1 //==- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation --==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the generic AliasAnalysis interface which is used as the
11 // common interface used by all clients and implementations of alias analysis.
12 //
13 // This file also implements the default version of the AliasAnalysis interface
14 // that is to be used when no other implementation is specified.  This does some
15 // simple tests that detect obvious cases: two different global pointers cannot
16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
17 // etc.
18 //
19 // This alias analysis implementation really isn't very good for anything, but
20 // it is very fast, and makes a nice clean default implementation.  Because it
21 // handles lots of little corner cases, other, more complex, alias analysis
22 // implementations may choose to rely on this pass to resolve these simple and
23 // easy cases.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/BasicAliasAnalysis.h"
29 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
30 #include "llvm/Analysis/CFLSteensAliasAnalysis.h"
31 #include "llvm/Analysis/CaptureTracking.h"
32 #include "llvm/Analysis/GlobalsModRef.h"
33 #include "llvm/Analysis/MemoryLocation.h"
34 #include "llvm/Analysis/ObjCARCAliasAnalysis.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/ScopedNoAliasAA.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TypeBasedAliasAnalysis.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/Argument.h"
41 #include "llvm/IR/Attributes.h"
42 #include "llvm/IR/BasicBlock.h"
43 #include "llvm/IR/CallSite.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Value.h"
49 #include "llvm/Pass.h"
50 #include "llvm/Support/AtomicOrdering.h"
51 #include "llvm/Support/Casting.h"
52 #include "llvm/Support/CommandLine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <functional>
56 #include <iterator>
57 
58 using namespace llvm;
59 
60 /// Allow disabling BasicAA from the AA results. This is particularly useful
61 /// when testing to isolate a single AA implementation.
62 static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
63                                     cl::init(false));
64 
65 AAResults::AAResults(AAResults &&Arg)
66     : TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
67   for (auto &AA : AAs)
68     AA->setAAResults(this);
69 }
70 
71 AAResults::~AAResults() {
72 // FIXME; It would be nice to at least clear out the pointers back to this
73 // aggregation here, but we end up with non-nesting lifetimes in the legacy
74 // pass manager that prevent this from working. In the legacy pass manager
75 // we'll end up with dangling references here in some cases.
76 #if 0
77   for (auto &AA : AAs)
78     AA->setAAResults(nullptr);
79 #endif
80 }
81 
82 bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
83                            FunctionAnalysisManager::Invalidator &Inv) {
84   // Check if the AA manager itself has been invalidated.
85   auto PAC = PA.getChecker<AAManager>();
86   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
87     return true; // The manager needs to be blown away, clear everything.
88 
89   // Check all of the dependencies registered.
90   for (AnalysisKey *ID : AADeps)
91     if (Inv.invalidate(ID, F, PA))
92       return true;
93 
94   // Everything we depend on is still fine, so are we. Nothing to invalidate.
95   return false;
96 }
97 
98 //===----------------------------------------------------------------------===//
99 // Default chaining methods
100 //===----------------------------------------------------------------------===//
101 
102 AliasResult AAResults::alias(const MemoryLocation &LocA,
103                              const MemoryLocation &LocB) {
104   for (const auto &AA : AAs) {
105     auto Result = AA->alias(LocA, LocB);
106     if (Result != MayAlias)
107       return Result;
108   }
109   return MayAlias;
110 }
111 
112 bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
113                                        bool OrLocal) {
114   for (const auto &AA : AAs)
115     if (AA->pointsToConstantMemory(Loc, OrLocal))
116       return true;
117 
118   return false;
119 }
120 
121 ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
122   ModRefInfo Result = ModRefInfo::ModRef;
123 
124   for (const auto &AA : AAs) {
125     Result = intersectModRef(Result, AA->getArgModRefInfo(CS, ArgIdx));
126 
127     // Early-exit the moment we reach the bottom of the lattice.
128     if (isNoModRef(Result))
129       return ModRefInfo::NoModRef;
130   }
131 
132   return Result;
133 }
134 
135 ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
136   // We may have two calls.
137   if (auto CS = ImmutableCallSite(I)) {
138     // Check if the two calls modify the same memory.
