 314 return NoModRef; 315 316 // If the pointer is a pointer to constant memory, then it could not have 317 // been modified by this va_arg. 318 if (pointsToConstantMemory(Loc)) 319 return NoModRef; 320 } 321 322 // Otherwise, a va_arg reads and writes. 323 return ModRef; 324 } 325 326 AliasAnalysis::ModRefResult 327 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, 328 const MemoryLocation &Loc) { 329 // Acquire/Release cmpxchg has properties that matter for arbitrary addresses. 330 if (CX->getSuccessOrdering() > Monotonic) 331 return ModRef; 332 333 // If the cmpxchg address does not alias the location, it does not access it. 334 if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc)) 335 return NoModRef; 336 337 return ModRef; 338 } 339 340 AliasAnalysis::ModRefResult 341 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, 342 const MemoryLocation &Loc) { 343 // Acquire/Release atomicrmw has properties that matter for arbitrary addresses. 344 if (RMW->getOrdering() > Monotonic) 345 return ModRef; 346 347 // If the atomicrmw address does not alias the location, it does not access it. 348 if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc)) 349 return NoModRef; 350 351 return ModRef; 352 } 353 354 // FIXME: this is really just shoring-up a deficiency in alias analysis. 355 // BasicAA isn't willing to spend linear time determining whether an alloca 356 // was captured before or after this particular call, while we are. However, 357 // with a smarter AA in place, this test is just wasting compile time. 358 AliasAnalysis::ModRefResult AliasAnalysis::callCapturesBefore( 359 const Instruction *I, const MemoryLocation &MemLoc, DominatorTree *DT) { 360 if (!DT) 361 return AliasAnalysis::ModRef; 362 363 const Value *Object = GetUnderlyingObject(MemLoc.Ptr, *DL); 364 if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) || 365 isa<Constant>(Object)) 366 return AliasAnalysis::ModRef; 367 368 ImmutableCallSite CS(I); 369 if (!CS.getInstruction() || CS.getInstruction() == Object) 370 return AliasAnalysis::ModRef; 371 372 if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true, 373 /* StoreCaptures */ true, I, DT, 374 /* include Object */ true)) 375 return AliasAnalysis::ModRef; 376 377 unsigned ArgNo = 0; 378 AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef; 379 for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end(); 380 CI != CE; ++CI, ++ArgNo) { 381 // Only look at the no-capture or byval pointer arguments. If this 382 // pointer were passed to arguments that were neither of these, then it 383 // couldn't be no-capture. 384 if (!(*CI)->getType()->isPointerTy() || 385 (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo))) 386 continue; 387 388 // If this is a no-capture pointer argument, see if we can tell that it 389 // is impossible to alias the pointer we're checking. If not, we have to 390 // assume that the call could touch the pointer, even though it doesn't 391 // escape. 392 if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object))) 393 continue; 394 if (CS.doesNotAccessMemory(ArgNo)) 395 continue; 396 if (CS.onlyReadsMemory(ArgNo)) { 397 R = AliasAnalysis::Ref; 398 continue; 399 } 400 return AliasAnalysis::ModRef; 401 } 402 return R; 403 } 404 405 // AliasAnalysis destructor: DO NOT move this to the header file for 406 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on 407 // the AliasAnalysis.o file in the current .a file, causing alias analysis 408 // support to not be included in the tool correctly! 409 // 410 AliasAnalysis::~AliasAnalysis() {} 411 412 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the 413 /// AliasAnalysis interface before any other methods are called. 414 /// 415 void AliasAnalysis::InitializeAliasAnalysis(Pass *P, const DataLayout *NewDL) { 416 DL = NewDL; 417 auto *TLIP = P->getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 418 TLI = TLIP ? &TLIP->getTLI() : nullptr; 419 AA = &P->getAnalysis<AliasAnalysis>(); 420 } 421 422 // getAnalysisUsage - All alias analysis implementations should invoke this 423 // directly (using AliasAnalysis::getAnalysisUsage(AU)). 424 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { 425 AU.addRequired<AliasAnalysis>(); // All AA's chain 426 } 427 428 /// getTypeStoreSize - Return the DataLayout store size for the given type, 429 /// if known, or a conservative value otherwise. 430 /// 431 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) { 432 return DL ? DL->getTypeStoreSize(Ty) : MemoryLocation::UnknownSize; 433 } 434 435 /// canBasicBlockModify - Return true if it is possible for execution of the 436 /// specified basic block to modify the location Loc. 437 /// 438 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, 439 const MemoryLocation &Loc) { 440 return canInstructionRangeModRef(BB.front(), BB.back(), Loc, Mod); 441 } 442 443 /// canInstructionRangeModRef - Return true if it is possible for the 444 /// execution of the specified instructions to mod\ref (according to the 445 /// mode) the location Loc. The instructions to consider are all 446 /// of the instructions in the range of [I1,I2] INCLUSIVE. 447 /// I1 and I2 must be in the same basic block. 448 bool AliasAnalysis::canInstructionRangeModRef(const Instruction &I1, 449 const Instruction &I2, 450 const MemoryLocation &Loc, 451 const ModRefResult Mode) { 452 assert(I1.getParent() == I2.getParent() && 453 "Instructions not in same basic block!"); 454 BasicBlock::const_iterator I = &I1; 455 BasicBlock::const_iterator E = &I2; 456 ++E; // Convert from inclusive to exclusive range. 457 458 for (; I != E; ++I) // Check every instruction in range 459 if (getModRefInfo(I, Loc) & Mode) 460 return true; 461 return false; 462 } 463 464 /// isNoAliasCall - Return true if this pointer is returned by a noalias 465 /// function. 466 bool llvm::isNoAliasCall(const Value *V) { 467 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 468 return ImmutableCallSite(cast<Instruction>(V)) 469 .paramHasAttr(0, Attribute::NoAlias); 470 return false; 471 } 472 473 /// isNoAliasArgument - Return true if this is an argument with the noalias 474 /// attribute. 475 bool llvm::isNoAliasArgument(const Value *V) 476 { 477 if (const Argument *A = dyn_cast<Argument>(V)) 478 return A->hasNoAliasAttr(); 479 return false; 480 } 481 482 /// isIdentifiedObject - Return true if this pointer refers to a distinct and 483 /// identifiable object. This returns true for: 484 /// Global Variables and Functions (but not Global Aliases) 485 /// Allocas and Mallocs 486 /// ByVal and NoAlias Arguments 487 /// NoAlias returns 488 /// 489 bool llvm::isIdentifiedObject(const Value *V) { 490 if (isa<AllocaInst>(V)) 491 return true; 492 if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) 493 return true; 494 if (isNoAliasCall(V)) 495 return true; 496 if (const Argument *A = dyn_cast<Argument>(V)) 497 return A->hasNoAliasAttr() || A->hasByValAttr(); 498 return false; 499 } 500 501 /// isIdentifiedFunctionLocal - Return true if V is umabigously identified 502 /// at the function-level. Different IdentifiedFunctionLocals can't alias. 503 /// Further, an IdentifiedFunctionLocal can not alias with any function 504 /// arguments other than itself, which is not necessarily true for 505 /// IdentifiedObjects. 506 bool llvm::isIdentifiedFunctionLocal(const Value *V) 507 { 508 return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V); 509 } 510