139     return getModRefInfo(CS, Call);
140   } else if (I->isFenceLike()) {
141     // If this is a fence, just return ModRef.
142     return ModRefInfo::ModRef;
143   } else {
144     // Otherwise, check if the call modifies or references the
145     // location this memory access defines.  The best we can say
146     // is that if the call references what this instruction
147     // defines, it must be clobbered by this location.
148     const MemoryLocation DefLoc = MemoryLocation::get(I);
149     ModRefInfo MR = getModRefInfo(Call, DefLoc);
150     if (isModOrRefSet(MR))
151       return setModAndRef(MR);
152   }
153   return ModRefInfo::NoModRef;
154 }
155 
156 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
157                                     const MemoryLocation &Loc) {
158   ModRefInfo Result = ModRefInfo::ModRef;
159 
160   for (const auto &AA : AAs) {
161     Result = intersectModRef(Result, AA->getModRefInfo(CS, Loc));
162 
163     // Early-exit the moment we reach the bottom of the lattice.
164     if (isNoModRef(Result))
165       return ModRefInfo::NoModRef;
166   }
167 
168   // Try to refine the mod-ref info further using other API entry points to the
169   // aggregate set of AA results.
170   auto MRB = getModRefBehavior(CS);
171   if (MRB == FMRB_DoesNotAccessMemory ||
172       MRB == FMRB_OnlyAccessesInaccessibleMem)
173     return ModRefInfo::NoModRef;
174 
175   if (onlyReadsMemory(MRB))
176     Result = clearMod(Result);
177   else if (doesNotReadMemory(MRB))
178     Result = clearRef(Result);
179 
180   if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
181     bool DoesAlias = false;
182     bool IsMustAlias = true;
183     ModRefInfo AllArgsMask = ModRefInfo::NoModRef;
184     if (doesAccessArgPointees(MRB)) {
185       for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
186         const Value *Arg = *AI;
187         if (!Arg->getType()->isPointerTy())
188           continue;
189         unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
190         MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
191         AliasResult ArgAlias = alias(ArgLoc, Loc);
192         if (ArgAlias != NoAlias) {
193           ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
194           DoesAlias = true;
195           AllArgsMask = unionModRef(AllArgsMask, ArgMask);
196         }
197         // Conservatively clear IsMustAlias unless only MustAlias is found.
198         IsMustAlias &= (ArgAlias == MustAlias);
199       }
200     }
201     // Return NoModRef if no alias found with any argument.
202     if (!DoesAlias)
203       return ModRefInfo::NoModRef;
204     // Logical & between other AA analyses and argument analysis.
205     Result = intersectModRef(Result, AllArgsMask);
206     // If only MustAlias found above, set Must bit.
207     Result = IsMustAlias ? setMust(Result) : clearMust(Result);
208   }
209 
210   // If Loc is a constant memory location, the call definitely could not
211   // modify the memory location.
212   if (isModSet(Result) && pointsToConstantMemory(Loc, /*OrLocal*/ false))
213     Result = clearMod(Result);
214 
215   return Result;
216 }
217 
218 ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
219                                     ImmutableCallSite CS2) {
220   ModRefInfo Result = ModRefInfo::ModRef;
221 
222   for (const auto &AA : AAs) {
223     Result = intersectModRef(Result, AA->getModRefInfo(CS1, CS2));
224 
225     // Early-exit the moment we reach the bottom of the lattice.
226     if (isNoModRef(Result))
227       return ModRefInfo::NoModRef;
228   }
229 
230   // Try to refine the mod-ref info further using other API entry points to the
231   // aggregate set of AA results.
232 
233   // If CS1 or CS2 are readnone, they don't interact.
234   auto CS1B = getModRefBehavior(CS1);
235   if (CS1B == FMRB_DoesNotAccessMemory)
236     return ModRefInfo::NoModRef;
237 
238   auto CS2B = getModRefBehavior(CS2);
239   if (CS2B == FMRB_DoesNotAccessMemory)
240     return ModRefInfo::NoModRef;
241 
242   // If they both only read from memory, there is no dependence.
243   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
244     return ModRefInfo::NoModRef;
245 
246   // If CS1 only reads memory, the only dependence on CS2 can be
247   // from CS1 reading memory written by CS2.
248   if (onlyReadsMemory(CS1B))
249     Result = clearMod(Result);
250   else if (doesNotReadMemory(CS1B))
251     Result = clearRef(Result);
252 
253   // If CS2 only access memory through arguments, accumulate the mod/ref
254   // information from CS1's references to the memory referenced by
255   // CS2's arguments.
256   if (onlyAccessesArgPointees(CS2B)) {
257     if (!doesAccessArgPointees(CS2B))
258       return ModRefInfo::NoModRef;
259     ModRefInfo R = ModRefInfo::NoModRef;
260     bool IsMustAlias = true;
261     for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
262       const Value *Arg = *I;
263       if (!Arg->getType()->isPointerTy())
264         continue;
265       unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
266       auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
267 
268       // ArgModRefCS2 indicates what CS2 might do to CS2ArgLoc, and the
269       // dependence of CS1 on that location is the inverse:
270       // - If CS2 modifies location, dependence exists if CS1 reads or writes.
271       // - If CS2 only reads location, dependence exists if CS1 writes.
272       ModRefInfo ArgModRefCS2 = getArgModRefInfo(CS2, CS2ArgIdx);
273       ModRefInfo ArgMask = ModRefInfo::NoModRef;
274       if (isModSet(ArgModRefCS2))
275         ArgMask = ModRefInfo::ModRef;
276       else if (isRefSet(ArgModRefCS2))
277         ArgMask = ModRefInfo::Mod;
278 
279       // ModRefCS1 indicates what CS1 might do to CS2ArgLoc, and we use
280       // above ArgMask to update dependence info.
281       ModRefInfo ModRefCS1 = getModRefInfo(CS1, CS2ArgLoc);
282       ArgMask = intersectModRef(ArgMask, ModRefCS1);
283 
284       // Conservatively clear IsMustAlias unless only MustAlias is found.
285       IsMustAlias &= isMustSet(ModRefCS1);
286 
287       R = intersectModRef(unionModRef(R, ArgMask), Result);
288       if (R == Result) {
289         // On early exit, not all args were checked, cannot set Must.
290         if (I + 1 != E)
291           IsMustAlias = false;
292         break;
293       }
294     }
295 
296     if (isNoModRef(R))
297       return ModRefInfo::NoModRef;
298 
299     // If MustAlias found above, set Must bit.
300     return IsMustAlias ? setMust(R) : clearMust(R);
301   }
302 
303   // If CS1 only accesses memory through arguments, check if CS2 references
304   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
305   if (onlyAccessesArgPointees(CS1B)) {
306     if (!doesAccessArgPointees(CS1B))
307       return ModRefInfo::NoModRef;
308     ModRefInfo R = ModRefInfo::NoModRef;
309     bool IsMustAlias = true;
310     for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
311       const Value *Arg = *I;
312       if (!Arg->getType()->isPointerTy())
313         continue;
314       unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
315       auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
316 
317       // ArgModRefCS1 indicates what CS1 might do to CS1ArgLoc; if CS1 might
318       // Mod CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If
319       // CS1 might Ref, then we care only about a Mod by CS2.
320       ModRefInfo ArgModRefCS1 = getArgModRefInfo(CS1, CS1ArgIdx);
321       ModRefInfo ModRefCS2 = getModRefInfo(CS2, CS1ArgLoc);
322       if ((isModSet(ArgModRefCS1) && isModOrRefSet(ModRefCS2)) ||
323           (isRefSet(ArgModRefCS1) && isModSet(ModRefCS2)))
324         R = intersectModRef(unionModRef(R, ArgModRefCS1), Result);
325 
326       // Conservatively clear IsMustAlias unless only MustAlias is found.
327       IsMustAlias &= isMustSet(ModRefCS2);
328 
329       if (R == Result) {
330         // On early exit, not all args were checked, cannot set Must.
331         if (I + 1 != E)
332           IsMustAlias = false;
333         break;
334       }
335     }
336 
337     if (isNoModRef(R))
338       return ModRefInfo::NoModRef;
339 
340     // If MustAlias found above, set Must bit.
341     return IsMustAlias ? setMust(R) : clearMust(R);
342   }
343 
344   return Result;
345 }
346 
347 FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
348   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
349 
350   for (const auto &AA : AAs) {
351     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
352 
353     // Early-exit the moment we reach the bottom of the lattice.
354     if (Result == FMRB_DoesNotAccessMemory)
355       return Result;
356   }
357 
358   return Result;
359 }
360 
361 FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
362   FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
363 
364   for (const auto &AA : AAs) {
365     Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
366 
367     // Early-exit the moment we reach the bottom of the lattice.
368     if (Result == FMRB_DoesNotAccessMemory)
369       return Result;
370   }
371 
372   return Result;
373 }
374 
375 //===----------------------------------------------------------------------===//
376 // Helper method implementation
377 //===----------------------------------------------------------------------===//
378 
379 ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
380                                     const MemoryLocation &Loc) {
381   // Be conservative in the face of atomic.
382   if (isStrongerThan(L->getOrdering(), AtomicOrdering::Unordered))
383     return ModRefInfo::ModRef;
384 
385   // If the load address doesn't alias the given address, it doesn't read
386   // or write the specified memory.
387   if (Loc.Ptr) {
388     AliasResult AR = alias(MemoryLocation::get(L), Loc);
389     if (AR == NoAlias)
390       return ModRefInfo::NoModRef;
391     if (AR == MustAlias)
392       return ModRefInfo::MustRef;
393   }
394   // Otherwise, a load just reads.
395   return ModRefInfo::Ref;
396 }
397 
398 ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
399                                     const MemoryLocation &Loc) {
400   // Be conservative in the face of atomic.
401   if (isStrongerThan(S->getOrdering(), AtomicOrdering::Unordered))
402     return ModRefInfo::ModRef;
403 
404   if (Loc.Ptr) {
405     AliasResult AR = alias(MemoryLocation::get(S), Loc);
406     // If the store address cannot alias the pointer in question, then the
407     // specified memory cannot be modified by the store.
408     if (AR == NoAlias)
409       return ModRefInfo::NoModRef;
410 
411     // If the pointer is a pointer to constant memory, then it could not have
412     // been modified by this store.
413     if (pointsToConstantMemory(Loc))
414       return ModRefInfo::NoModRef;
415 
416     // If the store address aliases the pointer as must alias, set Must.
417     if (AR == MustAlias)
418       return ModRefInfo::MustMod;
419   }
420 
421   // Otherwise, a store just writes.
422   return ModRefInfo::Mod;
423 }
424 
425 ModRefInfo AAResults::getModRefInfo(const FenceInst *S, const MemoryLocation &Loc) {
426   // If we know that the location is a constant memory location, the fence
427   // cannot modify this location.
428   if (Loc.Ptr && pointsToConstantMemory(Loc))
429     return ModRefInfo::Ref;
430   return ModRefInfo::ModRef;
431 }
432 
433 ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
434                                     const MemoryLocation &Loc) {
435   if (Loc.Ptr) {
436     AliasResult AR = alias(MemoryLocation::get(V), Loc);
437     // If the va_arg address cannot alias the pointer in question, then the
438     // specified memory cannot be accessed by the va_arg.
439     if (AR == NoAlias)
440       return ModRefInfo::NoModRef;
441 
442     // If the pointer is a pointer to constant memory, then it could not have
443     // been modified by this va_arg.
444     if (pointsToConstantMemory(Loc))
445       return ModRefInfo::NoModRef;
446 
447     // If the va_arg aliases the pointer as must alias, set Must.
448     if (AR == MustAlias)
449       return ModRefInfo::MustModRef;
450   }
451 
452   // Otherwise, a va_arg reads and writes.
453   return ModRefInfo::ModRef;
454 }
455 
456 ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
457                                     const MemoryLocation &Loc) {
458   if (Loc.Ptr) {
459     // If the pointer is a pointer to constant memory,
460     // then it could not have been modified by this catchpad.
461     if (pointsToConstantMemory(Loc))
462       return ModRefInfo::NoModRef;
463   }
464 
465   // Otherwise, a catchpad reads and writes.
466   return ModRefInfo::ModRef;
467 }
468 
469 ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
470                                     const MemoryLocation &Loc) {
471   if (Loc.Ptr) {
472     // If the pointer is a pointer to constant memory,
473     // then it could not have been modified by this catchpad.
474     if (pointsToConstantMemory(Loc))
475       return ModRefInfo::NoModRef;
476   }
477 
478   // Otherwise, a catchret reads and writes.
479   return ModRefInfo::ModRef;
480 }
481 
482 ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
483                                     const MemoryLocation &Loc) {
484   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
485   if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
486     return ModRefInfo::ModRef;
487 
488   if (Loc.Ptr) {
489     AliasResult AR = alias(MemoryLocation::get(CX), Loc);
490     // If the cmpxchg address does not alias the location, it does not access
491     // it.
492     if (AR == NoAlias)
493       return ModRefInfo::NoModRef;
494 
495     // If the cmpxchg address aliases the pointer as must alias, set Must.
496     if (AR == MustAlias)
497       return ModRefInfo::MustModRef;
498   }
499 
500   return ModRefInfo::ModRef;
501 }
502 
503 ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
504                                     const MemoryLocation &Loc) {
505   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
506   if (isStrongerThanMonotonic(RMW->getOrdering()))
507     return ModRefInfo::ModRef;
508 
509   if (Loc.Ptr) {
510     AliasResult AR = alias(MemoryLocation::get(RMW), Loc);
511     // If the atomicrmw address does not alias the location, it does not access
512     // it.
513     if (AR == NoAlias)
514       return ModRefInfo::NoModRef;
515 
516     // If the atomicrmw address aliases the pointer as must alias, set Must.
517     if (AR == MustAlias)
518       return ModRefInfo::MustModRef;
519   }
520 
521   return ModRefInfo::ModRef;
522 }
523 
524 /// \brief Return information about whether a particular call site modifies
525 /// or reads the specified memory location \p MemLoc before instruction \p I
526 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
527 /// instruction-ordering queries inside the BasicBlock containing \p I.
528 /// FIXME: this is really just shoring-up a deficiency in alias analysis.
529 /// BasicAA isn't willing to spend linear time determining whether an alloca
530 /// was captured before or after this particular call, while we are. However,
531 /// with a smarter AA in place, this test is just wasting compile time.
532 ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
533                                          const MemoryLocation &MemLoc,
534                                          DominatorTree *DT,
535                                          OrderedBasicBlock *OBB) {
536   if (!DT)
537     return ModRefInfo::ModRef;
538 
539   const Value *Object =
540       GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
541   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
542       isa<Constant>(Object))
543     return ModRefInfo::ModRef;
544 
545   ImmutableCallSite CS(I);
546   if (!CS.getInstruction() || CS.getInstruction() == Object)
547     return ModRefInfo::ModRef;
548 
549   if (PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
550                                  /* StoreCaptures */ true, I, DT,
551                                  /* include Object */ true,
552                                  /* OrderedBasicBlock */ OBB))
553     return ModRefInfo::ModRef;
554 
555   unsigned ArgNo = 0;
556   ModRefInfo R = ModRefInfo::NoModRef;
557   bool MustAlias = true;
558   // Set flag only if no May found and all operands processed.
559   for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
560        CI != CE; ++CI, ++ArgNo) {
561     // Only look at the no-capture or byval pointer arguments.  If this
562     // pointer were passed to arguments that were neither of these, then it
563     // couldn't be no-capture.
564     if (!(*CI)->getType()->isPointerTy() ||
565         (!CS.doesNotCapture(ArgNo) &&
566          ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
567       continue;
568 
569     AliasResult AR = alias(MemoryLocation(*CI), MemoryLocation(Object));
570     // If this is a no-capture pointer argument, see if we can tell that it
571     // is impossible to alias the pointer we're checking.  If not, we have to
572     // assume that the call could touch the pointer, even though it doesn't
573     // escape.
574     if (AR != MustAlias)
575       MustAlias = false;
576     if (AR == NoAlias)
577       continue;
578     if (CS.doesNotAccessMemory(ArgNo))
579       continue;
580     if (CS.onlyReadsMemory(ArgNo)) {
581       R = ModRefInfo::Ref;
582       continue;
583     }
584     // Not returning MustModRef since we have not seen all the arguments.
585     return ModRefInfo::ModRef;
586   }
587   return MustAlias ? setMust(R) : clearMust(R);
588 }
589 
590 /// canBasicBlockModify - Return true if it is possible for execution of the
591 /// specified basic block to modify the location Loc.
592 ///
593 bool AAResults::canBasicBlockModify(const BasicBlock &BB,
594                                     const MemoryLocation &Loc) {
595   return canInstructionRangeModRef(BB.front(), BB.back(), Loc, ModRefInfo::Mod);
596 }
597 
598 /// canInstructionRangeModRef - Return true if it is possible for the
599 /// execution of the specified instructions to mod\ref (according to the
600 /// mode) the location Loc. The instructions to consider are all
601 /// of the instructions in the range of [I1,I2] INCLUSIVE.
602 /// I1 and I2 must be in the same basic block.
603 bool AAResults::canInstructionRangeModRef(const Instruction &I1,
604                                           const Instruction &I2,
605                                           const MemoryLocation &Loc,
606                                           const ModRefInfo Mode) {
607   assert(I1.getParent() == I2.getParent() &&
608          "Instructions not in same basic block!");
609   BasicBlock::const_iterator I = I1.getIterator();
610   BasicBlock::const_iterator E = I2.getIterator();
611   ++E;  // Convert from inclusive to exclusive range.
612 
613   for (; I != E; ++I) // Check every instruction in range
614     if (isModOrRefSet(intersectModRef(getModRefInfo(&*I, Loc), Mode)))
615       return true;
616   return false;
617 }
618 
619 // Provide a definition for the root virtual destructor.
620 AAResults::Concept::~Concept() = default;
621 
622 // Provide a definition for the static object used to identify passes.
623 AnalysisKey AAManager::Key;
624 
625 namespace {
626 
627 /// A wrapper pass for external alias analyses. This just squirrels away the
628 /// callback used to run any analyses and register their results.
629 struct ExternalAAWrapperPass : ImmutablePass {
630   using CallbackT = std::function<void(Pass &, Function &, AAResults &)>;
631 
632   CallbackT CB;
633 
634   static char ID;
635 
636   ExternalAAWrapperPass() : ImmutablePass(ID) {
637     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
638   }
639 
640   explicit ExternalAAWrapperPass(CallbackT CB)
641       : ImmutablePass(ID), CB(std::move(CB)) {
642     initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
643   }
644 
645   void getAnalysisUsage(AnalysisUsage &AU) const override {
646     AU.setPreservesAll();
647   }
648 };
649 
650 } // end anonymous namespace
651 
652 char ExternalAAWrapperPass::ID = 0;
653 
654 INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
655                 false, true)
656 
657 ImmutablePass *
658 llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
659   return new ExternalAAWrapperPass(std::move(Callback));
660 }
661 
662 AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
663   initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
664 }
665 
666 char AAResultsWrapperPass::ID = 0;
667 
668 INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
669                       "Function Alias Analysis Results", false, true)
670 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
671 INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
672 INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
673 INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
674 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
675 INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
676 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
677 INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
678 INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
679 INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
680                     "Function Alias Analysis Results", false, true)
681 
682 FunctionPass *llvm::createAAResultsWrapperPass() {
683   return new AAResultsWrapperPass();
684 }
685 
686 /// Run the wrapper pass to rebuild an aggregation over known AA passes.
687 ///
688 /// This is the legacy pass manager's interface to the new-style AA results
689 /// aggregation object. Because this is somewhat shoe-horned into the legacy
690 /// pass manager, we hard code all the specific alias analyses available into
691 /// it. While the particular set enabled is configured via commandline flags,
692 /// adding a new alias analysis to LLVM will require adding support for it to
693 /// this list.
694 bool AAResultsWrapperPass::runOnFunction(Function &F) {
695   // NB! This *must* be reset before adding new AA results to the new
696   // AAResults object because in the legacy pass manager, each instance
697   // of these will refer to the *same* immutable analyses, registering and
698   // unregistering themselves with them. We need to carefully tear down the
699   // previous object first, in this case replacing it with an empty one, before
700   // registering new results.
701   AAR.reset(
702       new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
703 
704   // BasicAA is always available for function analyses. Also, we add it first
705   // so that it can trump TBAA results when it proves MustAlias.
706   // FIXME: TBAA should have an explicit mode to support this and then we
707   // should reconsider the ordering here.
708   if (!DisableBasicAA)
709     AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
710 
711   // Populate the results with the currently available AAs.
712   if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
713     AAR->addAAResult(WrapperPass->getResult());
714   if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
715     AAR->addAAResult(WrapperPass->getResult());
716   if (auto *WrapperPass =
717           getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
718     AAR->addAAResult(WrapperPass->getResult());
719   if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
720     AAR->addAAResult(WrapperPass->getResult());
721   if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
722     AAR->addAAResult(WrapperPass->getResult());
723   if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
724     AAR->addAAResult(WrapperPass->getResult());
725   if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
726     AAR->addAAResult(WrapperPass->getResult());
727 
728   // If available, run an external AA providing callback over the results as
729   // well.
730   if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
731     if (WrapperPass->CB)
732       WrapperPass->CB(*this, F, *AAR);
733 
734   // Analyses don't mutate the IR, so return false.
735   return false;
736 }
737 
738 void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
739   AU.setPreservesAll();
740   AU.addRequired<BasicAAWrapperPass>();
741   AU.addRequired<TargetLibraryInfoWrapperPass>();
742 
743   // We also need to mark all the alias analysis passes we will potentially
744   // probe in runOnFunction as used here to ensure the legacy pass manager
745   // preserves them. This hard coding of lists of alias analyses is specific to
746   // the legacy pass manager.
747   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
748   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
749   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
750   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
751   AU.addUsedIfAvailable<SCEVAAWrapperPass>();
752   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
753   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
754 }
755 
756 AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
757                                         BasicAAResult &BAR) {
758   AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
759 
760   // Add in our explicitly constructed BasicAA results.
761   if (!DisableBasicAA)
762     AAR.addAAResult(BAR);
763 
764   // Populate the results with the other currently available AAs.
765   if (auto *WrapperPass =
766           P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
767     AAR.addAAResult(WrapperPass->getResult());
768   if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
769     AAR.addAAResult(WrapperPass->getResult());
770   if (auto *WrapperPass =
771           P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
772     AAR.addAAResult(WrapperPass->getResult());
773   if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
774     AAR.addAAResult(WrapperPass->getResult());
775   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
776     AAR.addAAResult(WrapperPass->getResult());
777   if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
778     AAR.addAAResult(WrapperPass->getResult());
779 
780   return AAR;
781 }
782 
783 bool llvm::isNoAliasCall(const Value *V) {
784   if (auto CS = ImmutableCallSite(V))
785     return CS.hasRetAttr(Attribute::NoAlias);
786   return false;
787 }
788 
789 bool llvm::isNoAliasArgument(const Value *V) {
790   if (const Argument *A = dyn_cast<Argument>(V))
791     return A->hasNoAliasAttr();
792   return false;
793 }
794 
795 bool llvm::isIdentifiedObject(const Value *V) {
796   if (isa<AllocaInst>(V))
797     return true;
798   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
799     return true;
800   if (isNoAliasCall(V))
801     return true;
802   if (const Argument *A = dyn_cast<Argument>(V))
803     return A->hasNoAliasAttr() || A->hasByValAttr();
804   return false;
805 }
806 
807 bool llvm::isIdentifiedFunctionLocal(const Value *V) {
808   return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
809 }
810 
811 void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
812   // This function needs to be in sync with llvm::createLegacyPMAAResults -- if
813   // more alias analyses are added to llvm::createLegacyPMAAResults, they need
814   // to be added here also.
815   AU.addRequired<TargetLibraryInfoWrapperPass>();
816   AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
817   AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
818   AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
819   AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
820   AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
821   AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
822 }
823